common.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768
  1. /*
  2. * Low-Level PCI Support for PC
  3. *
  4. * (c) 1999--2000 Martin Mares <mj@ucw.cz>
  5. */
  6. #include <linux/sched.h>
  7. #include <linux/pci.h>
  8. #include <linux/ioport.h>
  9. #include <linux/init.h>
  10. #include <linux/dmi.h>
  11. #include <linux/slab.h>
  12. #include <asm-generic/pci-bridge.h>
  13. #include <asm/acpi.h>
  14. #include <asm/segment.h>
  15. #include <asm/io.h>
  16. #include <asm/smp.h>
  17. #include <asm/pci_x86.h>
  18. #include <asm/setup.h>
  19. unsigned int pci_probe = PCI_PROBE_BIOS | PCI_PROBE_CONF1 | PCI_PROBE_CONF2 |
  20. PCI_PROBE_MMCONF;
  21. unsigned int pci_early_dump_regs;
  22. static int pci_bf_sort;
  23. static int smbios_type_b1_flag;
  24. int pci_routeirq;
  25. int noioapicquirk;
  26. #ifdef CONFIG_X86_REROUTE_FOR_BROKEN_BOOT_IRQS
  27. int noioapicreroute = 0;
  28. #else
  29. int noioapicreroute = 1;
  30. #endif
  31. int pcibios_last_bus = -1;
  32. unsigned long pirq_table_addr;
  33. struct pci_bus *pci_root_bus;
  34. const struct pci_raw_ops *__read_mostly raw_pci_ops;
  35. const struct pci_raw_ops *__read_mostly raw_pci_ext_ops;
  36. int raw_pci_read(unsigned int domain, unsigned int bus, unsigned int devfn,
  37. int reg, int len, u32 *val)
  38. {
  39. if (domain == 0 && reg < 256 && raw_pci_ops)
  40. return raw_pci_ops->read(domain, bus, devfn, reg, len, val);
  41. if (raw_pci_ext_ops)
  42. return raw_pci_ext_ops->read(domain, bus, devfn, reg, len, val);
  43. return -EINVAL;
  44. }
  45. int raw_pci_write(unsigned int domain, unsigned int bus, unsigned int devfn,
  46. int reg, int len, u32 val)
  47. {
  48. if (domain == 0 && reg < 256 && raw_pci_ops)
  49. return raw_pci_ops->write(domain, bus, devfn, reg, len, val);
  50. if (raw_pci_ext_ops)
  51. return raw_pci_ext_ops->write(domain, bus, devfn, reg, len, val);
  52. return -EINVAL;
  53. }
  54. static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
  55. {
  56. return raw_pci_read(pci_domain_nr(bus), bus->number,
  57. devfn, where, size, value);
  58. }
  59. static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
  60. {
  61. return raw_pci_write(pci_domain_nr(bus), bus->number,
  62. devfn, where, size, value);
  63. }
  64. struct pci_ops pci_root_ops = {
  65. .read = pci_read,
  66. .write = pci_write,
  67. };
  68. /*
  69. * This interrupt-safe spinlock protects all accesses to PCI
  70. * configuration space.
  71. */
  72. DEFINE_RAW_SPINLOCK(pci_config_lock);
  73. static int can_skip_ioresource_align(const struct dmi_system_id *d)
  74. {
  75. pci_probe |= PCI_CAN_SKIP_ISA_ALIGN;
  76. printk(KERN_INFO "PCI: %s detected, can skip ISA alignment\n", d->ident);
  77. return 0;
  78. }
  79. static const struct dmi_system_id can_skip_pciprobe_dmi_table[] = {
  80. /*
  81. * Systems where PCI IO resource ISA alignment can be skipped
  82. * when the ISA enable bit in the bridge control is not set
  83. */
  84. {
  85. .callback = can_skip_ioresource_align,
  86. .ident = "IBM System x3800",
  87. .matches = {
  88. DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
  89. DMI_MATCH(DMI_PRODUCT_NAME, "x3800"),
  90. },
  91. },
  92. {
  93. .callback = can_skip_ioresource_align,
  94. .ident = "IBM System x3850",
  95. .matches = {
  96. DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
  97. DMI_MATCH(DMI_PRODUCT_NAME, "x3850"),
  98. },
  99. },
  100. {
  101. .callback = can_skip_ioresource_align,
  102. .ident = "IBM System x3950",
  103. .matches = {
  104. DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
  105. DMI_MATCH(DMI_PRODUCT_NAME, "x3950"),
  106. },
  107. },
  108. {}
  109. };
  110. void __init dmi_check_skip_isa_align(void)
  111. {
  112. dmi_check_system(can_skip_pciprobe_dmi_table);
  113. }
  114. static void pcibios_fixup_device_resources(struct pci_dev *dev)
  115. {
  116. struct resource *rom_r = &dev->resource[PCI_ROM_RESOURCE];
  117. struct resource *bar_r;
  118. int bar;
  119. if (pci_probe & PCI_NOASSIGN_BARS) {
  120. /*
  121. * If the BIOS did not assign the BAR, zero out the
  122. * resource so the kernel doesn't attmept to assign
  123. * it later on in pci_assign_unassigned_resources
  124. */
  125. for (bar = 0; bar <= PCI_STD_RESOURCE_END; bar++) {
  126. bar_r = &dev->resource[bar];
  127. if (bar_r->start == 0 && bar_r->end != 0) {
  128. bar_r->flags = 0;
  129. bar_r->end = 0;
  130. }
  131. }
  132. }
  133. if (pci_probe & PCI_NOASSIGN_ROMS) {
  134. if (rom_r->parent)
  135. return;
  136. if (rom_r->start) {
  137. /* we deal with BIOS assigned ROM later */
  138. return;
  139. }
  140. rom_r->start = rom_r->end = rom_r->flags = 0;
  141. }
  142. }
  143. /*
  144. * Called after each bus is probed, but before its children
  145. * are examined.
  146. */
  147. void pcibios_fixup_bus(struct pci_bus *b)
  148. {
  149. struct pci_dev *dev;
  150. pci_read_bridge_bases(b);
  151. list_for_each_entry(dev, &b->devices, bus_list)
  152. pcibios_fixup_device_resources(dev);
  153. }
  154. /*
  155. * Only use DMI information to set this if nothing was passed
  156. * on the kernel command line (which was parsed earlier).
  157. */
  158. static int set_bf_sort(const struct dmi_system_id *d)
  159. {
  160. if (pci_bf_sort == pci_bf_sort_default) {
  161. pci_bf_sort = pci_dmi_bf;
  162. printk(KERN_INFO "PCI: %s detected, enabling pci=bfsort.\n", d->ident);
  163. }
  164. return 0;
  165. }
  166. static void read_dmi_type_b1(const struct dmi_header *dm,
  167. void *private_data)
  168. {
  169. u8 *d = (u8 *)dm + 4;
  170. if (dm->type != 0xB1)
  171. return;
  172. switch (((*(u32 *)d) >> 9) & 0x03) {
  173. case 0x00:
  174. printk(KERN_INFO "dmi type 0xB1 record - unknown flag\n");
  175. break;
  176. case 0x01: /* set pci=bfsort */
  177. smbios_type_b1_flag = 1;
  178. break;
  179. case 0x02: /* do not set pci=bfsort */
  180. smbios_type_b1_flag = 2;
  181. break;
  182. default:
  183. break;
  184. }
  185. }
  186. static int find_sort_method(const struct dmi_system_id *d)
  187. {
  188. dmi_walk(read_dmi_type_b1, NULL);
  189. if (smbios_type_b1_flag == 1) {
  190. set_bf_sort(d);
  191. return 0;
  192. }
  193. return -1;
  194. }
  195. /*
  196. * Enable renumbering of PCI bus# ranges to reach all PCI busses (Cardbus)
  197. */
  198. #ifdef __i386__
  199. static int assign_all_busses(const struct dmi_system_id *d)
  200. {
  201. pci_probe |= PCI_ASSIGN_ALL_BUSSES;
  202. printk(KERN_INFO "%s detected: enabling PCI bus# renumbering"
  203. " (pci=assign-busses)\n", d->ident);
  204. return 0;
  205. }
  206. #endif
  207. static int set_scan_all(const struct dmi_system_id *d)
  208. {
  209. printk(KERN_INFO "PCI: %s detected, enabling pci=pcie_scan_all\n",
  210. d->ident);
  211. pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
  212. return 0;
  213. }
  214. static const struct dmi_system_id pciprobe_dmi_table[] = {
  215. #ifdef __i386__
  216. /*
  217. * Laptops which need pci=assign-busses to see Cardbus cards
  218. */
  219. {
  220. .callback = assign_all_busses,
  221. .ident = "Samsung X20 Laptop",
  222. .matches = {
  223. DMI_MATCH(DMI_SYS_VENDOR, "Samsung Electronics"),
  224. DMI_MATCH(DMI_PRODUCT_NAME, "SX20S"),
  225. },
  226. },
  227. #endif /* __i386__ */
  228. {
  229. .callback = set_bf_sort,
  230. .ident = "Dell PowerEdge 1950",
  231. .matches = {
  232. DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
  233. DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 1950"),
  234. },
  235. },
  236. {
  237. .callback = set_bf_sort,
  238. .ident = "Dell PowerEdge 1955",
  239. .matches = {
  240. DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
  241. DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 1955"),
  242. },
  243. },
  244. {
  245. .callback = set_bf_sort,
  246. .ident = "Dell PowerEdge 2900",
  247. .matches = {
  248. DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
  249. DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 2900"),
  250. },
  251. },
  252. {
  253. .callback = set_bf_sort,
  254. .ident = "Dell PowerEdge 2950",
  255. .matches = {
  256. DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
  257. DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 2950"),
  258. },
  259. },
  260. {
  261. .callback = set_bf_sort,
  262. .ident = "Dell PowerEdge R900",
  263. .matches = {
  264. DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
  265. DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge R900"),
  266. },
  267. },
  268. {
  269. .callback = find_sort_method,
  270. .ident = "Dell System",
  271. .matches = {
  272. DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"),
  273. },
  274. },
  275. {
  276. .callback = set_bf_sort,
  277. .ident = "HP ProLiant BL20p G3",
  278. .matches = {
  279. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  280. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL20p G3"),
  281. },
  282. },
  283. {
  284. .callback = set_bf_sort,
  285. .ident = "HP ProLiant BL20p G4",
  286. .matches = {
  287. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  288. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL20p G4"),
  289. },
  290. },
  291. {
  292. .callback = set_bf_sort,
  293. .ident = "HP ProLiant BL30p G1",
  294. .matches = {
  295. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  296. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL30p G1"),
  297. },
  298. },
  299. {
  300. .callback = set_bf_sort,
  301. .ident = "HP ProLiant BL25p G1",
  302. .matches = {
  303. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  304. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL25p G1"),
  305. },
  306. },
  307. {
  308. .callback = set_bf_sort,
  309. .ident = "HP ProLiant BL35p G1",
  310. .matches = {
  311. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  312. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL35p G1"),
  313. },
  314. },
  315. {
  316. .callback = set_bf_sort,
  317. .ident = "HP ProLiant BL45p G1",
  318. .matches = {
  319. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  320. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL45p G1"),
  321. },
  322. },
  323. {
  324. .callback = set_bf_sort,
  325. .ident = "HP ProLiant BL45p G2",
  326. .matches = {
  327. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  328. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL45p G2"),
  329. },
  330. },
  331. {
  332. .callback = set_bf_sort,
  333. .ident = "HP ProLiant BL460c G1",
  334. .matches = {
  335. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  336. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL460c G1"),
  337. },
  338. },
  339. {
  340. .callback = set_bf_sort,
  341. .ident = "HP ProLiant BL465c G1",
  342. .matches = {
  343. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  344. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL465c G1"),
  345. },
  346. },
  347. {
  348. .callback = set_bf_sort,
  349. .ident = "HP ProLiant BL480c G1",
  350. .matches = {
  351. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  352. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL480c G1"),
  353. },
  354. },
  355. {
  356. .callback = set_bf_sort,
  357. .ident = "HP ProLiant BL685c G1",
  358. .matches = {
  359. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  360. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL685c G1"),
  361. },
  362. },
  363. {
  364. .callback = set_bf_sort,
  365. .ident = "HP ProLiant DL360",
  366. .matches = {
  367. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  368. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL360"),
  369. },
  370. },
  371. {
  372. .callback = set_bf_sort,
  373. .ident = "HP ProLiant DL380",
  374. .matches = {
  375. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  376. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL380"),
  377. },
  378. },
  379. #ifdef __i386__
  380. {
  381. .callback = assign_all_busses,
  382. .ident = "Compaq EVO N800c",
  383. .matches = {
  384. DMI_MATCH(DMI_SYS_VENDOR, "Compaq"),
  385. DMI_MATCH(DMI_PRODUCT_NAME, "EVO N800c"),
  386. },
  387. },
  388. #endif
  389. {
  390. .callback = set_bf_sort,
  391. .ident = "HP ProLiant DL385 G2",
  392. .matches = {
  393. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  394. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL385 G2"),
  395. },
  396. },
  397. {
  398. .callback = set_bf_sort,
  399. .ident = "HP ProLiant DL585 G2",
  400. .matches = {
  401. DMI_MATCH(DMI_SYS_VENDOR, "HP"),
  402. DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL585 G2"),
  403. },
  404. },
  405. {
  406. .callback = set_scan_all,
  407. .ident = "Stratus/NEC ftServer",
  408. .matches = {
  409. DMI_MATCH(DMI_SYS_VENDOR, "Stratus"),
  410. DMI_MATCH(DMI_PRODUCT_NAME, "ftServer"),
  411. },
  412. },
  413. {}
  414. };
  415. void __init dmi_check_pciprobe(void)
  416. {
  417. dmi_check_system(pciprobe_dmi_table);
  418. }
  419. struct pci_bus *pcibios_scan_root(int busnum)
  420. {
  421. struct pci_bus *bus = NULL;
  422. while ((bus = pci_find_next_bus(bus)) != NULL) {
  423. if (bus->number == busnum) {
  424. /* Already scanned */
  425. return bus;
  426. }
  427. }
  428. return pci_scan_bus_on_node(busnum, &pci_root_ops,
  429. get_mp_bus_to_node(busnum));
  430. }
  431. void __init pcibios_set_cache_line_size(void)
  432. {
  433. struct cpuinfo_x86 *c = &boot_cpu_data;
  434. /*
  435. * Set PCI cacheline size to that of the CPU if the CPU has reported it.
  436. * (For older CPUs that don't support cpuid, we se it to 32 bytes
  437. * It's also good for 386/486s (which actually have 16)
  438. * as quite a few PCI devices do not support smaller values.
  439. */
  440. if (c->x86_clflush_size > 0) {
  441. pci_dfl_cache_line_size = c->x86_clflush_size >> 2;
  442. printk(KERN_DEBUG "PCI: pci_cache_line_size set to %d bytes\n",
  443. pci_dfl_cache_line_size << 2);
  444. } else {
  445. pci_dfl_cache_line_size = 32 >> 2;
  446. printk(KERN_DEBUG "PCI: Unknown cacheline size. Setting to 32 bytes\n");
  447. }
  448. }
  449. int __init pcibios_init(void)
  450. {
  451. if (!raw_pci_ops) {
  452. printk(KERN_WARNING "PCI: System does not support PCI\n");
  453. return 0;
  454. }
  455. pcibios_set_cache_line_size();
  456. pcibios_resource_survey();
  457. if (pci_bf_sort >= pci_force_bf)
  458. pci_sort_breadthfirst();
  459. return 0;
  460. }
  461. char * __init pcibios_setup(char *str)
  462. {
  463. if (!strcmp(str, "off")) {
  464. pci_probe = 0;
  465. return NULL;
  466. } else if (!strcmp(str, "bfsort")) {
  467. pci_bf_sort = pci_force_bf;
  468. return NULL;
  469. } else if (!strcmp(str, "nobfsort")) {
  470. pci_bf_sort = pci_force_nobf;
  471. return NULL;
  472. }
  473. #ifdef CONFIG_PCI_BIOS
  474. else if (!strcmp(str, "bios")) {
  475. pci_probe = PCI_PROBE_BIOS;
  476. return NULL;
  477. } else if (!strcmp(str, "nobios")) {
  478. pci_probe &= ~PCI_PROBE_BIOS;
  479. return NULL;
  480. } else if (!strcmp(str, "biosirq")) {
  481. pci_probe |= PCI_BIOS_IRQ_SCAN;
  482. return NULL;
  483. } else if (!strncmp(str, "pirqaddr=", 9)) {
  484. pirq_table_addr = simple_strtoul(str+9, NULL, 0);
  485. return NULL;
  486. }
  487. #endif
  488. #ifdef CONFIG_PCI_DIRECT
  489. else if (!strcmp(str, "conf1")) {
  490. pci_probe = PCI_PROBE_CONF1 | PCI_NO_CHECKS;
  491. return NULL;
  492. }
  493. else if (!strcmp(str, "conf2")) {
  494. pci_probe = PCI_PROBE_CONF2 | PCI_NO_CHECKS;
  495. return NULL;
  496. }
  497. #endif
  498. #ifdef CONFIG_PCI_MMCONFIG
  499. else if (!strcmp(str, "nommconf")) {
  500. pci_probe &= ~PCI_PROBE_MMCONF;
  501. return NULL;
  502. }
  503. else if (!strcmp(str, "check_enable_amd_mmconf")) {
  504. pci_probe |= PCI_CHECK_ENABLE_AMD_MMCONF;
  505. return NULL;
  506. }
  507. #endif
  508. else if (!strcmp(str, "noacpi")) {
  509. acpi_noirq_set();
  510. return NULL;
  511. }
  512. else if (!strcmp(str, "noearly")) {
  513. pci_probe |= PCI_PROBE_NOEARLY;
  514. return NULL;
  515. }
  516. #ifndef CONFIG_X86_VISWS
  517. else if (!strcmp(str, "usepirqmask")) {
  518. pci_probe |= PCI_USE_PIRQ_MASK;
  519. return NULL;
  520. } else if (!strncmp(str, "irqmask=", 8)) {
  521. pcibios_irq_mask = simple_strtol(str+8, NULL, 0);
  522. return NULL;
  523. } else if (!strncmp(str, "lastbus=", 8)) {
  524. pcibios_last_bus = simple_strtol(str+8, NULL, 0);
  525. return NULL;
  526. }
  527. #endif
  528. else if (!strcmp(str, "rom")) {
  529. pci_probe |= PCI_ASSIGN_ROMS;
  530. return NULL;
  531. } else if (!strcmp(str, "norom")) {
  532. pci_probe |= PCI_NOASSIGN_ROMS;
  533. return NULL;
  534. } else if (!strcmp(str, "nobar")) {
  535. pci_probe |= PCI_NOASSIGN_BARS;
  536. return NULL;
  537. } else if (!strcmp(str, "assign-busses")) {
  538. pci_probe |= PCI_ASSIGN_ALL_BUSSES;
  539. return NULL;
  540. } else if (!strcmp(str, "use_crs")) {
  541. pci_probe |= PCI_USE__CRS;
  542. return NULL;
  543. } else if (!strcmp(str, "nocrs")) {
  544. pci_probe |= PCI_ROOT_NO_CRS;
  545. return NULL;
  546. } else if (!strcmp(str, "earlydump")) {
  547. pci_early_dump_regs = 1;
  548. return NULL;
  549. } else if (!strcmp(str, "routeirq")) {
  550. pci_routeirq = 1;
  551. return NULL;
  552. } else if (!strcmp(str, "skip_isa_align")) {
  553. pci_probe |= PCI_CAN_SKIP_ISA_ALIGN;
  554. return NULL;
  555. } else if (!strcmp(str, "noioapicquirk")) {
  556. noioapicquirk = 1;
  557. return NULL;
  558. } else if (!strcmp(str, "ioapicreroute")) {
  559. if (noioapicreroute != -1)
  560. noioapicreroute = 0;
  561. return NULL;
  562. } else if (!strcmp(str, "noioapicreroute")) {
  563. if (noioapicreroute != -1)
  564. noioapicreroute = 1;
  565. return NULL;
  566. }
  567. return str;
  568. }
  569. unsigned int pcibios_assign_all_busses(void)
  570. {
  571. return (pci_probe & PCI_ASSIGN_ALL_BUSSES) ? 1 : 0;
  572. }
  573. int pcibios_add_device(struct pci_dev *dev)
  574. {
  575. struct setup_data *data;
  576. struct pci_setup_rom *rom;
  577. u64 pa_data;
  578. pa_data = boot_params.hdr.setup_data;
  579. while (pa_data) {
  580. data = phys_to_virt(pa_data);
  581. if (data->type == SETUP_PCI) {
  582. rom = (struct pci_setup_rom *)data;
  583. if ((pci_domain_nr(dev->bus) == rom->segment) &&
  584. (dev->bus->number == rom->bus) &&
  585. (PCI_SLOT(dev->devfn) == rom->device) &&
  586. (PCI_FUNC(dev->devfn) == rom->function) &&
  587. (dev->vendor == rom->vendor) &&
  588. (dev->device == rom->devid)) {
  589. dev->rom = pa_data +
  590. offsetof(struct pci_setup_rom, romdata);
  591. dev->romlen = rom->pcilen;
  592. }
  593. }
  594. pa_data = data->next;
  595. }
  596. return 0;
  597. }
  598. int pcibios_enable_device(struct pci_dev *dev, int mask)
  599. {
  600. int err;
  601. if ((err = pci_enable_resources(dev, mask)) < 0)
  602. return err;
  603. if (!pci_dev_msi_enabled(dev))
  604. return pcibios_enable_irq(dev);
  605. return 0;
  606. }
  607. void pcibios_disable_device (struct pci_dev *dev)
  608. {
  609. if (!pci_dev_msi_enabled(dev) && pcibios_disable_irq)
  610. pcibios_disable_irq(dev);
  611. }
  612. int pci_ext_cfg_avail(void)
  613. {
  614. if (raw_pci_ext_ops)
  615. return 1;
  616. else
  617. return 0;
  618. }
  619. struct pci_bus *pci_scan_bus_on_node(int busno, struct pci_ops *ops, int node)
  620. {
  621. LIST_HEAD(resources);
  622. struct pci_bus *bus = NULL;
  623. struct pci_sysdata *sd;
  624. /*
  625. * Allocate per-root-bus (not per bus) arch-specific data.
  626. * TODO: leak; this memory is never freed.
  627. * It's arguable whether it's worth the trouble to care.
  628. */
  629. sd = kzalloc(sizeof(*sd), GFP_KERNEL);
  630. if (!sd) {
  631. printk(KERN_ERR "PCI: OOM, skipping PCI bus %02x\n", busno);
  632. return NULL;
  633. }
  634. sd->node = node;
  635. x86_pci_root_bus_resources(busno, &resources);
  636. printk(KERN_DEBUG "PCI: Probing PCI hardware (bus %02x)\n", busno);
  637. bus = pci_scan_root_bus(NULL, busno, ops, sd, &resources);
  638. if (!bus) {
  639. pci_free_resource_list(&resources);
  640. kfree(sd);
  641. }
  642. return bus;
  643. }
  644. struct pci_bus *pci_scan_bus_with_sysdata(int busno)
  645. {
  646. return pci_scan_bus_on_node(busno, &pci_root_ops, -1);
  647. }
  648. /*
  649. * NUMA info for PCI busses
  650. *
  651. * Early arch code is responsible for filling in reasonable values here.
  652. * A node id of "-1" means "use current node". In other words, if a bus
  653. * has a -1 node id, it's not tightly coupled to any particular chunk
  654. * of memory (as is the case on some Nehalem systems).
  655. */
  656. #ifdef CONFIG_NUMA
  657. #define BUS_NR 256
  658. #ifdef CONFIG_X86_64
  659. static int mp_bus_to_node[BUS_NR] = {
  660. [0 ... BUS_NR - 1] = -1
  661. };
  662. void set_mp_bus_to_node(int busnum, int node)
  663. {
  664. if (busnum >= 0 && busnum < BUS_NR)
  665. mp_bus_to_node[busnum] = node;
  666. }
  667. int get_mp_bus_to_node(int busnum)
  668. {
  669. int node = -1;
  670. if (busnum < 0 || busnum > (BUS_NR - 1))
  671. return node;
  672. node = mp_bus_to_node[busnum];
  673. /*
  674. * let numa_node_id to decide it later in dma_alloc_pages
  675. * if there is no ram on that node
  676. */
  677. if (node != -1 && !node_online(node))
  678. node = -1;
  679. return node;
  680. }
  681. #else /* CONFIG_X86_32 */
  682. static int mp_bus_to_node[BUS_NR] = {
  683. [0 ... BUS_NR - 1] = -1
  684. };
  685. void set_mp_bus_to_node(int busnum, int node)
  686. {
  687. if (busnum >= 0 && busnum < BUS_NR)
  688. mp_bus_to_node[busnum] = (unsigned char) node;
  689. }
  690. int get_mp_bus_to_node(int busnum)
  691. {
  692. int node;
  693. if (busnum < 0 || busnum > (BUS_NR - 1))
  694. return 0;
  695. node = mp_bus_to_node[busnum];
  696. return node;
  697. }
  698. #endif /* CONFIG_X86_32 */
  699. #endif /* CONFIG_NUMA */