bpf_jit_comp.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724
  1. /* bpf_jit_comp.c : BPF JIT compiler
  2. *
  3. * Copyright (C) 2011 Eric Dumazet (eric.dumazet@gmail.com)
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; version 2
  8. * of the License.
  9. */
  10. #include <linux/moduleloader.h>
  11. #include <asm/cacheflush.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/filter.h>
  14. #include <linux/if_vlan.h>
  15. /*
  16. * Conventions :
  17. * EAX : BPF A accumulator
  18. * EBX : BPF X accumulator
  19. * RDI : pointer to skb (first argument given to JIT function)
  20. * RBP : frame pointer (even if CONFIG_FRAME_POINTER=n)
  21. * ECX,EDX,ESI : scratch registers
  22. * r9d : skb->len - skb->data_len (headlen)
  23. * r8 : skb->data
  24. * -8(RBP) : saved RBX value
  25. * -16(RBP)..-80(RBP) : BPF_MEMWORDS values
  26. */
  27. int bpf_jit_enable __read_mostly;
  28. /*
  29. * assembly code in arch/x86/net/bpf_jit.S
  30. */
  31. extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[];
  32. extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
  33. extern u8 sk_load_byte_positive_offset[], sk_load_byte_msh_positive_offset[];
  34. extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
  35. extern u8 sk_load_byte_negative_offset[], sk_load_byte_msh_negative_offset[];
  36. static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
  37. {
  38. if (len == 1)
  39. *ptr = bytes;
  40. else if (len == 2)
  41. *(u16 *)ptr = bytes;
  42. else {
  43. *(u32 *)ptr = bytes;
  44. barrier();
  45. }
  46. return ptr + len;
  47. }
  48. #define EMIT(bytes, len) do { prog = emit_code(prog, bytes, len); } while (0)
  49. #define EMIT1(b1) EMIT(b1, 1)
  50. #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
  51. #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
  52. #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
  53. #define EMIT1_off32(b1, off) do { EMIT1(b1); EMIT(off, 4);} while (0)
  54. #define CLEAR_A() EMIT2(0x31, 0xc0) /* xor %eax,%eax */
  55. #define CLEAR_X() EMIT2(0x31, 0xdb) /* xor %ebx,%ebx */
  56. static inline bool is_imm8(int value)
  57. {
  58. return value <= 127 && value >= -128;
  59. }
  60. static inline bool is_near(int offset)
  61. {
  62. return offset <= 127 && offset >= -128;
  63. }
  64. #define EMIT_JMP(offset) \
  65. do { \
  66. if (offset) { \
  67. if (is_near(offset)) \
  68. EMIT2(0xeb, offset); /* jmp .+off8 */ \
  69. else \
  70. EMIT1_off32(0xe9, offset); /* jmp .+off32 */ \
  71. } \
  72. } while (0)
  73. /* list of x86 cond jumps opcodes (. + s8)
  74. * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
  75. */
  76. #define X86_JB 0x72
  77. #define X86_JAE 0x73
  78. #define X86_JE 0x74
  79. #define X86_JNE 0x75
  80. #define X86_JBE 0x76
  81. #define X86_JA 0x77
  82. #define EMIT_COND_JMP(op, offset) \
  83. do { \
  84. if (is_near(offset)) \
  85. EMIT2(op, offset); /* jxx .+off8 */ \
  86. else { \
  87. EMIT2(0x0f, op + 0x10); \
  88. EMIT(offset, 4); /* jxx .+off32 */ \
  89. } \
  90. } while (0)
  91. #define COND_SEL(CODE, TOP, FOP) \
  92. case CODE: \
  93. t_op = TOP; \
  94. f_op = FOP; \
  95. goto cond_branch
  96. #define SEEN_DATAREF 1 /* might call external helpers */
  97. #define SEEN_XREG 2 /* ebx is used */
  98. #define SEEN_MEM 4 /* use mem[] for temporary storage */
  99. static inline void bpf_flush_icache(void *start, void *end)
  100. {
  101. mm_segment_t old_fs = get_fs();
  102. set_fs(KERNEL_DS);
  103. smp_wmb();
  104. flush_icache_range((unsigned long)start, (unsigned long)end);
  105. set_fs(old_fs);
  106. }
  107. #define CHOOSE_LOAD_FUNC(K, func) \
  108. ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
  109. void bpf_jit_compile(struct sk_filter *fp)
  110. {
  111. u8 temp[64];
  112. u8 *prog;
  113. unsigned int proglen, oldproglen = 0;
  114. int ilen, i;
  115. int t_offset, f_offset;
  116. u8 t_op, f_op, seen = 0, pass;
  117. u8 *image = NULL;
  118. u8 *func;
  119. int pc_ret0 = -1; /* bpf index of first RET #0 instruction (if any) */
  120. unsigned int cleanup_addr; /* epilogue code offset */
  121. unsigned int *addrs;
  122. const struct sock_filter *filter = fp->insns;
  123. int flen = fp->len;
  124. if (!bpf_jit_enable)
  125. return;
  126. addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
  127. if (addrs == NULL)
  128. return;
  129. /* Before first pass, make a rough estimation of addrs[]
  130. * each bpf instruction is translated to less than 64 bytes
  131. */
  132. for (proglen = 0, i = 0; i < flen; i++) {
  133. proglen += 64;
  134. addrs[i] = proglen;
  135. }
  136. cleanup_addr = proglen; /* epilogue address */
  137. for (pass = 0; pass < 10; pass++) {
  138. u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
  139. /* no prologue/epilogue for trivial filters (RET something) */
  140. proglen = 0;
  141. prog = temp;
  142. if (seen_or_pass0) {
  143. EMIT4(0x55, 0x48, 0x89, 0xe5); /* push %rbp; mov %rsp,%rbp */
  144. EMIT4(0x48, 0x83, 0xec, 96); /* subq $96,%rsp */
  145. /* note : must save %rbx in case bpf_error is hit */
  146. if (seen_or_pass0 & (SEEN_XREG | SEEN_DATAREF))
  147. EMIT4(0x48, 0x89, 0x5d, 0xf8); /* mov %rbx, -8(%rbp) */
  148. if (seen_or_pass0 & SEEN_XREG)
  149. CLEAR_X(); /* make sure we dont leek kernel memory */
  150. /*
  151. * If this filter needs to access skb data,
  152. * loads r9 and r8 with :
  153. * r9 = skb->len - skb->data_len
  154. * r8 = skb->data
  155. */
  156. if (seen_or_pass0 & SEEN_DATAREF) {
  157. if (offsetof(struct sk_buff, len) <= 127)
  158. /* mov off8(%rdi),%r9d */
  159. EMIT4(0x44, 0x8b, 0x4f, offsetof(struct sk_buff, len));
  160. else {
  161. /* mov off32(%rdi),%r9d */
  162. EMIT3(0x44, 0x8b, 0x8f);
  163. EMIT(offsetof(struct sk_buff, len), 4);
  164. }
  165. if (is_imm8(offsetof(struct sk_buff, data_len)))
  166. /* sub off8(%rdi),%r9d */
  167. EMIT4(0x44, 0x2b, 0x4f, offsetof(struct sk_buff, data_len));
  168. else {
  169. EMIT3(0x44, 0x2b, 0x8f);
  170. EMIT(offsetof(struct sk_buff, data_len), 4);
  171. }
  172. if (is_imm8(offsetof(struct sk_buff, data)))
  173. /* mov off8(%rdi),%r8 */
  174. EMIT4(0x4c, 0x8b, 0x47, offsetof(struct sk_buff, data));
  175. else {
  176. /* mov off32(%rdi),%r8 */
  177. EMIT3(0x4c, 0x8b, 0x87);
  178. EMIT(offsetof(struct sk_buff, data), 4);
  179. }
  180. }
  181. }
  182. switch (filter[0].code) {
  183. case BPF_S_RET_K:
  184. case BPF_S_LD_W_LEN:
  185. case BPF_S_ANC_PROTOCOL:
  186. case BPF_S_ANC_IFINDEX:
  187. case BPF_S_ANC_MARK:
  188. case BPF_S_ANC_RXHASH:
  189. case BPF_S_ANC_CPU:
  190. case BPF_S_ANC_VLAN_TAG:
  191. case BPF_S_ANC_VLAN_TAG_PRESENT:
  192. case BPF_S_ANC_QUEUE:
  193. case BPF_S_LD_W_ABS:
  194. case BPF_S_LD_H_ABS:
  195. case BPF_S_LD_B_ABS:
  196. /* first instruction sets A register (or is RET 'constant') */
  197. break;
  198. default:
  199. /* make sure we dont leak kernel information to user */
  200. CLEAR_A(); /* A = 0 */
  201. }
  202. for (i = 0; i < flen; i++) {
  203. unsigned int K = filter[i].k;
  204. switch (filter[i].code) {
  205. case BPF_S_ALU_ADD_X: /* A += X; */
  206. seen |= SEEN_XREG;
  207. EMIT2(0x01, 0xd8); /* add %ebx,%eax */
  208. break;
  209. case BPF_S_ALU_ADD_K: /* A += K; */
  210. if (!K)
  211. break;
  212. if (is_imm8(K))
  213. EMIT3(0x83, 0xc0, K); /* add imm8,%eax */
  214. else
  215. EMIT1_off32(0x05, K); /* add imm32,%eax */
  216. break;
  217. case BPF_S_ALU_SUB_X: /* A -= X; */
  218. seen |= SEEN_XREG;
  219. EMIT2(0x29, 0xd8); /* sub %ebx,%eax */
  220. break;
  221. case BPF_S_ALU_SUB_K: /* A -= K */
  222. if (!K)
  223. break;
  224. if (is_imm8(K))
  225. EMIT3(0x83, 0xe8, K); /* sub imm8,%eax */
  226. else
  227. EMIT1_off32(0x2d, K); /* sub imm32,%eax */
  228. break;
  229. case BPF_S_ALU_MUL_X: /* A *= X; */
  230. seen |= SEEN_XREG;
  231. EMIT3(0x0f, 0xaf, 0xc3); /* imul %ebx,%eax */
  232. break;
  233. case BPF_S_ALU_MUL_K: /* A *= K */
  234. if (is_imm8(K))
  235. EMIT3(0x6b, 0xc0, K); /* imul imm8,%eax,%eax */
  236. else {
  237. EMIT2(0x69, 0xc0); /* imul imm32,%eax */
  238. EMIT(K, 4);
  239. }
  240. break;
  241. case BPF_S_ALU_DIV_X: /* A /= X; */
  242. seen |= SEEN_XREG;
  243. EMIT2(0x85, 0xdb); /* test %ebx,%ebx */
  244. if (pc_ret0 > 0) {
  245. /* addrs[pc_ret0 - 1] is start address of target
  246. * (addrs[i] - 4) is the address following this jmp
  247. * ("xor %edx,%edx; div %ebx" being 4 bytes long)
  248. */
  249. EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
  250. (addrs[i] - 4));
  251. } else {
  252. EMIT_COND_JMP(X86_JNE, 2 + 5);
  253. CLEAR_A();
  254. EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 4)); /* jmp .+off32 */
  255. }
  256. EMIT4(0x31, 0xd2, 0xf7, 0xf3); /* xor %edx,%edx; div %ebx */
  257. break;
  258. case BPF_S_ALU_MOD_X: /* A %= X; */
  259. seen |= SEEN_XREG;
  260. EMIT2(0x85, 0xdb); /* test %ebx,%ebx */
  261. if (pc_ret0 > 0) {
  262. /* addrs[pc_ret0 - 1] is start address of target
  263. * (addrs[i] - 6) is the address following this jmp
  264. * ("xor %edx,%edx; div %ebx;mov %edx,%eax" being 6 bytes long)
  265. */
  266. EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
  267. (addrs[i] - 6));
  268. } else {
  269. EMIT_COND_JMP(X86_JNE, 2 + 5);
  270. CLEAR_A();
  271. EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 6)); /* jmp .+off32 */
  272. }
  273. EMIT2(0x31, 0xd2); /* xor %edx,%edx */
  274. EMIT2(0xf7, 0xf3); /* div %ebx */
  275. EMIT2(0x89, 0xd0); /* mov %edx,%eax */
  276. break;
  277. case BPF_S_ALU_MOD_K: /* A %= K; */
  278. EMIT2(0x31, 0xd2); /* xor %edx,%edx */
  279. EMIT1(0xb9);EMIT(K, 4); /* mov imm32,%ecx */
  280. EMIT2(0xf7, 0xf1); /* div %ecx */
  281. EMIT2(0x89, 0xd0); /* mov %edx,%eax */
  282. break;
  283. case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
  284. EMIT3(0x48, 0x69, 0xc0); /* imul imm32,%rax,%rax */
  285. EMIT(K, 4);
  286. EMIT4(0x48, 0xc1, 0xe8, 0x20); /* shr $0x20,%rax */
  287. break;
  288. case BPF_S_ALU_AND_X:
  289. seen |= SEEN_XREG;
  290. EMIT2(0x21, 0xd8); /* and %ebx,%eax */
  291. break;
  292. case BPF_S_ALU_AND_K:
  293. if (K >= 0xFFFFFF00) {
  294. EMIT2(0x24, K & 0xFF); /* and imm8,%al */
  295. } else if (K >= 0xFFFF0000) {
  296. EMIT2(0x66, 0x25); /* and imm16,%ax */
  297. EMIT(K, 2);
  298. } else {
  299. EMIT1_off32(0x25, K); /* and imm32,%eax */
  300. }
  301. break;
  302. case BPF_S_ALU_OR_X:
  303. seen |= SEEN_XREG;
  304. EMIT2(0x09, 0xd8); /* or %ebx,%eax */
  305. break;
  306. case BPF_S_ALU_OR_K:
  307. if (is_imm8(K))
  308. EMIT3(0x83, 0xc8, K); /* or imm8,%eax */
  309. else
  310. EMIT1_off32(0x0d, K); /* or imm32,%eax */
  311. break;
  312. case BPF_S_ANC_ALU_XOR_X: /* A ^= X; */
  313. case BPF_S_ALU_XOR_X:
  314. seen |= SEEN_XREG;
  315. EMIT2(0x31, 0xd8); /* xor %ebx,%eax */
  316. break;
  317. case BPF_S_ALU_XOR_K: /* A ^= K; */
  318. if (K == 0)
  319. break;
  320. if (is_imm8(K))
  321. EMIT3(0x83, 0xf0, K); /* xor imm8,%eax */
  322. else
  323. EMIT1_off32(0x35, K); /* xor imm32,%eax */
  324. break;
  325. case BPF_S_ALU_LSH_X: /* A <<= X; */
  326. seen |= SEEN_XREG;
  327. EMIT4(0x89, 0xd9, 0xd3, 0xe0); /* mov %ebx,%ecx; shl %cl,%eax */
  328. break;
  329. case BPF_S_ALU_LSH_K:
  330. if (K == 0)
  331. break;
  332. else if (K == 1)
  333. EMIT2(0xd1, 0xe0); /* shl %eax */
  334. else
  335. EMIT3(0xc1, 0xe0, K);
  336. break;
  337. case BPF_S_ALU_RSH_X: /* A >>= X; */
  338. seen |= SEEN_XREG;
  339. EMIT4(0x89, 0xd9, 0xd3, 0xe8); /* mov %ebx,%ecx; shr %cl,%eax */
  340. break;
  341. case BPF_S_ALU_RSH_K: /* A >>= K; */
  342. if (K == 0)
  343. break;
  344. else if (K == 1)
  345. EMIT2(0xd1, 0xe8); /* shr %eax */
  346. else
  347. EMIT3(0xc1, 0xe8, K);
  348. break;
  349. case BPF_S_ALU_NEG:
  350. EMIT2(0xf7, 0xd8); /* neg %eax */
  351. break;
  352. case BPF_S_RET_K:
  353. if (!K) {
  354. if (pc_ret0 == -1)
  355. pc_ret0 = i;
  356. CLEAR_A();
  357. } else {
  358. EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
  359. }
  360. /* fallinto */
  361. case BPF_S_RET_A:
  362. if (seen_or_pass0) {
  363. if (i != flen - 1) {
  364. EMIT_JMP(cleanup_addr - addrs[i]);
  365. break;
  366. }
  367. if (seen_or_pass0 & SEEN_XREG)
  368. EMIT4(0x48, 0x8b, 0x5d, 0xf8); /* mov -8(%rbp),%rbx */
  369. EMIT1(0xc9); /* leaveq */
  370. }
  371. EMIT1(0xc3); /* ret */
  372. break;
  373. case BPF_S_MISC_TAX: /* X = A */
  374. seen |= SEEN_XREG;
  375. EMIT2(0x89, 0xc3); /* mov %eax,%ebx */
  376. break;
  377. case BPF_S_MISC_TXA: /* A = X */
  378. seen |= SEEN_XREG;
  379. EMIT2(0x89, 0xd8); /* mov %ebx,%eax */
  380. break;
  381. case BPF_S_LD_IMM: /* A = K */
  382. if (!K)
  383. CLEAR_A();
  384. else
  385. EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
  386. break;
  387. case BPF_S_LDX_IMM: /* X = K */
  388. seen |= SEEN_XREG;
  389. if (!K)
  390. CLEAR_X();
  391. else
  392. EMIT1_off32(0xbb, K); /* mov $imm32,%ebx */
  393. break;
  394. case BPF_S_LD_MEM: /* A = mem[K] : mov off8(%rbp),%eax */
  395. seen |= SEEN_MEM;
  396. EMIT3(0x8b, 0x45, 0xf0 - K*4);
  397. break;
  398. case BPF_S_LDX_MEM: /* X = mem[K] : mov off8(%rbp),%ebx */
  399. seen |= SEEN_XREG | SEEN_MEM;
  400. EMIT3(0x8b, 0x5d, 0xf0 - K*4);
  401. break;
  402. case BPF_S_ST: /* mem[K] = A : mov %eax,off8(%rbp) */
  403. seen |= SEEN_MEM;
  404. EMIT3(0x89, 0x45, 0xf0 - K*4);
  405. break;
  406. case BPF_S_STX: /* mem[K] = X : mov %ebx,off8(%rbp) */
  407. seen |= SEEN_XREG | SEEN_MEM;
  408. EMIT3(0x89, 0x5d, 0xf0 - K*4);
  409. break;
  410. case BPF_S_LD_W_LEN: /* A = skb->len; */
  411. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
  412. if (is_imm8(offsetof(struct sk_buff, len)))
  413. /* mov off8(%rdi),%eax */
  414. EMIT3(0x8b, 0x47, offsetof(struct sk_buff, len));
  415. else {
  416. EMIT2(0x8b, 0x87);
  417. EMIT(offsetof(struct sk_buff, len), 4);
  418. }
  419. break;
  420. case BPF_S_LDX_W_LEN: /* X = skb->len; */
  421. seen |= SEEN_XREG;
  422. if (is_imm8(offsetof(struct sk_buff, len)))
  423. /* mov off8(%rdi),%ebx */
  424. EMIT3(0x8b, 0x5f, offsetof(struct sk_buff, len));
  425. else {
  426. EMIT2(0x8b, 0x9f);
  427. EMIT(offsetof(struct sk_buff, len), 4);
  428. }
  429. break;
  430. case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
  431. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
  432. if (is_imm8(offsetof(struct sk_buff, protocol))) {
  433. /* movzwl off8(%rdi),%eax */
  434. EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, protocol));
  435. } else {
  436. EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
  437. EMIT(offsetof(struct sk_buff, protocol), 4);
  438. }
  439. EMIT2(0x86, 0xc4); /* ntohs() : xchg %al,%ah */
  440. break;
  441. case BPF_S_ANC_IFINDEX:
  442. if (is_imm8(offsetof(struct sk_buff, dev))) {
  443. /* movq off8(%rdi),%rax */
  444. EMIT4(0x48, 0x8b, 0x47, offsetof(struct sk_buff, dev));
  445. } else {
  446. EMIT3(0x48, 0x8b, 0x87); /* movq off32(%rdi),%rax */
  447. EMIT(offsetof(struct sk_buff, dev), 4);
  448. }
  449. EMIT3(0x48, 0x85, 0xc0); /* test %rax,%rax */
  450. EMIT_COND_JMP(X86_JE, cleanup_addr - (addrs[i] - 6));
  451. BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
  452. EMIT2(0x8b, 0x80); /* mov off32(%rax),%eax */
  453. EMIT(offsetof(struct net_device, ifindex), 4);
  454. break;
  455. case BPF_S_ANC_MARK:
  456. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
  457. if (is_imm8(offsetof(struct sk_buff, mark))) {
  458. /* mov off8(%rdi),%eax */
  459. EMIT3(0x8b, 0x47, offsetof(struct sk_buff, mark));
  460. } else {
  461. EMIT2(0x8b, 0x87);
  462. EMIT(offsetof(struct sk_buff, mark), 4);
  463. }
  464. break;
  465. case BPF_S_ANC_RXHASH:
  466. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
  467. if (is_imm8(offsetof(struct sk_buff, rxhash))) {
  468. /* mov off8(%rdi),%eax */
  469. EMIT3(0x8b, 0x47, offsetof(struct sk_buff, rxhash));
  470. } else {
  471. EMIT2(0x8b, 0x87);
  472. EMIT(offsetof(struct sk_buff, rxhash), 4);
  473. }
  474. break;
  475. case BPF_S_ANC_QUEUE:
  476. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
  477. if (is_imm8(offsetof(struct sk_buff, queue_mapping))) {
  478. /* movzwl off8(%rdi),%eax */
  479. EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, queue_mapping));
  480. } else {
  481. EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
  482. EMIT(offsetof(struct sk_buff, queue_mapping), 4);
  483. }
  484. break;
  485. case BPF_S_ANC_CPU:
  486. #ifdef CONFIG_SMP
  487. EMIT4(0x65, 0x8b, 0x04, 0x25); /* mov %gs:off32,%eax */
  488. EMIT((u32)(unsigned long)&cpu_number, 4); /* A = smp_processor_id(); */
  489. #else
  490. CLEAR_A();
  491. #endif
  492. break;
  493. case BPF_S_ANC_VLAN_TAG:
  494. case BPF_S_ANC_VLAN_TAG_PRESENT:
  495. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
  496. if (is_imm8(offsetof(struct sk_buff, vlan_tci))) {
  497. /* movzwl off8(%rdi),%eax */
  498. EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, vlan_tci));
  499. } else {
  500. EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
  501. EMIT(offsetof(struct sk_buff, vlan_tci), 4);
  502. }
  503. BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
  504. if (filter[i].code == BPF_S_ANC_VLAN_TAG) {
  505. EMIT3(0x80, 0xe4, 0xef); /* and $0xef,%ah */
  506. } else {
  507. EMIT3(0xc1, 0xe8, 0x0c); /* shr $0xc,%eax */
  508. EMIT3(0x83, 0xe0, 0x01); /* and $0x1,%eax */
  509. }
  510. break;
  511. case BPF_S_LD_W_ABS:
  512. func = CHOOSE_LOAD_FUNC(K, sk_load_word);
  513. common_load: seen |= SEEN_DATAREF;
  514. t_offset = func - (image + addrs[i]);
  515. EMIT1_off32(0xbe, K); /* mov imm32,%esi */
  516. EMIT1_off32(0xe8, t_offset); /* call */
  517. break;
  518. case BPF_S_LD_H_ABS:
  519. func = CHOOSE_LOAD_FUNC(K, sk_load_half);
  520. goto common_load;
  521. case BPF_S_LD_B_ABS:
  522. func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
  523. goto common_load;
  524. case BPF_S_LDX_B_MSH:
  525. func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
  526. seen |= SEEN_DATAREF | SEEN_XREG;
  527. t_offset = func - (image + addrs[i]);
  528. EMIT1_off32(0xbe, K); /* mov imm32,%esi */
  529. EMIT1_off32(0xe8, t_offset); /* call sk_load_byte_msh */
  530. break;
  531. case BPF_S_LD_W_IND:
  532. func = sk_load_word;
  533. common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
  534. t_offset = func - (image + addrs[i]);
  535. if (K) {
  536. if (is_imm8(K)) {
  537. EMIT3(0x8d, 0x73, K); /* lea imm8(%rbx), %esi */
  538. } else {
  539. EMIT2(0x8d, 0xb3); /* lea imm32(%rbx),%esi */
  540. EMIT(K, 4);
  541. }
  542. } else {
  543. EMIT2(0x89,0xde); /* mov %ebx,%esi */
  544. }
  545. EMIT1_off32(0xe8, t_offset); /* call sk_load_xxx_ind */
  546. break;
  547. case BPF_S_LD_H_IND:
  548. func = sk_load_half;
  549. goto common_load_ind;
  550. case BPF_S_LD_B_IND:
  551. func = sk_load_byte;
  552. goto common_load_ind;
  553. case BPF_S_JMP_JA:
  554. t_offset = addrs[i + K] - addrs[i];
  555. EMIT_JMP(t_offset);
  556. break;
  557. COND_SEL(BPF_S_JMP_JGT_K, X86_JA, X86_JBE);
  558. COND_SEL(BPF_S_JMP_JGE_K, X86_JAE, X86_JB);
  559. COND_SEL(BPF_S_JMP_JEQ_K, X86_JE, X86_JNE);
  560. COND_SEL(BPF_S_JMP_JSET_K,X86_JNE, X86_JE);
  561. COND_SEL(BPF_S_JMP_JGT_X, X86_JA, X86_JBE);
  562. COND_SEL(BPF_S_JMP_JGE_X, X86_JAE, X86_JB);
  563. COND_SEL(BPF_S_JMP_JEQ_X, X86_JE, X86_JNE);
  564. COND_SEL(BPF_S_JMP_JSET_X,X86_JNE, X86_JE);
  565. cond_branch: f_offset = addrs[i + filter[i].jf] - addrs[i];
  566. t_offset = addrs[i + filter[i].jt] - addrs[i];
  567. /* same targets, can avoid doing the test :) */
  568. if (filter[i].jt == filter[i].jf) {
  569. EMIT_JMP(t_offset);
  570. break;
  571. }
  572. switch (filter[i].code) {
  573. case BPF_S_JMP_JGT_X:
  574. case BPF_S_JMP_JGE_X:
  575. case BPF_S_JMP_JEQ_X:
  576. seen |= SEEN_XREG;
  577. EMIT2(0x39, 0xd8); /* cmp %ebx,%eax */
  578. break;
  579. case BPF_S_JMP_JSET_X:
  580. seen |= SEEN_XREG;
  581. EMIT2(0x85, 0xd8); /* test %ebx,%eax */
  582. break;
  583. case BPF_S_JMP_JEQ_K:
  584. if (K == 0) {
  585. EMIT2(0x85, 0xc0); /* test %eax,%eax */
  586. break;
  587. }
  588. case BPF_S_JMP_JGT_K:
  589. case BPF_S_JMP_JGE_K:
  590. if (K <= 127)
  591. EMIT3(0x83, 0xf8, K); /* cmp imm8,%eax */
  592. else
  593. EMIT1_off32(0x3d, K); /* cmp imm32,%eax */
  594. break;
  595. case BPF_S_JMP_JSET_K:
  596. if (K <= 0xFF)
  597. EMIT2(0xa8, K); /* test imm8,%al */
  598. else if (!(K & 0xFFFF00FF))
  599. EMIT3(0xf6, 0xc4, K >> 8); /* test imm8,%ah */
  600. else if (K <= 0xFFFF) {
  601. EMIT2(0x66, 0xa9); /* test imm16,%ax */
  602. EMIT(K, 2);
  603. } else {
  604. EMIT1_off32(0xa9, K); /* test imm32,%eax */
  605. }
  606. break;
  607. }
  608. if (filter[i].jt != 0) {
  609. if (filter[i].jf && f_offset)
  610. t_offset += is_near(f_offset) ? 2 : 5;
  611. EMIT_COND_JMP(t_op, t_offset);
  612. if (filter[i].jf)
  613. EMIT_JMP(f_offset);
  614. break;
  615. }
  616. EMIT_COND_JMP(f_op, f_offset);
  617. break;
  618. default:
  619. /* hmm, too complex filter, give up with jit compiler */
  620. goto out;
  621. }
  622. ilen = prog - temp;
  623. if (image) {
  624. if (unlikely(proglen + ilen > oldproglen)) {
  625. pr_err("bpb_jit_compile fatal error\n");
  626. kfree(addrs);
  627. module_free(NULL, image);
  628. return;
  629. }
  630. memcpy(image + proglen, temp, ilen);
  631. }
  632. proglen += ilen;
  633. addrs[i] = proglen;
  634. prog = temp;
  635. }
  636. /* last bpf instruction is always a RET :
  637. * use it to give the cleanup instruction(s) addr
  638. */
  639. cleanup_addr = proglen - 1; /* ret */
  640. if (seen_or_pass0)
  641. cleanup_addr -= 1; /* leaveq */
  642. if (seen_or_pass0 & SEEN_XREG)
  643. cleanup_addr -= 4; /* mov -8(%rbp),%rbx */
  644. if (image) {
  645. if (proglen != oldproglen)
  646. pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n", proglen, oldproglen);
  647. break;
  648. }
  649. if (proglen == oldproglen) {
  650. image = module_alloc(max_t(unsigned int,
  651. proglen,
  652. sizeof(struct work_struct)));
  653. if (!image)
  654. goto out;
  655. }
  656. oldproglen = proglen;
  657. }
  658. if (bpf_jit_enable > 1)
  659. pr_err("flen=%d proglen=%u pass=%d image=%p\n",
  660. flen, proglen, pass, image);
  661. if (image) {
  662. if (bpf_jit_enable > 1)
  663. print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_ADDRESS,
  664. 16, 1, image, proglen, false);
  665. bpf_flush_icache(image, image + proglen);
  666. fp->bpf_func = (void *)image;
  667. }
  668. out:
  669. kfree(addrs);
  670. return;
  671. }
  672. static void jit_free_defer(struct work_struct *arg)
  673. {
  674. module_free(NULL, arg);
  675. }
  676. /* run from softirq, we must use a work_struct to call
  677. * module_free() from process context
  678. */
  679. void bpf_jit_free(struct sk_filter *fp)
  680. {
  681. if (fp->bpf_func != sk_run_filter) {
  682. struct work_struct *work = (struct work_struct *)fp->bpf_func;
  683. INIT_WORK(work, jit_free_defer);
  684. schedule_work(work);
  685. }
  686. }