init_64.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/proc_fs.h>
  25. #include <linux/pci.h>
  26. #include <linux/pfn.h>
  27. #include <linux/poison.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/module.h>
  30. #include <linux/memory.h>
  31. #include <linux/memory_hotplug.h>
  32. #include <linux/nmi.h>
  33. #include <linux/gfp.h>
  34. #include <asm/processor.h>
  35. #include <asm/bios_ebda.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/dma.h>
  40. #include <asm/fixmap.h>
  41. #include <asm/e820.h>
  42. #include <asm/apic.h>
  43. #include <asm/tlb.h>
  44. #include <asm/mmu_context.h>
  45. #include <asm/proto.h>
  46. #include <asm/smp.h>
  47. #include <asm/sections.h>
  48. #include <asm/kdebug.h>
  49. #include <asm/numa.h>
  50. #include <asm/cacheflush.h>
  51. #include <asm/init.h>
  52. #include <asm/uv/uv.h>
  53. #include <asm/setup.h>
  54. static int __init parse_direct_gbpages_off(char *arg)
  55. {
  56. direct_gbpages = 0;
  57. return 0;
  58. }
  59. early_param("nogbpages", parse_direct_gbpages_off);
  60. static int __init parse_direct_gbpages_on(char *arg)
  61. {
  62. direct_gbpages = 1;
  63. return 0;
  64. }
  65. early_param("gbpages", parse_direct_gbpages_on);
  66. /*
  67. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  68. * physical space so we can cache the place of the first one and move
  69. * around without checking the pgd every time.
  70. */
  71. pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  72. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  73. int force_personality32;
  74. /*
  75. * noexec32=on|off
  76. * Control non executable heap for 32bit processes.
  77. * To control the stack too use noexec=off
  78. *
  79. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  80. * off PROT_READ implies PROT_EXEC
  81. */
  82. static int __init nonx32_setup(char *str)
  83. {
  84. if (!strcmp(str, "on"))
  85. force_personality32 &= ~READ_IMPLIES_EXEC;
  86. else if (!strcmp(str, "off"))
  87. force_personality32 |= READ_IMPLIES_EXEC;
  88. return 1;
  89. }
  90. __setup("noexec32=", nonx32_setup);
  91. /*
  92. * When memory was added/removed make sure all the processes MM have
  93. * suitable PGD entries in the local PGD level page.
  94. */
  95. void sync_global_pgds(unsigned long start, unsigned long end)
  96. {
  97. unsigned long address;
  98. for (address = start; address <= end; address += PGDIR_SIZE) {
  99. const pgd_t *pgd_ref = pgd_offset_k(address);
  100. struct page *page;
  101. if (pgd_none(*pgd_ref))
  102. continue;
  103. spin_lock(&pgd_lock);
  104. list_for_each_entry(page, &pgd_list, lru) {
  105. pgd_t *pgd;
  106. spinlock_t *pgt_lock;
  107. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  108. /* the pgt_lock only for Xen */
  109. pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
  110. spin_lock(pgt_lock);
  111. if (pgd_none(*pgd))
  112. set_pgd(pgd, *pgd_ref);
  113. else
  114. BUG_ON(pgd_page_vaddr(*pgd)
  115. != pgd_page_vaddr(*pgd_ref));
  116. spin_unlock(pgt_lock);
  117. }
  118. spin_unlock(&pgd_lock);
  119. }
  120. }
  121. /*
  122. * NOTE: This function is marked __ref because it calls __init function
  123. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  124. */
  125. static __ref void *spp_getpage(void)
  126. {
  127. void *ptr;
  128. if (after_bootmem)
  129. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  130. else
  131. ptr = alloc_bootmem_pages(PAGE_SIZE);
  132. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  133. panic("set_pte_phys: cannot allocate page data %s\n",
  134. after_bootmem ? "after bootmem" : "");
  135. }
  136. pr_debug("spp_getpage %p\n", ptr);
  137. return ptr;
  138. }
  139. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  140. {
  141. if (pgd_none(*pgd)) {
  142. pud_t *pud = (pud_t *)spp_getpage();
  143. pgd_populate(&init_mm, pgd, pud);
  144. if (pud != pud_offset(pgd, 0))
  145. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  146. pud, pud_offset(pgd, 0));
  147. }
  148. return pud_offset(pgd, vaddr);
  149. }
  150. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  151. {
  152. if (pud_none(*pud)) {
  153. pmd_t *pmd = (pmd_t *) spp_getpage();
  154. pud_populate(&init_mm, pud, pmd);
  155. if (pmd != pmd_offset(pud, 0))
  156. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  157. pmd, pmd_offset(pud, 0));
  158. }
  159. return pmd_offset(pud, vaddr);
  160. }
  161. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  162. {
  163. if (pmd_none(*pmd)) {
  164. pte_t *pte = (pte_t *) spp_getpage();
  165. pmd_populate_kernel(&init_mm, pmd, pte);
  166. if (pte != pte_offset_kernel(pmd, 0))
  167. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  168. }
  169. return pte_offset_kernel(pmd, vaddr);
  170. }
  171. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  172. {
  173. pud_t *pud;
  174. pmd_t *pmd;
  175. pte_t *pte;
  176. pud = pud_page + pud_index(vaddr);
  177. pmd = fill_pmd(pud, vaddr);
  178. pte = fill_pte(pmd, vaddr);
  179. set_pte(pte, new_pte);
  180. /*
  181. * It's enough to flush this one mapping.
  182. * (PGE mappings get flushed as well)
  183. */
  184. __flush_tlb_one(vaddr);
  185. }
  186. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  187. {
  188. pgd_t *pgd;
  189. pud_t *pud_page;
  190. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  191. pgd = pgd_offset_k(vaddr);
  192. if (pgd_none(*pgd)) {
  193. printk(KERN_ERR
  194. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  195. return;
  196. }
  197. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  198. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  199. }
  200. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  201. {
  202. pgd_t *pgd;
  203. pud_t *pud;
  204. pgd = pgd_offset_k(vaddr);
  205. pud = fill_pud(pgd, vaddr);
  206. return fill_pmd(pud, vaddr);
  207. }
  208. pte_t * __init populate_extra_pte(unsigned long vaddr)
  209. {
  210. pmd_t *pmd;
  211. pmd = populate_extra_pmd(vaddr);
  212. return fill_pte(pmd, vaddr);
  213. }
  214. /*
  215. * Create large page table mappings for a range of physical addresses.
  216. */
  217. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  218. pgprot_t prot)
  219. {
  220. pgd_t *pgd;
  221. pud_t *pud;
  222. pmd_t *pmd;
  223. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  224. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  225. pgd = pgd_offset_k((unsigned long)__va(phys));
  226. if (pgd_none(*pgd)) {
  227. pud = (pud_t *) spp_getpage();
  228. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  229. _PAGE_USER));
  230. }
  231. pud = pud_offset(pgd, (unsigned long)__va(phys));
  232. if (pud_none(*pud)) {
  233. pmd = (pmd_t *) spp_getpage();
  234. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  235. _PAGE_USER));
  236. }
  237. pmd = pmd_offset(pud, phys);
  238. BUG_ON(!pmd_none(*pmd));
  239. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  240. }
  241. }
  242. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  243. {
  244. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  245. }
  246. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  247. {
  248. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  249. }
  250. /*
  251. * The head.S code sets up the kernel high mapping:
  252. *
  253. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  254. *
  255. * phys_addr holds the negative offset to the kernel, which is added
  256. * to the compile time generated pmds. This results in invalid pmds up
  257. * to the point where we hit the physaddr 0 mapping.
  258. *
  259. * We limit the mappings to the region from _text to _brk_end. _brk_end
  260. * is rounded up to the 2MB boundary. This catches the invalid pmds as
  261. * well, as they are located before _text:
  262. */
  263. void __init cleanup_highmap(void)
  264. {
  265. unsigned long vaddr = __START_KERNEL_map;
  266. unsigned long vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
  267. unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
  268. pmd_t *pmd = level2_kernel_pgt;
  269. for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
  270. if (pmd_none(*pmd))
  271. continue;
  272. if (vaddr < (unsigned long) _text || vaddr > end)
  273. set_pmd(pmd, __pmd(0));
  274. }
  275. }
  276. static __ref void *alloc_low_page(unsigned long *phys)
  277. {
  278. unsigned long pfn = pgt_buf_end++;
  279. void *adr;
  280. if (after_bootmem) {
  281. adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  282. *phys = __pa(adr);
  283. return adr;
  284. }
  285. if (pfn >= pgt_buf_top)
  286. panic("alloc_low_page: ran out of memory");
  287. adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
  288. clear_page(adr);
  289. *phys = pfn * PAGE_SIZE;
  290. return adr;
  291. }
  292. static __ref void *map_low_page(void *virt)
  293. {
  294. void *adr;
  295. unsigned long phys, left;
  296. if (after_bootmem)
  297. return virt;
  298. phys = __pa(virt);
  299. left = phys & (PAGE_SIZE - 1);
  300. adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
  301. adr = (void *)(((unsigned long)adr) | left);
  302. return adr;
  303. }
  304. static __ref void unmap_low_page(void *adr)
  305. {
  306. if (after_bootmem)
  307. return;
  308. early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
  309. }
  310. static unsigned long __meminit
  311. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  312. pgprot_t prot)
  313. {
  314. unsigned pages = 0;
  315. unsigned long last_map_addr = end;
  316. int i;
  317. pte_t *pte = pte_page + pte_index(addr);
  318. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  319. if (addr >= end) {
  320. if (!after_bootmem) {
  321. for(; i < PTRS_PER_PTE; i++, pte++)
  322. set_pte(pte, __pte(0));
  323. }
  324. break;
  325. }
  326. /*
  327. * We will re-use the existing mapping.
  328. * Xen for example has some special requirements, like mapping
  329. * pagetable pages as RO. So assume someone who pre-setup
  330. * these mappings are more intelligent.
  331. */
  332. if (pte_val(*pte)) {
  333. if (!after_bootmem)
  334. pages++;
  335. continue;
  336. }
  337. if (0)
  338. printk(" pte=%p addr=%lx pte=%016lx\n",
  339. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  340. pages++;
  341. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  342. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  343. }
  344. update_page_count(PG_LEVEL_4K, pages);
  345. return last_map_addr;
  346. }
  347. static unsigned long __meminit
  348. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  349. unsigned long page_size_mask, pgprot_t prot)
  350. {
  351. unsigned long pages = 0, next;
  352. unsigned long last_map_addr = end;
  353. int i = pmd_index(address);
  354. for (; i < PTRS_PER_PMD; i++, address = next) {
  355. unsigned long pte_phys;
  356. pmd_t *pmd = pmd_page + pmd_index(address);
  357. pte_t *pte;
  358. pgprot_t new_prot = prot;
  359. if (address >= end) {
  360. if (!after_bootmem) {
  361. for (; i < PTRS_PER_PMD; i++, pmd++)
  362. set_pmd(pmd, __pmd(0));
  363. }
  364. break;
  365. }
  366. next = (address & PMD_MASK) + PMD_SIZE;
  367. if (pmd_val(*pmd)) {
  368. if (!pmd_large(*pmd)) {
  369. spin_lock(&init_mm.page_table_lock);
  370. pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
  371. last_map_addr = phys_pte_init(pte, address,
  372. end, prot);
  373. unmap_low_page(pte);
  374. spin_unlock(&init_mm.page_table_lock);
  375. continue;
  376. }
  377. /*
  378. * If we are ok with PG_LEVEL_2M mapping, then we will
  379. * use the existing mapping,
  380. *
  381. * Otherwise, we will split the large page mapping but
  382. * use the same existing protection bits except for
  383. * large page, so that we don't violate Intel's TLB
  384. * Application note (317080) which says, while changing
  385. * the page sizes, new and old translations should
  386. * not differ with respect to page frame and
  387. * attributes.
  388. */
  389. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  390. if (!after_bootmem)
  391. pages++;
  392. last_map_addr = next;
  393. continue;
  394. }
  395. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  396. }
  397. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  398. pages++;
  399. spin_lock(&init_mm.page_table_lock);
  400. set_pte((pte_t *)pmd,
  401. pfn_pte(address >> PAGE_SHIFT,
  402. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  403. spin_unlock(&init_mm.page_table_lock);
  404. last_map_addr = next;
  405. continue;
  406. }
  407. pte = alloc_low_page(&pte_phys);
  408. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  409. unmap_low_page(pte);
  410. spin_lock(&init_mm.page_table_lock);
  411. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  412. spin_unlock(&init_mm.page_table_lock);
  413. }
  414. update_page_count(PG_LEVEL_2M, pages);
  415. return last_map_addr;
  416. }
  417. static unsigned long __meminit
  418. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  419. unsigned long page_size_mask)
  420. {
  421. unsigned long pages = 0, next;
  422. unsigned long last_map_addr = end;
  423. int i = pud_index(addr);
  424. for (; i < PTRS_PER_PUD; i++, addr = next) {
  425. unsigned long pmd_phys;
  426. pud_t *pud = pud_page + pud_index(addr);
  427. pmd_t *pmd;
  428. pgprot_t prot = PAGE_KERNEL;
  429. if (addr >= end)
  430. break;
  431. next = (addr & PUD_MASK) + PUD_SIZE;
  432. if (!after_bootmem && !e820_any_mapped(addr, next, 0)) {
  433. set_pud(pud, __pud(0));
  434. continue;
  435. }
  436. if (pud_val(*pud)) {
  437. if (!pud_large(*pud)) {
  438. pmd = map_low_page(pmd_offset(pud, 0));
  439. last_map_addr = phys_pmd_init(pmd, addr, end,
  440. page_size_mask, prot);
  441. unmap_low_page(pmd);
  442. __flush_tlb_all();
  443. continue;
  444. }
  445. /*
  446. * If we are ok with PG_LEVEL_1G mapping, then we will
  447. * use the existing mapping.
  448. *
  449. * Otherwise, we will split the gbpage mapping but use
  450. * the same existing protection bits except for large
  451. * page, so that we don't violate Intel's TLB
  452. * Application note (317080) which says, while changing
  453. * the page sizes, new and old translations should
  454. * not differ with respect to page frame and
  455. * attributes.
  456. */
  457. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  458. if (!after_bootmem)
  459. pages++;
  460. last_map_addr = next;
  461. continue;
  462. }
  463. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  464. }
  465. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  466. pages++;
  467. spin_lock(&init_mm.page_table_lock);
  468. set_pte((pte_t *)pud,
  469. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  470. spin_unlock(&init_mm.page_table_lock);
  471. last_map_addr = next;
  472. continue;
  473. }
  474. pmd = alloc_low_page(&pmd_phys);
  475. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  476. prot);
  477. unmap_low_page(pmd);
  478. spin_lock(&init_mm.page_table_lock);
  479. pud_populate(&init_mm, pud, __va(pmd_phys));
  480. spin_unlock(&init_mm.page_table_lock);
  481. }
  482. __flush_tlb_all();
  483. update_page_count(PG_LEVEL_1G, pages);
  484. return last_map_addr;
  485. }
  486. unsigned long __meminit
  487. kernel_physical_mapping_init(unsigned long start,
  488. unsigned long end,
  489. unsigned long page_size_mask)
  490. {
  491. bool pgd_changed = false;
  492. unsigned long next, last_map_addr = end;
  493. unsigned long addr;
  494. start = (unsigned long)__va(start);
  495. end = (unsigned long)__va(end);
  496. addr = start;
  497. for (; start < end; start = next) {
  498. pgd_t *pgd = pgd_offset_k(start);
  499. unsigned long pud_phys;
  500. pud_t *pud;
  501. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  502. if (next > end)
  503. next = end;
  504. if (pgd_val(*pgd)) {
  505. pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
  506. last_map_addr = phys_pud_init(pud, __pa(start),
  507. __pa(end), page_size_mask);
  508. unmap_low_page(pud);
  509. continue;
  510. }
  511. pud = alloc_low_page(&pud_phys);
  512. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  513. page_size_mask);
  514. unmap_low_page(pud);
  515. spin_lock(&init_mm.page_table_lock);
  516. pgd_populate(&init_mm, pgd, __va(pud_phys));
  517. spin_unlock(&init_mm.page_table_lock);
  518. pgd_changed = true;
  519. }
  520. if (pgd_changed)
  521. sync_global_pgds(addr, end);
  522. __flush_tlb_all();
  523. return last_map_addr;
  524. }
  525. #ifndef CONFIG_NUMA
  526. void __init initmem_init(void)
  527. {
  528. memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
  529. }
  530. #endif
  531. void __init paging_init(void)
  532. {
  533. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  534. sparse_init();
  535. /*
  536. * clear the default setting with node 0
  537. * note: don't use nodes_clear here, that is really clearing when
  538. * numa support is not compiled in, and later node_set_state
  539. * will not set it back.
  540. */
  541. node_clear_state(0, N_MEMORY);
  542. if (N_MEMORY != N_NORMAL_MEMORY)
  543. node_clear_state(0, N_NORMAL_MEMORY);
  544. zone_sizes_init();
  545. }
  546. /*
  547. * Memory hotplug specific functions
  548. */
  549. #ifdef CONFIG_MEMORY_HOTPLUG
  550. /*
  551. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  552. * updating.
  553. */
  554. static void update_end_of_memory_vars(u64 start, u64 size)
  555. {
  556. unsigned long end_pfn = PFN_UP(start + size);
  557. if (end_pfn > max_pfn) {
  558. max_pfn = end_pfn;
  559. max_low_pfn = end_pfn;
  560. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  561. }
  562. }
  563. /*
  564. * Memory is added always to NORMAL zone. This means you will never get
  565. * additional DMA/DMA32 memory.
  566. */
  567. int arch_add_memory(int nid, u64 start, u64 size)
  568. {
  569. struct pglist_data *pgdat = NODE_DATA(nid);
  570. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  571. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  572. unsigned long nr_pages = size >> PAGE_SHIFT;
  573. int ret;
  574. last_mapped_pfn = init_memory_mapping(start, start + size);
  575. if (last_mapped_pfn > max_pfn_mapped)
  576. max_pfn_mapped = last_mapped_pfn;
  577. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  578. WARN_ON_ONCE(ret);
  579. /* update max_pfn, max_low_pfn and high_memory */
  580. update_end_of_memory_vars(start, size);
  581. return ret;
  582. }
  583. EXPORT_SYMBOL_GPL(arch_add_memory);
  584. #endif /* CONFIG_MEMORY_HOTPLUG */
  585. static struct kcore_list kcore_vsyscall;
  586. void __init mem_init(void)
  587. {
  588. long codesize, reservedpages, datasize, initsize;
  589. unsigned long absent_pages;
  590. pci_iommu_alloc();
  591. /* clear_bss() already clear the empty_zero_page */
  592. reservedpages = 0;
  593. /* this will put all low memory onto the freelists */
  594. #ifdef CONFIG_NUMA
  595. totalram_pages = numa_free_all_bootmem();
  596. #else
  597. totalram_pages = free_all_bootmem();
  598. #endif
  599. absent_pages = absent_pages_in_range(0, max_pfn);
  600. reservedpages = max_pfn - totalram_pages - absent_pages;
  601. after_bootmem = 1;
  602. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  603. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  604. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  605. /* Register memory areas for /proc/kcore */
  606. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  607. VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
  608. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  609. "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
  610. nr_free_pages() << (PAGE_SHIFT-10),
  611. max_pfn << (PAGE_SHIFT-10),
  612. codesize >> 10,
  613. absent_pages << (PAGE_SHIFT-10),
  614. reservedpages << (PAGE_SHIFT-10),
  615. datasize >> 10,
  616. initsize >> 10);
  617. }
  618. #ifdef CONFIG_DEBUG_RODATA
  619. const int rodata_test_data = 0xC3;
  620. EXPORT_SYMBOL_GPL(rodata_test_data);
  621. int kernel_set_to_readonly;
  622. void set_kernel_text_rw(void)
  623. {
  624. unsigned long start = PFN_ALIGN(_text);
  625. unsigned long end = PFN_ALIGN(__stop___ex_table);
  626. if (!kernel_set_to_readonly)
  627. return;
  628. pr_debug("Set kernel text: %lx - %lx for read write\n",
  629. start, end);
  630. /*
  631. * Make the kernel identity mapping for text RW. Kernel text
  632. * mapping will always be RO. Refer to the comment in
  633. * static_protections() in pageattr.c
  634. */
  635. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  636. }
  637. void set_kernel_text_ro(void)
  638. {
  639. unsigned long start = PFN_ALIGN(_text);
  640. unsigned long end = PFN_ALIGN(__stop___ex_table);
  641. if (!kernel_set_to_readonly)
  642. return;
  643. pr_debug("Set kernel text: %lx - %lx for read only\n",
  644. start, end);
  645. /*
  646. * Set the kernel identity mapping for text RO.
  647. */
  648. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  649. }
  650. void mark_rodata_ro(void)
  651. {
  652. unsigned long start = PFN_ALIGN(_text);
  653. unsigned long rodata_start =
  654. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  655. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  656. unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
  657. unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
  658. unsigned long data_start = (unsigned long) &_sdata;
  659. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  660. (end - start) >> 10);
  661. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  662. kernel_set_to_readonly = 1;
  663. /*
  664. * The rodata section (but not the kernel text!) should also be
  665. * not-executable.
  666. */
  667. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  668. rodata_test();
  669. #ifdef CONFIG_CPA_DEBUG
  670. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  671. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  672. printk(KERN_INFO "Testing CPA: again\n");
  673. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  674. #endif
  675. free_init_pages("unused kernel memory",
  676. (unsigned long) page_address(virt_to_page(text_end)),
  677. (unsigned long)
  678. page_address(virt_to_page(rodata_start)));
  679. free_init_pages("unused kernel memory",
  680. (unsigned long) page_address(virt_to_page(rodata_end)),
  681. (unsigned long) page_address(virt_to_page(data_start)));
  682. }
  683. #endif
  684. int kern_addr_valid(unsigned long addr)
  685. {
  686. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  687. pgd_t *pgd;
  688. pud_t *pud;
  689. pmd_t *pmd;
  690. pte_t *pte;
  691. if (above != 0 && above != -1UL)
  692. return 0;
  693. pgd = pgd_offset_k(addr);
  694. if (pgd_none(*pgd))
  695. return 0;
  696. pud = pud_offset(pgd, addr);
  697. if (pud_none(*pud))
  698. return 0;
  699. pmd = pmd_offset(pud, addr);
  700. if (pmd_none(*pmd))
  701. return 0;
  702. if (pmd_large(*pmd))
  703. return pfn_valid(pmd_pfn(*pmd));
  704. pte = pte_offset_kernel(pmd, addr);
  705. if (pte_none(*pte))
  706. return 0;
  707. return pfn_valid(pte_pfn(*pte));
  708. }
  709. /*
  710. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  711. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  712. * not need special handling anymore:
  713. */
  714. static struct vm_area_struct gate_vma = {
  715. .vm_start = VSYSCALL_START,
  716. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  717. .vm_page_prot = PAGE_READONLY_EXEC,
  718. .vm_flags = VM_READ | VM_EXEC
  719. };
  720. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  721. {
  722. #ifdef CONFIG_IA32_EMULATION
  723. if (!mm || mm->context.ia32_compat)
  724. return NULL;
  725. #endif
  726. return &gate_vma;
  727. }
  728. int in_gate_area(struct mm_struct *mm, unsigned long addr)
  729. {
  730. struct vm_area_struct *vma = get_gate_vma(mm);
  731. if (!vma)
  732. return 0;
  733. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  734. }
  735. /*
  736. * Use this when you have no reliable mm, typically from interrupt
  737. * context. It is less reliable than using a task's mm and may give
  738. * false positives.
  739. */
  740. int in_gate_area_no_mm(unsigned long addr)
  741. {
  742. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  743. }
  744. const char *arch_vma_name(struct vm_area_struct *vma)
  745. {
  746. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  747. return "[vdso]";
  748. if (vma == &gate_vma)
  749. return "[vsyscall]";
  750. return NULL;
  751. }
  752. #ifdef CONFIG_X86_UV
  753. unsigned long memory_block_size_bytes(void)
  754. {
  755. if (is_uv_system()) {
  756. printk(KERN_INFO "UV: memory block size 2GB\n");
  757. return 2UL * 1024 * 1024 * 1024;
  758. }
  759. return MIN_MEMORY_BLOCK_SIZE;
  760. }
  761. #endif
  762. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  763. /*
  764. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  765. */
  766. static long __meminitdata addr_start, addr_end;
  767. static void __meminitdata *p_start, *p_end;
  768. static int __meminitdata node_start;
  769. int __meminit
  770. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  771. {
  772. unsigned long addr = (unsigned long)start_page;
  773. unsigned long end = (unsigned long)(start_page + size);
  774. unsigned long next;
  775. pgd_t *pgd;
  776. pud_t *pud;
  777. pmd_t *pmd;
  778. for (; addr < end; addr = next) {
  779. void *p = NULL;
  780. pgd = vmemmap_pgd_populate(addr, node);
  781. if (!pgd)
  782. return -ENOMEM;
  783. pud = vmemmap_pud_populate(pgd, addr, node);
  784. if (!pud)
  785. return -ENOMEM;
  786. if (!cpu_has_pse) {
  787. next = (addr + PAGE_SIZE) & PAGE_MASK;
  788. pmd = vmemmap_pmd_populate(pud, addr, node);
  789. if (!pmd)
  790. return -ENOMEM;
  791. p = vmemmap_pte_populate(pmd, addr, node);
  792. if (!p)
  793. return -ENOMEM;
  794. addr_end = addr + PAGE_SIZE;
  795. p_end = p + PAGE_SIZE;
  796. } else {
  797. next = pmd_addr_end(addr, end);
  798. pmd = pmd_offset(pud, addr);
  799. if (pmd_none(*pmd)) {
  800. pte_t entry;
  801. p = vmemmap_alloc_block_buf(PMD_SIZE, node);
  802. if (!p)
  803. return -ENOMEM;
  804. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  805. PAGE_KERNEL_LARGE);
  806. set_pmd(pmd, __pmd(pte_val(entry)));
  807. /* check to see if we have contiguous blocks */
  808. if (p_end != p || node_start != node) {
  809. if (p_start)
  810. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  811. addr_start, addr_end-1, p_start, p_end-1, node_start);
  812. addr_start = addr;
  813. node_start = node;
  814. p_start = p;
  815. }
  816. addr_end = addr + PMD_SIZE;
  817. p_end = p + PMD_SIZE;
  818. } else
  819. vmemmap_verify((pte_t *)pmd, node, addr, next);
  820. }
  821. }
  822. sync_global_pgds((unsigned long)start_page, end);
  823. return 0;
  824. }
  825. void __meminit vmemmap_populate_print_last(void)
  826. {
  827. if (p_start) {
  828. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  829. addr_start, addr_end-1, p_start, p_end-1, node_start);
  830. p_start = NULL;
  831. p_end = NULL;
  832. node_start = 0;
  833. }
  834. }
  835. #endif