vmx.c 212 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "cpuid.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <linux/mod_devicetable.h>
  29. #include <linux/ftrace_event.h>
  30. #include <linux/slab.h>
  31. #include <linux/tboot.h>
  32. #include "kvm_cache_regs.h"
  33. #include "x86.h"
  34. #include <asm/io.h>
  35. #include <asm/desc.h>
  36. #include <asm/vmx.h>
  37. #include <asm/virtext.h>
  38. #include <asm/mce.h>
  39. #include <asm/i387.h>
  40. #include <asm/xcr.h>
  41. #include <asm/perf_event.h>
  42. #include <asm/kexec.h>
  43. #include "trace.h"
  44. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  45. #define __ex_clear(x, reg) \
  46. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. static const struct x86_cpu_id vmx_cpu_id[] = {
  50. X86_FEATURE_MATCH(X86_FEATURE_VMX),
  51. {}
  52. };
  53. MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  54. static bool __read_mostly enable_vpid = 1;
  55. module_param_named(vpid, enable_vpid, bool, 0444);
  56. static bool __read_mostly flexpriority_enabled = 1;
  57. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  58. static bool __read_mostly enable_ept = 1;
  59. module_param_named(ept, enable_ept, bool, S_IRUGO);
  60. static bool __read_mostly enable_unrestricted_guest = 1;
  61. module_param_named(unrestricted_guest,
  62. enable_unrestricted_guest, bool, S_IRUGO);
  63. static bool __read_mostly enable_ept_ad_bits = 1;
  64. module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  65. static bool __read_mostly emulate_invalid_guest_state = true;
  66. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  67. static bool __read_mostly vmm_exclusive = 1;
  68. module_param(vmm_exclusive, bool, S_IRUGO);
  69. static bool __read_mostly fasteoi = 1;
  70. module_param(fasteoi, bool, S_IRUGO);
  71. /*
  72. * If nested=1, nested virtualization is supported, i.e., guests may use
  73. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  74. * use VMX instructions.
  75. */
  76. static bool __read_mostly nested = 0;
  77. module_param(nested, bool, S_IRUGO);
  78. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  79. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  80. #define KVM_GUEST_CR0_MASK \
  81. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  82. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  83. (X86_CR0_WP | X86_CR0_NE)
  84. #define KVM_VM_CR0_ALWAYS_ON \
  85. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  86. #define KVM_CR4_GUEST_OWNED_BITS \
  87. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  88. | X86_CR4_OSXMMEXCPT)
  89. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  90. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  91. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  92. /*
  93. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  94. * ple_gap: upper bound on the amount of time between two successive
  95. * executions of PAUSE in a loop. Also indicate if ple enabled.
  96. * According to test, this time is usually smaller than 128 cycles.
  97. * ple_window: upper bound on the amount of time a guest is allowed to execute
  98. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  99. * less than 2^12 cycles
  100. * Time is measured based on a counter that runs at the same rate as the TSC,
  101. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  102. */
  103. #define KVM_VMX_DEFAULT_PLE_GAP 128
  104. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  105. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  106. module_param(ple_gap, int, S_IRUGO);
  107. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  108. module_param(ple_window, int, S_IRUGO);
  109. extern const ulong vmx_return;
  110. #define NR_AUTOLOAD_MSRS 8
  111. #define VMCS02_POOL_SIZE 1
  112. struct vmcs {
  113. u32 revision_id;
  114. u32 abort;
  115. char data[0];
  116. };
  117. /*
  118. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  119. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  120. * loaded on this CPU (so we can clear them if the CPU goes down).
  121. */
  122. struct loaded_vmcs {
  123. struct vmcs *vmcs;
  124. int cpu;
  125. int launched;
  126. struct list_head loaded_vmcss_on_cpu_link;
  127. };
  128. struct shared_msr_entry {
  129. unsigned index;
  130. u64 data;
  131. u64 mask;
  132. };
  133. /*
  134. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  135. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  136. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  137. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  138. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  139. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  140. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  141. * underlying hardware which will be used to run L2.
  142. * This structure is packed to ensure that its layout is identical across
  143. * machines (necessary for live migration).
  144. * If there are changes in this struct, VMCS12_REVISION must be changed.
  145. */
  146. typedef u64 natural_width;
  147. struct __packed vmcs12 {
  148. /* According to the Intel spec, a VMCS region must start with the
  149. * following two fields. Then follow implementation-specific data.
  150. */
  151. u32 revision_id;
  152. u32 abort;
  153. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  154. u32 padding[7]; /* room for future expansion */
  155. u64 io_bitmap_a;
  156. u64 io_bitmap_b;
  157. u64 msr_bitmap;
  158. u64 vm_exit_msr_store_addr;
  159. u64 vm_exit_msr_load_addr;
  160. u64 vm_entry_msr_load_addr;
  161. u64 tsc_offset;
  162. u64 virtual_apic_page_addr;
  163. u64 apic_access_addr;
  164. u64 ept_pointer;
  165. u64 guest_physical_address;
  166. u64 vmcs_link_pointer;
  167. u64 guest_ia32_debugctl;
  168. u64 guest_ia32_pat;
  169. u64 guest_ia32_efer;
  170. u64 guest_ia32_perf_global_ctrl;
  171. u64 guest_pdptr0;
  172. u64 guest_pdptr1;
  173. u64 guest_pdptr2;
  174. u64 guest_pdptr3;
  175. u64 host_ia32_pat;
  176. u64 host_ia32_efer;
  177. u64 host_ia32_perf_global_ctrl;
  178. u64 padding64[8]; /* room for future expansion */
  179. /*
  180. * To allow migration of L1 (complete with its L2 guests) between
  181. * machines of different natural widths (32 or 64 bit), we cannot have
  182. * unsigned long fields with no explict size. We use u64 (aliased
  183. * natural_width) instead. Luckily, x86 is little-endian.
  184. */
  185. natural_width cr0_guest_host_mask;
  186. natural_width cr4_guest_host_mask;
  187. natural_width cr0_read_shadow;
  188. natural_width cr4_read_shadow;
  189. natural_width cr3_target_value0;
  190. natural_width cr3_target_value1;
  191. natural_width cr3_target_value2;
  192. natural_width cr3_target_value3;
  193. natural_width exit_qualification;
  194. natural_width guest_linear_address;
  195. natural_width guest_cr0;
  196. natural_width guest_cr3;
  197. natural_width guest_cr4;
  198. natural_width guest_es_base;
  199. natural_width guest_cs_base;
  200. natural_width guest_ss_base;
  201. natural_width guest_ds_base;
  202. natural_width guest_fs_base;
  203. natural_width guest_gs_base;
  204. natural_width guest_ldtr_base;
  205. natural_width guest_tr_base;
  206. natural_width guest_gdtr_base;
  207. natural_width guest_idtr_base;
  208. natural_width guest_dr7;
  209. natural_width guest_rsp;
  210. natural_width guest_rip;
  211. natural_width guest_rflags;
  212. natural_width guest_pending_dbg_exceptions;
  213. natural_width guest_sysenter_esp;
  214. natural_width guest_sysenter_eip;
  215. natural_width host_cr0;
  216. natural_width host_cr3;
  217. natural_width host_cr4;
  218. natural_width host_fs_base;
  219. natural_width host_gs_base;
  220. natural_width host_tr_base;
  221. natural_width host_gdtr_base;
  222. natural_width host_idtr_base;
  223. natural_width host_ia32_sysenter_esp;
  224. natural_width host_ia32_sysenter_eip;
  225. natural_width host_rsp;
  226. natural_width host_rip;
  227. natural_width paddingl[8]; /* room for future expansion */
  228. u32 pin_based_vm_exec_control;
  229. u32 cpu_based_vm_exec_control;
  230. u32 exception_bitmap;
  231. u32 page_fault_error_code_mask;
  232. u32 page_fault_error_code_match;
  233. u32 cr3_target_count;
  234. u32 vm_exit_controls;
  235. u32 vm_exit_msr_store_count;
  236. u32 vm_exit_msr_load_count;
  237. u32 vm_entry_controls;
  238. u32 vm_entry_msr_load_count;
  239. u32 vm_entry_intr_info_field;
  240. u32 vm_entry_exception_error_code;
  241. u32 vm_entry_instruction_len;
  242. u32 tpr_threshold;
  243. u32 secondary_vm_exec_control;
  244. u32 vm_instruction_error;
  245. u32 vm_exit_reason;
  246. u32 vm_exit_intr_info;
  247. u32 vm_exit_intr_error_code;
  248. u32 idt_vectoring_info_field;
  249. u32 idt_vectoring_error_code;
  250. u32 vm_exit_instruction_len;
  251. u32 vmx_instruction_info;
  252. u32 guest_es_limit;
  253. u32 guest_cs_limit;
  254. u32 guest_ss_limit;
  255. u32 guest_ds_limit;
  256. u32 guest_fs_limit;
  257. u32 guest_gs_limit;
  258. u32 guest_ldtr_limit;
  259. u32 guest_tr_limit;
  260. u32 guest_gdtr_limit;
  261. u32 guest_idtr_limit;
  262. u32 guest_es_ar_bytes;
  263. u32 guest_cs_ar_bytes;
  264. u32 guest_ss_ar_bytes;
  265. u32 guest_ds_ar_bytes;
  266. u32 guest_fs_ar_bytes;
  267. u32 guest_gs_ar_bytes;
  268. u32 guest_ldtr_ar_bytes;
  269. u32 guest_tr_ar_bytes;
  270. u32 guest_interruptibility_info;
  271. u32 guest_activity_state;
  272. u32 guest_sysenter_cs;
  273. u32 host_ia32_sysenter_cs;
  274. u32 padding32[8]; /* room for future expansion */
  275. u16 virtual_processor_id;
  276. u16 guest_es_selector;
  277. u16 guest_cs_selector;
  278. u16 guest_ss_selector;
  279. u16 guest_ds_selector;
  280. u16 guest_fs_selector;
  281. u16 guest_gs_selector;
  282. u16 guest_ldtr_selector;
  283. u16 guest_tr_selector;
  284. u16 host_es_selector;
  285. u16 host_cs_selector;
  286. u16 host_ss_selector;
  287. u16 host_ds_selector;
  288. u16 host_fs_selector;
  289. u16 host_gs_selector;
  290. u16 host_tr_selector;
  291. };
  292. /*
  293. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  294. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  295. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  296. */
  297. #define VMCS12_REVISION 0x11e57ed0
  298. /*
  299. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  300. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  301. * current implementation, 4K are reserved to avoid future complications.
  302. */
  303. #define VMCS12_SIZE 0x1000
  304. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  305. struct vmcs02_list {
  306. struct list_head list;
  307. gpa_t vmptr;
  308. struct loaded_vmcs vmcs02;
  309. };
  310. /*
  311. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  312. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  313. */
  314. struct nested_vmx {
  315. /* Has the level1 guest done vmxon? */
  316. bool vmxon;
  317. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  318. gpa_t current_vmptr;
  319. /* The host-usable pointer to the above */
  320. struct page *current_vmcs12_page;
  321. struct vmcs12 *current_vmcs12;
  322. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  323. struct list_head vmcs02_pool;
  324. int vmcs02_num;
  325. u64 vmcs01_tsc_offset;
  326. /* L2 must run next, and mustn't decide to exit to L1. */
  327. bool nested_run_pending;
  328. /*
  329. * Guest pages referred to in vmcs02 with host-physical pointers, so
  330. * we must keep them pinned while L2 runs.
  331. */
  332. struct page *apic_access_page;
  333. };
  334. struct vcpu_vmx {
  335. struct kvm_vcpu vcpu;
  336. unsigned long host_rsp;
  337. u8 fail;
  338. u8 cpl;
  339. bool nmi_known_unmasked;
  340. u32 exit_intr_info;
  341. u32 idt_vectoring_info;
  342. ulong rflags;
  343. struct shared_msr_entry *guest_msrs;
  344. int nmsrs;
  345. int save_nmsrs;
  346. #ifdef CONFIG_X86_64
  347. u64 msr_host_kernel_gs_base;
  348. u64 msr_guest_kernel_gs_base;
  349. #endif
  350. /*
  351. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  352. * non-nested (L1) guest, it always points to vmcs01. For a nested
  353. * guest (L2), it points to a different VMCS.
  354. */
  355. struct loaded_vmcs vmcs01;
  356. struct loaded_vmcs *loaded_vmcs;
  357. bool __launched; /* temporary, used in vmx_vcpu_run */
  358. struct msr_autoload {
  359. unsigned nr;
  360. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  361. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  362. } msr_autoload;
  363. struct {
  364. int loaded;
  365. u16 fs_sel, gs_sel, ldt_sel;
  366. #ifdef CONFIG_X86_64
  367. u16 ds_sel, es_sel;
  368. #endif
  369. int gs_ldt_reload_needed;
  370. int fs_reload_needed;
  371. } host_state;
  372. struct {
  373. int vm86_active;
  374. ulong save_rflags;
  375. struct kvm_segment segs[8];
  376. } rmode;
  377. struct {
  378. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  379. struct kvm_save_segment {
  380. u16 selector;
  381. unsigned long base;
  382. u32 limit;
  383. u32 ar;
  384. } seg[8];
  385. } segment_cache;
  386. int vpid;
  387. bool emulation_required;
  388. /* Support for vnmi-less CPUs */
  389. int soft_vnmi_blocked;
  390. ktime_t entry_time;
  391. s64 vnmi_blocked_time;
  392. u32 exit_reason;
  393. bool rdtscp_enabled;
  394. /* Support for a guest hypervisor (nested VMX) */
  395. struct nested_vmx nested;
  396. };
  397. enum segment_cache_field {
  398. SEG_FIELD_SEL = 0,
  399. SEG_FIELD_BASE = 1,
  400. SEG_FIELD_LIMIT = 2,
  401. SEG_FIELD_AR = 3,
  402. SEG_FIELD_NR = 4
  403. };
  404. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  405. {
  406. return container_of(vcpu, struct vcpu_vmx, vcpu);
  407. }
  408. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  409. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  410. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  411. [number##_HIGH] = VMCS12_OFFSET(name)+4
  412. static const unsigned short vmcs_field_to_offset_table[] = {
  413. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  414. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  415. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  416. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  417. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  418. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  419. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  420. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  421. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  422. FIELD(HOST_ES_SELECTOR, host_es_selector),
  423. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  424. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  425. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  426. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  427. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  428. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  429. FIELD64(IO_BITMAP_A, io_bitmap_a),
  430. FIELD64(IO_BITMAP_B, io_bitmap_b),
  431. FIELD64(MSR_BITMAP, msr_bitmap),
  432. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  433. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  434. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  435. FIELD64(TSC_OFFSET, tsc_offset),
  436. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  437. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  438. FIELD64(EPT_POINTER, ept_pointer),
  439. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  440. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  441. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  442. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  443. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  444. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  445. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  446. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  447. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  448. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  449. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  450. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  451. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  452. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  453. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  454. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  455. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  456. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  457. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  458. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  459. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  460. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  461. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  462. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  463. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  464. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  465. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  466. FIELD(TPR_THRESHOLD, tpr_threshold),
  467. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  468. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  469. FIELD(VM_EXIT_REASON, vm_exit_reason),
  470. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  471. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  472. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  473. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  474. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  475. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  476. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  477. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  478. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  479. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  480. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  481. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  482. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  483. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  484. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  485. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  486. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  487. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  488. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  489. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  490. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  491. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  492. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  493. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  494. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  495. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  496. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  497. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  498. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  499. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  500. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  501. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  502. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  503. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  504. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  505. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  506. FIELD(EXIT_QUALIFICATION, exit_qualification),
  507. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  508. FIELD(GUEST_CR0, guest_cr0),
  509. FIELD(GUEST_CR3, guest_cr3),
  510. FIELD(GUEST_CR4, guest_cr4),
  511. FIELD(GUEST_ES_BASE, guest_es_base),
  512. FIELD(GUEST_CS_BASE, guest_cs_base),
  513. FIELD(GUEST_SS_BASE, guest_ss_base),
  514. FIELD(GUEST_DS_BASE, guest_ds_base),
  515. FIELD(GUEST_FS_BASE, guest_fs_base),
  516. FIELD(GUEST_GS_BASE, guest_gs_base),
  517. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  518. FIELD(GUEST_TR_BASE, guest_tr_base),
  519. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  520. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  521. FIELD(GUEST_DR7, guest_dr7),
  522. FIELD(GUEST_RSP, guest_rsp),
  523. FIELD(GUEST_RIP, guest_rip),
  524. FIELD(GUEST_RFLAGS, guest_rflags),
  525. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  526. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  527. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  528. FIELD(HOST_CR0, host_cr0),
  529. FIELD(HOST_CR3, host_cr3),
  530. FIELD(HOST_CR4, host_cr4),
  531. FIELD(HOST_FS_BASE, host_fs_base),
  532. FIELD(HOST_GS_BASE, host_gs_base),
  533. FIELD(HOST_TR_BASE, host_tr_base),
  534. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  535. FIELD(HOST_IDTR_BASE, host_idtr_base),
  536. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  537. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  538. FIELD(HOST_RSP, host_rsp),
  539. FIELD(HOST_RIP, host_rip),
  540. };
  541. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  542. static inline short vmcs_field_to_offset(unsigned long field)
  543. {
  544. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  545. return -1;
  546. return vmcs_field_to_offset_table[field];
  547. }
  548. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  549. {
  550. return to_vmx(vcpu)->nested.current_vmcs12;
  551. }
  552. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  553. {
  554. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  555. if (is_error_page(page))
  556. return NULL;
  557. return page;
  558. }
  559. static void nested_release_page(struct page *page)
  560. {
  561. kvm_release_page_dirty(page);
  562. }
  563. static void nested_release_page_clean(struct page *page)
  564. {
  565. kvm_release_page_clean(page);
  566. }
  567. static u64 construct_eptp(unsigned long root_hpa);
  568. static void kvm_cpu_vmxon(u64 addr);
  569. static void kvm_cpu_vmxoff(void);
  570. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  571. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  572. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  573. struct kvm_segment *var, int seg);
  574. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  575. struct kvm_segment *var, int seg);
  576. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  577. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  578. /*
  579. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  580. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  581. */
  582. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  583. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  584. static unsigned long *vmx_io_bitmap_a;
  585. static unsigned long *vmx_io_bitmap_b;
  586. static unsigned long *vmx_msr_bitmap_legacy;
  587. static unsigned long *vmx_msr_bitmap_longmode;
  588. static bool cpu_has_load_ia32_efer;
  589. static bool cpu_has_load_perf_global_ctrl;
  590. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  591. static DEFINE_SPINLOCK(vmx_vpid_lock);
  592. static struct vmcs_config {
  593. int size;
  594. int order;
  595. u32 revision_id;
  596. u32 pin_based_exec_ctrl;
  597. u32 cpu_based_exec_ctrl;
  598. u32 cpu_based_2nd_exec_ctrl;
  599. u32 vmexit_ctrl;
  600. u32 vmentry_ctrl;
  601. } vmcs_config;
  602. static struct vmx_capability {
  603. u32 ept;
  604. u32 vpid;
  605. } vmx_capability;
  606. #define VMX_SEGMENT_FIELD(seg) \
  607. [VCPU_SREG_##seg] = { \
  608. .selector = GUEST_##seg##_SELECTOR, \
  609. .base = GUEST_##seg##_BASE, \
  610. .limit = GUEST_##seg##_LIMIT, \
  611. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  612. }
  613. static const struct kvm_vmx_segment_field {
  614. unsigned selector;
  615. unsigned base;
  616. unsigned limit;
  617. unsigned ar_bytes;
  618. } kvm_vmx_segment_fields[] = {
  619. VMX_SEGMENT_FIELD(CS),
  620. VMX_SEGMENT_FIELD(DS),
  621. VMX_SEGMENT_FIELD(ES),
  622. VMX_SEGMENT_FIELD(FS),
  623. VMX_SEGMENT_FIELD(GS),
  624. VMX_SEGMENT_FIELD(SS),
  625. VMX_SEGMENT_FIELD(TR),
  626. VMX_SEGMENT_FIELD(LDTR),
  627. };
  628. static u64 host_efer;
  629. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  630. /*
  631. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  632. * away by decrementing the array size.
  633. */
  634. static const u32 vmx_msr_index[] = {
  635. #ifdef CONFIG_X86_64
  636. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  637. #endif
  638. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  639. };
  640. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  641. static inline bool is_page_fault(u32 intr_info)
  642. {
  643. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  644. INTR_INFO_VALID_MASK)) ==
  645. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  646. }
  647. static inline bool is_no_device(u32 intr_info)
  648. {
  649. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  650. INTR_INFO_VALID_MASK)) ==
  651. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  652. }
  653. static inline bool is_invalid_opcode(u32 intr_info)
  654. {
  655. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  656. INTR_INFO_VALID_MASK)) ==
  657. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  658. }
  659. static inline bool is_external_interrupt(u32 intr_info)
  660. {
  661. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  662. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  663. }
  664. static inline bool is_machine_check(u32 intr_info)
  665. {
  666. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  667. INTR_INFO_VALID_MASK)) ==
  668. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  669. }
  670. static inline bool cpu_has_vmx_msr_bitmap(void)
  671. {
  672. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  673. }
  674. static inline bool cpu_has_vmx_tpr_shadow(void)
  675. {
  676. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  677. }
  678. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  679. {
  680. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  681. }
  682. static inline bool cpu_has_secondary_exec_ctrls(void)
  683. {
  684. return vmcs_config.cpu_based_exec_ctrl &
  685. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  686. }
  687. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  688. {
  689. return vmcs_config.cpu_based_2nd_exec_ctrl &
  690. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  691. }
  692. static inline bool cpu_has_vmx_flexpriority(void)
  693. {
  694. return cpu_has_vmx_tpr_shadow() &&
  695. cpu_has_vmx_virtualize_apic_accesses();
  696. }
  697. static inline bool cpu_has_vmx_ept_execute_only(void)
  698. {
  699. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  700. }
  701. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  702. {
  703. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  704. }
  705. static inline bool cpu_has_vmx_eptp_writeback(void)
  706. {
  707. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  708. }
  709. static inline bool cpu_has_vmx_ept_2m_page(void)
  710. {
  711. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  712. }
  713. static inline bool cpu_has_vmx_ept_1g_page(void)
  714. {
  715. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  716. }
  717. static inline bool cpu_has_vmx_ept_4levels(void)
  718. {
  719. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  720. }
  721. static inline bool cpu_has_vmx_ept_ad_bits(void)
  722. {
  723. return vmx_capability.ept & VMX_EPT_AD_BIT;
  724. }
  725. static inline bool cpu_has_vmx_invept_context(void)
  726. {
  727. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  728. }
  729. static inline bool cpu_has_vmx_invept_global(void)
  730. {
  731. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  732. }
  733. static inline bool cpu_has_vmx_invvpid_single(void)
  734. {
  735. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  736. }
  737. static inline bool cpu_has_vmx_invvpid_global(void)
  738. {
  739. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  740. }
  741. static inline bool cpu_has_vmx_ept(void)
  742. {
  743. return vmcs_config.cpu_based_2nd_exec_ctrl &
  744. SECONDARY_EXEC_ENABLE_EPT;
  745. }
  746. static inline bool cpu_has_vmx_unrestricted_guest(void)
  747. {
  748. return vmcs_config.cpu_based_2nd_exec_ctrl &
  749. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  750. }
  751. static inline bool cpu_has_vmx_ple(void)
  752. {
  753. return vmcs_config.cpu_based_2nd_exec_ctrl &
  754. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  755. }
  756. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  757. {
  758. return flexpriority_enabled && irqchip_in_kernel(kvm);
  759. }
  760. static inline bool cpu_has_vmx_vpid(void)
  761. {
  762. return vmcs_config.cpu_based_2nd_exec_ctrl &
  763. SECONDARY_EXEC_ENABLE_VPID;
  764. }
  765. static inline bool cpu_has_vmx_rdtscp(void)
  766. {
  767. return vmcs_config.cpu_based_2nd_exec_ctrl &
  768. SECONDARY_EXEC_RDTSCP;
  769. }
  770. static inline bool cpu_has_vmx_invpcid(void)
  771. {
  772. return vmcs_config.cpu_based_2nd_exec_ctrl &
  773. SECONDARY_EXEC_ENABLE_INVPCID;
  774. }
  775. static inline bool cpu_has_virtual_nmis(void)
  776. {
  777. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  778. }
  779. static inline bool cpu_has_vmx_wbinvd_exit(void)
  780. {
  781. return vmcs_config.cpu_based_2nd_exec_ctrl &
  782. SECONDARY_EXEC_WBINVD_EXITING;
  783. }
  784. static inline bool report_flexpriority(void)
  785. {
  786. return flexpriority_enabled;
  787. }
  788. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  789. {
  790. return vmcs12->cpu_based_vm_exec_control & bit;
  791. }
  792. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  793. {
  794. return (vmcs12->cpu_based_vm_exec_control &
  795. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  796. (vmcs12->secondary_vm_exec_control & bit);
  797. }
  798. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  799. struct kvm_vcpu *vcpu)
  800. {
  801. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  802. }
  803. static inline bool is_exception(u32 intr_info)
  804. {
  805. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  806. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  807. }
  808. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  809. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  810. struct vmcs12 *vmcs12,
  811. u32 reason, unsigned long qualification);
  812. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  813. {
  814. int i;
  815. for (i = 0; i < vmx->nmsrs; ++i)
  816. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  817. return i;
  818. return -1;
  819. }
  820. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  821. {
  822. struct {
  823. u64 vpid : 16;
  824. u64 rsvd : 48;
  825. u64 gva;
  826. } operand = { vpid, 0, gva };
  827. asm volatile (__ex(ASM_VMX_INVVPID)
  828. /* CF==1 or ZF==1 --> rc = -1 */
  829. "; ja 1f ; ud2 ; 1:"
  830. : : "a"(&operand), "c"(ext) : "cc", "memory");
  831. }
  832. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  833. {
  834. struct {
  835. u64 eptp, gpa;
  836. } operand = {eptp, gpa};
  837. asm volatile (__ex(ASM_VMX_INVEPT)
  838. /* CF==1 or ZF==1 --> rc = -1 */
  839. "; ja 1f ; ud2 ; 1:\n"
  840. : : "a" (&operand), "c" (ext) : "cc", "memory");
  841. }
  842. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  843. {
  844. int i;
  845. i = __find_msr_index(vmx, msr);
  846. if (i >= 0)
  847. return &vmx->guest_msrs[i];
  848. return NULL;
  849. }
  850. static void vmcs_clear(struct vmcs *vmcs)
  851. {
  852. u64 phys_addr = __pa(vmcs);
  853. u8 error;
  854. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  855. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  856. : "cc", "memory");
  857. if (error)
  858. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  859. vmcs, phys_addr);
  860. }
  861. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  862. {
  863. vmcs_clear(loaded_vmcs->vmcs);
  864. loaded_vmcs->cpu = -1;
  865. loaded_vmcs->launched = 0;
  866. }
  867. static void vmcs_load(struct vmcs *vmcs)
  868. {
  869. u64 phys_addr = __pa(vmcs);
  870. u8 error;
  871. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  872. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  873. : "cc", "memory");
  874. if (error)
  875. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  876. vmcs, phys_addr);
  877. }
  878. #ifdef CONFIG_KEXEC
  879. /*
  880. * This bitmap is used to indicate whether the vmclear
  881. * operation is enabled on all cpus. All disabled by
  882. * default.
  883. */
  884. static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
  885. static inline void crash_enable_local_vmclear(int cpu)
  886. {
  887. cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
  888. }
  889. static inline void crash_disable_local_vmclear(int cpu)
  890. {
  891. cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
  892. }
  893. static inline int crash_local_vmclear_enabled(int cpu)
  894. {
  895. return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
  896. }
  897. static void crash_vmclear_local_loaded_vmcss(void)
  898. {
  899. int cpu = raw_smp_processor_id();
  900. struct loaded_vmcs *v;
  901. if (!crash_local_vmclear_enabled(cpu))
  902. return;
  903. list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
  904. loaded_vmcss_on_cpu_link)
  905. vmcs_clear(v->vmcs);
  906. }
  907. #else
  908. static inline void crash_enable_local_vmclear(int cpu) { }
  909. static inline void crash_disable_local_vmclear(int cpu) { }
  910. #endif /* CONFIG_KEXEC */
  911. static void __loaded_vmcs_clear(void *arg)
  912. {
  913. struct loaded_vmcs *loaded_vmcs = arg;
  914. int cpu = raw_smp_processor_id();
  915. if (loaded_vmcs->cpu != cpu)
  916. return; /* vcpu migration can race with cpu offline */
  917. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  918. per_cpu(current_vmcs, cpu) = NULL;
  919. crash_disable_local_vmclear(cpu);
  920. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  921. /*
  922. * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
  923. * is before setting loaded_vmcs->vcpu to -1 which is done in
  924. * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
  925. * then adds the vmcs into percpu list before it is deleted.
  926. */
  927. smp_wmb();
  928. loaded_vmcs_init(loaded_vmcs);
  929. crash_enable_local_vmclear(cpu);
  930. }
  931. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  932. {
  933. int cpu = loaded_vmcs->cpu;
  934. if (cpu != -1)
  935. smp_call_function_single(cpu,
  936. __loaded_vmcs_clear, loaded_vmcs, 1);
  937. }
  938. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  939. {
  940. if (vmx->vpid == 0)
  941. return;
  942. if (cpu_has_vmx_invvpid_single())
  943. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  944. }
  945. static inline void vpid_sync_vcpu_global(void)
  946. {
  947. if (cpu_has_vmx_invvpid_global())
  948. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  949. }
  950. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  951. {
  952. if (cpu_has_vmx_invvpid_single())
  953. vpid_sync_vcpu_single(vmx);
  954. else
  955. vpid_sync_vcpu_global();
  956. }
  957. static inline void ept_sync_global(void)
  958. {
  959. if (cpu_has_vmx_invept_global())
  960. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  961. }
  962. static inline void ept_sync_context(u64 eptp)
  963. {
  964. if (enable_ept) {
  965. if (cpu_has_vmx_invept_context())
  966. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  967. else
  968. ept_sync_global();
  969. }
  970. }
  971. static __always_inline unsigned long vmcs_readl(unsigned long field)
  972. {
  973. unsigned long value;
  974. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  975. : "=a"(value) : "d"(field) : "cc");
  976. return value;
  977. }
  978. static __always_inline u16 vmcs_read16(unsigned long field)
  979. {
  980. return vmcs_readl(field);
  981. }
  982. static __always_inline u32 vmcs_read32(unsigned long field)
  983. {
  984. return vmcs_readl(field);
  985. }
  986. static __always_inline u64 vmcs_read64(unsigned long field)
  987. {
  988. #ifdef CONFIG_X86_64
  989. return vmcs_readl(field);
  990. #else
  991. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  992. #endif
  993. }
  994. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  995. {
  996. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  997. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  998. dump_stack();
  999. }
  1000. static void vmcs_writel(unsigned long field, unsigned long value)
  1001. {
  1002. u8 error;
  1003. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  1004. : "=q"(error) : "a"(value), "d"(field) : "cc");
  1005. if (unlikely(error))
  1006. vmwrite_error(field, value);
  1007. }
  1008. static void vmcs_write16(unsigned long field, u16 value)
  1009. {
  1010. vmcs_writel(field, value);
  1011. }
  1012. static void vmcs_write32(unsigned long field, u32 value)
  1013. {
  1014. vmcs_writel(field, value);
  1015. }
  1016. static void vmcs_write64(unsigned long field, u64 value)
  1017. {
  1018. vmcs_writel(field, value);
  1019. #ifndef CONFIG_X86_64
  1020. asm volatile ("");
  1021. vmcs_writel(field+1, value >> 32);
  1022. #endif
  1023. }
  1024. static void vmcs_clear_bits(unsigned long field, u32 mask)
  1025. {
  1026. vmcs_writel(field, vmcs_readl(field) & ~mask);
  1027. }
  1028. static void vmcs_set_bits(unsigned long field, u32 mask)
  1029. {
  1030. vmcs_writel(field, vmcs_readl(field) | mask);
  1031. }
  1032. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  1033. {
  1034. vmx->segment_cache.bitmask = 0;
  1035. }
  1036. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  1037. unsigned field)
  1038. {
  1039. bool ret;
  1040. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  1041. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  1042. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  1043. vmx->segment_cache.bitmask = 0;
  1044. }
  1045. ret = vmx->segment_cache.bitmask & mask;
  1046. vmx->segment_cache.bitmask |= mask;
  1047. return ret;
  1048. }
  1049. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  1050. {
  1051. u16 *p = &vmx->segment_cache.seg[seg].selector;
  1052. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  1053. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1054. return *p;
  1055. }
  1056. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1057. {
  1058. ulong *p = &vmx->segment_cache.seg[seg].base;
  1059. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1060. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1061. return *p;
  1062. }
  1063. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1064. {
  1065. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1066. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1067. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1068. return *p;
  1069. }
  1070. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1071. {
  1072. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1073. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1074. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1075. return *p;
  1076. }
  1077. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1078. {
  1079. u32 eb;
  1080. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1081. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1082. if ((vcpu->guest_debug &
  1083. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1084. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1085. eb |= 1u << BP_VECTOR;
  1086. if (to_vmx(vcpu)->rmode.vm86_active)
  1087. eb = ~0;
  1088. if (enable_ept)
  1089. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1090. if (vcpu->fpu_active)
  1091. eb &= ~(1u << NM_VECTOR);
  1092. /* When we are running a nested L2 guest and L1 specified for it a
  1093. * certain exception bitmap, we must trap the same exceptions and pass
  1094. * them to L1. When running L2, we will only handle the exceptions
  1095. * specified above if L1 did not want them.
  1096. */
  1097. if (is_guest_mode(vcpu))
  1098. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1099. vmcs_write32(EXCEPTION_BITMAP, eb);
  1100. }
  1101. static void clear_atomic_switch_msr_special(unsigned long entry,
  1102. unsigned long exit)
  1103. {
  1104. vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
  1105. vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
  1106. }
  1107. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1108. {
  1109. unsigned i;
  1110. struct msr_autoload *m = &vmx->msr_autoload;
  1111. switch (msr) {
  1112. case MSR_EFER:
  1113. if (cpu_has_load_ia32_efer) {
  1114. clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1115. VM_EXIT_LOAD_IA32_EFER);
  1116. return;
  1117. }
  1118. break;
  1119. case MSR_CORE_PERF_GLOBAL_CTRL:
  1120. if (cpu_has_load_perf_global_ctrl) {
  1121. clear_atomic_switch_msr_special(
  1122. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1123. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  1124. return;
  1125. }
  1126. break;
  1127. }
  1128. for (i = 0; i < m->nr; ++i)
  1129. if (m->guest[i].index == msr)
  1130. break;
  1131. if (i == m->nr)
  1132. return;
  1133. --m->nr;
  1134. m->guest[i] = m->guest[m->nr];
  1135. m->host[i] = m->host[m->nr];
  1136. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1137. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1138. }
  1139. static void add_atomic_switch_msr_special(unsigned long entry,
  1140. unsigned long exit, unsigned long guest_val_vmcs,
  1141. unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
  1142. {
  1143. vmcs_write64(guest_val_vmcs, guest_val);
  1144. vmcs_write64(host_val_vmcs, host_val);
  1145. vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
  1146. vmcs_set_bits(VM_EXIT_CONTROLS, exit);
  1147. }
  1148. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1149. u64 guest_val, u64 host_val)
  1150. {
  1151. unsigned i;
  1152. struct msr_autoload *m = &vmx->msr_autoload;
  1153. switch (msr) {
  1154. case MSR_EFER:
  1155. if (cpu_has_load_ia32_efer) {
  1156. add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1157. VM_EXIT_LOAD_IA32_EFER,
  1158. GUEST_IA32_EFER,
  1159. HOST_IA32_EFER,
  1160. guest_val, host_val);
  1161. return;
  1162. }
  1163. break;
  1164. case MSR_CORE_PERF_GLOBAL_CTRL:
  1165. if (cpu_has_load_perf_global_ctrl) {
  1166. add_atomic_switch_msr_special(
  1167. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1168. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
  1169. GUEST_IA32_PERF_GLOBAL_CTRL,
  1170. HOST_IA32_PERF_GLOBAL_CTRL,
  1171. guest_val, host_val);
  1172. return;
  1173. }
  1174. break;
  1175. }
  1176. for (i = 0; i < m->nr; ++i)
  1177. if (m->guest[i].index == msr)
  1178. break;
  1179. if (i == NR_AUTOLOAD_MSRS) {
  1180. printk_once(KERN_WARNING"Not enough mst switch entries. "
  1181. "Can't add msr %x\n", msr);
  1182. return;
  1183. } else if (i == m->nr) {
  1184. ++m->nr;
  1185. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1186. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1187. }
  1188. m->guest[i].index = msr;
  1189. m->guest[i].value = guest_val;
  1190. m->host[i].index = msr;
  1191. m->host[i].value = host_val;
  1192. }
  1193. static void reload_tss(void)
  1194. {
  1195. /*
  1196. * VT restores TR but not its size. Useless.
  1197. */
  1198. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1199. struct desc_struct *descs;
  1200. descs = (void *)gdt->address;
  1201. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1202. load_TR_desc();
  1203. }
  1204. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1205. {
  1206. u64 guest_efer;
  1207. u64 ignore_bits;
  1208. guest_efer = vmx->vcpu.arch.efer;
  1209. /*
  1210. * NX is emulated; LMA and LME handled by hardware; SCE meaningless
  1211. * outside long mode
  1212. */
  1213. ignore_bits = EFER_NX | EFER_SCE;
  1214. #ifdef CONFIG_X86_64
  1215. ignore_bits |= EFER_LMA | EFER_LME;
  1216. /* SCE is meaningful only in long mode on Intel */
  1217. if (guest_efer & EFER_LMA)
  1218. ignore_bits &= ~(u64)EFER_SCE;
  1219. #endif
  1220. guest_efer &= ~ignore_bits;
  1221. guest_efer |= host_efer & ignore_bits;
  1222. vmx->guest_msrs[efer_offset].data = guest_efer;
  1223. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1224. clear_atomic_switch_msr(vmx, MSR_EFER);
  1225. /* On ept, can't emulate nx, and must switch nx atomically */
  1226. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1227. guest_efer = vmx->vcpu.arch.efer;
  1228. if (!(guest_efer & EFER_LMA))
  1229. guest_efer &= ~EFER_LME;
  1230. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1231. return false;
  1232. }
  1233. return true;
  1234. }
  1235. static unsigned long segment_base(u16 selector)
  1236. {
  1237. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1238. struct desc_struct *d;
  1239. unsigned long table_base;
  1240. unsigned long v;
  1241. if (!(selector & ~3))
  1242. return 0;
  1243. table_base = gdt->address;
  1244. if (selector & 4) { /* from ldt */
  1245. u16 ldt_selector = kvm_read_ldt();
  1246. if (!(ldt_selector & ~3))
  1247. return 0;
  1248. table_base = segment_base(ldt_selector);
  1249. }
  1250. d = (struct desc_struct *)(table_base + (selector & ~7));
  1251. v = get_desc_base(d);
  1252. #ifdef CONFIG_X86_64
  1253. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1254. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1255. #endif
  1256. return v;
  1257. }
  1258. static inline unsigned long kvm_read_tr_base(void)
  1259. {
  1260. u16 tr;
  1261. asm("str %0" : "=g"(tr));
  1262. return segment_base(tr);
  1263. }
  1264. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1265. {
  1266. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1267. int i;
  1268. if (vmx->host_state.loaded)
  1269. return;
  1270. vmx->host_state.loaded = 1;
  1271. /*
  1272. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1273. * allow segment selectors with cpl > 0 or ti == 1.
  1274. */
  1275. vmx->host_state.ldt_sel = kvm_read_ldt();
  1276. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1277. savesegment(fs, vmx->host_state.fs_sel);
  1278. if (!(vmx->host_state.fs_sel & 7)) {
  1279. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1280. vmx->host_state.fs_reload_needed = 0;
  1281. } else {
  1282. vmcs_write16(HOST_FS_SELECTOR, 0);
  1283. vmx->host_state.fs_reload_needed = 1;
  1284. }
  1285. savesegment(gs, vmx->host_state.gs_sel);
  1286. if (!(vmx->host_state.gs_sel & 7))
  1287. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1288. else {
  1289. vmcs_write16(HOST_GS_SELECTOR, 0);
  1290. vmx->host_state.gs_ldt_reload_needed = 1;
  1291. }
  1292. #ifdef CONFIG_X86_64
  1293. savesegment(ds, vmx->host_state.ds_sel);
  1294. savesegment(es, vmx->host_state.es_sel);
  1295. #endif
  1296. #ifdef CONFIG_X86_64
  1297. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1298. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1299. #else
  1300. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1301. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1302. #endif
  1303. #ifdef CONFIG_X86_64
  1304. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1305. if (is_long_mode(&vmx->vcpu))
  1306. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1307. #endif
  1308. for (i = 0; i < vmx->save_nmsrs; ++i)
  1309. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1310. vmx->guest_msrs[i].data,
  1311. vmx->guest_msrs[i].mask);
  1312. }
  1313. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1314. {
  1315. if (!vmx->host_state.loaded)
  1316. return;
  1317. ++vmx->vcpu.stat.host_state_reload;
  1318. vmx->host_state.loaded = 0;
  1319. #ifdef CONFIG_X86_64
  1320. if (is_long_mode(&vmx->vcpu))
  1321. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1322. #endif
  1323. if (vmx->host_state.gs_ldt_reload_needed) {
  1324. kvm_load_ldt(vmx->host_state.ldt_sel);
  1325. #ifdef CONFIG_X86_64
  1326. load_gs_index(vmx->host_state.gs_sel);
  1327. #else
  1328. loadsegment(gs, vmx->host_state.gs_sel);
  1329. #endif
  1330. }
  1331. if (vmx->host_state.fs_reload_needed)
  1332. loadsegment(fs, vmx->host_state.fs_sel);
  1333. #ifdef CONFIG_X86_64
  1334. if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
  1335. loadsegment(ds, vmx->host_state.ds_sel);
  1336. loadsegment(es, vmx->host_state.es_sel);
  1337. }
  1338. #endif
  1339. reload_tss();
  1340. #ifdef CONFIG_X86_64
  1341. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1342. #endif
  1343. /*
  1344. * If the FPU is not active (through the host task or
  1345. * the guest vcpu), then restore the cr0.TS bit.
  1346. */
  1347. if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
  1348. stts();
  1349. load_gdt(&__get_cpu_var(host_gdt));
  1350. }
  1351. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1352. {
  1353. preempt_disable();
  1354. __vmx_load_host_state(vmx);
  1355. preempt_enable();
  1356. }
  1357. /*
  1358. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1359. * vcpu mutex is already taken.
  1360. */
  1361. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1362. {
  1363. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1364. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1365. if (!vmm_exclusive)
  1366. kvm_cpu_vmxon(phys_addr);
  1367. else if (vmx->loaded_vmcs->cpu != cpu)
  1368. loaded_vmcs_clear(vmx->loaded_vmcs);
  1369. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1370. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1371. vmcs_load(vmx->loaded_vmcs->vmcs);
  1372. }
  1373. if (vmx->loaded_vmcs->cpu != cpu) {
  1374. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1375. unsigned long sysenter_esp;
  1376. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1377. local_irq_disable();
  1378. crash_disable_local_vmclear(cpu);
  1379. /*
  1380. * Read loaded_vmcs->cpu should be before fetching
  1381. * loaded_vmcs->loaded_vmcss_on_cpu_link.
  1382. * See the comments in __loaded_vmcs_clear().
  1383. */
  1384. smp_rmb();
  1385. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1386. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1387. crash_enable_local_vmclear(cpu);
  1388. local_irq_enable();
  1389. /*
  1390. * Linux uses per-cpu TSS and GDT, so set these when switching
  1391. * processors.
  1392. */
  1393. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1394. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1395. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1396. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1397. vmx->loaded_vmcs->cpu = cpu;
  1398. }
  1399. }
  1400. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1401. {
  1402. __vmx_load_host_state(to_vmx(vcpu));
  1403. if (!vmm_exclusive) {
  1404. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1405. vcpu->cpu = -1;
  1406. kvm_cpu_vmxoff();
  1407. }
  1408. }
  1409. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1410. {
  1411. ulong cr0;
  1412. if (vcpu->fpu_active)
  1413. return;
  1414. vcpu->fpu_active = 1;
  1415. cr0 = vmcs_readl(GUEST_CR0);
  1416. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1417. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1418. vmcs_writel(GUEST_CR0, cr0);
  1419. update_exception_bitmap(vcpu);
  1420. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1421. if (is_guest_mode(vcpu))
  1422. vcpu->arch.cr0_guest_owned_bits &=
  1423. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1424. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1425. }
  1426. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1427. /*
  1428. * Return the cr0 value that a nested guest would read. This is a combination
  1429. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1430. * its hypervisor (cr0_read_shadow).
  1431. */
  1432. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1433. {
  1434. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1435. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1436. }
  1437. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1438. {
  1439. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1440. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1441. }
  1442. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1443. {
  1444. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1445. * set this *before* calling this function.
  1446. */
  1447. vmx_decache_cr0_guest_bits(vcpu);
  1448. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1449. update_exception_bitmap(vcpu);
  1450. vcpu->arch.cr0_guest_owned_bits = 0;
  1451. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1452. if (is_guest_mode(vcpu)) {
  1453. /*
  1454. * L1's specified read shadow might not contain the TS bit,
  1455. * so now that we turned on shadowing of this bit, we need to
  1456. * set this bit of the shadow. Like in nested_vmx_run we need
  1457. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1458. * up-to-date here because we just decached cr0.TS (and we'll
  1459. * only update vmcs12->guest_cr0 on nested exit).
  1460. */
  1461. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1462. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1463. (vcpu->arch.cr0 & X86_CR0_TS);
  1464. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1465. } else
  1466. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1467. }
  1468. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1469. {
  1470. unsigned long rflags, save_rflags;
  1471. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1472. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1473. rflags = vmcs_readl(GUEST_RFLAGS);
  1474. if (to_vmx(vcpu)->rmode.vm86_active) {
  1475. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1476. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1477. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1478. }
  1479. to_vmx(vcpu)->rflags = rflags;
  1480. }
  1481. return to_vmx(vcpu)->rflags;
  1482. }
  1483. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1484. {
  1485. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1486. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1487. to_vmx(vcpu)->rflags = rflags;
  1488. if (to_vmx(vcpu)->rmode.vm86_active) {
  1489. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1490. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1491. }
  1492. vmcs_writel(GUEST_RFLAGS, rflags);
  1493. }
  1494. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1495. {
  1496. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1497. int ret = 0;
  1498. if (interruptibility & GUEST_INTR_STATE_STI)
  1499. ret |= KVM_X86_SHADOW_INT_STI;
  1500. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1501. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1502. return ret & mask;
  1503. }
  1504. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1505. {
  1506. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1507. u32 interruptibility = interruptibility_old;
  1508. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1509. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1510. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1511. else if (mask & KVM_X86_SHADOW_INT_STI)
  1512. interruptibility |= GUEST_INTR_STATE_STI;
  1513. if ((interruptibility != interruptibility_old))
  1514. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1515. }
  1516. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1517. {
  1518. unsigned long rip;
  1519. rip = kvm_rip_read(vcpu);
  1520. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1521. kvm_rip_write(vcpu, rip);
  1522. /* skipping an emulated instruction also counts */
  1523. vmx_set_interrupt_shadow(vcpu, 0);
  1524. }
  1525. /*
  1526. * KVM wants to inject page-faults which it got to the guest. This function
  1527. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1528. * This function assumes it is called with the exit reason in vmcs02 being
  1529. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1530. * is running).
  1531. */
  1532. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1533. {
  1534. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1535. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1536. if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
  1537. return 0;
  1538. nested_vmx_vmexit(vcpu);
  1539. return 1;
  1540. }
  1541. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1542. bool has_error_code, u32 error_code,
  1543. bool reinject)
  1544. {
  1545. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1546. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1547. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1548. nested_pf_handled(vcpu))
  1549. return;
  1550. if (has_error_code) {
  1551. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1552. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1553. }
  1554. if (vmx->rmode.vm86_active) {
  1555. int inc_eip = 0;
  1556. if (kvm_exception_is_soft(nr))
  1557. inc_eip = vcpu->arch.event_exit_inst_len;
  1558. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1559. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1560. return;
  1561. }
  1562. if (kvm_exception_is_soft(nr)) {
  1563. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1564. vmx->vcpu.arch.event_exit_inst_len);
  1565. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1566. } else
  1567. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1568. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1569. }
  1570. static bool vmx_rdtscp_supported(void)
  1571. {
  1572. return cpu_has_vmx_rdtscp();
  1573. }
  1574. static bool vmx_invpcid_supported(void)
  1575. {
  1576. return cpu_has_vmx_invpcid() && enable_ept;
  1577. }
  1578. /*
  1579. * Swap MSR entry in host/guest MSR entry array.
  1580. */
  1581. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1582. {
  1583. struct shared_msr_entry tmp;
  1584. tmp = vmx->guest_msrs[to];
  1585. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1586. vmx->guest_msrs[from] = tmp;
  1587. }
  1588. /*
  1589. * Set up the vmcs to automatically save and restore system
  1590. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1591. * mode, as fiddling with msrs is very expensive.
  1592. */
  1593. static void setup_msrs(struct vcpu_vmx *vmx)
  1594. {
  1595. int save_nmsrs, index;
  1596. unsigned long *msr_bitmap;
  1597. save_nmsrs = 0;
  1598. #ifdef CONFIG_X86_64
  1599. if (is_long_mode(&vmx->vcpu)) {
  1600. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1601. if (index >= 0)
  1602. move_msr_up(vmx, index, save_nmsrs++);
  1603. index = __find_msr_index(vmx, MSR_LSTAR);
  1604. if (index >= 0)
  1605. move_msr_up(vmx, index, save_nmsrs++);
  1606. index = __find_msr_index(vmx, MSR_CSTAR);
  1607. if (index >= 0)
  1608. move_msr_up(vmx, index, save_nmsrs++);
  1609. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1610. if (index >= 0 && vmx->rdtscp_enabled)
  1611. move_msr_up(vmx, index, save_nmsrs++);
  1612. /*
  1613. * MSR_STAR is only needed on long mode guests, and only
  1614. * if efer.sce is enabled.
  1615. */
  1616. index = __find_msr_index(vmx, MSR_STAR);
  1617. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1618. move_msr_up(vmx, index, save_nmsrs++);
  1619. }
  1620. #endif
  1621. index = __find_msr_index(vmx, MSR_EFER);
  1622. if (index >= 0 && update_transition_efer(vmx, index))
  1623. move_msr_up(vmx, index, save_nmsrs++);
  1624. vmx->save_nmsrs = save_nmsrs;
  1625. if (cpu_has_vmx_msr_bitmap()) {
  1626. if (is_long_mode(&vmx->vcpu))
  1627. msr_bitmap = vmx_msr_bitmap_longmode;
  1628. else
  1629. msr_bitmap = vmx_msr_bitmap_legacy;
  1630. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1631. }
  1632. }
  1633. /*
  1634. * reads and returns guest's timestamp counter "register"
  1635. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1636. */
  1637. static u64 guest_read_tsc(void)
  1638. {
  1639. u64 host_tsc, tsc_offset;
  1640. rdtscll(host_tsc);
  1641. tsc_offset = vmcs_read64(TSC_OFFSET);
  1642. return host_tsc + tsc_offset;
  1643. }
  1644. /*
  1645. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1646. * counter, even if a nested guest (L2) is currently running.
  1647. */
  1648. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
  1649. {
  1650. u64 tsc_offset;
  1651. tsc_offset = is_guest_mode(vcpu) ?
  1652. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1653. vmcs_read64(TSC_OFFSET);
  1654. return host_tsc + tsc_offset;
  1655. }
  1656. /*
  1657. * Engage any workarounds for mis-matched TSC rates. Currently limited to
  1658. * software catchup for faster rates on slower CPUs.
  1659. */
  1660. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
  1661. {
  1662. if (!scale)
  1663. return;
  1664. if (user_tsc_khz > tsc_khz) {
  1665. vcpu->arch.tsc_catchup = 1;
  1666. vcpu->arch.tsc_always_catchup = 1;
  1667. } else
  1668. WARN(1, "user requested TSC rate below hardware speed\n");
  1669. }
  1670. static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
  1671. {
  1672. return vmcs_read64(TSC_OFFSET);
  1673. }
  1674. /*
  1675. * writes 'offset' into guest's timestamp counter offset register
  1676. */
  1677. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1678. {
  1679. if (is_guest_mode(vcpu)) {
  1680. /*
  1681. * We're here if L1 chose not to trap WRMSR to TSC. According
  1682. * to the spec, this should set L1's TSC; The offset that L1
  1683. * set for L2 remains unchanged, and still needs to be added
  1684. * to the newly set TSC to get L2's TSC.
  1685. */
  1686. struct vmcs12 *vmcs12;
  1687. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1688. /* recalculate vmcs02.TSC_OFFSET: */
  1689. vmcs12 = get_vmcs12(vcpu);
  1690. vmcs_write64(TSC_OFFSET, offset +
  1691. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1692. vmcs12->tsc_offset : 0));
  1693. } else {
  1694. vmcs_write64(TSC_OFFSET, offset);
  1695. }
  1696. }
  1697. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
  1698. {
  1699. u64 offset = vmcs_read64(TSC_OFFSET);
  1700. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1701. if (is_guest_mode(vcpu)) {
  1702. /* Even when running L2, the adjustment needs to apply to L1 */
  1703. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1704. }
  1705. }
  1706. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1707. {
  1708. return target_tsc - native_read_tsc();
  1709. }
  1710. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1711. {
  1712. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1713. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1714. }
  1715. /*
  1716. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1717. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1718. * all guests if the "nested" module option is off, and can also be disabled
  1719. * for a single guest by disabling its VMX cpuid bit.
  1720. */
  1721. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1722. {
  1723. return nested && guest_cpuid_has_vmx(vcpu);
  1724. }
  1725. /*
  1726. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1727. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1728. * The same values should also be used to verify that vmcs12 control fields are
  1729. * valid during nested entry from L1 to L2.
  1730. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1731. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1732. * bit in the high half is on if the corresponding bit in the control field
  1733. * may be on. See also vmx_control_verify().
  1734. * TODO: allow these variables to be modified (downgraded) by module options
  1735. * or other means.
  1736. */
  1737. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1738. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1739. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1740. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1741. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1742. static __init void nested_vmx_setup_ctls_msrs(void)
  1743. {
  1744. /*
  1745. * Note that as a general rule, the high half of the MSRs (bits in
  1746. * the control fields which may be 1) should be initialized by the
  1747. * intersection of the underlying hardware's MSR (i.e., features which
  1748. * can be supported) and the list of features we want to expose -
  1749. * because they are known to be properly supported in our code.
  1750. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1751. * be set to 0, meaning that L1 may turn off any of these bits. The
  1752. * reason is that if one of these bits is necessary, it will appear
  1753. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1754. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1755. * nested_vmx_exit_handled() will not pass related exits to L1.
  1756. * These rules have exceptions below.
  1757. */
  1758. /* pin-based controls */
  1759. /*
  1760. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1761. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1762. */
  1763. nested_vmx_pinbased_ctls_low = 0x16 ;
  1764. nested_vmx_pinbased_ctls_high = 0x16 |
  1765. PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
  1766. PIN_BASED_VIRTUAL_NMIS;
  1767. /* exit controls */
  1768. nested_vmx_exit_ctls_low = 0;
  1769. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1770. #ifdef CONFIG_X86_64
  1771. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1772. #else
  1773. nested_vmx_exit_ctls_high = 0;
  1774. #endif
  1775. /* entry controls */
  1776. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1777. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1778. nested_vmx_entry_ctls_low = 0;
  1779. nested_vmx_entry_ctls_high &=
  1780. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1781. /* cpu-based controls */
  1782. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1783. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1784. nested_vmx_procbased_ctls_low = 0;
  1785. nested_vmx_procbased_ctls_high &=
  1786. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1787. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1788. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1789. CPU_BASED_CR3_STORE_EXITING |
  1790. #ifdef CONFIG_X86_64
  1791. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1792. #endif
  1793. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1794. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1795. CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
  1796. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1797. /*
  1798. * We can allow some features even when not supported by the
  1799. * hardware. For example, L1 can specify an MSR bitmap - and we
  1800. * can use it to avoid exits to L1 - even when L0 runs L2
  1801. * without MSR bitmaps.
  1802. */
  1803. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1804. /* secondary cpu-based controls */
  1805. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1806. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1807. nested_vmx_secondary_ctls_low = 0;
  1808. nested_vmx_secondary_ctls_high &=
  1809. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1810. }
  1811. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1812. {
  1813. /*
  1814. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1815. */
  1816. return ((control & high) | low) == control;
  1817. }
  1818. static inline u64 vmx_control_msr(u32 low, u32 high)
  1819. {
  1820. return low | ((u64)high << 32);
  1821. }
  1822. /*
  1823. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1824. * also let it use VMX-specific MSRs.
  1825. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1826. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1827. * like all other MSRs).
  1828. */
  1829. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1830. {
  1831. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1832. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1833. /*
  1834. * According to the spec, processors which do not support VMX
  1835. * should throw a #GP(0) when VMX capability MSRs are read.
  1836. */
  1837. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1838. return 1;
  1839. }
  1840. switch (msr_index) {
  1841. case MSR_IA32_FEATURE_CONTROL:
  1842. *pdata = 0;
  1843. break;
  1844. case MSR_IA32_VMX_BASIC:
  1845. /*
  1846. * This MSR reports some information about VMX support. We
  1847. * should return information about the VMX we emulate for the
  1848. * guest, and the VMCS structure we give it - not about the
  1849. * VMX support of the underlying hardware.
  1850. */
  1851. *pdata = VMCS12_REVISION |
  1852. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1853. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1854. break;
  1855. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1856. case MSR_IA32_VMX_PINBASED_CTLS:
  1857. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1858. nested_vmx_pinbased_ctls_high);
  1859. break;
  1860. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1861. case MSR_IA32_VMX_PROCBASED_CTLS:
  1862. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1863. nested_vmx_procbased_ctls_high);
  1864. break;
  1865. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1866. case MSR_IA32_VMX_EXIT_CTLS:
  1867. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1868. nested_vmx_exit_ctls_high);
  1869. break;
  1870. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1871. case MSR_IA32_VMX_ENTRY_CTLS:
  1872. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1873. nested_vmx_entry_ctls_high);
  1874. break;
  1875. case MSR_IA32_VMX_MISC:
  1876. *pdata = 0;
  1877. break;
  1878. /*
  1879. * These MSRs specify bits which the guest must keep fixed (on or off)
  1880. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1881. * We picked the standard core2 setting.
  1882. */
  1883. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1884. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1885. case MSR_IA32_VMX_CR0_FIXED0:
  1886. *pdata = VMXON_CR0_ALWAYSON;
  1887. break;
  1888. case MSR_IA32_VMX_CR0_FIXED1:
  1889. *pdata = -1ULL;
  1890. break;
  1891. case MSR_IA32_VMX_CR4_FIXED0:
  1892. *pdata = VMXON_CR4_ALWAYSON;
  1893. break;
  1894. case MSR_IA32_VMX_CR4_FIXED1:
  1895. *pdata = -1ULL;
  1896. break;
  1897. case MSR_IA32_VMX_VMCS_ENUM:
  1898. *pdata = 0x1f;
  1899. break;
  1900. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1901. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1902. nested_vmx_secondary_ctls_high);
  1903. break;
  1904. case MSR_IA32_VMX_EPT_VPID_CAP:
  1905. /* Currently, no nested ept or nested vpid */
  1906. *pdata = 0;
  1907. break;
  1908. default:
  1909. return 0;
  1910. }
  1911. return 1;
  1912. }
  1913. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1914. {
  1915. if (!nested_vmx_allowed(vcpu))
  1916. return 0;
  1917. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1918. /* TODO: the right thing. */
  1919. return 1;
  1920. /*
  1921. * No need to treat VMX capability MSRs specially: If we don't handle
  1922. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1923. */
  1924. return 0;
  1925. }
  1926. /*
  1927. * Reads an msr value (of 'msr_index') into 'pdata'.
  1928. * Returns 0 on success, non-0 otherwise.
  1929. * Assumes vcpu_load() was already called.
  1930. */
  1931. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1932. {
  1933. u64 data;
  1934. struct shared_msr_entry *msr;
  1935. if (!pdata) {
  1936. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1937. return -EINVAL;
  1938. }
  1939. switch (msr_index) {
  1940. #ifdef CONFIG_X86_64
  1941. case MSR_FS_BASE:
  1942. data = vmcs_readl(GUEST_FS_BASE);
  1943. break;
  1944. case MSR_GS_BASE:
  1945. data = vmcs_readl(GUEST_GS_BASE);
  1946. break;
  1947. case MSR_KERNEL_GS_BASE:
  1948. vmx_load_host_state(to_vmx(vcpu));
  1949. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1950. break;
  1951. #endif
  1952. case MSR_EFER:
  1953. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1954. case MSR_IA32_TSC:
  1955. data = guest_read_tsc();
  1956. break;
  1957. case MSR_IA32_SYSENTER_CS:
  1958. data = vmcs_read32(GUEST_SYSENTER_CS);
  1959. break;
  1960. case MSR_IA32_SYSENTER_EIP:
  1961. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1962. break;
  1963. case MSR_IA32_SYSENTER_ESP:
  1964. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1965. break;
  1966. case MSR_TSC_AUX:
  1967. if (!to_vmx(vcpu)->rdtscp_enabled)
  1968. return 1;
  1969. /* Otherwise falls through */
  1970. default:
  1971. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  1972. return 0;
  1973. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1974. if (msr) {
  1975. data = msr->data;
  1976. break;
  1977. }
  1978. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1979. }
  1980. *pdata = data;
  1981. return 0;
  1982. }
  1983. /*
  1984. * Writes msr value into into the appropriate "register".
  1985. * Returns 0 on success, non-0 otherwise.
  1986. * Assumes vcpu_load() was already called.
  1987. */
  1988. static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
  1989. {
  1990. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1991. struct shared_msr_entry *msr;
  1992. int ret = 0;
  1993. u32 msr_index = msr_info->index;
  1994. u64 data = msr_info->data;
  1995. switch (msr_index) {
  1996. case MSR_EFER:
  1997. ret = kvm_set_msr_common(vcpu, msr_info);
  1998. break;
  1999. #ifdef CONFIG_X86_64
  2000. case MSR_FS_BASE:
  2001. vmx_segment_cache_clear(vmx);
  2002. vmcs_writel(GUEST_FS_BASE, data);
  2003. break;
  2004. case MSR_GS_BASE:
  2005. vmx_segment_cache_clear(vmx);
  2006. vmcs_writel(GUEST_GS_BASE, data);
  2007. break;
  2008. case MSR_KERNEL_GS_BASE:
  2009. vmx_load_host_state(vmx);
  2010. vmx->msr_guest_kernel_gs_base = data;
  2011. break;
  2012. #endif
  2013. case MSR_IA32_SYSENTER_CS:
  2014. vmcs_write32(GUEST_SYSENTER_CS, data);
  2015. break;
  2016. case MSR_IA32_SYSENTER_EIP:
  2017. vmcs_writel(GUEST_SYSENTER_EIP, data);
  2018. break;
  2019. case MSR_IA32_SYSENTER_ESP:
  2020. vmcs_writel(GUEST_SYSENTER_ESP, data);
  2021. break;
  2022. case MSR_IA32_TSC:
  2023. kvm_write_tsc(vcpu, msr_info);
  2024. break;
  2025. case MSR_IA32_CR_PAT:
  2026. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2027. vmcs_write64(GUEST_IA32_PAT, data);
  2028. vcpu->arch.pat = data;
  2029. break;
  2030. }
  2031. ret = kvm_set_msr_common(vcpu, msr_info);
  2032. break;
  2033. case MSR_IA32_TSC_ADJUST:
  2034. ret = kvm_set_msr_common(vcpu, msr_info);
  2035. break;
  2036. case MSR_TSC_AUX:
  2037. if (!vmx->rdtscp_enabled)
  2038. return 1;
  2039. /* Check reserved bit, higher 32 bits should be zero */
  2040. if ((data >> 32) != 0)
  2041. return 1;
  2042. /* Otherwise falls through */
  2043. default:
  2044. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  2045. break;
  2046. msr = find_msr_entry(vmx, msr_index);
  2047. if (msr) {
  2048. msr->data = data;
  2049. if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
  2050. preempt_disable();
  2051. kvm_set_shared_msr(msr->index, msr->data,
  2052. msr->mask);
  2053. preempt_enable();
  2054. }
  2055. break;
  2056. }
  2057. ret = kvm_set_msr_common(vcpu, msr_info);
  2058. }
  2059. return ret;
  2060. }
  2061. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  2062. {
  2063. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  2064. switch (reg) {
  2065. case VCPU_REGS_RSP:
  2066. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  2067. break;
  2068. case VCPU_REGS_RIP:
  2069. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  2070. break;
  2071. case VCPU_EXREG_PDPTR:
  2072. if (enable_ept)
  2073. ept_save_pdptrs(vcpu);
  2074. break;
  2075. default:
  2076. break;
  2077. }
  2078. }
  2079. static __init int cpu_has_kvm_support(void)
  2080. {
  2081. return cpu_has_vmx();
  2082. }
  2083. static __init int vmx_disabled_by_bios(void)
  2084. {
  2085. u64 msr;
  2086. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  2087. if (msr & FEATURE_CONTROL_LOCKED) {
  2088. /* launched w/ TXT and VMX disabled */
  2089. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2090. && tboot_enabled())
  2091. return 1;
  2092. /* launched w/o TXT and VMX only enabled w/ TXT */
  2093. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2094. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2095. && !tboot_enabled()) {
  2096. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  2097. "activate TXT before enabling KVM\n");
  2098. return 1;
  2099. }
  2100. /* launched w/o TXT and VMX disabled */
  2101. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2102. && !tboot_enabled())
  2103. return 1;
  2104. }
  2105. return 0;
  2106. }
  2107. static void kvm_cpu_vmxon(u64 addr)
  2108. {
  2109. asm volatile (ASM_VMX_VMXON_RAX
  2110. : : "a"(&addr), "m"(addr)
  2111. : "memory", "cc");
  2112. }
  2113. static int hardware_enable(void *garbage)
  2114. {
  2115. int cpu = raw_smp_processor_id();
  2116. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  2117. u64 old, test_bits;
  2118. if (read_cr4() & X86_CR4_VMXE)
  2119. return -EBUSY;
  2120. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  2121. /*
  2122. * Now we can enable the vmclear operation in kdump
  2123. * since the loaded_vmcss_on_cpu list on this cpu
  2124. * has been initialized.
  2125. *
  2126. * Though the cpu is not in VMX operation now, there
  2127. * is no problem to enable the vmclear operation
  2128. * for the loaded_vmcss_on_cpu list is empty!
  2129. */
  2130. crash_enable_local_vmclear(cpu);
  2131. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  2132. test_bits = FEATURE_CONTROL_LOCKED;
  2133. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2134. if (tboot_enabled())
  2135. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2136. if ((old & test_bits) != test_bits) {
  2137. /* enable and lock */
  2138. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2139. }
  2140. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2141. if (vmm_exclusive) {
  2142. kvm_cpu_vmxon(phys_addr);
  2143. ept_sync_global();
  2144. }
  2145. store_gdt(&__get_cpu_var(host_gdt));
  2146. return 0;
  2147. }
  2148. static void vmclear_local_loaded_vmcss(void)
  2149. {
  2150. int cpu = raw_smp_processor_id();
  2151. struct loaded_vmcs *v, *n;
  2152. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2153. loaded_vmcss_on_cpu_link)
  2154. __loaded_vmcs_clear(v);
  2155. }
  2156. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2157. * tricks.
  2158. */
  2159. static void kvm_cpu_vmxoff(void)
  2160. {
  2161. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2162. }
  2163. static void hardware_disable(void *garbage)
  2164. {
  2165. if (vmm_exclusive) {
  2166. vmclear_local_loaded_vmcss();
  2167. kvm_cpu_vmxoff();
  2168. }
  2169. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2170. }
  2171. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2172. u32 msr, u32 *result)
  2173. {
  2174. u32 vmx_msr_low, vmx_msr_high;
  2175. u32 ctl = ctl_min | ctl_opt;
  2176. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2177. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2178. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2179. /* Ensure minimum (required) set of control bits are supported. */
  2180. if (ctl_min & ~ctl)
  2181. return -EIO;
  2182. *result = ctl;
  2183. return 0;
  2184. }
  2185. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2186. {
  2187. u32 vmx_msr_low, vmx_msr_high;
  2188. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2189. return vmx_msr_high & ctl;
  2190. }
  2191. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2192. {
  2193. u32 vmx_msr_low, vmx_msr_high;
  2194. u32 min, opt, min2, opt2;
  2195. u32 _pin_based_exec_control = 0;
  2196. u32 _cpu_based_exec_control = 0;
  2197. u32 _cpu_based_2nd_exec_control = 0;
  2198. u32 _vmexit_control = 0;
  2199. u32 _vmentry_control = 0;
  2200. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2201. opt = PIN_BASED_VIRTUAL_NMIS;
  2202. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2203. &_pin_based_exec_control) < 0)
  2204. return -EIO;
  2205. min = CPU_BASED_HLT_EXITING |
  2206. #ifdef CONFIG_X86_64
  2207. CPU_BASED_CR8_LOAD_EXITING |
  2208. CPU_BASED_CR8_STORE_EXITING |
  2209. #endif
  2210. CPU_BASED_CR3_LOAD_EXITING |
  2211. CPU_BASED_CR3_STORE_EXITING |
  2212. CPU_BASED_USE_IO_BITMAPS |
  2213. CPU_BASED_MOV_DR_EXITING |
  2214. CPU_BASED_USE_TSC_OFFSETING |
  2215. CPU_BASED_MWAIT_EXITING |
  2216. CPU_BASED_MONITOR_EXITING |
  2217. CPU_BASED_INVLPG_EXITING |
  2218. CPU_BASED_RDPMC_EXITING;
  2219. opt = CPU_BASED_TPR_SHADOW |
  2220. CPU_BASED_USE_MSR_BITMAPS |
  2221. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2222. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2223. &_cpu_based_exec_control) < 0)
  2224. return -EIO;
  2225. #ifdef CONFIG_X86_64
  2226. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2227. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2228. ~CPU_BASED_CR8_STORE_EXITING;
  2229. #endif
  2230. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2231. min2 = 0;
  2232. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2233. SECONDARY_EXEC_WBINVD_EXITING |
  2234. SECONDARY_EXEC_ENABLE_VPID |
  2235. SECONDARY_EXEC_ENABLE_EPT |
  2236. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2237. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2238. SECONDARY_EXEC_RDTSCP |
  2239. SECONDARY_EXEC_ENABLE_INVPCID;
  2240. if (adjust_vmx_controls(min2, opt2,
  2241. MSR_IA32_VMX_PROCBASED_CTLS2,
  2242. &_cpu_based_2nd_exec_control) < 0)
  2243. return -EIO;
  2244. }
  2245. #ifndef CONFIG_X86_64
  2246. if (!(_cpu_based_2nd_exec_control &
  2247. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2248. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2249. #endif
  2250. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2251. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2252. enabled */
  2253. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2254. CPU_BASED_CR3_STORE_EXITING |
  2255. CPU_BASED_INVLPG_EXITING);
  2256. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2257. vmx_capability.ept, vmx_capability.vpid);
  2258. }
  2259. min = 0;
  2260. #ifdef CONFIG_X86_64
  2261. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2262. #endif
  2263. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2264. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2265. &_vmexit_control) < 0)
  2266. return -EIO;
  2267. min = 0;
  2268. opt = VM_ENTRY_LOAD_IA32_PAT;
  2269. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2270. &_vmentry_control) < 0)
  2271. return -EIO;
  2272. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2273. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2274. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2275. return -EIO;
  2276. #ifdef CONFIG_X86_64
  2277. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2278. if (vmx_msr_high & (1u<<16))
  2279. return -EIO;
  2280. #endif
  2281. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2282. if (((vmx_msr_high >> 18) & 15) != 6)
  2283. return -EIO;
  2284. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2285. vmcs_conf->order = get_order(vmcs_config.size);
  2286. vmcs_conf->revision_id = vmx_msr_low;
  2287. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2288. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2289. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2290. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2291. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2292. cpu_has_load_ia32_efer =
  2293. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2294. VM_ENTRY_LOAD_IA32_EFER)
  2295. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2296. VM_EXIT_LOAD_IA32_EFER);
  2297. cpu_has_load_perf_global_ctrl =
  2298. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2299. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
  2300. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2301. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  2302. /*
  2303. * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
  2304. * but due to arrata below it can't be used. Workaround is to use
  2305. * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
  2306. *
  2307. * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
  2308. *
  2309. * AAK155 (model 26)
  2310. * AAP115 (model 30)
  2311. * AAT100 (model 37)
  2312. * BC86,AAY89,BD102 (model 44)
  2313. * BA97 (model 46)
  2314. *
  2315. */
  2316. if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
  2317. switch (boot_cpu_data.x86_model) {
  2318. case 26:
  2319. case 30:
  2320. case 37:
  2321. case 44:
  2322. case 46:
  2323. cpu_has_load_perf_global_ctrl = false;
  2324. printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
  2325. "does not work properly. Using workaround\n");
  2326. break;
  2327. default:
  2328. break;
  2329. }
  2330. }
  2331. return 0;
  2332. }
  2333. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2334. {
  2335. int node = cpu_to_node(cpu);
  2336. struct page *pages;
  2337. struct vmcs *vmcs;
  2338. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2339. if (!pages)
  2340. return NULL;
  2341. vmcs = page_address(pages);
  2342. memset(vmcs, 0, vmcs_config.size);
  2343. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2344. return vmcs;
  2345. }
  2346. static struct vmcs *alloc_vmcs(void)
  2347. {
  2348. return alloc_vmcs_cpu(raw_smp_processor_id());
  2349. }
  2350. static void free_vmcs(struct vmcs *vmcs)
  2351. {
  2352. free_pages((unsigned long)vmcs, vmcs_config.order);
  2353. }
  2354. /*
  2355. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2356. */
  2357. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2358. {
  2359. if (!loaded_vmcs->vmcs)
  2360. return;
  2361. loaded_vmcs_clear(loaded_vmcs);
  2362. free_vmcs(loaded_vmcs->vmcs);
  2363. loaded_vmcs->vmcs = NULL;
  2364. }
  2365. static void free_kvm_area(void)
  2366. {
  2367. int cpu;
  2368. for_each_possible_cpu(cpu) {
  2369. free_vmcs(per_cpu(vmxarea, cpu));
  2370. per_cpu(vmxarea, cpu) = NULL;
  2371. }
  2372. }
  2373. static __init int alloc_kvm_area(void)
  2374. {
  2375. int cpu;
  2376. for_each_possible_cpu(cpu) {
  2377. struct vmcs *vmcs;
  2378. vmcs = alloc_vmcs_cpu(cpu);
  2379. if (!vmcs) {
  2380. free_kvm_area();
  2381. return -ENOMEM;
  2382. }
  2383. per_cpu(vmxarea, cpu) = vmcs;
  2384. }
  2385. return 0;
  2386. }
  2387. static __init int hardware_setup(void)
  2388. {
  2389. if (setup_vmcs_config(&vmcs_config) < 0)
  2390. return -EIO;
  2391. if (boot_cpu_has(X86_FEATURE_NX))
  2392. kvm_enable_efer_bits(EFER_NX);
  2393. if (!cpu_has_vmx_vpid())
  2394. enable_vpid = 0;
  2395. if (!cpu_has_vmx_ept() ||
  2396. !cpu_has_vmx_ept_4levels()) {
  2397. enable_ept = 0;
  2398. enable_unrestricted_guest = 0;
  2399. enable_ept_ad_bits = 0;
  2400. }
  2401. if (!cpu_has_vmx_ept_ad_bits())
  2402. enable_ept_ad_bits = 0;
  2403. if (!cpu_has_vmx_unrestricted_guest())
  2404. enable_unrestricted_guest = 0;
  2405. if (!cpu_has_vmx_flexpriority())
  2406. flexpriority_enabled = 0;
  2407. if (!cpu_has_vmx_tpr_shadow())
  2408. kvm_x86_ops->update_cr8_intercept = NULL;
  2409. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2410. kvm_disable_largepages();
  2411. if (!cpu_has_vmx_ple())
  2412. ple_gap = 0;
  2413. if (nested)
  2414. nested_vmx_setup_ctls_msrs();
  2415. return alloc_kvm_area();
  2416. }
  2417. static __exit void hardware_unsetup(void)
  2418. {
  2419. free_kvm_area();
  2420. }
  2421. static void fix_pmode_dataseg(struct kvm_vcpu *vcpu, int seg, struct kvm_segment *save)
  2422. {
  2423. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2424. struct kvm_segment tmp = *save;
  2425. if (!(vmcs_readl(sf->base) == tmp.base && tmp.s)) {
  2426. tmp.base = vmcs_readl(sf->base);
  2427. tmp.selector = vmcs_read16(sf->selector);
  2428. tmp.dpl = tmp.selector & SELECTOR_RPL_MASK;
  2429. tmp.s = 1;
  2430. }
  2431. vmx_set_segment(vcpu, &tmp, seg);
  2432. }
  2433. static void enter_pmode(struct kvm_vcpu *vcpu)
  2434. {
  2435. unsigned long flags;
  2436. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2437. vmx->emulation_required = 1;
  2438. vmx->rmode.vm86_active = 0;
  2439. vmx_segment_cache_clear(vmx);
  2440. vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2441. flags = vmcs_readl(GUEST_RFLAGS);
  2442. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2443. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2444. vmcs_writel(GUEST_RFLAGS, flags);
  2445. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2446. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2447. update_exception_bitmap(vcpu);
  2448. if (emulate_invalid_guest_state)
  2449. return;
  2450. fix_pmode_dataseg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2451. fix_pmode_dataseg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2452. fix_pmode_dataseg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2453. fix_pmode_dataseg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2454. vmx_segment_cache_clear(vmx);
  2455. vmcs_write16(GUEST_SS_SELECTOR, 0);
  2456. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  2457. vmcs_write16(GUEST_CS_SELECTOR,
  2458. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  2459. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  2460. }
  2461. static gva_t rmode_tss_base(struct kvm *kvm)
  2462. {
  2463. if (!kvm->arch.tss_addr) {
  2464. struct kvm_memslots *slots;
  2465. struct kvm_memory_slot *slot;
  2466. gfn_t base_gfn;
  2467. slots = kvm_memslots(kvm);
  2468. slot = id_to_memslot(slots, 0);
  2469. base_gfn = slot->base_gfn + slot->npages - 3;
  2470. return base_gfn << PAGE_SHIFT;
  2471. }
  2472. return kvm->arch.tss_addr;
  2473. }
  2474. static void fix_rmode_seg(int seg, struct kvm_segment *save)
  2475. {
  2476. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2477. vmcs_write16(sf->selector, save->base >> 4);
  2478. vmcs_write32(sf->base, save->base & 0xffff0);
  2479. vmcs_write32(sf->limit, 0xffff);
  2480. vmcs_write32(sf->ar_bytes, 0xf3);
  2481. if (save->base & 0xf)
  2482. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  2483. " aligned when entering protected mode (seg=%d)",
  2484. seg);
  2485. }
  2486. static void enter_rmode(struct kvm_vcpu *vcpu)
  2487. {
  2488. unsigned long flags;
  2489. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2490. struct kvm_segment var;
  2491. if (enable_unrestricted_guest)
  2492. return;
  2493. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2494. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2495. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2496. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2497. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2498. vmx->emulation_required = 1;
  2499. vmx->rmode.vm86_active = 1;
  2500. /*
  2501. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2502. * vcpu. Call it here with phys address pointing 16M below 4G.
  2503. */
  2504. if (!vcpu->kvm->arch.tss_addr) {
  2505. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2506. "called before entering vcpu\n");
  2507. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  2508. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  2509. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2510. }
  2511. vmx_segment_cache_clear(vmx);
  2512. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  2513. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2514. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2515. flags = vmcs_readl(GUEST_RFLAGS);
  2516. vmx->rmode.save_rflags = flags;
  2517. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2518. vmcs_writel(GUEST_RFLAGS, flags);
  2519. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2520. update_exception_bitmap(vcpu);
  2521. if (emulate_invalid_guest_state)
  2522. goto continue_rmode;
  2523. vmx_get_segment(vcpu, &var, VCPU_SREG_SS);
  2524. vmx_set_segment(vcpu, &var, VCPU_SREG_SS);
  2525. vmx_get_segment(vcpu, &var, VCPU_SREG_CS);
  2526. vmx_set_segment(vcpu, &var, VCPU_SREG_CS);
  2527. vmx_get_segment(vcpu, &var, VCPU_SREG_ES);
  2528. vmx_set_segment(vcpu, &var, VCPU_SREG_ES);
  2529. vmx_get_segment(vcpu, &var, VCPU_SREG_DS);
  2530. vmx_set_segment(vcpu, &var, VCPU_SREG_DS);
  2531. vmx_get_segment(vcpu, &var, VCPU_SREG_GS);
  2532. vmx_set_segment(vcpu, &var, VCPU_SREG_GS);
  2533. vmx_get_segment(vcpu, &var, VCPU_SREG_FS);
  2534. vmx_set_segment(vcpu, &var, VCPU_SREG_FS);
  2535. continue_rmode:
  2536. kvm_mmu_reset_context(vcpu);
  2537. }
  2538. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2539. {
  2540. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2541. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2542. if (!msr)
  2543. return;
  2544. /*
  2545. * Force kernel_gs_base reloading before EFER changes, as control
  2546. * of this msr depends on is_long_mode().
  2547. */
  2548. vmx_load_host_state(to_vmx(vcpu));
  2549. vcpu->arch.efer = efer;
  2550. if (efer & EFER_LMA) {
  2551. vmcs_write32(VM_ENTRY_CONTROLS,
  2552. vmcs_read32(VM_ENTRY_CONTROLS) |
  2553. VM_ENTRY_IA32E_MODE);
  2554. msr->data = efer;
  2555. } else {
  2556. vmcs_write32(VM_ENTRY_CONTROLS,
  2557. vmcs_read32(VM_ENTRY_CONTROLS) &
  2558. ~VM_ENTRY_IA32E_MODE);
  2559. msr->data = efer & ~EFER_LME;
  2560. }
  2561. setup_msrs(vmx);
  2562. }
  2563. #ifdef CONFIG_X86_64
  2564. static void enter_lmode(struct kvm_vcpu *vcpu)
  2565. {
  2566. u32 guest_tr_ar;
  2567. vmx_segment_cache_clear(to_vmx(vcpu));
  2568. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2569. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2570. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2571. __func__);
  2572. vmcs_write32(GUEST_TR_AR_BYTES,
  2573. (guest_tr_ar & ~AR_TYPE_MASK)
  2574. | AR_TYPE_BUSY_64_TSS);
  2575. }
  2576. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2577. }
  2578. static void exit_lmode(struct kvm_vcpu *vcpu)
  2579. {
  2580. vmcs_write32(VM_ENTRY_CONTROLS,
  2581. vmcs_read32(VM_ENTRY_CONTROLS)
  2582. & ~VM_ENTRY_IA32E_MODE);
  2583. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2584. }
  2585. #endif
  2586. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2587. {
  2588. vpid_sync_context(to_vmx(vcpu));
  2589. if (enable_ept) {
  2590. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2591. return;
  2592. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2593. }
  2594. }
  2595. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2596. {
  2597. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2598. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2599. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2600. }
  2601. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2602. {
  2603. if (enable_ept && is_paging(vcpu))
  2604. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2605. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2606. }
  2607. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2608. {
  2609. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2610. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2611. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2612. }
  2613. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2614. {
  2615. if (!test_bit(VCPU_EXREG_PDPTR,
  2616. (unsigned long *)&vcpu->arch.regs_dirty))
  2617. return;
  2618. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2619. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2620. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2621. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2622. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2623. }
  2624. }
  2625. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2626. {
  2627. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2628. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2629. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2630. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2631. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2632. }
  2633. __set_bit(VCPU_EXREG_PDPTR,
  2634. (unsigned long *)&vcpu->arch.regs_avail);
  2635. __set_bit(VCPU_EXREG_PDPTR,
  2636. (unsigned long *)&vcpu->arch.regs_dirty);
  2637. }
  2638. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2639. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2640. unsigned long cr0,
  2641. struct kvm_vcpu *vcpu)
  2642. {
  2643. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2644. vmx_decache_cr3(vcpu);
  2645. if (!(cr0 & X86_CR0_PG)) {
  2646. /* From paging/starting to nonpaging */
  2647. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2648. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2649. (CPU_BASED_CR3_LOAD_EXITING |
  2650. CPU_BASED_CR3_STORE_EXITING));
  2651. vcpu->arch.cr0 = cr0;
  2652. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2653. } else if (!is_paging(vcpu)) {
  2654. /* From nonpaging to paging */
  2655. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2656. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2657. ~(CPU_BASED_CR3_LOAD_EXITING |
  2658. CPU_BASED_CR3_STORE_EXITING));
  2659. vcpu->arch.cr0 = cr0;
  2660. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2661. }
  2662. if (!(cr0 & X86_CR0_WP))
  2663. *hw_cr0 &= ~X86_CR0_WP;
  2664. }
  2665. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2666. {
  2667. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2668. unsigned long hw_cr0;
  2669. if (enable_unrestricted_guest)
  2670. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  2671. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2672. else
  2673. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  2674. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2675. enter_pmode(vcpu);
  2676. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2677. enter_rmode(vcpu);
  2678. #ifdef CONFIG_X86_64
  2679. if (vcpu->arch.efer & EFER_LME) {
  2680. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2681. enter_lmode(vcpu);
  2682. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2683. exit_lmode(vcpu);
  2684. }
  2685. #endif
  2686. if (enable_ept)
  2687. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2688. if (!vcpu->fpu_active)
  2689. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2690. vmcs_writel(CR0_READ_SHADOW, cr0);
  2691. vmcs_writel(GUEST_CR0, hw_cr0);
  2692. vcpu->arch.cr0 = cr0;
  2693. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2694. }
  2695. static u64 construct_eptp(unsigned long root_hpa)
  2696. {
  2697. u64 eptp;
  2698. /* TODO write the value reading from MSR */
  2699. eptp = VMX_EPT_DEFAULT_MT |
  2700. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2701. if (enable_ept_ad_bits)
  2702. eptp |= VMX_EPT_AD_ENABLE_BIT;
  2703. eptp |= (root_hpa & PAGE_MASK);
  2704. return eptp;
  2705. }
  2706. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2707. {
  2708. unsigned long guest_cr3;
  2709. u64 eptp;
  2710. guest_cr3 = cr3;
  2711. if (enable_ept) {
  2712. eptp = construct_eptp(cr3);
  2713. vmcs_write64(EPT_POINTER, eptp);
  2714. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2715. vcpu->kvm->arch.ept_identity_map_addr;
  2716. ept_load_pdptrs(vcpu);
  2717. }
  2718. vmx_flush_tlb(vcpu);
  2719. vmcs_writel(GUEST_CR3, guest_cr3);
  2720. }
  2721. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2722. {
  2723. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2724. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2725. if (cr4 & X86_CR4_VMXE) {
  2726. /*
  2727. * To use VMXON (and later other VMX instructions), a guest
  2728. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2729. * So basically the check on whether to allow nested VMX
  2730. * is here.
  2731. */
  2732. if (!nested_vmx_allowed(vcpu))
  2733. return 1;
  2734. } else if (to_vmx(vcpu)->nested.vmxon)
  2735. return 1;
  2736. vcpu->arch.cr4 = cr4;
  2737. if (enable_ept) {
  2738. if (!is_paging(vcpu)) {
  2739. hw_cr4 &= ~X86_CR4_PAE;
  2740. hw_cr4 |= X86_CR4_PSE;
  2741. } else if (!(cr4 & X86_CR4_PAE)) {
  2742. hw_cr4 &= ~X86_CR4_PAE;
  2743. }
  2744. }
  2745. vmcs_writel(CR4_READ_SHADOW, cr4);
  2746. vmcs_writel(GUEST_CR4, hw_cr4);
  2747. return 0;
  2748. }
  2749. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2750. struct kvm_segment *var, int seg)
  2751. {
  2752. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2753. u32 ar;
  2754. if (vmx->rmode.vm86_active
  2755. && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
  2756. || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
  2757. || seg == VCPU_SREG_GS)) {
  2758. *var = vmx->rmode.segs[seg];
  2759. if (seg == VCPU_SREG_TR
  2760. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2761. return;
  2762. var->base = vmx_read_guest_seg_base(vmx, seg);
  2763. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2764. return;
  2765. }
  2766. var->base = vmx_read_guest_seg_base(vmx, seg);
  2767. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2768. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2769. ar = vmx_read_guest_seg_ar(vmx, seg);
  2770. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  2771. ar = 0;
  2772. var->type = ar & 15;
  2773. var->s = (ar >> 4) & 1;
  2774. var->dpl = (ar >> 5) & 3;
  2775. var->present = (ar >> 7) & 1;
  2776. var->avl = (ar >> 12) & 1;
  2777. var->l = (ar >> 13) & 1;
  2778. var->db = (ar >> 14) & 1;
  2779. var->g = (ar >> 15) & 1;
  2780. var->unusable = (ar >> 16) & 1;
  2781. }
  2782. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2783. {
  2784. struct kvm_segment s;
  2785. if (to_vmx(vcpu)->rmode.vm86_active) {
  2786. vmx_get_segment(vcpu, &s, seg);
  2787. return s.base;
  2788. }
  2789. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2790. }
  2791. static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
  2792. {
  2793. if (!is_protmode(vcpu))
  2794. return 0;
  2795. if (!is_long_mode(vcpu)
  2796. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2797. return 3;
  2798. return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
  2799. }
  2800. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2801. {
  2802. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2803. /*
  2804. * If we enter real mode with cs.sel & 3 != 0, the normal CPL calculations
  2805. * fail; use the cache instead.
  2806. */
  2807. if (unlikely(vmx->emulation_required && emulate_invalid_guest_state)) {
  2808. return vmx->cpl;
  2809. }
  2810. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2811. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2812. vmx->cpl = __vmx_get_cpl(vcpu);
  2813. }
  2814. return vmx->cpl;
  2815. }
  2816. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2817. {
  2818. u32 ar;
  2819. if (var->unusable || !var->present)
  2820. ar = 1 << 16;
  2821. else {
  2822. ar = var->type & 15;
  2823. ar |= (var->s & 1) << 4;
  2824. ar |= (var->dpl & 3) << 5;
  2825. ar |= (var->present & 1) << 7;
  2826. ar |= (var->avl & 1) << 12;
  2827. ar |= (var->l & 1) << 13;
  2828. ar |= (var->db & 1) << 14;
  2829. ar |= (var->g & 1) << 15;
  2830. }
  2831. return ar;
  2832. }
  2833. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2834. struct kvm_segment *var, int seg)
  2835. {
  2836. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2837. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2838. u32 ar;
  2839. vmx_segment_cache_clear(vmx);
  2840. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  2841. vmcs_write16(sf->selector, var->selector);
  2842. vmx->rmode.segs[VCPU_SREG_TR] = *var;
  2843. return;
  2844. }
  2845. vmcs_writel(sf->base, var->base);
  2846. vmcs_write32(sf->limit, var->limit);
  2847. vmcs_write16(sf->selector, var->selector);
  2848. if (vmx->rmode.vm86_active && var->s) {
  2849. vmx->rmode.segs[seg] = *var;
  2850. /*
  2851. * Hack real-mode segments into vm86 compatibility.
  2852. */
  2853. if (var->base == 0xffff0000 && var->selector == 0xf000)
  2854. vmcs_writel(sf->base, 0xf0000);
  2855. ar = 0xf3;
  2856. } else
  2857. ar = vmx_segment_access_rights(var);
  2858. /*
  2859. * Fix the "Accessed" bit in AR field of segment registers for older
  2860. * qemu binaries.
  2861. * IA32 arch specifies that at the time of processor reset the
  2862. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2863. * is setting it to 0 in the userland code. This causes invalid guest
  2864. * state vmexit when "unrestricted guest" mode is turned on.
  2865. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2866. * tree. Newer qemu binaries with that qemu fix would not need this
  2867. * kvm hack.
  2868. */
  2869. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2870. ar |= 0x1; /* Accessed */
  2871. vmcs_write32(sf->ar_bytes, ar);
  2872. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2873. /*
  2874. * Fix segments for real mode guest in hosts that don't have
  2875. * "unrestricted_mode" or it was disabled.
  2876. * This is done to allow migration of the guests from hosts with
  2877. * unrestricted guest like Westmere to older host that don't have
  2878. * unrestricted guest like Nehelem.
  2879. */
  2880. if (vmx->rmode.vm86_active) {
  2881. switch (seg) {
  2882. case VCPU_SREG_CS:
  2883. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  2884. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  2885. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  2886. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  2887. vmcs_write16(GUEST_CS_SELECTOR,
  2888. vmcs_readl(GUEST_CS_BASE) >> 4);
  2889. break;
  2890. case VCPU_SREG_ES:
  2891. case VCPU_SREG_DS:
  2892. case VCPU_SREG_GS:
  2893. case VCPU_SREG_FS:
  2894. fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
  2895. break;
  2896. case VCPU_SREG_SS:
  2897. vmcs_write16(GUEST_SS_SELECTOR,
  2898. vmcs_readl(GUEST_SS_BASE) >> 4);
  2899. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  2900. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  2901. break;
  2902. }
  2903. }
  2904. }
  2905. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2906. {
  2907. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2908. *db = (ar >> 14) & 1;
  2909. *l = (ar >> 13) & 1;
  2910. }
  2911. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2912. {
  2913. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2914. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2915. }
  2916. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2917. {
  2918. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2919. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2920. }
  2921. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2922. {
  2923. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2924. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2925. }
  2926. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2927. {
  2928. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2929. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2930. }
  2931. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2932. {
  2933. struct kvm_segment var;
  2934. u32 ar;
  2935. vmx_get_segment(vcpu, &var, seg);
  2936. ar = vmx_segment_access_rights(&var);
  2937. if (var.base != (var.selector << 4))
  2938. return false;
  2939. if (var.limit < 0xffff)
  2940. return false;
  2941. if (((ar | (3 << AR_DPL_SHIFT)) & ~(AR_G_MASK | AR_DB_MASK)) != 0xf3)
  2942. return false;
  2943. return true;
  2944. }
  2945. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2946. {
  2947. struct kvm_segment cs;
  2948. unsigned int cs_rpl;
  2949. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2950. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2951. if (cs.unusable)
  2952. return false;
  2953. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2954. return false;
  2955. if (!cs.s)
  2956. return false;
  2957. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2958. if (cs.dpl > cs_rpl)
  2959. return false;
  2960. } else {
  2961. if (cs.dpl != cs_rpl)
  2962. return false;
  2963. }
  2964. if (!cs.present)
  2965. return false;
  2966. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2967. return true;
  2968. }
  2969. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2970. {
  2971. struct kvm_segment ss;
  2972. unsigned int ss_rpl;
  2973. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2974. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2975. if (ss.unusable)
  2976. return true;
  2977. if (ss.type != 3 && ss.type != 7)
  2978. return false;
  2979. if (!ss.s)
  2980. return false;
  2981. if (ss.dpl != ss_rpl) /* DPL != RPL */
  2982. return false;
  2983. if (!ss.present)
  2984. return false;
  2985. return true;
  2986. }
  2987. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2988. {
  2989. struct kvm_segment var;
  2990. unsigned int rpl;
  2991. vmx_get_segment(vcpu, &var, seg);
  2992. rpl = var.selector & SELECTOR_RPL_MASK;
  2993. if (var.unusable)
  2994. return true;
  2995. if (!var.s)
  2996. return false;
  2997. if (!var.present)
  2998. return false;
  2999. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  3000. if (var.dpl < rpl) /* DPL < RPL */
  3001. return false;
  3002. }
  3003. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  3004. * rights flags
  3005. */
  3006. return true;
  3007. }
  3008. static bool tr_valid(struct kvm_vcpu *vcpu)
  3009. {
  3010. struct kvm_segment tr;
  3011. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  3012. if (tr.unusable)
  3013. return false;
  3014. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3015. return false;
  3016. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  3017. return false;
  3018. if (!tr.present)
  3019. return false;
  3020. return true;
  3021. }
  3022. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  3023. {
  3024. struct kvm_segment ldtr;
  3025. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  3026. if (ldtr.unusable)
  3027. return true;
  3028. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3029. return false;
  3030. if (ldtr.type != 2)
  3031. return false;
  3032. if (!ldtr.present)
  3033. return false;
  3034. return true;
  3035. }
  3036. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  3037. {
  3038. struct kvm_segment cs, ss;
  3039. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3040. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3041. return ((cs.selector & SELECTOR_RPL_MASK) ==
  3042. (ss.selector & SELECTOR_RPL_MASK));
  3043. }
  3044. /*
  3045. * Check if guest state is valid. Returns true if valid, false if
  3046. * not.
  3047. * We assume that registers are always usable
  3048. */
  3049. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  3050. {
  3051. /* real mode guest state checks */
  3052. if (!is_protmode(vcpu)) {
  3053. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  3054. return false;
  3055. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  3056. return false;
  3057. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  3058. return false;
  3059. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  3060. return false;
  3061. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  3062. return false;
  3063. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  3064. return false;
  3065. } else {
  3066. /* protected mode guest state checks */
  3067. if (!cs_ss_rpl_check(vcpu))
  3068. return false;
  3069. if (!code_segment_valid(vcpu))
  3070. return false;
  3071. if (!stack_segment_valid(vcpu))
  3072. return false;
  3073. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  3074. return false;
  3075. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  3076. return false;
  3077. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  3078. return false;
  3079. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  3080. return false;
  3081. if (!tr_valid(vcpu))
  3082. return false;
  3083. if (!ldtr_valid(vcpu))
  3084. return false;
  3085. }
  3086. /* TODO:
  3087. * - Add checks on RIP
  3088. * - Add checks on RFLAGS
  3089. */
  3090. return true;
  3091. }
  3092. static int init_rmode_tss(struct kvm *kvm)
  3093. {
  3094. gfn_t fn;
  3095. u16 data = 0;
  3096. int r, idx, ret = 0;
  3097. idx = srcu_read_lock(&kvm->srcu);
  3098. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  3099. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3100. if (r < 0)
  3101. goto out;
  3102. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  3103. r = kvm_write_guest_page(kvm, fn++, &data,
  3104. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  3105. if (r < 0)
  3106. goto out;
  3107. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  3108. if (r < 0)
  3109. goto out;
  3110. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3111. if (r < 0)
  3112. goto out;
  3113. data = ~0;
  3114. r = kvm_write_guest_page(kvm, fn, &data,
  3115. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  3116. sizeof(u8));
  3117. if (r < 0)
  3118. goto out;
  3119. ret = 1;
  3120. out:
  3121. srcu_read_unlock(&kvm->srcu, idx);
  3122. return ret;
  3123. }
  3124. static int init_rmode_identity_map(struct kvm *kvm)
  3125. {
  3126. int i, idx, r, ret;
  3127. pfn_t identity_map_pfn;
  3128. u32 tmp;
  3129. if (!enable_ept)
  3130. return 1;
  3131. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  3132. printk(KERN_ERR "EPT: identity-mapping pagetable "
  3133. "haven't been allocated!\n");
  3134. return 0;
  3135. }
  3136. if (likely(kvm->arch.ept_identity_pagetable_done))
  3137. return 1;
  3138. ret = 0;
  3139. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  3140. idx = srcu_read_lock(&kvm->srcu);
  3141. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  3142. if (r < 0)
  3143. goto out;
  3144. /* Set up identity-mapping pagetable for EPT in real mode */
  3145. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  3146. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  3147. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  3148. r = kvm_write_guest_page(kvm, identity_map_pfn,
  3149. &tmp, i * sizeof(tmp), sizeof(tmp));
  3150. if (r < 0)
  3151. goto out;
  3152. }
  3153. kvm->arch.ept_identity_pagetable_done = true;
  3154. ret = 1;
  3155. out:
  3156. srcu_read_unlock(&kvm->srcu, idx);
  3157. return ret;
  3158. }
  3159. static void seg_setup(int seg)
  3160. {
  3161. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3162. unsigned int ar;
  3163. vmcs_write16(sf->selector, 0);
  3164. vmcs_writel(sf->base, 0);
  3165. vmcs_write32(sf->limit, 0xffff);
  3166. if (enable_unrestricted_guest) {
  3167. ar = 0x93;
  3168. if (seg == VCPU_SREG_CS)
  3169. ar |= 0x08; /* code segment */
  3170. } else
  3171. ar = 0xf3;
  3172. vmcs_write32(sf->ar_bytes, ar);
  3173. }
  3174. static int alloc_apic_access_page(struct kvm *kvm)
  3175. {
  3176. struct page *page;
  3177. struct kvm_userspace_memory_region kvm_userspace_mem;
  3178. int r = 0;
  3179. mutex_lock(&kvm->slots_lock);
  3180. if (kvm->arch.apic_access_page)
  3181. goto out;
  3182. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  3183. kvm_userspace_mem.flags = 0;
  3184. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  3185. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3186. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  3187. if (r)
  3188. goto out;
  3189. page = gfn_to_page(kvm, 0xfee00);
  3190. if (is_error_page(page)) {
  3191. r = -EFAULT;
  3192. goto out;
  3193. }
  3194. kvm->arch.apic_access_page = page;
  3195. out:
  3196. mutex_unlock(&kvm->slots_lock);
  3197. return r;
  3198. }
  3199. static int alloc_identity_pagetable(struct kvm *kvm)
  3200. {
  3201. struct page *page;
  3202. struct kvm_userspace_memory_region kvm_userspace_mem;
  3203. int r = 0;
  3204. mutex_lock(&kvm->slots_lock);
  3205. if (kvm->arch.ept_identity_pagetable)
  3206. goto out;
  3207. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3208. kvm_userspace_mem.flags = 0;
  3209. kvm_userspace_mem.guest_phys_addr =
  3210. kvm->arch.ept_identity_map_addr;
  3211. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3212. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  3213. if (r)
  3214. goto out;
  3215. page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3216. if (is_error_page(page)) {
  3217. r = -EFAULT;
  3218. goto out;
  3219. }
  3220. kvm->arch.ept_identity_pagetable = page;
  3221. out:
  3222. mutex_unlock(&kvm->slots_lock);
  3223. return r;
  3224. }
  3225. static void allocate_vpid(struct vcpu_vmx *vmx)
  3226. {
  3227. int vpid;
  3228. vmx->vpid = 0;
  3229. if (!enable_vpid)
  3230. return;
  3231. spin_lock(&vmx_vpid_lock);
  3232. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3233. if (vpid < VMX_NR_VPIDS) {
  3234. vmx->vpid = vpid;
  3235. __set_bit(vpid, vmx_vpid_bitmap);
  3236. }
  3237. spin_unlock(&vmx_vpid_lock);
  3238. }
  3239. static void free_vpid(struct vcpu_vmx *vmx)
  3240. {
  3241. if (!enable_vpid)
  3242. return;
  3243. spin_lock(&vmx_vpid_lock);
  3244. if (vmx->vpid != 0)
  3245. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3246. spin_unlock(&vmx_vpid_lock);
  3247. }
  3248. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  3249. {
  3250. int f = sizeof(unsigned long);
  3251. if (!cpu_has_vmx_msr_bitmap())
  3252. return;
  3253. /*
  3254. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3255. * have the write-low and read-high bitmap offsets the wrong way round.
  3256. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3257. */
  3258. if (msr <= 0x1fff) {
  3259. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  3260. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  3261. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3262. msr &= 0x1fff;
  3263. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  3264. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  3265. }
  3266. }
  3267. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3268. {
  3269. if (!longmode_only)
  3270. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  3271. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  3272. }
  3273. /*
  3274. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3275. * will not change in the lifetime of the guest.
  3276. * Note that host-state that does change is set elsewhere. E.g., host-state
  3277. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3278. */
  3279. static void vmx_set_constant_host_state(void)
  3280. {
  3281. u32 low32, high32;
  3282. unsigned long tmpl;
  3283. struct desc_ptr dt;
  3284. vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
  3285. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3286. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3287. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3288. #ifdef CONFIG_X86_64
  3289. /*
  3290. * Load null selectors, so we can avoid reloading them in
  3291. * __vmx_load_host_state(), in case userspace uses the null selectors
  3292. * too (the expected case).
  3293. */
  3294. vmcs_write16(HOST_DS_SELECTOR, 0);
  3295. vmcs_write16(HOST_ES_SELECTOR, 0);
  3296. #else
  3297. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3298. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3299. #endif
  3300. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3301. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3302. native_store_idt(&dt);
  3303. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3304. vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
  3305. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3306. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3307. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3308. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3309. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3310. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3311. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3312. }
  3313. }
  3314. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3315. {
  3316. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3317. if (enable_ept)
  3318. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3319. if (is_guest_mode(&vmx->vcpu))
  3320. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3321. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3322. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3323. }
  3324. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3325. {
  3326. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3327. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3328. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3329. #ifdef CONFIG_X86_64
  3330. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3331. CPU_BASED_CR8_LOAD_EXITING;
  3332. #endif
  3333. }
  3334. if (!enable_ept)
  3335. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3336. CPU_BASED_CR3_LOAD_EXITING |
  3337. CPU_BASED_INVLPG_EXITING;
  3338. return exec_control;
  3339. }
  3340. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3341. {
  3342. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3343. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3344. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3345. if (vmx->vpid == 0)
  3346. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3347. if (!enable_ept) {
  3348. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3349. enable_unrestricted_guest = 0;
  3350. /* Enable INVPCID for non-ept guests may cause performance regression. */
  3351. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  3352. }
  3353. if (!enable_unrestricted_guest)
  3354. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3355. if (!ple_gap)
  3356. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3357. return exec_control;
  3358. }
  3359. static void ept_set_mmio_spte_mask(void)
  3360. {
  3361. /*
  3362. * EPT Misconfigurations can be generated if the value of bits 2:0
  3363. * of an EPT paging-structure entry is 110b (write/execute).
  3364. * Also, magic bits (0xffull << 49) is set to quickly identify mmio
  3365. * spte.
  3366. */
  3367. kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
  3368. }
  3369. /*
  3370. * Sets up the vmcs for emulated real mode.
  3371. */
  3372. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3373. {
  3374. #ifdef CONFIG_X86_64
  3375. unsigned long a;
  3376. #endif
  3377. int i;
  3378. /* I/O */
  3379. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3380. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3381. if (cpu_has_vmx_msr_bitmap())
  3382. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3383. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3384. /* Control */
  3385. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3386. vmcs_config.pin_based_exec_ctrl);
  3387. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3388. if (cpu_has_secondary_exec_ctrls()) {
  3389. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3390. vmx_secondary_exec_control(vmx));
  3391. }
  3392. if (ple_gap) {
  3393. vmcs_write32(PLE_GAP, ple_gap);
  3394. vmcs_write32(PLE_WINDOW, ple_window);
  3395. }
  3396. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3397. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3398. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3399. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3400. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3401. vmx_set_constant_host_state();
  3402. #ifdef CONFIG_X86_64
  3403. rdmsrl(MSR_FS_BASE, a);
  3404. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3405. rdmsrl(MSR_GS_BASE, a);
  3406. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3407. #else
  3408. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3409. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3410. #endif
  3411. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3412. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3413. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3414. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3415. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3416. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3417. u32 msr_low, msr_high;
  3418. u64 host_pat;
  3419. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3420. host_pat = msr_low | ((u64) msr_high << 32);
  3421. /* Write the default value follow host pat */
  3422. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3423. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3424. vmx->vcpu.arch.pat = host_pat;
  3425. }
  3426. for (i = 0; i < NR_VMX_MSR; ++i) {
  3427. u32 index = vmx_msr_index[i];
  3428. u32 data_low, data_high;
  3429. int j = vmx->nmsrs;
  3430. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3431. continue;
  3432. if (wrmsr_safe(index, data_low, data_high) < 0)
  3433. continue;
  3434. vmx->guest_msrs[j].index = i;
  3435. vmx->guest_msrs[j].data = 0;
  3436. vmx->guest_msrs[j].mask = -1ull;
  3437. ++vmx->nmsrs;
  3438. }
  3439. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3440. /* 22.2.1, 20.8.1 */
  3441. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3442. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3443. set_cr4_guest_host_mask(vmx);
  3444. return 0;
  3445. }
  3446. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3447. {
  3448. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3449. u64 msr;
  3450. int ret;
  3451. vmx->rmode.vm86_active = 0;
  3452. vmx->soft_vnmi_blocked = 0;
  3453. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3454. kvm_set_cr8(&vmx->vcpu, 0);
  3455. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3456. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3457. msr |= MSR_IA32_APICBASE_BSP;
  3458. kvm_set_apic_base(&vmx->vcpu, msr);
  3459. vmx_segment_cache_clear(vmx);
  3460. seg_setup(VCPU_SREG_CS);
  3461. /*
  3462. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  3463. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  3464. */
  3465. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  3466. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3467. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  3468. } else {
  3469. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  3470. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  3471. }
  3472. seg_setup(VCPU_SREG_DS);
  3473. seg_setup(VCPU_SREG_ES);
  3474. seg_setup(VCPU_SREG_FS);
  3475. seg_setup(VCPU_SREG_GS);
  3476. seg_setup(VCPU_SREG_SS);
  3477. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3478. vmcs_writel(GUEST_TR_BASE, 0);
  3479. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3480. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3481. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3482. vmcs_writel(GUEST_LDTR_BASE, 0);
  3483. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3484. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3485. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3486. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3487. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3488. vmcs_writel(GUEST_RFLAGS, 0x02);
  3489. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3490. kvm_rip_write(vcpu, 0xfff0);
  3491. else
  3492. kvm_rip_write(vcpu, 0);
  3493. vmcs_writel(GUEST_GDTR_BASE, 0);
  3494. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3495. vmcs_writel(GUEST_IDTR_BASE, 0);
  3496. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3497. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3498. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3499. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3500. /* Special registers */
  3501. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3502. setup_msrs(vmx);
  3503. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3504. if (cpu_has_vmx_tpr_shadow()) {
  3505. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3506. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3507. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3508. __pa(vmx->vcpu.arch.apic->regs));
  3509. vmcs_write32(TPR_THRESHOLD, 0);
  3510. }
  3511. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3512. vmcs_write64(APIC_ACCESS_ADDR,
  3513. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3514. if (vmx->vpid != 0)
  3515. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3516. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3517. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3518. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3519. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3520. vmx_set_cr4(&vmx->vcpu, 0);
  3521. vmx_set_efer(&vmx->vcpu, 0);
  3522. vmx_fpu_activate(&vmx->vcpu);
  3523. update_exception_bitmap(&vmx->vcpu);
  3524. vpid_sync_context(vmx);
  3525. ret = 0;
  3526. /* HACK: Don't enable emulation on guest boot/reset */
  3527. vmx->emulation_required = 0;
  3528. return ret;
  3529. }
  3530. /*
  3531. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3532. * For most existing hypervisors, this will always return true.
  3533. */
  3534. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3535. {
  3536. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3537. PIN_BASED_EXT_INTR_MASK;
  3538. }
  3539. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3540. {
  3541. u32 cpu_based_vm_exec_control;
  3542. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3543. /*
  3544. * We get here if vmx_interrupt_allowed() said we can't
  3545. * inject to L1 now because L2 must run. Ask L2 to exit
  3546. * right after entry, so we can inject to L1 more promptly.
  3547. */
  3548. kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
  3549. return;
  3550. }
  3551. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3552. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3553. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3554. }
  3555. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3556. {
  3557. u32 cpu_based_vm_exec_control;
  3558. if (!cpu_has_virtual_nmis()) {
  3559. enable_irq_window(vcpu);
  3560. return;
  3561. }
  3562. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3563. enable_irq_window(vcpu);
  3564. return;
  3565. }
  3566. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3567. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3568. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3569. }
  3570. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3571. {
  3572. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3573. uint32_t intr;
  3574. int irq = vcpu->arch.interrupt.nr;
  3575. trace_kvm_inj_virq(irq);
  3576. ++vcpu->stat.irq_injections;
  3577. if (vmx->rmode.vm86_active) {
  3578. int inc_eip = 0;
  3579. if (vcpu->arch.interrupt.soft)
  3580. inc_eip = vcpu->arch.event_exit_inst_len;
  3581. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3582. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3583. return;
  3584. }
  3585. intr = irq | INTR_INFO_VALID_MASK;
  3586. if (vcpu->arch.interrupt.soft) {
  3587. intr |= INTR_TYPE_SOFT_INTR;
  3588. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3589. vmx->vcpu.arch.event_exit_inst_len);
  3590. } else
  3591. intr |= INTR_TYPE_EXT_INTR;
  3592. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3593. }
  3594. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3595. {
  3596. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3597. if (is_guest_mode(vcpu))
  3598. return;
  3599. if (!cpu_has_virtual_nmis()) {
  3600. /*
  3601. * Tracking the NMI-blocked state in software is built upon
  3602. * finding the next open IRQ window. This, in turn, depends on
  3603. * well-behaving guests: They have to keep IRQs disabled at
  3604. * least as long as the NMI handler runs. Otherwise we may
  3605. * cause NMI nesting, maybe breaking the guest. But as this is
  3606. * highly unlikely, we can live with the residual risk.
  3607. */
  3608. vmx->soft_vnmi_blocked = 1;
  3609. vmx->vnmi_blocked_time = 0;
  3610. }
  3611. ++vcpu->stat.nmi_injections;
  3612. vmx->nmi_known_unmasked = false;
  3613. if (vmx->rmode.vm86_active) {
  3614. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3615. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3616. return;
  3617. }
  3618. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3619. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3620. }
  3621. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3622. {
  3623. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3624. return 0;
  3625. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3626. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3627. | GUEST_INTR_STATE_NMI));
  3628. }
  3629. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3630. {
  3631. if (!cpu_has_virtual_nmis())
  3632. return to_vmx(vcpu)->soft_vnmi_blocked;
  3633. if (to_vmx(vcpu)->nmi_known_unmasked)
  3634. return false;
  3635. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3636. }
  3637. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3638. {
  3639. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3640. if (!cpu_has_virtual_nmis()) {
  3641. if (vmx->soft_vnmi_blocked != masked) {
  3642. vmx->soft_vnmi_blocked = masked;
  3643. vmx->vnmi_blocked_time = 0;
  3644. }
  3645. } else {
  3646. vmx->nmi_known_unmasked = !masked;
  3647. if (masked)
  3648. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3649. GUEST_INTR_STATE_NMI);
  3650. else
  3651. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3652. GUEST_INTR_STATE_NMI);
  3653. }
  3654. }
  3655. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3656. {
  3657. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3658. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3659. if (to_vmx(vcpu)->nested.nested_run_pending ||
  3660. (vmcs12->idt_vectoring_info_field &
  3661. VECTORING_INFO_VALID_MASK))
  3662. return 0;
  3663. nested_vmx_vmexit(vcpu);
  3664. vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
  3665. vmcs12->vm_exit_intr_info = 0;
  3666. /* fall through to normal code, but now in L1, not L2 */
  3667. }
  3668. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3669. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3670. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3671. }
  3672. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3673. {
  3674. int ret;
  3675. struct kvm_userspace_memory_region tss_mem = {
  3676. .slot = TSS_PRIVATE_MEMSLOT,
  3677. .guest_phys_addr = addr,
  3678. .memory_size = PAGE_SIZE * 3,
  3679. .flags = 0,
  3680. };
  3681. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  3682. if (ret)
  3683. return ret;
  3684. kvm->arch.tss_addr = addr;
  3685. if (!init_rmode_tss(kvm))
  3686. return -ENOMEM;
  3687. return 0;
  3688. }
  3689. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3690. int vec, u32 err_code)
  3691. {
  3692. /*
  3693. * Instruction with address size override prefix opcode 0x67
  3694. * Cause the #SS fault with 0 error code in VM86 mode.
  3695. */
  3696. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  3697. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  3698. return 1;
  3699. /*
  3700. * Forward all other exceptions that are valid in real mode.
  3701. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3702. * the required debugging infrastructure rework.
  3703. */
  3704. switch (vec) {
  3705. case DB_VECTOR:
  3706. if (vcpu->guest_debug &
  3707. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3708. return 0;
  3709. kvm_queue_exception(vcpu, vec);
  3710. return 1;
  3711. case BP_VECTOR:
  3712. /*
  3713. * Update instruction length as we may reinject the exception
  3714. * from user space while in guest debugging mode.
  3715. */
  3716. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3717. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3718. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3719. return 0;
  3720. /* fall through */
  3721. case DE_VECTOR:
  3722. case OF_VECTOR:
  3723. case BR_VECTOR:
  3724. case UD_VECTOR:
  3725. case DF_VECTOR:
  3726. case SS_VECTOR:
  3727. case GP_VECTOR:
  3728. case MF_VECTOR:
  3729. kvm_queue_exception(vcpu, vec);
  3730. return 1;
  3731. }
  3732. return 0;
  3733. }
  3734. /*
  3735. * Trigger machine check on the host. We assume all the MSRs are already set up
  3736. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3737. * We pass a fake environment to the machine check handler because we want
  3738. * the guest to be always treated like user space, no matter what context
  3739. * it used internally.
  3740. */
  3741. static void kvm_machine_check(void)
  3742. {
  3743. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3744. struct pt_regs regs = {
  3745. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3746. .flags = X86_EFLAGS_IF,
  3747. };
  3748. do_machine_check(&regs, 0);
  3749. #endif
  3750. }
  3751. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3752. {
  3753. /* already handled by vcpu_run */
  3754. return 1;
  3755. }
  3756. static int handle_exception(struct kvm_vcpu *vcpu)
  3757. {
  3758. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3759. struct kvm_run *kvm_run = vcpu->run;
  3760. u32 intr_info, ex_no, error_code;
  3761. unsigned long cr2, rip, dr6;
  3762. u32 vect_info;
  3763. enum emulation_result er;
  3764. vect_info = vmx->idt_vectoring_info;
  3765. intr_info = vmx->exit_intr_info;
  3766. if (is_machine_check(intr_info))
  3767. return handle_machine_check(vcpu);
  3768. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3769. return 1; /* already handled by vmx_vcpu_run() */
  3770. if (is_no_device(intr_info)) {
  3771. vmx_fpu_activate(vcpu);
  3772. return 1;
  3773. }
  3774. if (is_invalid_opcode(intr_info)) {
  3775. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3776. if (er != EMULATE_DONE)
  3777. kvm_queue_exception(vcpu, UD_VECTOR);
  3778. return 1;
  3779. }
  3780. error_code = 0;
  3781. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3782. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3783. /*
  3784. * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
  3785. * MMIO, it is better to report an internal error.
  3786. * See the comments in vmx_handle_exit.
  3787. */
  3788. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3789. !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
  3790. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3791. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3792. vcpu->run->internal.ndata = 2;
  3793. vcpu->run->internal.data[0] = vect_info;
  3794. vcpu->run->internal.data[1] = intr_info;
  3795. return 0;
  3796. }
  3797. if (is_page_fault(intr_info)) {
  3798. /* EPT won't cause page fault directly */
  3799. BUG_ON(enable_ept);
  3800. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3801. trace_kvm_page_fault(cr2, error_code);
  3802. if (kvm_event_needs_reinjection(vcpu))
  3803. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3804. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3805. }
  3806. if (vmx->rmode.vm86_active &&
  3807. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  3808. error_code)) {
  3809. if (vcpu->arch.halt_request) {
  3810. vcpu->arch.halt_request = 0;
  3811. return kvm_emulate_halt(vcpu);
  3812. }
  3813. return 1;
  3814. }
  3815. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3816. switch (ex_no) {
  3817. case DB_VECTOR:
  3818. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3819. if (!(vcpu->guest_debug &
  3820. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3821. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3822. kvm_queue_exception(vcpu, DB_VECTOR);
  3823. return 1;
  3824. }
  3825. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3826. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3827. /* fall through */
  3828. case BP_VECTOR:
  3829. /*
  3830. * Update instruction length as we may reinject #BP from
  3831. * user space while in guest debugging mode. Reading it for
  3832. * #DB as well causes no harm, it is not used in that case.
  3833. */
  3834. vmx->vcpu.arch.event_exit_inst_len =
  3835. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3836. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3837. rip = kvm_rip_read(vcpu);
  3838. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3839. kvm_run->debug.arch.exception = ex_no;
  3840. break;
  3841. default:
  3842. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3843. kvm_run->ex.exception = ex_no;
  3844. kvm_run->ex.error_code = error_code;
  3845. break;
  3846. }
  3847. return 0;
  3848. }
  3849. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3850. {
  3851. ++vcpu->stat.irq_exits;
  3852. return 1;
  3853. }
  3854. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3855. {
  3856. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3857. return 0;
  3858. }
  3859. static int handle_io(struct kvm_vcpu *vcpu)
  3860. {
  3861. unsigned long exit_qualification;
  3862. int size, in, string;
  3863. unsigned port;
  3864. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3865. string = (exit_qualification & 16) != 0;
  3866. in = (exit_qualification & 8) != 0;
  3867. ++vcpu->stat.io_exits;
  3868. if (string || in)
  3869. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3870. port = exit_qualification >> 16;
  3871. size = (exit_qualification & 7) + 1;
  3872. skip_emulated_instruction(vcpu);
  3873. return kvm_fast_pio_out(vcpu, size, port);
  3874. }
  3875. static void
  3876. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3877. {
  3878. /*
  3879. * Patch in the VMCALL instruction:
  3880. */
  3881. hypercall[0] = 0x0f;
  3882. hypercall[1] = 0x01;
  3883. hypercall[2] = 0xc1;
  3884. }
  3885. /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
  3886. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  3887. {
  3888. if (to_vmx(vcpu)->nested.vmxon &&
  3889. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  3890. return 1;
  3891. if (is_guest_mode(vcpu)) {
  3892. /*
  3893. * We get here when L2 changed cr0 in a way that did not change
  3894. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  3895. * but did change L0 shadowed bits. This can currently happen
  3896. * with the TS bit: L0 may want to leave TS on (for lazy fpu
  3897. * loading) while pretending to allow the guest to change it.
  3898. */
  3899. if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
  3900. (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
  3901. return 1;
  3902. vmcs_writel(CR0_READ_SHADOW, val);
  3903. return 0;
  3904. } else
  3905. return kvm_set_cr0(vcpu, val);
  3906. }
  3907. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  3908. {
  3909. if (is_guest_mode(vcpu)) {
  3910. if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
  3911. (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
  3912. return 1;
  3913. vmcs_writel(CR4_READ_SHADOW, val);
  3914. return 0;
  3915. } else
  3916. return kvm_set_cr4(vcpu, val);
  3917. }
  3918. /* called to set cr0 as approriate for clts instruction exit. */
  3919. static void handle_clts(struct kvm_vcpu *vcpu)
  3920. {
  3921. if (is_guest_mode(vcpu)) {
  3922. /*
  3923. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  3924. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  3925. * just pretend it's off (also in arch.cr0 for fpu_activate).
  3926. */
  3927. vmcs_writel(CR0_READ_SHADOW,
  3928. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  3929. vcpu->arch.cr0 &= ~X86_CR0_TS;
  3930. } else
  3931. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3932. }
  3933. static int handle_cr(struct kvm_vcpu *vcpu)
  3934. {
  3935. unsigned long exit_qualification, val;
  3936. int cr;
  3937. int reg;
  3938. int err;
  3939. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3940. cr = exit_qualification & 15;
  3941. reg = (exit_qualification >> 8) & 15;
  3942. switch ((exit_qualification >> 4) & 3) {
  3943. case 0: /* mov to cr */
  3944. val = kvm_register_read(vcpu, reg);
  3945. trace_kvm_cr_write(cr, val);
  3946. switch (cr) {
  3947. case 0:
  3948. err = handle_set_cr0(vcpu, val);
  3949. kvm_complete_insn_gp(vcpu, err);
  3950. return 1;
  3951. case 3:
  3952. err = kvm_set_cr3(vcpu, val);
  3953. kvm_complete_insn_gp(vcpu, err);
  3954. return 1;
  3955. case 4:
  3956. err = handle_set_cr4(vcpu, val);
  3957. kvm_complete_insn_gp(vcpu, err);
  3958. return 1;
  3959. case 8: {
  3960. u8 cr8_prev = kvm_get_cr8(vcpu);
  3961. u8 cr8 = kvm_register_read(vcpu, reg);
  3962. err = kvm_set_cr8(vcpu, cr8);
  3963. kvm_complete_insn_gp(vcpu, err);
  3964. if (irqchip_in_kernel(vcpu->kvm))
  3965. return 1;
  3966. if (cr8_prev <= cr8)
  3967. return 1;
  3968. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  3969. return 0;
  3970. }
  3971. }
  3972. break;
  3973. case 2: /* clts */
  3974. handle_clts(vcpu);
  3975. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  3976. skip_emulated_instruction(vcpu);
  3977. vmx_fpu_activate(vcpu);
  3978. return 1;
  3979. case 1: /*mov from cr*/
  3980. switch (cr) {
  3981. case 3:
  3982. val = kvm_read_cr3(vcpu);
  3983. kvm_register_write(vcpu, reg, val);
  3984. trace_kvm_cr_read(cr, val);
  3985. skip_emulated_instruction(vcpu);
  3986. return 1;
  3987. case 8:
  3988. val = kvm_get_cr8(vcpu);
  3989. kvm_register_write(vcpu, reg, val);
  3990. trace_kvm_cr_read(cr, val);
  3991. skip_emulated_instruction(vcpu);
  3992. return 1;
  3993. }
  3994. break;
  3995. case 3: /* lmsw */
  3996. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  3997. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  3998. kvm_lmsw(vcpu, val);
  3999. skip_emulated_instruction(vcpu);
  4000. return 1;
  4001. default:
  4002. break;
  4003. }
  4004. vcpu->run->exit_reason = 0;
  4005. vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  4006. (int)(exit_qualification >> 4) & 3, cr);
  4007. return 0;
  4008. }
  4009. static int handle_dr(struct kvm_vcpu *vcpu)
  4010. {
  4011. unsigned long exit_qualification;
  4012. int dr, reg;
  4013. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  4014. if (!kvm_require_cpl(vcpu, 0))
  4015. return 1;
  4016. dr = vmcs_readl(GUEST_DR7);
  4017. if (dr & DR7_GD) {
  4018. /*
  4019. * As the vm-exit takes precedence over the debug trap, we
  4020. * need to emulate the latter, either for the host or the
  4021. * guest debugging itself.
  4022. */
  4023. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4024. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  4025. vcpu->run->debug.arch.dr7 = dr;
  4026. vcpu->run->debug.arch.pc =
  4027. vmcs_readl(GUEST_CS_BASE) +
  4028. vmcs_readl(GUEST_RIP);
  4029. vcpu->run->debug.arch.exception = DB_VECTOR;
  4030. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  4031. return 0;
  4032. } else {
  4033. vcpu->arch.dr7 &= ~DR7_GD;
  4034. vcpu->arch.dr6 |= DR6_BD;
  4035. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  4036. kvm_queue_exception(vcpu, DB_VECTOR);
  4037. return 1;
  4038. }
  4039. }
  4040. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4041. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  4042. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  4043. if (exit_qualification & TYPE_MOV_FROM_DR) {
  4044. unsigned long val;
  4045. if (!kvm_get_dr(vcpu, dr, &val))
  4046. kvm_register_write(vcpu, reg, val);
  4047. } else
  4048. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  4049. skip_emulated_instruction(vcpu);
  4050. return 1;
  4051. }
  4052. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  4053. {
  4054. vmcs_writel(GUEST_DR7, val);
  4055. }
  4056. static int handle_cpuid(struct kvm_vcpu *vcpu)
  4057. {
  4058. kvm_emulate_cpuid(vcpu);
  4059. return 1;
  4060. }
  4061. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  4062. {
  4063. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4064. u64 data;
  4065. if (vmx_get_msr(vcpu, ecx, &data)) {
  4066. trace_kvm_msr_read_ex(ecx);
  4067. kvm_inject_gp(vcpu, 0);
  4068. return 1;
  4069. }
  4070. trace_kvm_msr_read(ecx, data);
  4071. /* FIXME: handling of bits 32:63 of rax, rdx */
  4072. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  4073. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  4074. skip_emulated_instruction(vcpu);
  4075. return 1;
  4076. }
  4077. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  4078. {
  4079. struct msr_data msr;
  4080. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4081. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  4082. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  4083. msr.data = data;
  4084. msr.index = ecx;
  4085. msr.host_initiated = false;
  4086. if (vmx_set_msr(vcpu, &msr) != 0) {
  4087. trace_kvm_msr_write_ex(ecx, data);
  4088. kvm_inject_gp(vcpu, 0);
  4089. return 1;
  4090. }
  4091. trace_kvm_msr_write(ecx, data);
  4092. skip_emulated_instruction(vcpu);
  4093. return 1;
  4094. }
  4095. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  4096. {
  4097. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4098. return 1;
  4099. }
  4100. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  4101. {
  4102. u32 cpu_based_vm_exec_control;
  4103. /* clear pending irq */
  4104. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4105. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  4106. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4107. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4108. ++vcpu->stat.irq_window_exits;
  4109. /*
  4110. * If the user space waits to inject interrupts, exit as soon as
  4111. * possible
  4112. */
  4113. if (!irqchip_in_kernel(vcpu->kvm) &&
  4114. vcpu->run->request_interrupt_window &&
  4115. !kvm_cpu_has_interrupt(vcpu)) {
  4116. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  4117. return 0;
  4118. }
  4119. return 1;
  4120. }
  4121. static int handle_halt(struct kvm_vcpu *vcpu)
  4122. {
  4123. skip_emulated_instruction(vcpu);
  4124. return kvm_emulate_halt(vcpu);
  4125. }
  4126. static int handle_vmcall(struct kvm_vcpu *vcpu)
  4127. {
  4128. skip_emulated_instruction(vcpu);
  4129. kvm_emulate_hypercall(vcpu);
  4130. return 1;
  4131. }
  4132. static int handle_invd(struct kvm_vcpu *vcpu)
  4133. {
  4134. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4135. }
  4136. static int handle_invlpg(struct kvm_vcpu *vcpu)
  4137. {
  4138. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4139. kvm_mmu_invlpg(vcpu, exit_qualification);
  4140. skip_emulated_instruction(vcpu);
  4141. return 1;
  4142. }
  4143. static int handle_rdpmc(struct kvm_vcpu *vcpu)
  4144. {
  4145. int err;
  4146. err = kvm_rdpmc(vcpu);
  4147. kvm_complete_insn_gp(vcpu, err);
  4148. return 1;
  4149. }
  4150. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  4151. {
  4152. skip_emulated_instruction(vcpu);
  4153. kvm_emulate_wbinvd(vcpu);
  4154. return 1;
  4155. }
  4156. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  4157. {
  4158. u64 new_bv = kvm_read_edx_eax(vcpu);
  4159. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4160. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  4161. skip_emulated_instruction(vcpu);
  4162. return 1;
  4163. }
  4164. static int handle_apic_access(struct kvm_vcpu *vcpu)
  4165. {
  4166. if (likely(fasteoi)) {
  4167. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4168. int access_type, offset;
  4169. access_type = exit_qualification & APIC_ACCESS_TYPE;
  4170. offset = exit_qualification & APIC_ACCESS_OFFSET;
  4171. /*
  4172. * Sane guest uses MOV to write EOI, with written value
  4173. * not cared. So make a short-circuit here by avoiding
  4174. * heavy instruction emulation.
  4175. */
  4176. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  4177. (offset == APIC_EOI)) {
  4178. kvm_lapic_set_eoi(vcpu);
  4179. skip_emulated_instruction(vcpu);
  4180. return 1;
  4181. }
  4182. }
  4183. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4184. }
  4185. static int handle_task_switch(struct kvm_vcpu *vcpu)
  4186. {
  4187. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4188. unsigned long exit_qualification;
  4189. bool has_error_code = false;
  4190. u32 error_code = 0;
  4191. u16 tss_selector;
  4192. int reason, type, idt_v, idt_index;
  4193. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  4194. idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
  4195. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  4196. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4197. reason = (u32)exit_qualification >> 30;
  4198. if (reason == TASK_SWITCH_GATE && idt_v) {
  4199. switch (type) {
  4200. case INTR_TYPE_NMI_INTR:
  4201. vcpu->arch.nmi_injected = false;
  4202. vmx_set_nmi_mask(vcpu, true);
  4203. break;
  4204. case INTR_TYPE_EXT_INTR:
  4205. case INTR_TYPE_SOFT_INTR:
  4206. kvm_clear_interrupt_queue(vcpu);
  4207. break;
  4208. case INTR_TYPE_HARD_EXCEPTION:
  4209. if (vmx->idt_vectoring_info &
  4210. VECTORING_INFO_DELIVER_CODE_MASK) {
  4211. has_error_code = true;
  4212. error_code =
  4213. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  4214. }
  4215. /* fall through */
  4216. case INTR_TYPE_SOFT_EXCEPTION:
  4217. kvm_clear_exception_queue(vcpu);
  4218. break;
  4219. default:
  4220. break;
  4221. }
  4222. }
  4223. tss_selector = exit_qualification;
  4224. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4225. type != INTR_TYPE_EXT_INTR &&
  4226. type != INTR_TYPE_NMI_INTR))
  4227. skip_emulated_instruction(vcpu);
  4228. if (kvm_task_switch(vcpu, tss_selector,
  4229. type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
  4230. has_error_code, error_code) == EMULATE_FAIL) {
  4231. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4232. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4233. vcpu->run->internal.ndata = 0;
  4234. return 0;
  4235. }
  4236. /* clear all local breakpoint enable flags */
  4237. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4238. /*
  4239. * TODO: What about debug traps on tss switch?
  4240. * Are we supposed to inject them and update dr6?
  4241. */
  4242. return 1;
  4243. }
  4244. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4245. {
  4246. unsigned long exit_qualification;
  4247. gpa_t gpa;
  4248. u32 error_code;
  4249. int gla_validity;
  4250. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4251. gla_validity = (exit_qualification >> 7) & 0x3;
  4252. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4253. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4254. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4255. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4256. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4257. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4258. (long unsigned int)exit_qualification);
  4259. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4260. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4261. return 0;
  4262. }
  4263. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4264. trace_kvm_page_fault(gpa, exit_qualification);
  4265. /* It is a write fault? */
  4266. error_code = exit_qualification & (1U << 1);
  4267. /* ept page table is present? */
  4268. error_code |= (exit_qualification >> 3) & 0x1;
  4269. return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
  4270. }
  4271. static u64 ept_rsvd_mask(u64 spte, int level)
  4272. {
  4273. int i;
  4274. u64 mask = 0;
  4275. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4276. mask |= (1ULL << i);
  4277. if (level > 2)
  4278. /* bits 7:3 reserved */
  4279. mask |= 0xf8;
  4280. else if (level == 2) {
  4281. if (spte & (1ULL << 7))
  4282. /* 2MB ref, bits 20:12 reserved */
  4283. mask |= 0x1ff000;
  4284. else
  4285. /* bits 6:3 reserved */
  4286. mask |= 0x78;
  4287. }
  4288. return mask;
  4289. }
  4290. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4291. int level)
  4292. {
  4293. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4294. /* 010b (write-only) */
  4295. WARN_ON((spte & 0x7) == 0x2);
  4296. /* 110b (write/execute) */
  4297. WARN_ON((spte & 0x7) == 0x6);
  4298. /* 100b (execute-only) and value not supported by logical processor */
  4299. if (!cpu_has_vmx_ept_execute_only())
  4300. WARN_ON((spte & 0x7) == 0x4);
  4301. /* not 000b */
  4302. if ((spte & 0x7)) {
  4303. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4304. if (rsvd_bits != 0) {
  4305. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4306. __func__, rsvd_bits);
  4307. WARN_ON(1);
  4308. }
  4309. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4310. u64 ept_mem_type = (spte & 0x38) >> 3;
  4311. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4312. ept_mem_type == 7) {
  4313. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4314. __func__, ept_mem_type);
  4315. WARN_ON(1);
  4316. }
  4317. }
  4318. }
  4319. }
  4320. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4321. {
  4322. u64 sptes[4];
  4323. int nr_sptes, i, ret;
  4324. gpa_t gpa;
  4325. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4326. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4327. if (likely(ret == 1))
  4328. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4329. EMULATE_DONE;
  4330. if (unlikely(!ret))
  4331. return 1;
  4332. /* It is the real ept misconfig */
  4333. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4334. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4335. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4336. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4337. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4338. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4339. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4340. return 0;
  4341. }
  4342. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4343. {
  4344. u32 cpu_based_vm_exec_control;
  4345. /* clear pending NMI */
  4346. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4347. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4348. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4349. ++vcpu->stat.nmi_window_exits;
  4350. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4351. return 1;
  4352. }
  4353. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4354. {
  4355. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4356. enum emulation_result err = EMULATE_DONE;
  4357. int ret = 1;
  4358. u32 cpu_exec_ctrl;
  4359. bool intr_window_requested;
  4360. unsigned count = 130;
  4361. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4362. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4363. while (!guest_state_valid(vcpu) && count-- != 0) {
  4364. if (intr_window_requested && vmx_interrupt_allowed(vcpu))
  4365. return handle_interrupt_window(&vmx->vcpu);
  4366. if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
  4367. return 1;
  4368. err = emulate_instruction(vcpu, 0);
  4369. if (err == EMULATE_DO_MMIO) {
  4370. ret = 0;
  4371. goto out;
  4372. }
  4373. if (err != EMULATE_DONE) {
  4374. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4375. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4376. vcpu->run->internal.ndata = 0;
  4377. return 0;
  4378. }
  4379. if (signal_pending(current))
  4380. goto out;
  4381. if (need_resched())
  4382. schedule();
  4383. }
  4384. vmx->emulation_required = !guest_state_valid(vcpu);
  4385. out:
  4386. return ret;
  4387. }
  4388. /*
  4389. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4390. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4391. */
  4392. static int handle_pause(struct kvm_vcpu *vcpu)
  4393. {
  4394. skip_emulated_instruction(vcpu);
  4395. kvm_vcpu_on_spin(vcpu);
  4396. return 1;
  4397. }
  4398. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4399. {
  4400. kvm_queue_exception(vcpu, UD_VECTOR);
  4401. return 1;
  4402. }
  4403. /*
  4404. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4405. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4406. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4407. * allows keeping them loaded on the processor, and in the future will allow
  4408. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4409. * every entry if they never change.
  4410. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4411. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4412. *
  4413. * The following functions allocate and free a vmcs02 in this pool.
  4414. */
  4415. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4416. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4417. {
  4418. struct vmcs02_list *item;
  4419. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4420. if (item->vmptr == vmx->nested.current_vmptr) {
  4421. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4422. return &item->vmcs02;
  4423. }
  4424. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4425. /* Recycle the least recently used VMCS. */
  4426. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4427. struct vmcs02_list, list);
  4428. item->vmptr = vmx->nested.current_vmptr;
  4429. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4430. return &item->vmcs02;
  4431. }
  4432. /* Create a new VMCS */
  4433. item = (struct vmcs02_list *)
  4434. kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4435. if (!item)
  4436. return NULL;
  4437. item->vmcs02.vmcs = alloc_vmcs();
  4438. if (!item->vmcs02.vmcs) {
  4439. kfree(item);
  4440. return NULL;
  4441. }
  4442. loaded_vmcs_init(&item->vmcs02);
  4443. item->vmptr = vmx->nested.current_vmptr;
  4444. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4445. vmx->nested.vmcs02_num++;
  4446. return &item->vmcs02;
  4447. }
  4448. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4449. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4450. {
  4451. struct vmcs02_list *item;
  4452. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4453. if (item->vmptr == vmptr) {
  4454. free_loaded_vmcs(&item->vmcs02);
  4455. list_del(&item->list);
  4456. kfree(item);
  4457. vmx->nested.vmcs02_num--;
  4458. return;
  4459. }
  4460. }
  4461. /*
  4462. * Free all VMCSs saved for this vcpu, except the one pointed by
  4463. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4464. * currently used, if running L2), and vmcs01 when running L2.
  4465. */
  4466. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4467. {
  4468. struct vmcs02_list *item, *n;
  4469. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4470. if (vmx->loaded_vmcs != &item->vmcs02)
  4471. free_loaded_vmcs(&item->vmcs02);
  4472. list_del(&item->list);
  4473. kfree(item);
  4474. }
  4475. vmx->nested.vmcs02_num = 0;
  4476. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4477. free_loaded_vmcs(&vmx->vmcs01);
  4478. }
  4479. /*
  4480. * Emulate the VMXON instruction.
  4481. * Currently, we just remember that VMX is active, and do not save or even
  4482. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4483. * do not currently need to store anything in that guest-allocated memory
  4484. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4485. * argument is different from the VMXON pointer (which the spec says they do).
  4486. */
  4487. static int handle_vmon(struct kvm_vcpu *vcpu)
  4488. {
  4489. struct kvm_segment cs;
  4490. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4491. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4492. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4493. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4494. * Otherwise, we should fail with #UD. We test these now:
  4495. */
  4496. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4497. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4498. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4499. kvm_queue_exception(vcpu, UD_VECTOR);
  4500. return 1;
  4501. }
  4502. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4503. if (is_long_mode(vcpu) && !cs.l) {
  4504. kvm_queue_exception(vcpu, UD_VECTOR);
  4505. return 1;
  4506. }
  4507. if (vmx_get_cpl(vcpu)) {
  4508. kvm_inject_gp(vcpu, 0);
  4509. return 1;
  4510. }
  4511. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4512. vmx->nested.vmcs02_num = 0;
  4513. vmx->nested.vmxon = true;
  4514. skip_emulated_instruction(vcpu);
  4515. return 1;
  4516. }
  4517. /*
  4518. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4519. * for running VMX instructions (except VMXON, whose prerequisites are
  4520. * slightly different). It also specifies what exception to inject otherwise.
  4521. */
  4522. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4523. {
  4524. struct kvm_segment cs;
  4525. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4526. if (!vmx->nested.vmxon) {
  4527. kvm_queue_exception(vcpu, UD_VECTOR);
  4528. return 0;
  4529. }
  4530. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4531. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4532. (is_long_mode(vcpu) && !cs.l)) {
  4533. kvm_queue_exception(vcpu, UD_VECTOR);
  4534. return 0;
  4535. }
  4536. if (vmx_get_cpl(vcpu)) {
  4537. kvm_inject_gp(vcpu, 0);
  4538. return 0;
  4539. }
  4540. return 1;
  4541. }
  4542. /*
  4543. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4544. * just stops using VMX.
  4545. */
  4546. static void free_nested(struct vcpu_vmx *vmx)
  4547. {
  4548. if (!vmx->nested.vmxon)
  4549. return;
  4550. vmx->nested.vmxon = false;
  4551. if (vmx->nested.current_vmptr != -1ull) {
  4552. kunmap(vmx->nested.current_vmcs12_page);
  4553. nested_release_page(vmx->nested.current_vmcs12_page);
  4554. vmx->nested.current_vmptr = -1ull;
  4555. vmx->nested.current_vmcs12 = NULL;
  4556. }
  4557. /* Unpin physical memory we referred to in current vmcs02 */
  4558. if (vmx->nested.apic_access_page) {
  4559. nested_release_page(vmx->nested.apic_access_page);
  4560. vmx->nested.apic_access_page = 0;
  4561. }
  4562. nested_free_all_saved_vmcss(vmx);
  4563. }
  4564. /* Emulate the VMXOFF instruction */
  4565. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4566. {
  4567. if (!nested_vmx_check_permission(vcpu))
  4568. return 1;
  4569. free_nested(to_vmx(vcpu));
  4570. skip_emulated_instruction(vcpu);
  4571. return 1;
  4572. }
  4573. /*
  4574. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4575. * exit caused by such an instruction (run by a guest hypervisor).
  4576. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4577. * #UD or #GP.
  4578. */
  4579. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4580. unsigned long exit_qualification,
  4581. u32 vmx_instruction_info, gva_t *ret)
  4582. {
  4583. /*
  4584. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4585. * Execution", on an exit, vmx_instruction_info holds most of the
  4586. * addressing components of the operand. Only the displacement part
  4587. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4588. * For how an actual address is calculated from all these components,
  4589. * refer to Vol. 1, "Operand Addressing".
  4590. */
  4591. int scaling = vmx_instruction_info & 3;
  4592. int addr_size = (vmx_instruction_info >> 7) & 7;
  4593. bool is_reg = vmx_instruction_info & (1u << 10);
  4594. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4595. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4596. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4597. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4598. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4599. if (is_reg) {
  4600. kvm_queue_exception(vcpu, UD_VECTOR);
  4601. return 1;
  4602. }
  4603. /* Addr = segment_base + offset */
  4604. /* offset = base + [index * scale] + displacement */
  4605. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4606. if (base_is_valid)
  4607. *ret += kvm_register_read(vcpu, base_reg);
  4608. if (index_is_valid)
  4609. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4610. *ret += exit_qualification; /* holds the displacement */
  4611. if (addr_size == 1) /* 32 bit */
  4612. *ret &= 0xffffffff;
  4613. /*
  4614. * TODO: throw #GP (and return 1) in various cases that the VM*
  4615. * instructions require it - e.g., offset beyond segment limit,
  4616. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4617. * address, and so on. Currently these are not checked.
  4618. */
  4619. return 0;
  4620. }
  4621. /*
  4622. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4623. * set the success or error code of an emulated VMX instruction, as specified
  4624. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4625. */
  4626. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4627. {
  4628. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4629. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4630. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4631. }
  4632. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4633. {
  4634. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4635. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4636. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4637. | X86_EFLAGS_CF);
  4638. }
  4639. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4640. u32 vm_instruction_error)
  4641. {
  4642. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4643. /*
  4644. * failValid writes the error number to the current VMCS, which
  4645. * can't be done there isn't a current VMCS.
  4646. */
  4647. nested_vmx_failInvalid(vcpu);
  4648. return;
  4649. }
  4650. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4651. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4652. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4653. | X86_EFLAGS_ZF);
  4654. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4655. }
  4656. /* Emulate the VMCLEAR instruction */
  4657. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4658. {
  4659. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4660. gva_t gva;
  4661. gpa_t vmptr;
  4662. struct vmcs12 *vmcs12;
  4663. struct page *page;
  4664. struct x86_exception e;
  4665. if (!nested_vmx_check_permission(vcpu))
  4666. return 1;
  4667. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4668. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4669. return 1;
  4670. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4671. sizeof(vmptr), &e)) {
  4672. kvm_inject_page_fault(vcpu, &e);
  4673. return 1;
  4674. }
  4675. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4676. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4677. skip_emulated_instruction(vcpu);
  4678. return 1;
  4679. }
  4680. if (vmptr == vmx->nested.current_vmptr) {
  4681. kunmap(vmx->nested.current_vmcs12_page);
  4682. nested_release_page(vmx->nested.current_vmcs12_page);
  4683. vmx->nested.current_vmptr = -1ull;
  4684. vmx->nested.current_vmcs12 = NULL;
  4685. }
  4686. page = nested_get_page(vcpu, vmptr);
  4687. if (page == NULL) {
  4688. /*
  4689. * For accurate processor emulation, VMCLEAR beyond available
  4690. * physical memory should do nothing at all. However, it is
  4691. * possible that a nested vmx bug, not a guest hypervisor bug,
  4692. * resulted in this case, so let's shut down before doing any
  4693. * more damage:
  4694. */
  4695. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4696. return 1;
  4697. }
  4698. vmcs12 = kmap(page);
  4699. vmcs12->launch_state = 0;
  4700. kunmap(page);
  4701. nested_release_page(page);
  4702. nested_free_vmcs02(vmx, vmptr);
  4703. skip_emulated_instruction(vcpu);
  4704. nested_vmx_succeed(vcpu);
  4705. return 1;
  4706. }
  4707. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4708. /* Emulate the VMLAUNCH instruction */
  4709. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4710. {
  4711. return nested_vmx_run(vcpu, true);
  4712. }
  4713. /* Emulate the VMRESUME instruction */
  4714. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4715. {
  4716. return nested_vmx_run(vcpu, false);
  4717. }
  4718. enum vmcs_field_type {
  4719. VMCS_FIELD_TYPE_U16 = 0,
  4720. VMCS_FIELD_TYPE_U64 = 1,
  4721. VMCS_FIELD_TYPE_U32 = 2,
  4722. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4723. };
  4724. static inline int vmcs_field_type(unsigned long field)
  4725. {
  4726. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4727. return VMCS_FIELD_TYPE_U32;
  4728. return (field >> 13) & 0x3 ;
  4729. }
  4730. static inline int vmcs_field_readonly(unsigned long field)
  4731. {
  4732. return (((field >> 10) & 0x3) == 1);
  4733. }
  4734. /*
  4735. * Read a vmcs12 field. Since these can have varying lengths and we return
  4736. * one type, we chose the biggest type (u64) and zero-extend the return value
  4737. * to that size. Note that the caller, handle_vmread, might need to use only
  4738. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4739. * 64-bit fields are to be returned).
  4740. */
  4741. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4742. unsigned long field, u64 *ret)
  4743. {
  4744. short offset = vmcs_field_to_offset(field);
  4745. char *p;
  4746. if (offset < 0)
  4747. return 0;
  4748. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4749. switch (vmcs_field_type(field)) {
  4750. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4751. *ret = *((natural_width *)p);
  4752. return 1;
  4753. case VMCS_FIELD_TYPE_U16:
  4754. *ret = *((u16 *)p);
  4755. return 1;
  4756. case VMCS_FIELD_TYPE_U32:
  4757. *ret = *((u32 *)p);
  4758. return 1;
  4759. case VMCS_FIELD_TYPE_U64:
  4760. *ret = *((u64 *)p);
  4761. return 1;
  4762. default:
  4763. return 0; /* can never happen. */
  4764. }
  4765. }
  4766. /*
  4767. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4768. * used before) all generate the same failure when it is missing.
  4769. */
  4770. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4771. {
  4772. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4773. if (vmx->nested.current_vmptr == -1ull) {
  4774. nested_vmx_failInvalid(vcpu);
  4775. skip_emulated_instruction(vcpu);
  4776. return 0;
  4777. }
  4778. return 1;
  4779. }
  4780. static int handle_vmread(struct kvm_vcpu *vcpu)
  4781. {
  4782. unsigned long field;
  4783. u64 field_value;
  4784. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4785. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4786. gva_t gva = 0;
  4787. if (!nested_vmx_check_permission(vcpu) ||
  4788. !nested_vmx_check_vmcs12(vcpu))
  4789. return 1;
  4790. /* Decode instruction info and find the field to read */
  4791. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4792. /* Read the field, zero-extended to a u64 field_value */
  4793. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4794. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4795. skip_emulated_instruction(vcpu);
  4796. return 1;
  4797. }
  4798. /*
  4799. * Now copy part of this value to register or memory, as requested.
  4800. * Note that the number of bits actually copied is 32 or 64 depending
  4801. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4802. */
  4803. if (vmx_instruction_info & (1u << 10)) {
  4804. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4805. field_value);
  4806. } else {
  4807. if (get_vmx_mem_address(vcpu, exit_qualification,
  4808. vmx_instruction_info, &gva))
  4809. return 1;
  4810. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4811. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4812. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4813. }
  4814. nested_vmx_succeed(vcpu);
  4815. skip_emulated_instruction(vcpu);
  4816. return 1;
  4817. }
  4818. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4819. {
  4820. unsigned long field;
  4821. gva_t gva;
  4822. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4823. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4824. char *p;
  4825. short offset;
  4826. /* The value to write might be 32 or 64 bits, depending on L1's long
  4827. * mode, and eventually we need to write that into a field of several
  4828. * possible lengths. The code below first zero-extends the value to 64
  4829. * bit (field_value), and then copies only the approriate number of
  4830. * bits into the vmcs12 field.
  4831. */
  4832. u64 field_value = 0;
  4833. struct x86_exception e;
  4834. if (!nested_vmx_check_permission(vcpu) ||
  4835. !nested_vmx_check_vmcs12(vcpu))
  4836. return 1;
  4837. if (vmx_instruction_info & (1u << 10))
  4838. field_value = kvm_register_read(vcpu,
  4839. (((vmx_instruction_info) >> 3) & 0xf));
  4840. else {
  4841. if (get_vmx_mem_address(vcpu, exit_qualification,
  4842. vmx_instruction_info, &gva))
  4843. return 1;
  4844. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4845. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4846. kvm_inject_page_fault(vcpu, &e);
  4847. return 1;
  4848. }
  4849. }
  4850. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4851. if (vmcs_field_readonly(field)) {
  4852. nested_vmx_failValid(vcpu,
  4853. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4854. skip_emulated_instruction(vcpu);
  4855. return 1;
  4856. }
  4857. offset = vmcs_field_to_offset(field);
  4858. if (offset < 0) {
  4859. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4860. skip_emulated_instruction(vcpu);
  4861. return 1;
  4862. }
  4863. p = ((char *) get_vmcs12(vcpu)) + offset;
  4864. switch (vmcs_field_type(field)) {
  4865. case VMCS_FIELD_TYPE_U16:
  4866. *(u16 *)p = field_value;
  4867. break;
  4868. case VMCS_FIELD_TYPE_U32:
  4869. *(u32 *)p = field_value;
  4870. break;
  4871. case VMCS_FIELD_TYPE_U64:
  4872. *(u64 *)p = field_value;
  4873. break;
  4874. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4875. *(natural_width *)p = field_value;
  4876. break;
  4877. default:
  4878. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4879. skip_emulated_instruction(vcpu);
  4880. return 1;
  4881. }
  4882. nested_vmx_succeed(vcpu);
  4883. skip_emulated_instruction(vcpu);
  4884. return 1;
  4885. }
  4886. /* Emulate the VMPTRLD instruction */
  4887. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  4888. {
  4889. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4890. gva_t gva;
  4891. gpa_t vmptr;
  4892. struct x86_exception e;
  4893. if (!nested_vmx_check_permission(vcpu))
  4894. return 1;
  4895. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4896. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4897. return 1;
  4898. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4899. sizeof(vmptr), &e)) {
  4900. kvm_inject_page_fault(vcpu, &e);
  4901. return 1;
  4902. }
  4903. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4904. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  4905. skip_emulated_instruction(vcpu);
  4906. return 1;
  4907. }
  4908. if (vmx->nested.current_vmptr != vmptr) {
  4909. struct vmcs12 *new_vmcs12;
  4910. struct page *page;
  4911. page = nested_get_page(vcpu, vmptr);
  4912. if (page == NULL) {
  4913. nested_vmx_failInvalid(vcpu);
  4914. skip_emulated_instruction(vcpu);
  4915. return 1;
  4916. }
  4917. new_vmcs12 = kmap(page);
  4918. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  4919. kunmap(page);
  4920. nested_release_page_clean(page);
  4921. nested_vmx_failValid(vcpu,
  4922. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  4923. skip_emulated_instruction(vcpu);
  4924. return 1;
  4925. }
  4926. if (vmx->nested.current_vmptr != -1ull) {
  4927. kunmap(vmx->nested.current_vmcs12_page);
  4928. nested_release_page(vmx->nested.current_vmcs12_page);
  4929. }
  4930. vmx->nested.current_vmptr = vmptr;
  4931. vmx->nested.current_vmcs12 = new_vmcs12;
  4932. vmx->nested.current_vmcs12_page = page;
  4933. }
  4934. nested_vmx_succeed(vcpu);
  4935. skip_emulated_instruction(vcpu);
  4936. return 1;
  4937. }
  4938. /* Emulate the VMPTRST instruction */
  4939. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  4940. {
  4941. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4942. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4943. gva_t vmcs_gva;
  4944. struct x86_exception e;
  4945. if (!nested_vmx_check_permission(vcpu))
  4946. return 1;
  4947. if (get_vmx_mem_address(vcpu, exit_qualification,
  4948. vmx_instruction_info, &vmcs_gva))
  4949. return 1;
  4950. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  4951. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  4952. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  4953. sizeof(u64), &e)) {
  4954. kvm_inject_page_fault(vcpu, &e);
  4955. return 1;
  4956. }
  4957. nested_vmx_succeed(vcpu);
  4958. skip_emulated_instruction(vcpu);
  4959. return 1;
  4960. }
  4961. /*
  4962. * The exit handlers return 1 if the exit was handled fully and guest execution
  4963. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  4964. * to be done to userspace and return 0.
  4965. */
  4966. static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  4967. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  4968. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  4969. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  4970. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  4971. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  4972. [EXIT_REASON_CR_ACCESS] = handle_cr,
  4973. [EXIT_REASON_DR_ACCESS] = handle_dr,
  4974. [EXIT_REASON_CPUID] = handle_cpuid,
  4975. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  4976. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  4977. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  4978. [EXIT_REASON_HLT] = handle_halt,
  4979. [EXIT_REASON_INVD] = handle_invd,
  4980. [EXIT_REASON_INVLPG] = handle_invlpg,
  4981. [EXIT_REASON_RDPMC] = handle_rdpmc,
  4982. [EXIT_REASON_VMCALL] = handle_vmcall,
  4983. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  4984. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  4985. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  4986. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  4987. [EXIT_REASON_VMREAD] = handle_vmread,
  4988. [EXIT_REASON_VMRESUME] = handle_vmresume,
  4989. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  4990. [EXIT_REASON_VMOFF] = handle_vmoff,
  4991. [EXIT_REASON_VMON] = handle_vmon,
  4992. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  4993. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  4994. [EXIT_REASON_WBINVD] = handle_wbinvd,
  4995. [EXIT_REASON_XSETBV] = handle_xsetbv,
  4996. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  4997. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  4998. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  4999. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  5000. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  5001. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  5002. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  5003. };
  5004. static const int kvm_vmx_max_exit_handlers =
  5005. ARRAY_SIZE(kvm_vmx_exit_handlers);
  5006. /*
  5007. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  5008. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  5009. * disinterest in the current event (read or write a specific MSR) by using an
  5010. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  5011. */
  5012. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  5013. struct vmcs12 *vmcs12, u32 exit_reason)
  5014. {
  5015. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  5016. gpa_t bitmap;
  5017. if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
  5018. return 1;
  5019. /*
  5020. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  5021. * for the four combinations of read/write and low/high MSR numbers.
  5022. * First we need to figure out which of the four to use:
  5023. */
  5024. bitmap = vmcs12->msr_bitmap;
  5025. if (exit_reason == EXIT_REASON_MSR_WRITE)
  5026. bitmap += 2048;
  5027. if (msr_index >= 0xc0000000) {
  5028. msr_index -= 0xc0000000;
  5029. bitmap += 1024;
  5030. }
  5031. /* Then read the msr_index'th bit from this bitmap: */
  5032. if (msr_index < 1024*8) {
  5033. unsigned char b;
  5034. kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
  5035. return 1 & (b >> (msr_index & 7));
  5036. } else
  5037. return 1; /* let L1 handle the wrong parameter */
  5038. }
  5039. /*
  5040. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  5041. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  5042. * intercept (via guest_host_mask etc.) the current event.
  5043. */
  5044. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  5045. struct vmcs12 *vmcs12)
  5046. {
  5047. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5048. int cr = exit_qualification & 15;
  5049. int reg = (exit_qualification >> 8) & 15;
  5050. unsigned long val = kvm_register_read(vcpu, reg);
  5051. switch ((exit_qualification >> 4) & 3) {
  5052. case 0: /* mov to cr */
  5053. switch (cr) {
  5054. case 0:
  5055. if (vmcs12->cr0_guest_host_mask &
  5056. (val ^ vmcs12->cr0_read_shadow))
  5057. return 1;
  5058. break;
  5059. case 3:
  5060. if ((vmcs12->cr3_target_count >= 1 &&
  5061. vmcs12->cr3_target_value0 == val) ||
  5062. (vmcs12->cr3_target_count >= 2 &&
  5063. vmcs12->cr3_target_value1 == val) ||
  5064. (vmcs12->cr3_target_count >= 3 &&
  5065. vmcs12->cr3_target_value2 == val) ||
  5066. (vmcs12->cr3_target_count >= 4 &&
  5067. vmcs12->cr3_target_value3 == val))
  5068. return 0;
  5069. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  5070. return 1;
  5071. break;
  5072. case 4:
  5073. if (vmcs12->cr4_guest_host_mask &
  5074. (vmcs12->cr4_read_shadow ^ val))
  5075. return 1;
  5076. break;
  5077. case 8:
  5078. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  5079. return 1;
  5080. break;
  5081. }
  5082. break;
  5083. case 2: /* clts */
  5084. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  5085. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  5086. return 1;
  5087. break;
  5088. case 1: /* mov from cr */
  5089. switch (cr) {
  5090. case 3:
  5091. if (vmcs12->cpu_based_vm_exec_control &
  5092. CPU_BASED_CR3_STORE_EXITING)
  5093. return 1;
  5094. break;
  5095. case 8:
  5096. if (vmcs12->cpu_based_vm_exec_control &
  5097. CPU_BASED_CR8_STORE_EXITING)
  5098. return 1;
  5099. break;
  5100. }
  5101. break;
  5102. case 3: /* lmsw */
  5103. /*
  5104. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  5105. * cr0. Other attempted changes are ignored, with no exit.
  5106. */
  5107. if (vmcs12->cr0_guest_host_mask & 0xe &
  5108. (val ^ vmcs12->cr0_read_shadow))
  5109. return 1;
  5110. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  5111. !(vmcs12->cr0_read_shadow & 0x1) &&
  5112. (val & 0x1))
  5113. return 1;
  5114. break;
  5115. }
  5116. return 0;
  5117. }
  5118. /*
  5119. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  5120. * should handle it ourselves in L0 (and then continue L2). Only call this
  5121. * when in is_guest_mode (L2).
  5122. */
  5123. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  5124. {
  5125. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  5126. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5127. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5128. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5129. if (vmx->nested.nested_run_pending)
  5130. return 0;
  5131. if (unlikely(vmx->fail)) {
  5132. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  5133. vmcs_read32(VM_INSTRUCTION_ERROR));
  5134. return 1;
  5135. }
  5136. switch (exit_reason) {
  5137. case EXIT_REASON_EXCEPTION_NMI:
  5138. if (!is_exception(intr_info))
  5139. return 0;
  5140. else if (is_page_fault(intr_info))
  5141. return enable_ept;
  5142. return vmcs12->exception_bitmap &
  5143. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  5144. case EXIT_REASON_EXTERNAL_INTERRUPT:
  5145. return 0;
  5146. case EXIT_REASON_TRIPLE_FAULT:
  5147. return 1;
  5148. case EXIT_REASON_PENDING_INTERRUPT:
  5149. case EXIT_REASON_NMI_WINDOW:
  5150. /*
  5151. * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
  5152. * (aka Interrupt Window Exiting) only when L1 turned it on,
  5153. * so if we got a PENDING_INTERRUPT exit, this must be for L1.
  5154. * Same for NMI Window Exiting.
  5155. */
  5156. return 1;
  5157. case EXIT_REASON_TASK_SWITCH:
  5158. return 1;
  5159. case EXIT_REASON_CPUID:
  5160. return 1;
  5161. case EXIT_REASON_HLT:
  5162. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  5163. case EXIT_REASON_INVD:
  5164. return 1;
  5165. case EXIT_REASON_INVLPG:
  5166. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  5167. case EXIT_REASON_RDPMC:
  5168. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  5169. case EXIT_REASON_RDTSC:
  5170. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  5171. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  5172. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  5173. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  5174. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  5175. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  5176. /*
  5177. * VMX instructions trap unconditionally. This allows L1 to
  5178. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  5179. */
  5180. return 1;
  5181. case EXIT_REASON_CR_ACCESS:
  5182. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  5183. case EXIT_REASON_DR_ACCESS:
  5184. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  5185. case EXIT_REASON_IO_INSTRUCTION:
  5186. /* TODO: support IO bitmaps */
  5187. return 1;
  5188. case EXIT_REASON_MSR_READ:
  5189. case EXIT_REASON_MSR_WRITE:
  5190. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  5191. case EXIT_REASON_INVALID_STATE:
  5192. return 1;
  5193. case EXIT_REASON_MWAIT_INSTRUCTION:
  5194. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  5195. case EXIT_REASON_MONITOR_INSTRUCTION:
  5196. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  5197. case EXIT_REASON_PAUSE_INSTRUCTION:
  5198. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  5199. nested_cpu_has2(vmcs12,
  5200. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  5201. case EXIT_REASON_MCE_DURING_VMENTRY:
  5202. return 0;
  5203. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  5204. return 1;
  5205. case EXIT_REASON_APIC_ACCESS:
  5206. return nested_cpu_has2(vmcs12,
  5207. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  5208. case EXIT_REASON_EPT_VIOLATION:
  5209. case EXIT_REASON_EPT_MISCONFIG:
  5210. return 0;
  5211. case EXIT_REASON_WBINVD:
  5212. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  5213. case EXIT_REASON_XSETBV:
  5214. return 1;
  5215. default:
  5216. return 1;
  5217. }
  5218. }
  5219. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  5220. {
  5221. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  5222. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  5223. }
  5224. /*
  5225. * The guest has exited. See if we can fix it or if we need userspace
  5226. * assistance.
  5227. */
  5228. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  5229. {
  5230. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5231. u32 exit_reason = vmx->exit_reason;
  5232. u32 vectoring_info = vmx->idt_vectoring_info;
  5233. /* If guest state is invalid, start emulating */
  5234. if (vmx->emulation_required && emulate_invalid_guest_state)
  5235. return handle_invalid_guest_state(vcpu);
  5236. /*
  5237. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  5238. * we did not inject a still-pending event to L1 now because of
  5239. * nested_run_pending, we need to re-enable this bit.
  5240. */
  5241. if (vmx->nested.nested_run_pending)
  5242. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5243. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  5244. exit_reason == EXIT_REASON_VMRESUME))
  5245. vmx->nested.nested_run_pending = 1;
  5246. else
  5247. vmx->nested.nested_run_pending = 0;
  5248. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5249. nested_vmx_vmexit(vcpu);
  5250. return 1;
  5251. }
  5252. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5253. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5254. vcpu->run->fail_entry.hardware_entry_failure_reason
  5255. = exit_reason;
  5256. return 0;
  5257. }
  5258. if (unlikely(vmx->fail)) {
  5259. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5260. vcpu->run->fail_entry.hardware_entry_failure_reason
  5261. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5262. return 0;
  5263. }
  5264. /*
  5265. * Note:
  5266. * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
  5267. * delivery event since it indicates guest is accessing MMIO.
  5268. * The vm-exit can be triggered again after return to guest that
  5269. * will cause infinite loop.
  5270. */
  5271. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5272. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5273. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5274. exit_reason != EXIT_REASON_TASK_SWITCH)) {
  5275. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  5276. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
  5277. vcpu->run->internal.ndata = 2;
  5278. vcpu->run->internal.data[0] = vectoring_info;
  5279. vcpu->run->internal.data[1] = exit_reason;
  5280. return 0;
  5281. }
  5282. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5283. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5284. get_vmcs12(vcpu), vcpu)))) {
  5285. if (vmx_interrupt_allowed(vcpu)) {
  5286. vmx->soft_vnmi_blocked = 0;
  5287. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5288. vcpu->arch.nmi_pending) {
  5289. /*
  5290. * This CPU don't support us in finding the end of an
  5291. * NMI-blocked window if the guest runs with IRQs
  5292. * disabled. So we pull the trigger after 1 s of
  5293. * futile waiting, but inform the user about this.
  5294. */
  5295. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5296. "state on VCPU %d after 1 s timeout\n",
  5297. __func__, vcpu->vcpu_id);
  5298. vmx->soft_vnmi_blocked = 0;
  5299. }
  5300. }
  5301. if (exit_reason < kvm_vmx_max_exit_handlers
  5302. && kvm_vmx_exit_handlers[exit_reason])
  5303. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5304. else {
  5305. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5306. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5307. }
  5308. return 0;
  5309. }
  5310. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5311. {
  5312. if (irr == -1 || tpr < irr) {
  5313. vmcs_write32(TPR_THRESHOLD, 0);
  5314. return;
  5315. }
  5316. vmcs_write32(TPR_THRESHOLD, irr);
  5317. }
  5318. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5319. {
  5320. u32 exit_intr_info;
  5321. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5322. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5323. return;
  5324. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5325. exit_intr_info = vmx->exit_intr_info;
  5326. /* Handle machine checks before interrupts are enabled */
  5327. if (is_machine_check(exit_intr_info))
  5328. kvm_machine_check();
  5329. /* We need to handle NMIs before interrupts are enabled */
  5330. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5331. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5332. kvm_before_handle_nmi(&vmx->vcpu);
  5333. asm("int $2");
  5334. kvm_after_handle_nmi(&vmx->vcpu);
  5335. }
  5336. }
  5337. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5338. {
  5339. u32 exit_intr_info;
  5340. bool unblock_nmi;
  5341. u8 vector;
  5342. bool idtv_info_valid;
  5343. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5344. if (cpu_has_virtual_nmis()) {
  5345. if (vmx->nmi_known_unmasked)
  5346. return;
  5347. /*
  5348. * Can't use vmx->exit_intr_info since we're not sure what
  5349. * the exit reason is.
  5350. */
  5351. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5352. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5353. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5354. /*
  5355. * SDM 3: 27.7.1.2 (September 2008)
  5356. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5357. * a guest IRET fault.
  5358. * SDM 3: 23.2.2 (September 2008)
  5359. * Bit 12 is undefined in any of the following cases:
  5360. * If the VM exit sets the valid bit in the IDT-vectoring
  5361. * information field.
  5362. * If the VM exit is due to a double fault.
  5363. */
  5364. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5365. vector != DF_VECTOR && !idtv_info_valid)
  5366. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5367. GUEST_INTR_STATE_NMI);
  5368. else
  5369. vmx->nmi_known_unmasked =
  5370. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5371. & GUEST_INTR_STATE_NMI);
  5372. } else if (unlikely(vmx->soft_vnmi_blocked))
  5373. vmx->vnmi_blocked_time +=
  5374. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5375. }
  5376. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  5377. u32 idt_vectoring_info,
  5378. int instr_len_field,
  5379. int error_code_field)
  5380. {
  5381. u8 vector;
  5382. int type;
  5383. bool idtv_info_valid;
  5384. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5385. vmx->vcpu.arch.nmi_injected = false;
  5386. kvm_clear_exception_queue(&vmx->vcpu);
  5387. kvm_clear_interrupt_queue(&vmx->vcpu);
  5388. if (!idtv_info_valid)
  5389. return;
  5390. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  5391. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5392. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5393. switch (type) {
  5394. case INTR_TYPE_NMI_INTR:
  5395. vmx->vcpu.arch.nmi_injected = true;
  5396. /*
  5397. * SDM 3: 27.7.1.2 (September 2008)
  5398. * Clear bit "block by NMI" before VM entry if a NMI
  5399. * delivery faulted.
  5400. */
  5401. vmx_set_nmi_mask(&vmx->vcpu, false);
  5402. break;
  5403. case INTR_TYPE_SOFT_EXCEPTION:
  5404. vmx->vcpu.arch.event_exit_inst_len =
  5405. vmcs_read32(instr_len_field);
  5406. /* fall through */
  5407. case INTR_TYPE_HARD_EXCEPTION:
  5408. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  5409. u32 err = vmcs_read32(error_code_field);
  5410. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  5411. } else
  5412. kvm_queue_exception(&vmx->vcpu, vector);
  5413. break;
  5414. case INTR_TYPE_SOFT_INTR:
  5415. vmx->vcpu.arch.event_exit_inst_len =
  5416. vmcs_read32(instr_len_field);
  5417. /* fall through */
  5418. case INTR_TYPE_EXT_INTR:
  5419. kvm_queue_interrupt(&vmx->vcpu, vector,
  5420. type == INTR_TYPE_SOFT_INTR);
  5421. break;
  5422. default:
  5423. break;
  5424. }
  5425. }
  5426. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  5427. {
  5428. if (is_guest_mode(&vmx->vcpu))
  5429. return;
  5430. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  5431. VM_EXIT_INSTRUCTION_LEN,
  5432. IDT_VECTORING_ERROR_CODE);
  5433. }
  5434. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  5435. {
  5436. if (is_guest_mode(vcpu))
  5437. return;
  5438. __vmx_complete_interrupts(to_vmx(vcpu),
  5439. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  5440. VM_ENTRY_INSTRUCTION_LEN,
  5441. VM_ENTRY_EXCEPTION_ERROR_CODE);
  5442. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  5443. }
  5444. static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
  5445. {
  5446. int i, nr_msrs;
  5447. struct perf_guest_switch_msr *msrs;
  5448. msrs = perf_guest_get_msrs(&nr_msrs);
  5449. if (!msrs)
  5450. return;
  5451. for (i = 0; i < nr_msrs; i++)
  5452. if (msrs[i].host == msrs[i].guest)
  5453. clear_atomic_switch_msr(vmx, msrs[i].msr);
  5454. else
  5455. add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
  5456. msrs[i].host);
  5457. }
  5458. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  5459. {
  5460. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5461. unsigned long debugctlmsr;
  5462. if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
  5463. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5464. if (vmcs12->idt_vectoring_info_field &
  5465. VECTORING_INFO_VALID_MASK) {
  5466. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5467. vmcs12->idt_vectoring_info_field);
  5468. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5469. vmcs12->vm_exit_instruction_len);
  5470. if (vmcs12->idt_vectoring_info_field &
  5471. VECTORING_INFO_DELIVER_CODE_MASK)
  5472. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5473. vmcs12->idt_vectoring_error_code);
  5474. }
  5475. }
  5476. /* Record the guest's net vcpu time for enforced NMI injections. */
  5477. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  5478. vmx->entry_time = ktime_get();
  5479. /* Don't enter VMX if guest state is invalid, let the exit handler
  5480. start emulation until we arrive back to a valid state */
  5481. if (vmx->emulation_required && emulate_invalid_guest_state)
  5482. return;
  5483. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  5484. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  5485. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  5486. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  5487. /* When single-stepping over STI and MOV SS, we must clear the
  5488. * corresponding interruptibility bits in the guest state. Otherwise
  5489. * vmentry fails as it then expects bit 14 (BS) in pending debug
  5490. * exceptions being set, but that's not correct for the guest debugging
  5491. * case. */
  5492. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5493. vmx_set_interrupt_shadow(vcpu, 0);
  5494. atomic_switch_perf_msrs(vmx);
  5495. debugctlmsr = get_debugctlmsr();
  5496. vmx->__launched = vmx->loaded_vmcs->launched;
  5497. asm(
  5498. /* Store host registers */
  5499. "push %%" _ASM_DX "; push %%" _ASM_BP ";"
  5500. "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
  5501. "push %%" _ASM_CX " \n\t"
  5502. "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  5503. "je 1f \n\t"
  5504. "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  5505. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  5506. "1: \n\t"
  5507. /* Reload cr2 if changed */
  5508. "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
  5509. "mov %%cr2, %%" _ASM_DX " \n\t"
  5510. "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
  5511. "je 2f \n\t"
  5512. "mov %%" _ASM_AX", %%cr2 \n\t"
  5513. "2: \n\t"
  5514. /* Check if vmlaunch of vmresume is needed */
  5515. "cmpl $0, %c[launched](%0) \n\t"
  5516. /* Load guest registers. Don't clobber flags. */
  5517. "mov %c[rax](%0), %%" _ASM_AX " \n\t"
  5518. "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
  5519. "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
  5520. "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
  5521. "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
  5522. "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
  5523. #ifdef CONFIG_X86_64
  5524. "mov %c[r8](%0), %%r8 \n\t"
  5525. "mov %c[r9](%0), %%r9 \n\t"
  5526. "mov %c[r10](%0), %%r10 \n\t"
  5527. "mov %c[r11](%0), %%r11 \n\t"
  5528. "mov %c[r12](%0), %%r12 \n\t"
  5529. "mov %c[r13](%0), %%r13 \n\t"
  5530. "mov %c[r14](%0), %%r14 \n\t"
  5531. "mov %c[r15](%0), %%r15 \n\t"
  5532. #endif
  5533. "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
  5534. /* Enter guest mode */
  5535. "jne 1f \n\t"
  5536. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  5537. "jmp 2f \n\t"
  5538. "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
  5539. "2: "
  5540. /* Save guest registers, load host registers, keep flags */
  5541. "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
  5542. "pop %0 \n\t"
  5543. "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
  5544. "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
  5545. __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
  5546. "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
  5547. "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
  5548. "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
  5549. "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
  5550. #ifdef CONFIG_X86_64
  5551. "mov %%r8, %c[r8](%0) \n\t"
  5552. "mov %%r9, %c[r9](%0) \n\t"
  5553. "mov %%r10, %c[r10](%0) \n\t"
  5554. "mov %%r11, %c[r11](%0) \n\t"
  5555. "mov %%r12, %c[r12](%0) \n\t"
  5556. "mov %%r13, %c[r13](%0) \n\t"
  5557. "mov %%r14, %c[r14](%0) \n\t"
  5558. "mov %%r15, %c[r15](%0) \n\t"
  5559. #endif
  5560. "mov %%cr2, %%" _ASM_AX " \n\t"
  5561. "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
  5562. "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
  5563. "setbe %c[fail](%0) \n\t"
  5564. ".pushsection .rodata \n\t"
  5565. ".global vmx_return \n\t"
  5566. "vmx_return: " _ASM_PTR " 2b \n\t"
  5567. ".popsection"
  5568. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  5569. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  5570. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  5571. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  5572. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  5573. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  5574. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  5575. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  5576. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  5577. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  5578. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  5579. #ifdef CONFIG_X86_64
  5580. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  5581. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  5582. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  5583. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  5584. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  5585. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  5586. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  5587. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  5588. #endif
  5589. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  5590. [wordsize]"i"(sizeof(ulong))
  5591. : "cc", "memory"
  5592. #ifdef CONFIG_X86_64
  5593. , "rax", "rbx", "rdi", "rsi"
  5594. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  5595. #else
  5596. , "eax", "ebx", "edi", "esi"
  5597. #endif
  5598. );
  5599. /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
  5600. if (debugctlmsr)
  5601. update_debugctlmsr(debugctlmsr);
  5602. #ifndef CONFIG_X86_64
  5603. /*
  5604. * The sysexit path does not restore ds/es, so we must set them to
  5605. * a reasonable value ourselves.
  5606. *
  5607. * We can't defer this to vmx_load_host_state() since that function
  5608. * may be executed in interrupt context, which saves and restore segments
  5609. * around it, nullifying its effect.
  5610. */
  5611. loadsegment(ds, __USER_DS);
  5612. loadsegment(es, __USER_DS);
  5613. #endif
  5614. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  5615. | (1 << VCPU_EXREG_RFLAGS)
  5616. | (1 << VCPU_EXREG_CPL)
  5617. | (1 << VCPU_EXREG_PDPTR)
  5618. | (1 << VCPU_EXREG_SEGMENTS)
  5619. | (1 << VCPU_EXREG_CR3));
  5620. vcpu->arch.regs_dirty = 0;
  5621. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5622. if (is_guest_mode(vcpu)) {
  5623. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5624. vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
  5625. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  5626. vmcs12->idt_vectoring_error_code =
  5627. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5628. vmcs12->vm_exit_instruction_len =
  5629. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5630. }
  5631. }
  5632. vmx->loaded_vmcs->launched = 1;
  5633. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  5634. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  5635. vmx_complete_atomic_exit(vmx);
  5636. vmx_recover_nmi_blocking(vmx);
  5637. vmx_complete_interrupts(vmx);
  5638. }
  5639. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  5640. {
  5641. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5642. free_vpid(vmx);
  5643. free_nested(vmx);
  5644. free_loaded_vmcs(vmx->loaded_vmcs);
  5645. kfree(vmx->guest_msrs);
  5646. kvm_vcpu_uninit(vcpu);
  5647. kmem_cache_free(kvm_vcpu_cache, vmx);
  5648. }
  5649. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  5650. {
  5651. int err;
  5652. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  5653. int cpu;
  5654. if (!vmx)
  5655. return ERR_PTR(-ENOMEM);
  5656. allocate_vpid(vmx);
  5657. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  5658. if (err)
  5659. goto free_vcpu;
  5660. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  5661. err = -ENOMEM;
  5662. if (!vmx->guest_msrs) {
  5663. goto uninit_vcpu;
  5664. }
  5665. vmx->loaded_vmcs = &vmx->vmcs01;
  5666. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  5667. if (!vmx->loaded_vmcs->vmcs)
  5668. goto free_msrs;
  5669. if (!vmm_exclusive)
  5670. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  5671. loaded_vmcs_init(vmx->loaded_vmcs);
  5672. if (!vmm_exclusive)
  5673. kvm_cpu_vmxoff();
  5674. cpu = get_cpu();
  5675. vmx_vcpu_load(&vmx->vcpu, cpu);
  5676. vmx->vcpu.cpu = cpu;
  5677. err = vmx_vcpu_setup(vmx);
  5678. vmx_vcpu_put(&vmx->vcpu);
  5679. put_cpu();
  5680. if (err)
  5681. goto free_vmcs;
  5682. if (vm_need_virtualize_apic_accesses(kvm))
  5683. err = alloc_apic_access_page(kvm);
  5684. if (err)
  5685. goto free_vmcs;
  5686. if (enable_ept) {
  5687. if (!kvm->arch.ept_identity_map_addr)
  5688. kvm->arch.ept_identity_map_addr =
  5689. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  5690. err = -ENOMEM;
  5691. if (alloc_identity_pagetable(kvm) != 0)
  5692. goto free_vmcs;
  5693. if (!init_rmode_identity_map(kvm))
  5694. goto free_vmcs;
  5695. }
  5696. vmx->nested.current_vmptr = -1ull;
  5697. vmx->nested.current_vmcs12 = NULL;
  5698. return &vmx->vcpu;
  5699. free_vmcs:
  5700. free_loaded_vmcs(vmx->loaded_vmcs);
  5701. free_msrs:
  5702. kfree(vmx->guest_msrs);
  5703. uninit_vcpu:
  5704. kvm_vcpu_uninit(&vmx->vcpu);
  5705. free_vcpu:
  5706. free_vpid(vmx);
  5707. kmem_cache_free(kvm_vcpu_cache, vmx);
  5708. return ERR_PTR(err);
  5709. }
  5710. static void __init vmx_check_processor_compat(void *rtn)
  5711. {
  5712. struct vmcs_config vmcs_conf;
  5713. *(int *)rtn = 0;
  5714. if (setup_vmcs_config(&vmcs_conf) < 0)
  5715. *(int *)rtn = -EIO;
  5716. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  5717. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  5718. smp_processor_id());
  5719. *(int *)rtn = -EIO;
  5720. }
  5721. }
  5722. static int get_ept_level(void)
  5723. {
  5724. return VMX_EPT_DEFAULT_GAW + 1;
  5725. }
  5726. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  5727. {
  5728. u64 ret;
  5729. /* For VT-d and EPT combination
  5730. * 1. MMIO: always map as UC
  5731. * 2. EPT with VT-d:
  5732. * a. VT-d without snooping control feature: can't guarantee the
  5733. * result, try to trust guest.
  5734. * b. VT-d with snooping control feature: snooping control feature of
  5735. * VT-d engine can guarantee the cache correctness. Just set it
  5736. * to WB to keep consistent with host. So the same as item 3.
  5737. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  5738. * consistent with host MTRR
  5739. */
  5740. if (is_mmio)
  5741. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  5742. else if (vcpu->kvm->arch.iommu_domain &&
  5743. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5744. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5745. VMX_EPT_MT_EPTE_SHIFT;
  5746. else
  5747. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5748. | VMX_EPT_IPAT_BIT;
  5749. return ret;
  5750. }
  5751. static int vmx_get_lpage_level(void)
  5752. {
  5753. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5754. return PT_DIRECTORY_LEVEL;
  5755. else
  5756. /* For shadow and EPT supported 1GB page */
  5757. return PT_PDPE_LEVEL;
  5758. }
  5759. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5760. {
  5761. struct kvm_cpuid_entry2 *best;
  5762. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5763. u32 exec_control;
  5764. vmx->rdtscp_enabled = false;
  5765. if (vmx_rdtscp_supported()) {
  5766. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5767. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5768. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5769. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5770. vmx->rdtscp_enabled = true;
  5771. else {
  5772. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5773. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5774. exec_control);
  5775. }
  5776. }
  5777. }
  5778. /* Exposing INVPCID only when PCID is exposed */
  5779. best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
  5780. if (vmx_invpcid_supported() &&
  5781. best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
  5782. guest_cpuid_has_pcid(vcpu)) {
  5783. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5784. exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
  5785. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5786. exec_control);
  5787. } else {
  5788. if (cpu_has_secondary_exec_ctrls()) {
  5789. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5790. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  5791. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5792. exec_control);
  5793. }
  5794. if (best)
  5795. best->ebx &= ~bit(X86_FEATURE_INVPCID);
  5796. }
  5797. }
  5798. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  5799. {
  5800. if (func == 1 && nested)
  5801. entry->ecx |= bit(X86_FEATURE_VMX);
  5802. }
  5803. /*
  5804. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  5805. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  5806. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  5807. * guest in a way that will both be appropriate to L1's requests, and our
  5808. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  5809. * function also has additional necessary side-effects, like setting various
  5810. * vcpu->arch fields.
  5811. */
  5812. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5813. {
  5814. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5815. u32 exec_control;
  5816. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  5817. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  5818. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  5819. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  5820. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  5821. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  5822. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  5823. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  5824. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  5825. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  5826. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  5827. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  5828. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  5829. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  5830. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  5831. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  5832. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  5833. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  5834. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  5835. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  5836. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  5837. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  5838. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  5839. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  5840. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  5841. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  5842. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  5843. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  5844. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  5845. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  5846. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  5847. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  5848. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  5849. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  5850. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  5851. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  5852. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  5853. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5854. vmcs12->vm_entry_intr_info_field);
  5855. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5856. vmcs12->vm_entry_exception_error_code);
  5857. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5858. vmcs12->vm_entry_instruction_len);
  5859. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  5860. vmcs12->guest_interruptibility_info);
  5861. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  5862. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  5863. vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
  5864. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  5865. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  5866. vmcs12->guest_pending_dbg_exceptions);
  5867. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  5868. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  5869. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  5870. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  5871. (vmcs_config.pin_based_exec_ctrl |
  5872. vmcs12->pin_based_vm_exec_control));
  5873. /*
  5874. * Whether page-faults are trapped is determined by a combination of
  5875. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  5876. * If enable_ept, L0 doesn't care about page faults and we should
  5877. * set all of these to L1's desires. However, if !enable_ept, L0 does
  5878. * care about (at least some) page faults, and because it is not easy
  5879. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  5880. * to exit on each and every L2 page fault. This is done by setting
  5881. * MASK=MATCH=0 and (see below) EB.PF=1.
  5882. * Note that below we don't need special code to set EB.PF beyond the
  5883. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  5884. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  5885. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  5886. *
  5887. * A problem with this approach (when !enable_ept) is that L1 may be
  5888. * injected with more page faults than it asked for. This could have
  5889. * caused problems, but in practice existing hypervisors don't care.
  5890. * To fix this, we will need to emulate the PFEC checking (on the L1
  5891. * page tables), using walk_addr(), when injecting PFs to L1.
  5892. */
  5893. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  5894. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  5895. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  5896. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  5897. if (cpu_has_secondary_exec_ctrls()) {
  5898. u32 exec_control = vmx_secondary_exec_control(vmx);
  5899. if (!vmx->rdtscp_enabled)
  5900. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5901. /* Take the following fields only from vmcs12 */
  5902. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5903. if (nested_cpu_has(vmcs12,
  5904. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  5905. exec_control |= vmcs12->secondary_vm_exec_control;
  5906. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  5907. /*
  5908. * Translate L1 physical address to host physical
  5909. * address for vmcs02. Keep the page pinned, so this
  5910. * physical address remains valid. We keep a reference
  5911. * to it so we can release it later.
  5912. */
  5913. if (vmx->nested.apic_access_page) /* shouldn't happen */
  5914. nested_release_page(vmx->nested.apic_access_page);
  5915. vmx->nested.apic_access_page =
  5916. nested_get_page(vcpu, vmcs12->apic_access_addr);
  5917. /*
  5918. * If translation failed, no matter: This feature asks
  5919. * to exit when accessing the given address, and if it
  5920. * can never be accessed, this feature won't do
  5921. * anything anyway.
  5922. */
  5923. if (!vmx->nested.apic_access_page)
  5924. exec_control &=
  5925. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5926. else
  5927. vmcs_write64(APIC_ACCESS_ADDR,
  5928. page_to_phys(vmx->nested.apic_access_page));
  5929. }
  5930. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5931. }
  5932. /*
  5933. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  5934. * Some constant fields are set here by vmx_set_constant_host_state().
  5935. * Other fields are different per CPU, and will be set later when
  5936. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  5937. */
  5938. vmx_set_constant_host_state();
  5939. /*
  5940. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  5941. * entry, but only if the current (host) sp changed from the value
  5942. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  5943. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  5944. * here we just force the write to happen on entry.
  5945. */
  5946. vmx->host_rsp = 0;
  5947. exec_control = vmx_exec_control(vmx); /* L0's desires */
  5948. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  5949. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  5950. exec_control &= ~CPU_BASED_TPR_SHADOW;
  5951. exec_control |= vmcs12->cpu_based_vm_exec_control;
  5952. /*
  5953. * Merging of IO and MSR bitmaps not currently supported.
  5954. * Rather, exit every time.
  5955. */
  5956. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  5957. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  5958. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  5959. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  5960. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  5961. * bitwise-or of what L1 wants to trap for L2, and what we want to
  5962. * trap. Note that CR0.TS also needs updating - we do this later.
  5963. */
  5964. update_exception_bitmap(vcpu);
  5965. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  5966. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5967. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  5968. vmcs_write32(VM_EXIT_CONTROLS,
  5969. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  5970. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  5971. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  5972. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  5973. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  5974. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  5975. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  5976. set_cr4_guest_host_mask(vmx);
  5977. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  5978. vmcs_write64(TSC_OFFSET,
  5979. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  5980. else
  5981. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  5982. if (enable_vpid) {
  5983. /*
  5984. * Trivially support vpid by letting L2s share their parent
  5985. * L1's vpid. TODO: move to a more elaborate solution, giving
  5986. * each L2 its own vpid and exposing the vpid feature to L1.
  5987. */
  5988. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  5989. vmx_flush_tlb(vcpu);
  5990. }
  5991. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  5992. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  5993. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  5994. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5995. else
  5996. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  5997. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  5998. vmx_set_efer(vcpu, vcpu->arch.efer);
  5999. /*
  6000. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  6001. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  6002. * The CR0_READ_SHADOW is what L2 should have expected to read given
  6003. * the specifications by L1; It's not enough to take
  6004. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  6005. * have more bits than L1 expected.
  6006. */
  6007. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  6008. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  6009. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  6010. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  6011. /* shadow page tables on either EPT or shadow page tables */
  6012. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  6013. kvm_mmu_reset_context(vcpu);
  6014. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  6015. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  6016. }
  6017. /*
  6018. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  6019. * for running an L2 nested guest.
  6020. */
  6021. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  6022. {
  6023. struct vmcs12 *vmcs12;
  6024. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6025. int cpu;
  6026. struct loaded_vmcs *vmcs02;
  6027. if (!nested_vmx_check_permission(vcpu) ||
  6028. !nested_vmx_check_vmcs12(vcpu))
  6029. return 1;
  6030. skip_emulated_instruction(vcpu);
  6031. vmcs12 = get_vmcs12(vcpu);
  6032. /*
  6033. * The nested entry process starts with enforcing various prerequisites
  6034. * on vmcs12 as required by the Intel SDM, and act appropriately when
  6035. * they fail: As the SDM explains, some conditions should cause the
  6036. * instruction to fail, while others will cause the instruction to seem
  6037. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  6038. * To speed up the normal (success) code path, we should avoid checking
  6039. * for misconfigurations which will anyway be caught by the processor
  6040. * when using the merged vmcs02.
  6041. */
  6042. if (vmcs12->launch_state == launch) {
  6043. nested_vmx_failValid(vcpu,
  6044. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  6045. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  6046. return 1;
  6047. }
  6048. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  6049. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  6050. /*TODO: Also verify bits beyond physical address width are 0*/
  6051. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6052. return 1;
  6053. }
  6054. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  6055. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  6056. /*TODO: Also verify bits beyond physical address width are 0*/
  6057. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6058. return 1;
  6059. }
  6060. if (vmcs12->vm_entry_msr_load_count > 0 ||
  6061. vmcs12->vm_exit_msr_load_count > 0 ||
  6062. vmcs12->vm_exit_msr_store_count > 0) {
  6063. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  6064. __func__);
  6065. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6066. return 1;
  6067. }
  6068. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  6069. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  6070. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  6071. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  6072. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  6073. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  6074. !vmx_control_verify(vmcs12->vm_exit_controls,
  6075. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  6076. !vmx_control_verify(vmcs12->vm_entry_controls,
  6077. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  6078. {
  6079. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6080. return 1;
  6081. }
  6082. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6083. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6084. nested_vmx_failValid(vcpu,
  6085. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  6086. return 1;
  6087. }
  6088. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6089. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6090. nested_vmx_entry_failure(vcpu, vmcs12,
  6091. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6092. return 1;
  6093. }
  6094. if (vmcs12->vmcs_link_pointer != -1ull) {
  6095. nested_vmx_entry_failure(vcpu, vmcs12,
  6096. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  6097. return 1;
  6098. }
  6099. /*
  6100. * We're finally done with prerequisite checking, and can start with
  6101. * the nested entry.
  6102. */
  6103. vmcs02 = nested_get_current_vmcs02(vmx);
  6104. if (!vmcs02)
  6105. return -ENOMEM;
  6106. enter_guest_mode(vcpu);
  6107. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  6108. cpu = get_cpu();
  6109. vmx->loaded_vmcs = vmcs02;
  6110. vmx_vcpu_put(vcpu);
  6111. vmx_vcpu_load(vcpu, cpu);
  6112. vcpu->cpu = cpu;
  6113. put_cpu();
  6114. vmcs12->launch_state = 1;
  6115. prepare_vmcs02(vcpu, vmcs12);
  6116. /*
  6117. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  6118. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  6119. * returned as far as L1 is concerned. It will only return (and set
  6120. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  6121. */
  6122. return 1;
  6123. }
  6124. /*
  6125. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  6126. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  6127. * This function returns the new value we should put in vmcs12.guest_cr0.
  6128. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  6129. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  6130. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  6131. * didn't trap the bit, because if L1 did, so would L0).
  6132. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  6133. * been modified by L2, and L1 knows it. So just leave the old value of
  6134. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  6135. * isn't relevant, because if L0 traps this bit it can set it to anything.
  6136. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  6137. * changed these bits, and therefore they need to be updated, but L0
  6138. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  6139. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  6140. */
  6141. static inline unsigned long
  6142. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6143. {
  6144. return
  6145. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  6146. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  6147. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  6148. vcpu->arch.cr0_guest_owned_bits));
  6149. }
  6150. static inline unsigned long
  6151. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6152. {
  6153. return
  6154. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  6155. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  6156. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  6157. vcpu->arch.cr4_guest_owned_bits));
  6158. }
  6159. /*
  6160. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  6161. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  6162. * and this function updates it to reflect the changes to the guest state while
  6163. * L2 was running (and perhaps made some exits which were handled directly by L0
  6164. * without going back to L1), and to reflect the exit reason.
  6165. * Note that we do not have to copy here all VMCS fields, just those that
  6166. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  6167. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  6168. * which already writes to vmcs12 directly.
  6169. */
  6170. void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6171. {
  6172. /* update guest state fields: */
  6173. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  6174. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  6175. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  6176. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  6177. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  6178. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  6179. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  6180. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  6181. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  6182. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  6183. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  6184. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  6185. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  6186. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  6187. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  6188. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  6189. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  6190. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  6191. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  6192. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  6193. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  6194. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  6195. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  6196. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  6197. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  6198. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  6199. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  6200. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  6201. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  6202. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  6203. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  6204. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  6205. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  6206. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  6207. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  6208. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  6209. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  6210. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  6211. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  6212. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  6213. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  6214. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  6215. vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
  6216. vmcs12->guest_interruptibility_info =
  6217. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  6218. vmcs12->guest_pending_dbg_exceptions =
  6219. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  6220. /* TODO: These cannot have changed unless we have MSR bitmaps and
  6221. * the relevant bit asks not to trap the change */
  6222. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  6223. if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
  6224. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  6225. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  6226. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  6227. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  6228. /* update exit information fields: */
  6229. vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
  6230. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  6231. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6232. vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  6233. vmcs12->idt_vectoring_info_field =
  6234. vmcs_read32(IDT_VECTORING_INFO_FIELD);
  6235. vmcs12->idt_vectoring_error_code =
  6236. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  6237. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  6238. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  6239. /* clear vm-entry fields which are to be cleared on exit */
  6240. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
  6241. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  6242. }
  6243. /*
  6244. * A part of what we need to when the nested L2 guest exits and we want to
  6245. * run its L1 parent, is to reset L1's guest state to the host state specified
  6246. * in vmcs12.
  6247. * This function is to be called not only on normal nested exit, but also on
  6248. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  6249. * Failures During or After Loading Guest State").
  6250. * This function should be called when the active VMCS is L1's (vmcs01).
  6251. */
  6252. void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6253. {
  6254. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  6255. vcpu->arch.efer = vmcs12->host_ia32_efer;
  6256. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  6257. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6258. else
  6259. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6260. vmx_set_efer(vcpu, vcpu->arch.efer);
  6261. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  6262. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  6263. /*
  6264. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  6265. * actually changed, because it depends on the current state of
  6266. * fpu_active (which may have changed).
  6267. * Note that vmx_set_cr0 refers to efer set above.
  6268. */
  6269. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  6270. /*
  6271. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  6272. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  6273. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  6274. */
  6275. update_exception_bitmap(vcpu);
  6276. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  6277. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6278. /*
  6279. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  6280. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  6281. */
  6282. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  6283. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  6284. /* shadow page tables on either EPT or shadow page tables */
  6285. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  6286. kvm_mmu_reset_context(vcpu);
  6287. if (enable_vpid) {
  6288. /*
  6289. * Trivially support vpid by letting L2s share their parent
  6290. * L1's vpid. TODO: move to a more elaborate solution, giving
  6291. * each L2 its own vpid and exposing the vpid feature to L1.
  6292. */
  6293. vmx_flush_tlb(vcpu);
  6294. }
  6295. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  6296. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  6297. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  6298. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  6299. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  6300. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  6301. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  6302. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  6303. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  6304. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  6305. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  6306. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  6307. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  6308. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  6309. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6310. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6311. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6312. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6313. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6314. vmcs12->host_ia32_perf_global_ctrl);
  6315. }
  6316. /*
  6317. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6318. * and modify vmcs12 to make it see what it would expect to see there if
  6319. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6320. */
  6321. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6322. {
  6323. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6324. int cpu;
  6325. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6326. leave_guest_mode(vcpu);
  6327. prepare_vmcs12(vcpu, vmcs12);
  6328. cpu = get_cpu();
  6329. vmx->loaded_vmcs = &vmx->vmcs01;
  6330. vmx_vcpu_put(vcpu);
  6331. vmx_vcpu_load(vcpu, cpu);
  6332. vcpu->cpu = cpu;
  6333. put_cpu();
  6334. /* if no vmcs02 cache requested, remove the one we used */
  6335. if (VMCS02_POOL_SIZE == 0)
  6336. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  6337. load_vmcs12_host_state(vcpu, vmcs12);
  6338. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  6339. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6340. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  6341. vmx->host_rsp = 0;
  6342. /* Unpin physical memory we referred to in vmcs02 */
  6343. if (vmx->nested.apic_access_page) {
  6344. nested_release_page(vmx->nested.apic_access_page);
  6345. vmx->nested.apic_access_page = 0;
  6346. }
  6347. /*
  6348. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  6349. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  6350. * success or failure flag accordingly.
  6351. */
  6352. if (unlikely(vmx->fail)) {
  6353. vmx->fail = 0;
  6354. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  6355. } else
  6356. nested_vmx_succeed(vcpu);
  6357. }
  6358. /*
  6359. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  6360. * 23.7 "VM-entry failures during or after loading guest state" (this also
  6361. * lists the acceptable exit-reason and exit-qualification parameters).
  6362. * It should only be called before L2 actually succeeded to run, and when
  6363. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  6364. */
  6365. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  6366. struct vmcs12 *vmcs12,
  6367. u32 reason, unsigned long qualification)
  6368. {
  6369. load_vmcs12_host_state(vcpu, vmcs12);
  6370. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  6371. vmcs12->exit_qualification = qualification;
  6372. nested_vmx_succeed(vcpu);
  6373. }
  6374. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  6375. struct x86_instruction_info *info,
  6376. enum x86_intercept_stage stage)
  6377. {
  6378. return X86EMUL_CONTINUE;
  6379. }
  6380. static struct kvm_x86_ops vmx_x86_ops = {
  6381. .cpu_has_kvm_support = cpu_has_kvm_support,
  6382. .disabled_by_bios = vmx_disabled_by_bios,
  6383. .hardware_setup = hardware_setup,
  6384. .hardware_unsetup = hardware_unsetup,
  6385. .check_processor_compatibility = vmx_check_processor_compat,
  6386. .hardware_enable = hardware_enable,
  6387. .hardware_disable = hardware_disable,
  6388. .cpu_has_accelerated_tpr = report_flexpriority,
  6389. .vcpu_create = vmx_create_vcpu,
  6390. .vcpu_free = vmx_free_vcpu,
  6391. .vcpu_reset = vmx_vcpu_reset,
  6392. .prepare_guest_switch = vmx_save_host_state,
  6393. .vcpu_load = vmx_vcpu_load,
  6394. .vcpu_put = vmx_vcpu_put,
  6395. .update_db_bp_intercept = update_exception_bitmap,
  6396. .get_msr = vmx_get_msr,
  6397. .set_msr = vmx_set_msr,
  6398. .get_segment_base = vmx_get_segment_base,
  6399. .get_segment = vmx_get_segment,
  6400. .set_segment = vmx_set_segment,
  6401. .get_cpl = vmx_get_cpl,
  6402. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  6403. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  6404. .decache_cr3 = vmx_decache_cr3,
  6405. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  6406. .set_cr0 = vmx_set_cr0,
  6407. .set_cr3 = vmx_set_cr3,
  6408. .set_cr4 = vmx_set_cr4,
  6409. .set_efer = vmx_set_efer,
  6410. .get_idt = vmx_get_idt,
  6411. .set_idt = vmx_set_idt,
  6412. .get_gdt = vmx_get_gdt,
  6413. .set_gdt = vmx_set_gdt,
  6414. .set_dr7 = vmx_set_dr7,
  6415. .cache_reg = vmx_cache_reg,
  6416. .get_rflags = vmx_get_rflags,
  6417. .set_rflags = vmx_set_rflags,
  6418. .fpu_activate = vmx_fpu_activate,
  6419. .fpu_deactivate = vmx_fpu_deactivate,
  6420. .tlb_flush = vmx_flush_tlb,
  6421. .run = vmx_vcpu_run,
  6422. .handle_exit = vmx_handle_exit,
  6423. .skip_emulated_instruction = skip_emulated_instruction,
  6424. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  6425. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  6426. .patch_hypercall = vmx_patch_hypercall,
  6427. .set_irq = vmx_inject_irq,
  6428. .set_nmi = vmx_inject_nmi,
  6429. .queue_exception = vmx_queue_exception,
  6430. .cancel_injection = vmx_cancel_injection,
  6431. .interrupt_allowed = vmx_interrupt_allowed,
  6432. .nmi_allowed = vmx_nmi_allowed,
  6433. .get_nmi_mask = vmx_get_nmi_mask,
  6434. .set_nmi_mask = vmx_set_nmi_mask,
  6435. .enable_nmi_window = enable_nmi_window,
  6436. .enable_irq_window = enable_irq_window,
  6437. .update_cr8_intercept = update_cr8_intercept,
  6438. .set_tss_addr = vmx_set_tss_addr,
  6439. .get_tdp_level = get_ept_level,
  6440. .get_mt_mask = vmx_get_mt_mask,
  6441. .get_exit_info = vmx_get_exit_info,
  6442. .get_lpage_level = vmx_get_lpage_level,
  6443. .cpuid_update = vmx_cpuid_update,
  6444. .rdtscp_supported = vmx_rdtscp_supported,
  6445. .invpcid_supported = vmx_invpcid_supported,
  6446. .set_supported_cpuid = vmx_set_supported_cpuid,
  6447. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  6448. .set_tsc_khz = vmx_set_tsc_khz,
  6449. .read_tsc_offset = vmx_read_tsc_offset,
  6450. .write_tsc_offset = vmx_write_tsc_offset,
  6451. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  6452. .compute_tsc_offset = vmx_compute_tsc_offset,
  6453. .read_l1_tsc = vmx_read_l1_tsc,
  6454. .set_tdp_cr3 = vmx_set_cr3,
  6455. .check_intercept = vmx_check_intercept,
  6456. };
  6457. static int __init vmx_init(void)
  6458. {
  6459. int r, i;
  6460. rdmsrl_safe(MSR_EFER, &host_efer);
  6461. for (i = 0; i < NR_VMX_MSR; ++i)
  6462. kvm_define_shared_msr(i, vmx_msr_index[i]);
  6463. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  6464. if (!vmx_io_bitmap_a)
  6465. return -ENOMEM;
  6466. r = -ENOMEM;
  6467. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  6468. if (!vmx_io_bitmap_b)
  6469. goto out;
  6470. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  6471. if (!vmx_msr_bitmap_legacy)
  6472. goto out1;
  6473. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  6474. if (!vmx_msr_bitmap_longmode)
  6475. goto out2;
  6476. /*
  6477. * Allow direct access to the PC debug port (it is often used for I/O
  6478. * delays, but the vmexits simply slow things down).
  6479. */
  6480. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  6481. clear_bit(0x80, vmx_io_bitmap_a);
  6482. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  6483. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  6484. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  6485. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  6486. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  6487. __alignof__(struct vcpu_vmx), THIS_MODULE);
  6488. if (r)
  6489. goto out3;
  6490. #ifdef CONFIG_KEXEC
  6491. rcu_assign_pointer(crash_vmclear_loaded_vmcss,
  6492. crash_vmclear_local_loaded_vmcss);
  6493. #endif
  6494. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  6495. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  6496. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  6497. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  6498. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  6499. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  6500. if (enable_ept) {
  6501. kvm_mmu_set_mask_ptes(0ull,
  6502. (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
  6503. (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
  6504. 0ull, VMX_EPT_EXECUTABLE_MASK);
  6505. ept_set_mmio_spte_mask();
  6506. kvm_enable_tdp();
  6507. } else
  6508. kvm_disable_tdp();
  6509. return 0;
  6510. out3:
  6511. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6512. out2:
  6513. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6514. out1:
  6515. free_page((unsigned long)vmx_io_bitmap_b);
  6516. out:
  6517. free_page((unsigned long)vmx_io_bitmap_a);
  6518. return r;
  6519. }
  6520. static void __exit vmx_exit(void)
  6521. {
  6522. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6523. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6524. free_page((unsigned long)vmx_io_bitmap_b);
  6525. free_page((unsigned long)vmx_io_bitmap_a);
  6526. #ifdef CONFIG_KEXEC
  6527. rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
  6528. synchronize_rcu();
  6529. #endif
  6530. kvm_exit();
  6531. }
  6532. module_init(vmx_init)
  6533. module_exit(vmx_exit)