process.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/errno.h>
  3. #include <linux/kernel.h>
  4. #include <linux/mm.h>
  5. #include <linux/smp.h>
  6. #include <linux/prctl.h>
  7. #include <linux/slab.h>
  8. #include <linux/sched.h>
  9. #include <linux/module.h>
  10. #include <linux/pm.h>
  11. #include <linux/clockchips.h>
  12. #include <linux/random.h>
  13. #include <linux/user-return-notifier.h>
  14. #include <linux/dmi.h>
  15. #include <linux/utsname.h>
  16. #include <linux/stackprotector.h>
  17. #include <linux/tick.h>
  18. #include <linux/cpuidle.h>
  19. #include <trace/events/power.h>
  20. #include <linux/hw_breakpoint.h>
  21. #include <asm/cpu.h>
  22. #include <asm/apic.h>
  23. #include <asm/syscalls.h>
  24. #include <asm/idle.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/i387.h>
  27. #include <asm/fpu-internal.h>
  28. #include <asm/debugreg.h>
  29. #include <asm/nmi.h>
  30. /*
  31. * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  32. * no more per-task TSS's. The TSS size is kept cacheline-aligned
  33. * so they are allowed to end up in the .data..cacheline_aligned
  34. * section. Since TSS's are completely CPU-local, we want them
  35. * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  36. */
  37. DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
  38. #ifdef CONFIG_X86_64
  39. static DEFINE_PER_CPU(unsigned char, is_idle);
  40. static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  41. void idle_notifier_register(struct notifier_block *n)
  42. {
  43. atomic_notifier_chain_register(&idle_notifier, n);
  44. }
  45. EXPORT_SYMBOL_GPL(idle_notifier_register);
  46. void idle_notifier_unregister(struct notifier_block *n)
  47. {
  48. atomic_notifier_chain_unregister(&idle_notifier, n);
  49. }
  50. EXPORT_SYMBOL_GPL(idle_notifier_unregister);
  51. #endif
  52. struct kmem_cache *task_xstate_cachep;
  53. EXPORT_SYMBOL_GPL(task_xstate_cachep);
  54. /*
  55. * this gets called so that we can store lazy state into memory and copy the
  56. * current task into the new thread.
  57. */
  58. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  59. {
  60. int ret;
  61. *dst = *src;
  62. if (fpu_allocated(&src->thread.fpu)) {
  63. memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
  64. ret = fpu_alloc(&dst->thread.fpu);
  65. if (ret)
  66. return ret;
  67. fpu_copy(dst, src);
  68. }
  69. return 0;
  70. }
  71. void free_thread_xstate(struct task_struct *tsk)
  72. {
  73. fpu_free(&tsk->thread.fpu);
  74. }
  75. void arch_release_task_struct(struct task_struct *tsk)
  76. {
  77. free_thread_xstate(tsk);
  78. }
  79. void arch_task_cache_init(void)
  80. {
  81. task_xstate_cachep =
  82. kmem_cache_create("task_xstate", xstate_size,
  83. __alignof__(union thread_xstate),
  84. SLAB_PANIC | SLAB_NOTRACK, NULL);
  85. }
  86. /*
  87. * Free current thread data structures etc..
  88. */
  89. void exit_thread(void)
  90. {
  91. struct task_struct *me = current;
  92. struct thread_struct *t = &me->thread;
  93. unsigned long *bp = t->io_bitmap_ptr;
  94. if (bp) {
  95. struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
  96. t->io_bitmap_ptr = NULL;
  97. clear_thread_flag(TIF_IO_BITMAP);
  98. /*
  99. * Careful, clear this in the TSS too:
  100. */
  101. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  102. t->io_bitmap_max = 0;
  103. put_cpu();
  104. kfree(bp);
  105. }
  106. drop_fpu(me);
  107. }
  108. void show_regs_common(void)
  109. {
  110. const char *vendor, *product, *board;
  111. vendor = dmi_get_system_info(DMI_SYS_VENDOR);
  112. if (!vendor)
  113. vendor = "";
  114. product = dmi_get_system_info(DMI_PRODUCT_NAME);
  115. if (!product)
  116. product = "";
  117. /* Board Name is optional */
  118. board = dmi_get_system_info(DMI_BOARD_NAME);
  119. printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s %s%s%s\n",
  120. current->pid, current->comm, print_tainted(),
  121. init_utsname()->release,
  122. (int)strcspn(init_utsname()->version, " "),
  123. init_utsname()->version,
  124. vendor, product,
  125. board ? "/" : "",
  126. board ? board : "");
  127. }
  128. void flush_thread(void)
  129. {
  130. struct task_struct *tsk = current;
  131. flush_ptrace_hw_breakpoint(tsk);
  132. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  133. drop_init_fpu(tsk);
  134. /*
  135. * Free the FPU state for non xsave platforms. They get reallocated
  136. * lazily at the first use.
  137. */
  138. if (!use_eager_fpu())
  139. free_thread_xstate(tsk);
  140. }
  141. static void hard_disable_TSC(void)
  142. {
  143. write_cr4(read_cr4() | X86_CR4_TSD);
  144. }
  145. void disable_TSC(void)
  146. {
  147. preempt_disable();
  148. if (!test_and_set_thread_flag(TIF_NOTSC))
  149. /*
  150. * Must flip the CPU state synchronously with
  151. * TIF_NOTSC in the current running context.
  152. */
  153. hard_disable_TSC();
  154. preempt_enable();
  155. }
  156. static void hard_enable_TSC(void)
  157. {
  158. write_cr4(read_cr4() & ~X86_CR4_TSD);
  159. }
  160. static void enable_TSC(void)
  161. {
  162. preempt_disable();
  163. if (test_and_clear_thread_flag(TIF_NOTSC))
  164. /*
  165. * Must flip the CPU state synchronously with
  166. * TIF_NOTSC in the current running context.
  167. */
  168. hard_enable_TSC();
  169. preempt_enable();
  170. }
  171. int get_tsc_mode(unsigned long adr)
  172. {
  173. unsigned int val;
  174. if (test_thread_flag(TIF_NOTSC))
  175. val = PR_TSC_SIGSEGV;
  176. else
  177. val = PR_TSC_ENABLE;
  178. return put_user(val, (unsigned int __user *)adr);
  179. }
  180. int set_tsc_mode(unsigned int val)
  181. {
  182. if (val == PR_TSC_SIGSEGV)
  183. disable_TSC();
  184. else if (val == PR_TSC_ENABLE)
  185. enable_TSC();
  186. else
  187. return -EINVAL;
  188. return 0;
  189. }
  190. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  191. struct tss_struct *tss)
  192. {
  193. struct thread_struct *prev, *next;
  194. prev = &prev_p->thread;
  195. next = &next_p->thread;
  196. if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
  197. test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
  198. unsigned long debugctl = get_debugctlmsr();
  199. debugctl &= ~DEBUGCTLMSR_BTF;
  200. if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
  201. debugctl |= DEBUGCTLMSR_BTF;
  202. update_debugctlmsr(debugctl);
  203. }
  204. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  205. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  206. /* prev and next are different */
  207. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  208. hard_disable_TSC();
  209. else
  210. hard_enable_TSC();
  211. }
  212. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  213. /*
  214. * Copy the relevant range of the IO bitmap.
  215. * Normally this is 128 bytes or less:
  216. */
  217. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  218. max(prev->io_bitmap_max, next->io_bitmap_max));
  219. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  220. /*
  221. * Clear any possible leftover bits:
  222. */
  223. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  224. }
  225. propagate_user_return_notify(prev_p, next_p);
  226. }
  227. /*
  228. * Idle related variables and functions
  229. */
  230. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  231. EXPORT_SYMBOL(boot_option_idle_override);
  232. /*
  233. * Powermanagement idle function, if any..
  234. */
  235. void (*pm_idle)(void);
  236. #ifdef CONFIG_APM_MODULE
  237. EXPORT_SYMBOL(pm_idle);
  238. #endif
  239. #ifndef CONFIG_SMP
  240. static inline void play_dead(void)
  241. {
  242. BUG();
  243. }
  244. #endif
  245. #ifdef CONFIG_X86_64
  246. void enter_idle(void)
  247. {
  248. this_cpu_write(is_idle, 1);
  249. atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
  250. }
  251. static void __exit_idle(void)
  252. {
  253. if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
  254. return;
  255. atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
  256. }
  257. /* Called from interrupts to signify idle end */
  258. void exit_idle(void)
  259. {
  260. /* idle loop has pid 0 */
  261. if (current->pid)
  262. return;
  263. __exit_idle();
  264. }
  265. #endif
  266. /*
  267. * The idle thread. There's no useful work to be
  268. * done, so just try to conserve power and have a
  269. * low exit latency (ie sit in a loop waiting for
  270. * somebody to say that they'd like to reschedule)
  271. */
  272. void cpu_idle(void)
  273. {
  274. /*
  275. * If we're the non-boot CPU, nothing set the stack canary up
  276. * for us. CPU0 already has it initialized but no harm in
  277. * doing it again. This is a good place for updating it, as
  278. * we wont ever return from this function (so the invalid
  279. * canaries already on the stack wont ever trigger).
  280. */
  281. boot_init_stack_canary();
  282. current_thread_info()->status |= TS_POLLING;
  283. while (1) {
  284. tick_nohz_idle_enter();
  285. while (!need_resched()) {
  286. rmb();
  287. if (cpu_is_offline(smp_processor_id()))
  288. play_dead();
  289. /*
  290. * Idle routines should keep interrupts disabled
  291. * from here on, until they go to idle.
  292. * Otherwise, idle callbacks can misfire.
  293. */
  294. local_touch_nmi();
  295. local_irq_disable();
  296. enter_idle();
  297. /* Don't trace irqs off for idle */
  298. stop_critical_timings();
  299. /* enter_idle() needs rcu for notifiers */
  300. rcu_idle_enter();
  301. if (cpuidle_idle_call())
  302. pm_idle();
  303. rcu_idle_exit();
  304. start_critical_timings();
  305. /* In many cases the interrupt that ended idle
  306. has already called exit_idle. But some idle
  307. loops can be woken up without interrupt. */
  308. __exit_idle();
  309. }
  310. tick_nohz_idle_exit();
  311. preempt_enable_no_resched();
  312. schedule();
  313. preempt_disable();
  314. }
  315. }
  316. /*
  317. * We use this if we don't have any better
  318. * idle routine..
  319. */
  320. void default_idle(void)
  321. {
  322. trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
  323. trace_cpu_idle_rcuidle(1, smp_processor_id());
  324. current_thread_info()->status &= ~TS_POLLING;
  325. /*
  326. * TS_POLLING-cleared state must be visible before we
  327. * test NEED_RESCHED:
  328. */
  329. smp_mb();
  330. if (!need_resched())
  331. safe_halt(); /* enables interrupts racelessly */
  332. else
  333. local_irq_enable();
  334. current_thread_info()->status |= TS_POLLING;
  335. trace_power_end_rcuidle(smp_processor_id());
  336. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  337. }
  338. #ifdef CONFIG_APM_MODULE
  339. EXPORT_SYMBOL(default_idle);
  340. #endif
  341. bool set_pm_idle_to_default(void)
  342. {
  343. bool ret = !!pm_idle;
  344. pm_idle = default_idle;
  345. return ret;
  346. }
  347. void stop_this_cpu(void *dummy)
  348. {
  349. local_irq_disable();
  350. /*
  351. * Remove this CPU:
  352. */
  353. set_cpu_online(smp_processor_id(), false);
  354. disable_local_APIC();
  355. for (;;) {
  356. if (hlt_works(smp_processor_id()))
  357. halt();
  358. }
  359. }
  360. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  361. static void mwait_idle(void)
  362. {
  363. if (!need_resched()) {
  364. trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
  365. trace_cpu_idle_rcuidle(1, smp_processor_id());
  366. if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
  367. clflush((void *)&current_thread_info()->flags);
  368. __monitor((void *)&current_thread_info()->flags, 0, 0);
  369. smp_mb();
  370. if (!need_resched())
  371. __sti_mwait(0, 0);
  372. else
  373. local_irq_enable();
  374. trace_power_end_rcuidle(smp_processor_id());
  375. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  376. } else
  377. local_irq_enable();
  378. }
  379. /*
  380. * On SMP it's slightly faster (but much more power-consuming!)
  381. * to poll the ->work.need_resched flag instead of waiting for the
  382. * cross-CPU IPI to arrive. Use this option with caution.
  383. */
  384. static void poll_idle(void)
  385. {
  386. trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
  387. trace_cpu_idle_rcuidle(0, smp_processor_id());
  388. local_irq_enable();
  389. while (!need_resched())
  390. cpu_relax();
  391. trace_power_end_rcuidle(smp_processor_id());
  392. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  393. }
  394. /*
  395. * mwait selection logic:
  396. *
  397. * It depends on the CPU. For AMD CPUs that support MWAIT this is
  398. * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
  399. * then depend on a clock divisor and current Pstate of the core. If
  400. * all cores of a processor are in halt state (C1) the processor can
  401. * enter the C1E (C1 enhanced) state. If mwait is used this will never
  402. * happen.
  403. *
  404. * idle=mwait overrides this decision and forces the usage of mwait.
  405. */
  406. #define MWAIT_INFO 0x05
  407. #define MWAIT_ECX_EXTENDED_INFO 0x01
  408. #define MWAIT_EDX_C1 0xf0
  409. int mwait_usable(const struct cpuinfo_x86 *c)
  410. {
  411. u32 eax, ebx, ecx, edx;
  412. /* Use mwait if idle=mwait boot option is given */
  413. if (boot_option_idle_override == IDLE_FORCE_MWAIT)
  414. return 1;
  415. /*
  416. * Any idle= boot option other than idle=mwait means that we must not
  417. * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
  418. */
  419. if (boot_option_idle_override != IDLE_NO_OVERRIDE)
  420. return 0;
  421. if (c->cpuid_level < MWAIT_INFO)
  422. return 0;
  423. cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
  424. /* Check, whether EDX has extended info about MWAIT */
  425. if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
  426. return 1;
  427. /*
  428. * edx enumeratios MONITOR/MWAIT extensions. Check, whether
  429. * C1 supports MWAIT
  430. */
  431. return (edx & MWAIT_EDX_C1);
  432. }
  433. bool amd_e400_c1e_detected;
  434. EXPORT_SYMBOL(amd_e400_c1e_detected);
  435. static cpumask_var_t amd_e400_c1e_mask;
  436. void amd_e400_remove_cpu(int cpu)
  437. {
  438. if (amd_e400_c1e_mask != NULL)
  439. cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
  440. }
  441. /*
  442. * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
  443. * pending message MSR. If we detect C1E, then we handle it the same
  444. * way as C3 power states (local apic timer and TSC stop)
  445. */
  446. static void amd_e400_idle(void)
  447. {
  448. if (need_resched())
  449. return;
  450. if (!amd_e400_c1e_detected) {
  451. u32 lo, hi;
  452. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  453. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  454. amd_e400_c1e_detected = true;
  455. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  456. mark_tsc_unstable("TSC halt in AMD C1E");
  457. pr_info("System has AMD C1E enabled\n");
  458. }
  459. }
  460. if (amd_e400_c1e_detected) {
  461. int cpu = smp_processor_id();
  462. if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
  463. cpumask_set_cpu(cpu, amd_e400_c1e_mask);
  464. /*
  465. * Force broadcast so ACPI can not interfere.
  466. */
  467. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
  468. &cpu);
  469. pr_info("Switch to broadcast mode on CPU%d\n", cpu);
  470. }
  471. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
  472. default_idle();
  473. /*
  474. * The switch back from broadcast mode needs to be
  475. * called with interrupts disabled.
  476. */
  477. local_irq_disable();
  478. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
  479. local_irq_enable();
  480. } else
  481. default_idle();
  482. }
  483. void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
  484. {
  485. #ifdef CONFIG_SMP
  486. if (pm_idle == poll_idle && smp_num_siblings > 1) {
  487. pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
  488. }
  489. #endif
  490. if (pm_idle)
  491. return;
  492. if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
  493. /*
  494. * One CPU supports mwait => All CPUs supports mwait
  495. */
  496. pr_info("using mwait in idle threads\n");
  497. pm_idle = mwait_idle;
  498. } else if (cpu_has_amd_erratum(amd_erratum_400)) {
  499. /* E400: APIC timer interrupt does not wake up CPU from C1e */
  500. pr_info("using AMD E400 aware idle routine\n");
  501. pm_idle = amd_e400_idle;
  502. } else
  503. pm_idle = default_idle;
  504. }
  505. void __init init_amd_e400_c1e_mask(void)
  506. {
  507. /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
  508. if (pm_idle == amd_e400_idle)
  509. zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
  510. }
  511. static int __init idle_setup(char *str)
  512. {
  513. if (!str)
  514. return -EINVAL;
  515. if (!strcmp(str, "poll")) {
  516. pr_info("using polling idle threads\n");
  517. pm_idle = poll_idle;
  518. boot_option_idle_override = IDLE_POLL;
  519. } else if (!strcmp(str, "mwait")) {
  520. boot_option_idle_override = IDLE_FORCE_MWAIT;
  521. WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
  522. } else if (!strcmp(str, "halt")) {
  523. /*
  524. * When the boot option of idle=halt is added, halt is
  525. * forced to be used for CPU idle. In such case CPU C2/C3
  526. * won't be used again.
  527. * To continue to load the CPU idle driver, don't touch
  528. * the boot_option_idle_override.
  529. */
  530. pm_idle = default_idle;
  531. boot_option_idle_override = IDLE_HALT;
  532. } else if (!strcmp(str, "nomwait")) {
  533. /*
  534. * If the boot option of "idle=nomwait" is added,
  535. * it means that mwait will be disabled for CPU C2/C3
  536. * states. In such case it won't touch the variable
  537. * of boot_option_idle_override.
  538. */
  539. boot_option_idle_override = IDLE_NOMWAIT;
  540. } else
  541. return -1;
  542. return 0;
  543. }
  544. early_param("idle", idle_setup);
  545. unsigned long arch_align_stack(unsigned long sp)
  546. {
  547. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  548. sp -= get_random_int() % 8192;
  549. return sp & ~0xf;
  550. }
  551. unsigned long arch_randomize_brk(struct mm_struct *mm)
  552. {
  553. unsigned long range_end = mm->brk + 0x02000000;
  554. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  555. }