perf_event.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061
  1. /*
  2. * Performance events x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10. * Copyright (C) 2009 Google, Inc., Stephane Eranian
  11. *
  12. * For licencing details see kernel-base/COPYING
  13. */
  14. #include <linux/perf_event.h>
  15. #include <linux/capability.h>
  16. #include <linux/notifier.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/module.h>
  20. #include <linux/kdebug.h>
  21. #include <linux/sched.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/slab.h>
  24. #include <linux/cpu.h>
  25. #include <linux/bitops.h>
  26. #include <linux/device.h>
  27. #include <asm/apic.h>
  28. #include <asm/stacktrace.h>
  29. #include <asm/nmi.h>
  30. #include <asm/smp.h>
  31. #include <asm/alternative.h>
  32. #include <asm/timer.h>
  33. #include <asm/desc.h>
  34. #include <asm/ldt.h>
  35. #include "perf_event.h"
  36. struct x86_pmu x86_pmu __read_mostly;
  37. DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  38. .enabled = 1,
  39. };
  40. u64 __read_mostly hw_cache_event_ids
  41. [PERF_COUNT_HW_CACHE_MAX]
  42. [PERF_COUNT_HW_CACHE_OP_MAX]
  43. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  44. u64 __read_mostly hw_cache_extra_regs
  45. [PERF_COUNT_HW_CACHE_MAX]
  46. [PERF_COUNT_HW_CACHE_OP_MAX]
  47. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  48. /*
  49. * Propagate event elapsed time into the generic event.
  50. * Can only be executed on the CPU where the event is active.
  51. * Returns the delta events processed.
  52. */
  53. u64 x86_perf_event_update(struct perf_event *event)
  54. {
  55. struct hw_perf_event *hwc = &event->hw;
  56. int shift = 64 - x86_pmu.cntval_bits;
  57. u64 prev_raw_count, new_raw_count;
  58. int idx = hwc->idx;
  59. s64 delta;
  60. if (idx == INTEL_PMC_IDX_FIXED_BTS)
  61. return 0;
  62. /*
  63. * Careful: an NMI might modify the previous event value.
  64. *
  65. * Our tactic to handle this is to first atomically read and
  66. * exchange a new raw count - then add that new-prev delta
  67. * count to the generic event atomically:
  68. */
  69. again:
  70. prev_raw_count = local64_read(&hwc->prev_count);
  71. rdpmcl(hwc->event_base_rdpmc, new_raw_count);
  72. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  73. new_raw_count) != prev_raw_count)
  74. goto again;
  75. /*
  76. * Now we have the new raw value and have updated the prev
  77. * timestamp already. We can now calculate the elapsed delta
  78. * (event-)time and add that to the generic event.
  79. *
  80. * Careful, not all hw sign-extends above the physical width
  81. * of the count.
  82. */
  83. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  84. delta >>= shift;
  85. local64_add(delta, &event->count);
  86. local64_sub(delta, &hwc->period_left);
  87. return new_raw_count;
  88. }
  89. /*
  90. * Find and validate any extra registers to set up.
  91. */
  92. static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
  93. {
  94. struct hw_perf_event_extra *reg;
  95. struct extra_reg *er;
  96. reg = &event->hw.extra_reg;
  97. if (!x86_pmu.extra_regs)
  98. return 0;
  99. for (er = x86_pmu.extra_regs; er->msr; er++) {
  100. if (er->event != (config & er->config_mask))
  101. continue;
  102. if (event->attr.config1 & ~er->valid_mask)
  103. return -EINVAL;
  104. reg->idx = er->idx;
  105. reg->config = event->attr.config1;
  106. reg->reg = er->msr;
  107. break;
  108. }
  109. return 0;
  110. }
  111. static atomic_t active_events;
  112. static DEFINE_MUTEX(pmc_reserve_mutex);
  113. #ifdef CONFIG_X86_LOCAL_APIC
  114. static bool reserve_pmc_hardware(void)
  115. {
  116. int i;
  117. for (i = 0; i < x86_pmu.num_counters; i++) {
  118. if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
  119. goto perfctr_fail;
  120. }
  121. for (i = 0; i < x86_pmu.num_counters; i++) {
  122. if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
  123. goto eventsel_fail;
  124. }
  125. return true;
  126. eventsel_fail:
  127. for (i--; i >= 0; i--)
  128. release_evntsel_nmi(x86_pmu_config_addr(i));
  129. i = x86_pmu.num_counters;
  130. perfctr_fail:
  131. for (i--; i >= 0; i--)
  132. release_perfctr_nmi(x86_pmu_event_addr(i));
  133. return false;
  134. }
  135. static void release_pmc_hardware(void)
  136. {
  137. int i;
  138. for (i = 0; i < x86_pmu.num_counters; i++) {
  139. release_perfctr_nmi(x86_pmu_event_addr(i));
  140. release_evntsel_nmi(x86_pmu_config_addr(i));
  141. }
  142. }
  143. #else
  144. static bool reserve_pmc_hardware(void) { return true; }
  145. static void release_pmc_hardware(void) {}
  146. #endif
  147. static bool check_hw_exists(void)
  148. {
  149. u64 val, val_new = ~0;
  150. int i, reg, ret = 0;
  151. /*
  152. * Check to see if the BIOS enabled any of the counters, if so
  153. * complain and bail.
  154. */
  155. for (i = 0; i < x86_pmu.num_counters; i++) {
  156. reg = x86_pmu_config_addr(i);
  157. ret = rdmsrl_safe(reg, &val);
  158. if (ret)
  159. goto msr_fail;
  160. if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
  161. goto bios_fail;
  162. }
  163. if (x86_pmu.num_counters_fixed) {
  164. reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  165. ret = rdmsrl_safe(reg, &val);
  166. if (ret)
  167. goto msr_fail;
  168. for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
  169. if (val & (0x03 << i*4))
  170. goto bios_fail;
  171. }
  172. }
  173. /*
  174. * Read the current value, change it and read it back to see if it
  175. * matches, this is needed to detect certain hardware emulators
  176. * (qemu/kvm) that don't trap on the MSR access and always return 0s.
  177. */
  178. reg = x86_pmu_event_addr(0);
  179. if (rdmsrl_safe(reg, &val))
  180. goto msr_fail;
  181. val ^= 0xffffUL;
  182. ret = wrmsrl_safe(reg, val);
  183. ret |= rdmsrl_safe(reg, &val_new);
  184. if (ret || val != val_new)
  185. goto msr_fail;
  186. return true;
  187. bios_fail:
  188. /*
  189. * We still allow the PMU driver to operate:
  190. */
  191. printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
  192. printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
  193. return true;
  194. msr_fail:
  195. printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
  196. printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
  197. return false;
  198. }
  199. static void hw_perf_event_destroy(struct perf_event *event)
  200. {
  201. if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
  202. release_pmc_hardware();
  203. release_ds_buffers();
  204. mutex_unlock(&pmc_reserve_mutex);
  205. }
  206. }
  207. static inline int x86_pmu_initialized(void)
  208. {
  209. return x86_pmu.handle_irq != NULL;
  210. }
  211. static inline int
  212. set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
  213. {
  214. struct perf_event_attr *attr = &event->attr;
  215. unsigned int cache_type, cache_op, cache_result;
  216. u64 config, val;
  217. config = attr->config;
  218. cache_type = (config >> 0) & 0xff;
  219. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  220. return -EINVAL;
  221. cache_op = (config >> 8) & 0xff;
  222. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  223. return -EINVAL;
  224. cache_result = (config >> 16) & 0xff;
  225. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  226. return -EINVAL;
  227. val = hw_cache_event_ids[cache_type][cache_op][cache_result];
  228. if (val == 0)
  229. return -ENOENT;
  230. if (val == -1)
  231. return -EINVAL;
  232. hwc->config |= val;
  233. attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
  234. return x86_pmu_extra_regs(val, event);
  235. }
  236. int x86_setup_perfctr(struct perf_event *event)
  237. {
  238. struct perf_event_attr *attr = &event->attr;
  239. struct hw_perf_event *hwc = &event->hw;
  240. u64 config;
  241. if (!is_sampling_event(event)) {
  242. hwc->sample_period = x86_pmu.max_period;
  243. hwc->last_period = hwc->sample_period;
  244. local64_set(&hwc->period_left, hwc->sample_period);
  245. } else {
  246. /*
  247. * If we have a PMU initialized but no APIC
  248. * interrupts, we cannot sample hardware
  249. * events (user-space has to fall back and
  250. * sample via a hrtimer based software event):
  251. */
  252. if (!x86_pmu.apic)
  253. return -EOPNOTSUPP;
  254. }
  255. if (attr->type == PERF_TYPE_RAW)
  256. return x86_pmu_extra_regs(event->attr.config, event);
  257. if (attr->type == PERF_TYPE_HW_CACHE)
  258. return set_ext_hw_attr(hwc, event);
  259. if (attr->config >= x86_pmu.max_events)
  260. return -EINVAL;
  261. /*
  262. * The generic map:
  263. */
  264. config = x86_pmu.event_map(attr->config);
  265. if (config == 0)
  266. return -ENOENT;
  267. if (config == -1LL)
  268. return -EINVAL;
  269. /*
  270. * Branch tracing:
  271. */
  272. if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
  273. !attr->freq && hwc->sample_period == 1) {
  274. /* BTS is not supported by this architecture. */
  275. if (!x86_pmu.bts_active)
  276. return -EOPNOTSUPP;
  277. /* BTS is currently only allowed for user-mode. */
  278. if (!attr->exclude_kernel)
  279. return -EOPNOTSUPP;
  280. if (!attr->exclude_guest)
  281. return -EOPNOTSUPP;
  282. }
  283. hwc->config |= config;
  284. return 0;
  285. }
  286. /*
  287. * check that branch_sample_type is compatible with
  288. * settings needed for precise_ip > 1 which implies
  289. * using the LBR to capture ALL taken branches at the
  290. * priv levels of the measurement
  291. */
  292. static inline int precise_br_compat(struct perf_event *event)
  293. {
  294. u64 m = event->attr.branch_sample_type;
  295. u64 b = 0;
  296. /* must capture all branches */
  297. if (!(m & PERF_SAMPLE_BRANCH_ANY))
  298. return 0;
  299. m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
  300. if (!event->attr.exclude_user)
  301. b |= PERF_SAMPLE_BRANCH_USER;
  302. if (!event->attr.exclude_kernel)
  303. b |= PERF_SAMPLE_BRANCH_KERNEL;
  304. /*
  305. * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
  306. */
  307. return m == b;
  308. }
  309. int x86_pmu_hw_config(struct perf_event *event)
  310. {
  311. if (event->attr.precise_ip) {
  312. int precise = 0;
  313. if (!event->attr.exclude_guest)
  314. return -EOPNOTSUPP;
  315. /* Support for constant skid */
  316. if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
  317. precise++;
  318. /* Support for IP fixup */
  319. if (x86_pmu.lbr_nr)
  320. precise++;
  321. }
  322. if (event->attr.precise_ip > precise)
  323. return -EOPNOTSUPP;
  324. /*
  325. * check that PEBS LBR correction does not conflict with
  326. * whatever the user is asking with attr->branch_sample_type
  327. */
  328. if (event->attr.precise_ip > 1) {
  329. u64 *br_type = &event->attr.branch_sample_type;
  330. if (has_branch_stack(event)) {
  331. if (!precise_br_compat(event))
  332. return -EOPNOTSUPP;
  333. /* branch_sample_type is compatible */
  334. } else {
  335. /*
  336. * user did not specify branch_sample_type
  337. *
  338. * For PEBS fixups, we capture all
  339. * the branches at the priv level of the
  340. * event.
  341. */
  342. *br_type = PERF_SAMPLE_BRANCH_ANY;
  343. if (!event->attr.exclude_user)
  344. *br_type |= PERF_SAMPLE_BRANCH_USER;
  345. if (!event->attr.exclude_kernel)
  346. *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
  347. }
  348. }
  349. }
  350. /*
  351. * Generate PMC IRQs:
  352. * (keep 'enabled' bit clear for now)
  353. */
  354. event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
  355. /*
  356. * Count user and OS events unless requested not to
  357. */
  358. if (!event->attr.exclude_user)
  359. event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
  360. if (!event->attr.exclude_kernel)
  361. event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
  362. if (event->attr.type == PERF_TYPE_RAW)
  363. event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
  364. return x86_setup_perfctr(event);
  365. }
  366. /*
  367. * Setup the hardware configuration for a given attr_type
  368. */
  369. static int __x86_pmu_event_init(struct perf_event *event)
  370. {
  371. int err;
  372. if (!x86_pmu_initialized())
  373. return -ENODEV;
  374. err = 0;
  375. if (!atomic_inc_not_zero(&active_events)) {
  376. mutex_lock(&pmc_reserve_mutex);
  377. if (atomic_read(&active_events) == 0) {
  378. if (!reserve_pmc_hardware())
  379. err = -EBUSY;
  380. else
  381. reserve_ds_buffers();
  382. }
  383. if (!err)
  384. atomic_inc(&active_events);
  385. mutex_unlock(&pmc_reserve_mutex);
  386. }
  387. if (err)
  388. return err;
  389. event->destroy = hw_perf_event_destroy;
  390. event->hw.idx = -1;
  391. event->hw.last_cpu = -1;
  392. event->hw.last_tag = ~0ULL;
  393. /* mark unused */
  394. event->hw.extra_reg.idx = EXTRA_REG_NONE;
  395. event->hw.branch_reg.idx = EXTRA_REG_NONE;
  396. return x86_pmu.hw_config(event);
  397. }
  398. void x86_pmu_disable_all(void)
  399. {
  400. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  401. int idx;
  402. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  403. u64 val;
  404. if (!test_bit(idx, cpuc->active_mask))
  405. continue;
  406. rdmsrl(x86_pmu_config_addr(idx), val);
  407. if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
  408. continue;
  409. val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  410. wrmsrl(x86_pmu_config_addr(idx), val);
  411. }
  412. }
  413. static void x86_pmu_disable(struct pmu *pmu)
  414. {
  415. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  416. if (!x86_pmu_initialized())
  417. return;
  418. if (!cpuc->enabled)
  419. return;
  420. cpuc->n_added = 0;
  421. cpuc->enabled = 0;
  422. barrier();
  423. x86_pmu.disable_all();
  424. }
  425. void x86_pmu_enable_all(int added)
  426. {
  427. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  428. int idx;
  429. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  430. struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
  431. if (!test_bit(idx, cpuc->active_mask))
  432. continue;
  433. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  434. }
  435. }
  436. static struct pmu pmu;
  437. static inline int is_x86_event(struct perf_event *event)
  438. {
  439. return event->pmu == &pmu;
  440. }
  441. /*
  442. * Event scheduler state:
  443. *
  444. * Assign events iterating over all events and counters, beginning
  445. * with events with least weights first. Keep the current iterator
  446. * state in struct sched_state.
  447. */
  448. struct sched_state {
  449. int weight;
  450. int event; /* event index */
  451. int counter; /* counter index */
  452. int unassigned; /* number of events to be assigned left */
  453. unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  454. };
  455. /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
  456. #define SCHED_STATES_MAX 2
  457. struct perf_sched {
  458. int max_weight;
  459. int max_events;
  460. struct event_constraint **constraints;
  461. struct sched_state state;
  462. int saved_states;
  463. struct sched_state saved[SCHED_STATES_MAX];
  464. };
  465. /*
  466. * Initialize interator that runs through all events and counters.
  467. */
  468. static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
  469. int num, int wmin, int wmax)
  470. {
  471. int idx;
  472. memset(sched, 0, sizeof(*sched));
  473. sched->max_events = num;
  474. sched->max_weight = wmax;
  475. sched->constraints = c;
  476. for (idx = 0; idx < num; idx++) {
  477. if (c[idx]->weight == wmin)
  478. break;
  479. }
  480. sched->state.event = idx; /* start with min weight */
  481. sched->state.weight = wmin;
  482. sched->state.unassigned = num;
  483. }
  484. static void perf_sched_save_state(struct perf_sched *sched)
  485. {
  486. if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
  487. return;
  488. sched->saved[sched->saved_states] = sched->state;
  489. sched->saved_states++;
  490. }
  491. static bool perf_sched_restore_state(struct perf_sched *sched)
  492. {
  493. if (!sched->saved_states)
  494. return false;
  495. sched->saved_states--;
  496. sched->state = sched->saved[sched->saved_states];
  497. /* continue with next counter: */
  498. clear_bit(sched->state.counter++, sched->state.used);
  499. return true;
  500. }
  501. /*
  502. * Select a counter for the current event to schedule. Return true on
  503. * success.
  504. */
  505. static bool __perf_sched_find_counter(struct perf_sched *sched)
  506. {
  507. struct event_constraint *c;
  508. int idx;
  509. if (!sched->state.unassigned)
  510. return false;
  511. if (sched->state.event >= sched->max_events)
  512. return false;
  513. c = sched->constraints[sched->state.event];
  514. /* Prefer fixed purpose counters */
  515. if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
  516. idx = INTEL_PMC_IDX_FIXED;
  517. for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
  518. if (!__test_and_set_bit(idx, sched->state.used))
  519. goto done;
  520. }
  521. }
  522. /* Grab the first unused counter starting with idx */
  523. idx = sched->state.counter;
  524. for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
  525. if (!__test_and_set_bit(idx, sched->state.used))
  526. goto done;
  527. }
  528. return false;
  529. done:
  530. sched->state.counter = idx;
  531. if (c->overlap)
  532. perf_sched_save_state(sched);
  533. return true;
  534. }
  535. static bool perf_sched_find_counter(struct perf_sched *sched)
  536. {
  537. while (!__perf_sched_find_counter(sched)) {
  538. if (!perf_sched_restore_state(sched))
  539. return false;
  540. }
  541. return true;
  542. }
  543. /*
  544. * Go through all unassigned events and find the next one to schedule.
  545. * Take events with the least weight first. Return true on success.
  546. */
  547. static bool perf_sched_next_event(struct perf_sched *sched)
  548. {
  549. struct event_constraint *c;
  550. if (!sched->state.unassigned || !--sched->state.unassigned)
  551. return false;
  552. do {
  553. /* next event */
  554. sched->state.event++;
  555. if (sched->state.event >= sched->max_events) {
  556. /* next weight */
  557. sched->state.event = 0;
  558. sched->state.weight++;
  559. if (sched->state.weight > sched->max_weight)
  560. return false;
  561. }
  562. c = sched->constraints[sched->state.event];
  563. } while (c->weight != sched->state.weight);
  564. sched->state.counter = 0; /* start with first counter */
  565. return true;
  566. }
  567. /*
  568. * Assign a counter for each event.
  569. */
  570. int perf_assign_events(struct event_constraint **constraints, int n,
  571. int wmin, int wmax, int *assign)
  572. {
  573. struct perf_sched sched;
  574. perf_sched_init(&sched, constraints, n, wmin, wmax);
  575. do {
  576. if (!perf_sched_find_counter(&sched))
  577. break; /* failed */
  578. if (assign)
  579. assign[sched.state.event] = sched.state.counter;
  580. } while (perf_sched_next_event(&sched));
  581. return sched.state.unassigned;
  582. }
  583. int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
  584. {
  585. struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
  586. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  587. int i, wmin, wmax, num = 0;
  588. struct hw_perf_event *hwc;
  589. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  590. for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
  591. c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
  592. constraints[i] = c;
  593. wmin = min(wmin, c->weight);
  594. wmax = max(wmax, c->weight);
  595. }
  596. /*
  597. * fastpath, try to reuse previous register
  598. */
  599. for (i = 0; i < n; i++) {
  600. hwc = &cpuc->event_list[i]->hw;
  601. c = constraints[i];
  602. /* never assigned */
  603. if (hwc->idx == -1)
  604. break;
  605. /* constraint still honored */
  606. if (!test_bit(hwc->idx, c->idxmsk))
  607. break;
  608. /* not already used */
  609. if (test_bit(hwc->idx, used_mask))
  610. break;
  611. __set_bit(hwc->idx, used_mask);
  612. if (assign)
  613. assign[i] = hwc->idx;
  614. }
  615. /* slow path */
  616. if (i != n)
  617. num = perf_assign_events(constraints, n, wmin, wmax, assign);
  618. /*
  619. * scheduling failed or is just a simulation,
  620. * free resources if necessary
  621. */
  622. if (!assign || num) {
  623. for (i = 0; i < n; i++) {
  624. if (x86_pmu.put_event_constraints)
  625. x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
  626. }
  627. }
  628. return num ? -EINVAL : 0;
  629. }
  630. /*
  631. * dogrp: true if must collect siblings events (group)
  632. * returns total number of events and error code
  633. */
  634. static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
  635. {
  636. struct perf_event *event;
  637. int n, max_count;
  638. max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
  639. /* current number of events already accepted */
  640. n = cpuc->n_events;
  641. if (is_x86_event(leader)) {
  642. if (n >= max_count)
  643. return -EINVAL;
  644. cpuc->event_list[n] = leader;
  645. n++;
  646. }
  647. if (!dogrp)
  648. return n;
  649. list_for_each_entry(event, &leader->sibling_list, group_entry) {
  650. if (!is_x86_event(event) ||
  651. event->state <= PERF_EVENT_STATE_OFF)
  652. continue;
  653. if (n >= max_count)
  654. return -EINVAL;
  655. cpuc->event_list[n] = event;
  656. n++;
  657. }
  658. return n;
  659. }
  660. static inline void x86_assign_hw_event(struct perf_event *event,
  661. struct cpu_hw_events *cpuc, int i)
  662. {
  663. struct hw_perf_event *hwc = &event->hw;
  664. hwc->idx = cpuc->assign[i];
  665. hwc->last_cpu = smp_processor_id();
  666. hwc->last_tag = ++cpuc->tags[i];
  667. if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
  668. hwc->config_base = 0;
  669. hwc->event_base = 0;
  670. } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
  671. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  672. hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
  673. hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
  674. } else {
  675. hwc->config_base = x86_pmu_config_addr(hwc->idx);
  676. hwc->event_base = x86_pmu_event_addr(hwc->idx);
  677. hwc->event_base_rdpmc = hwc->idx;
  678. }
  679. }
  680. static inline int match_prev_assignment(struct hw_perf_event *hwc,
  681. struct cpu_hw_events *cpuc,
  682. int i)
  683. {
  684. return hwc->idx == cpuc->assign[i] &&
  685. hwc->last_cpu == smp_processor_id() &&
  686. hwc->last_tag == cpuc->tags[i];
  687. }
  688. static void x86_pmu_start(struct perf_event *event, int flags);
  689. static void x86_pmu_enable(struct pmu *pmu)
  690. {
  691. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  692. struct perf_event *event;
  693. struct hw_perf_event *hwc;
  694. int i, added = cpuc->n_added;
  695. if (!x86_pmu_initialized())
  696. return;
  697. if (cpuc->enabled)
  698. return;
  699. if (cpuc->n_added) {
  700. int n_running = cpuc->n_events - cpuc->n_added;
  701. /*
  702. * apply assignment obtained either from
  703. * hw_perf_group_sched_in() or x86_pmu_enable()
  704. *
  705. * step1: save events moving to new counters
  706. * step2: reprogram moved events into new counters
  707. */
  708. for (i = 0; i < n_running; i++) {
  709. event = cpuc->event_list[i];
  710. hwc = &event->hw;
  711. /*
  712. * we can avoid reprogramming counter if:
  713. * - assigned same counter as last time
  714. * - running on same CPU as last time
  715. * - no other event has used the counter since
  716. */
  717. if (hwc->idx == -1 ||
  718. match_prev_assignment(hwc, cpuc, i))
  719. continue;
  720. /*
  721. * Ensure we don't accidentally enable a stopped
  722. * counter simply because we rescheduled.
  723. */
  724. if (hwc->state & PERF_HES_STOPPED)
  725. hwc->state |= PERF_HES_ARCH;
  726. x86_pmu_stop(event, PERF_EF_UPDATE);
  727. }
  728. for (i = 0; i < cpuc->n_events; i++) {
  729. event = cpuc->event_list[i];
  730. hwc = &event->hw;
  731. if (!match_prev_assignment(hwc, cpuc, i))
  732. x86_assign_hw_event(event, cpuc, i);
  733. else if (i < n_running)
  734. continue;
  735. if (hwc->state & PERF_HES_ARCH)
  736. continue;
  737. x86_pmu_start(event, PERF_EF_RELOAD);
  738. }
  739. cpuc->n_added = 0;
  740. perf_events_lapic_init();
  741. }
  742. cpuc->enabled = 1;
  743. barrier();
  744. x86_pmu.enable_all(added);
  745. }
  746. static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
  747. /*
  748. * Set the next IRQ period, based on the hwc->period_left value.
  749. * To be called with the event disabled in hw:
  750. */
  751. int x86_perf_event_set_period(struct perf_event *event)
  752. {
  753. struct hw_perf_event *hwc = &event->hw;
  754. s64 left = local64_read(&hwc->period_left);
  755. s64 period = hwc->sample_period;
  756. int ret = 0, idx = hwc->idx;
  757. if (idx == INTEL_PMC_IDX_FIXED_BTS)
  758. return 0;
  759. /*
  760. * If we are way outside a reasonable range then just skip forward:
  761. */
  762. if (unlikely(left <= -period)) {
  763. left = period;
  764. local64_set(&hwc->period_left, left);
  765. hwc->last_period = period;
  766. ret = 1;
  767. }
  768. if (unlikely(left <= 0)) {
  769. left += period;
  770. local64_set(&hwc->period_left, left);
  771. hwc->last_period = period;
  772. ret = 1;
  773. }
  774. /*
  775. * Quirk: certain CPUs dont like it if just 1 hw_event is left:
  776. */
  777. if (unlikely(left < 2))
  778. left = 2;
  779. if (left > x86_pmu.max_period)
  780. left = x86_pmu.max_period;
  781. per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
  782. /*
  783. * The hw event starts counting from this event offset,
  784. * mark it to be able to extra future deltas:
  785. */
  786. local64_set(&hwc->prev_count, (u64)-left);
  787. wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
  788. /*
  789. * Due to erratum on certan cpu we need
  790. * a second write to be sure the register
  791. * is updated properly
  792. */
  793. if (x86_pmu.perfctr_second_write) {
  794. wrmsrl(hwc->event_base,
  795. (u64)(-left) & x86_pmu.cntval_mask);
  796. }
  797. perf_event_update_userpage(event);
  798. return ret;
  799. }
  800. void x86_pmu_enable_event(struct perf_event *event)
  801. {
  802. if (__this_cpu_read(cpu_hw_events.enabled))
  803. __x86_pmu_enable_event(&event->hw,
  804. ARCH_PERFMON_EVENTSEL_ENABLE);
  805. }
  806. /*
  807. * Add a single event to the PMU.
  808. *
  809. * The event is added to the group of enabled events
  810. * but only if it can be scehduled with existing events.
  811. */
  812. static int x86_pmu_add(struct perf_event *event, int flags)
  813. {
  814. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  815. struct hw_perf_event *hwc;
  816. int assign[X86_PMC_IDX_MAX];
  817. int n, n0, ret;
  818. hwc = &event->hw;
  819. perf_pmu_disable(event->pmu);
  820. n0 = cpuc->n_events;
  821. ret = n = collect_events(cpuc, event, false);
  822. if (ret < 0)
  823. goto out;
  824. hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
  825. if (!(flags & PERF_EF_START))
  826. hwc->state |= PERF_HES_ARCH;
  827. /*
  828. * If group events scheduling transaction was started,
  829. * skip the schedulability test here, it will be performed
  830. * at commit time (->commit_txn) as a whole
  831. */
  832. if (cpuc->group_flag & PERF_EVENT_TXN)
  833. goto done_collect;
  834. ret = x86_pmu.schedule_events(cpuc, n, assign);
  835. if (ret)
  836. goto out;
  837. /*
  838. * copy new assignment, now we know it is possible
  839. * will be used by hw_perf_enable()
  840. */
  841. memcpy(cpuc->assign, assign, n*sizeof(int));
  842. done_collect:
  843. cpuc->n_events = n;
  844. cpuc->n_added += n - n0;
  845. cpuc->n_txn += n - n0;
  846. ret = 0;
  847. out:
  848. perf_pmu_enable(event->pmu);
  849. return ret;
  850. }
  851. static void x86_pmu_start(struct perf_event *event, int flags)
  852. {
  853. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  854. int idx = event->hw.idx;
  855. if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
  856. return;
  857. if (WARN_ON_ONCE(idx == -1))
  858. return;
  859. if (flags & PERF_EF_RELOAD) {
  860. WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
  861. x86_perf_event_set_period(event);
  862. }
  863. event->hw.state = 0;
  864. cpuc->events[idx] = event;
  865. __set_bit(idx, cpuc->active_mask);
  866. __set_bit(idx, cpuc->running);
  867. x86_pmu.enable(event);
  868. perf_event_update_userpage(event);
  869. }
  870. void perf_event_print_debug(void)
  871. {
  872. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  873. u64 pebs;
  874. struct cpu_hw_events *cpuc;
  875. unsigned long flags;
  876. int cpu, idx;
  877. if (!x86_pmu.num_counters)
  878. return;
  879. local_irq_save(flags);
  880. cpu = smp_processor_id();
  881. cpuc = &per_cpu(cpu_hw_events, cpu);
  882. if (x86_pmu.version >= 2) {
  883. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  884. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  885. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  886. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  887. rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
  888. pr_info("\n");
  889. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  890. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  891. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  892. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  893. pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
  894. }
  895. pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
  896. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  897. rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
  898. rdmsrl(x86_pmu_event_addr(idx), pmc_count);
  899. prev_left = per_cpu(pmc_prev_left[idx], cpu);
  900. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  901. cpu, idx, pmc_ctrl);
  902. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  903. cpu, idx, pmc_count);
  904. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  905. cpu, idx, prev_left);
  906. }
  907. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
  908. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  909. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  910. cpu, idx, pmc_count);
  911. }
  912. local_irq_restore(flags);
  913. }
  914. void x86_pmu_stop(struct perf_event *event, int flags)
  915. {
  916. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  917. struct hw_perf_event *hwc = &event->hw;
  918. if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
  919. x86_pmu.disable(event);
  920. cpuc->events[hwc->idx] = NULL;
  921. WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
  922. hwc->state |= PERF_HES_STOPPED;
  923. }
  924. if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
  925. /*
  926. * Drain the remaining delta count out of a event
  927. * that we are disabling:
  928. */
  929. x86_perf_event_update(event);
  930. hwc->state |= PERF_HES_UPTODATE;
  931. }
  932. }
  933. static void x86_pmu_del(struct perf_event *event, int flags)
  934. {
  935. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  936. int i;
  937. /*
  938. * If we're called during a txn, we don't need to do anything.
  939. * The events never got scheduled and ->cancel_txn will truncate
  940. * the event_list.
  941. */
  942. if (cpuc->group_flag & PERF_EVENT_TXN)
  943. return;
  944. x86_pmu_stop(event, PERF_EF_UPDATE);
  945. for (i = 0; i < cpuc->n_events; i++) {
  946. if (event == cpuc->event_list[i]) {
  947. if (x86_pmu.put_event_constraints)
  948. x86_pmu.put_event_constraints(cpuc, event);
  949. while (++i < cpuc->n_events)
  950. cpuc->event_list[i-1] = cpuc->event_list[i];
  951. --cpuc->n_events;
  952. break;
  953. }
  954. }
  955. perf_event_update_userpage(event);
  956. }
  957. int x86_pmu_handle_irq(struct pt_regs *regs)
  958. {
  959. struct perf_sample_data data;
  960. struct cpu_hw_events *cpuc;
  961. struct perf_event *event;
  962. int idx, handled = 0;
  963. u64 val;
  964. cpuc = &__get_cpu_var(cpu_hw_events);
  965. /*
  966. * Some chipsets need to unmask the LVTPC in a particular spot
  967. * inside the nmi handler. As a result, the unmasking was pushed
  968. * into all the nmi handlers.
  969. *
  970. * This generic handler doesn't seem to have any issues where the
  971. * unmasking occurs so it was left at the top.
  972. */
  973. apic_write(APIC_LVTPC, APIC_DM_NMI);
  974. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  975. if (!test_bit(idx, cpuc->active_mask)) {
  976. /*
  977. * Though we deactivated the counter some cpus
  978. * might still deliver spurious interrupts still
  979. * in flight. Catch them:
  980. */
  981. if (__test_and_clear_bit(idx, cpuc->running))
  982. handled++;
  983. continue;
  984. }
  985. event = cpuc->events[idx];
  986. val = x86_perf_event_update(event);
  987. if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
  988. continue;
  989. /*
  990. * event overflow
  991. */
  992. handled++;
  993. perf_sample_data_init(&data, 0, event->hw.last_period);
  994. if (!x86_perf_event_set_period(event))
  995. continue;
  996. if (perf_event_overflow(event, &data, regs))
  997. x86_pmu_stop(event, 0);
  998. }
  999. if (handled)
  1000. inc_irq_stat(apic_perf_irqs);
  1001. return handled;
  1002. }
  1003. void perf_events_lapic_init(void)
  1004. {
  1005. if (!x86_pmu.apic || !x86_pmu_initialized())
  1006. return;
  1007. /*
  1008. * Always use NMI for PMU
  1009. */
  1010. apic_write(APIC_LVTPC, APIC_DM_NMI);
  1011. }
  1012. static int __kprobes
  1013. perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
  1014. {
  1015. if (!atomic_read(&active_events))
  1016. return NMI_DONE;
  1017. return x86_pmu.handle_irq(regs);
  1018. }
  1019. struct event_constraint emptyconstraint;
  1020. struct event_constraint unconstrained;
  1021. static int __cpuinit
  1022. x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
  1023. {
  1024. unsigned int cpu = (long)hcpu;
  1025. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  1026. int ret = NOTIFY_OK;
  1027. switch (action & ~CPU_TASKS_FROZEN) {
  1028. case CPU_UP_PREPARE:
  1029. cpuc->kfree_on_online = NULL;
  1030. if (x86_pmu.cpu_prepare)
  1031. ret = x86_pmu.cpu_prepare(cpu);
  1032. break;
  1033. case CPU_STARTING:
  1034. if (x86_pmu.attr_rdpmc)
  1035. set_in_cr4(X86_CR4_PCE);
  1036. if (x86_pmu.cpu_starting)
  1037. x86_pmu.cpu_starting(cpu);
  1038. break;
  1039. case CPU_ONLINE:
  1040. kfree(cpuc->kfree_on_online);
  1041. break;
  1042. case CPU_DYING:
  1043. if (x86_pmu.cpu_dying)
  1044. x86_pmu.cpu_dying(cpu);
  1045. break;
  1046. case CPU_UP_CANCELED:
  1047. case CPU_DEAD:
  1048. if (x86_pmu.cpu_dead)
  1049. x86_pmu.cpu_dead(cpu);
  1050. break;
  1051. default:
  1052. break;
  1053. }
  1054. return ret;
  1055. }
  1056. static void __init pmu_check_apic(void)
  1057. {
  1058. if (cpu_has_apic)
  1059. return;
  1060. x86_pmu.apic = 0;
  1061. pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
  1062. pr_info("no hardware sampling interrupt available.\n");
  1063. }
  1064. static struct attribute_group x86_pmu_format_group = {
  1065. .name = "format",
  1066. .attrs = NULL,
  1067. };
  1068. struct perf_pmu_events_attr {
  1069. struct device_attribute attr;
  1070. u64 id;
  1071. };
  1072. /*
  1073. * Remove all undefined events (x86_pmu.event_map(id) == 0)
  1074. * out of events_attr attributes.
  1075. */
  1076. static void __init filter_events(struct attribute **attrs)
  1077. {
  1078. int i, j;
  1079. for (i = 0; attrs[i]; i++) {
  1080. if (x86_pmu.event_map(i))
  1081. continue;
  1082. for (j = i; attrs[j]; j++)
  1083. attrs[j] = attrs[j + 1];
  1084. /* Check the shifted attr. */
  1085. i--;
  1086. }
  1087. }
  1088. static ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
  1089. char *page)
  1090. {
  1091. struct perf_pmu_events_attr *pmu_attr = \
  1092. container_of(attr, struct perf_pmu_events_attr, attr);
  1093. u64 config = x86_pmu.event_map(pmu_attr->id);
  1094. return x86_pmu.events_sysfs_show(page, config);
  1095. }
  1096. #define EVENT_VAR(_id) event_attr_##_id
  1097. #define EVENT_PTR(_id) &event_attr_##_id.attr.attr
  1098. #define EVENT_ATTR(_name, _id) \
  1099. static struct perf_pmu_events_attr EVENT_VAR(_id) = { \
  1100. .attr = __ATTR(_name, 0444, events_sysfs_show, NULL), \
  1101. .id = PERF_COUNT_HW_##_id, \
  1102. };
  1103. EVENT_ATTR(cpu-cycles, CPU_CYCLES );
  1104. EVENT_ATTR(instructions, INSTRUCTIONS );
  1105. EVENT_ATTR(cache-references, CACHE_REFERENCES );
  1106. EVENT_ATTR(cache-misses, CACHE_MISSES );
  1107. EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
  1108. EVENT_ATTR(branch-misses, BRANCH_MISSES );
  1109. EVENT_ATTR(bus-cycles, BUS_CYCLES );
  1110. EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
  1111. EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
  1112. EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
  1113. static struct attribute *empty_attrs;
  1114. static struct attribute *events_attr[] = {
  1115. EVENT_PTR(CPU_CYCLES),
  1116. EVENT_PTR(INSTRUCTIONS),
  1117. EVENT_PTR(CACHE_REFERENCES),
  1118. EVENT_PTR(CACHE_MISSES),
  1119. EVENT_PTR(BRANCH_INSTRUCTIONS),
  1120. EVENT_PTR(BRANCH_MISSES),
  1121. EVENT_PTR(BUS_CYCLES),
  1122. EVENT_PTR(STALLED_CYCLES_FRONTEND),
  1123. EVENT_PTR(STALLED_CYCLES_BACKEND),
  1124. EVENT_PTR(REF_CPU_CYCLES),
  1125. NULL,
  1126. };
  1127. static struct attribute_group x86_pmu_events_group = {
  1128. .name = "events",
  1129. .attrs = events_attr,
  1130. };
  1131. ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
  1132. {
  1133. u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
  1134. u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
  1135. bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
  1136. bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
  1137. bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
  1138. bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
  1139. ssize_t ret;
  1140. /*
  1141. * We have whole page size to spend and just little data
  1142. * to write, so we can safely use sprintf.
  1143. */
  1144. ret = sprintf(page, "event=0x%02llx", event);
  1145. if (umask)
  1146. ret += sprintf(page + ret, ",umask=0x%02llx", umask);
  1147. if (edge)
  1148. ret += sprintf(page + ret, ",edge");
  1149. if (pc)
  1150. ret += sprintf(page + ret, ",pc");
  1151. if (any)
  1152. ret += sprintf(page + ret, ",any");
  1153. if (inv)
  1154. ret += sprintf(page + ret, ",inv");
  1155. if (cmask)
  1156. ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
  1157. ret += sprintf(page + ret, "\n");
  1158. return ret;
  1159. }
  1160. static int __init init_hw_perf_events(void)
  1161. {
  1162. struct x86_pmu_quirk *quirk;
  1163. int err;
  1164. pr_info("Performance Events: ");
  1165. switch (boot_cpu_data.x86_vendor) {
  1166. case X86_VENDOR_INTEL:
  1167. err = intel_pmu_init();
  1168. break;
  1169. case X86_VENDOR_AMD:
  1170. err = amd_pmu_init();
  1171. break;
  1172. default:
  1173. return 0;
  1174. }
  1175. if (err != 0) {
  1176. pr_cont("no PMU driver, software events only.\n");
  1177. return 0;
  1178. }
  1179. pmu_check_apic();
  1180. /* sanity check that the hardware exists or is emulated */
  1181. if (!check_hw_exists())
  1182. return 0;
  1183. pr_cont("%s PMU driver.\n", x86_pmu.name);
  1184. for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
  1185. quirk->func();
  1186. if (!x86_pmu.intel_ctrl)
  1187. x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
  1188. perf_events_lapic_init();
  1189. register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
  1190. unconstrained = (struct event_constraint)
  1191. __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
  1192. 0, x86_pmu.num_counters, 0);
  1193. x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
  1194. x86_pmu_format_group.attrs = x86_pmu.format_attrs;
  1195. if (!x86_pmu.events_sysfs_show)
  1196. x86_pmu_events_group.attrs = &empty_attrs;
  1197. else
  1198. filter_events(x86_pmu_events_group.attrs);
  1199. pr_info("... version: %d\n", x86_pmu.version);
  1200. pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
  1201. pr_info("... generic registers: %d\n", x86_pmu.num_counters);
  1202. pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
  1203. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  1204. pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
  1205. pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
  1206. perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
  1207. perf_cpu_notifier(x86_pmu_notifier);
  1208. return 0;
  1209. }
  1210. early_initcall(init_hw_perf_events);
  1211. static inline void x86_pmu_read(struct perf_event *event)
  1212. {
  1213. x86_perf_event_update(event);
  1214. }
  1215. /*
  1216. * Start group events scheduling transaction
  1217. * Set the flag to make pmu::enable() not perform the
  1218. * schedulability test, it will be performed at commit time
  1219. */
  1220. static void x86_pmu_start_txn(struct pmu *pmu)
  1221. {
  1222. perf_pmu_disable(pmu);
  1223. __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
  1224. __this_cpu_write(cpu_hw_events.n_txn, 0);
  1225. }
  1226. /*
  1227. * Stop group events scheduling transaction
  1228. * Clear the flag and pmu::enable() will perform the
  1229. * schedulability test.
  1230. */
  1231. static void x86_pmu_cancel_txn(struct pmu *pmu)
  1232. {
  1233. __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
  1234. /*
  1235. * Truncate the collected events.
  1236. */
  1237. __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
  1238. __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
  1239. perf_pmu_enable(pmu);
  1240. }
  1241. /*
  1242. * Commit group events scheduling transaction
  1243. * Perform the group schedulability test as a whole
  1244. * Return 0 if success
  1245. */
  1246. static int x86_pmu_commit_txn(struct pmu *pmu)
  1247. {
  1248. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1249. int assign[X86_PMC_IDX_MAX];
  1250. int n, ret;
  1251. n = cpuc->n_events;
  1252. if (!x86_pmu_initialized())
  1253. return -EAGAIN;
  1254. ret = x86_pmu.schedule_events(cpuc, n, assign);
  1255. if (ret)
  1256. return ret;
  1257. /*
  1258. * copy new assignment, now we know it is possible
  1259. * will be used by hw_perf_enable()
  1260. */
  1261. memcpy(cpuc->assign, assign, n*sizeof(int));
  1262. cpuc->group_flag &= ~PERF_EVENT_TXN;
  1263. perf_pmu_enable(pmu);
  1264. return 0;
  1265. }
  1266. /*
  1267. * a fake_cpuc is used to validate event groups. Due to
  1268. * the extra reg logic, we need to also allocate a fake
  1269. * per_core and per_cpu structure. Otherwise, group events
  1270. * using extra reg may conflict without the kernel being
  1271. * able to catch this when the last event gets added to
  1272. * the group.
  1273. */
  1274. static void free_fake_cpuc(struct cpu_hw_events *cpuc)
  1275. {
  1276. kfree(cpuc->shared_regs);
  1277. kfree(cpuc);
  1278. }
  1279. static struct cpu_hw_events *allocate_fake_cpuc(void)
  1280. {
  1281. struct cpu_hw_events *cpuc;
  1282. int cpu = raw_smp_processor_id();
  1283. cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
  1284. if (!cpuc)
  1285. return ERR_PTR(-ENOMEM);
  1286. /* only needed, if we have extra_regs */
  1287. if (x86_pmu.extra_regs) {
  1288. cpuc->shared_regs = allocate_shared_regs(cpu);
  1289. if (!cpuc->shared_regs)
  1290. goto error;
  1291. }
  1292. cpuc->is_fake = 1;
  1293. return cpuc;
  1294. error:
  1295. free_fake_cpuc(cpuc);
  1296. return ERR_PTR(-ENOMEM);
  1297. }
  1298. /*
  1299. * validate that we can schedule this event
  1300. */
  1301. static int validate_event(struct perf_event *event)
  1302. {
  1303. struct cpu_hw_events *fake_cpuc;
  1304. struct event_constraint *c;
  1305. int ret = 0;
  1306. fake_cpuc = allocate_fake_cpuc();
  1307. if (IS_ERR(fake_cpuc))
  1308. return PTR_ERR(fake_cpuc);
  1309. c = x86_pmu.get_event_constraints(fake_cpuc, event);
  1310. if (!c || !c->weight)
  1311. ret = -EINVAL;
  1312. if (x86_pmu.put_event_constraints)
  1313. x86_pmu.put_event_constraints(fake_cpuc, event);
  1314. free_fake_cpuc(fake_cpuc);
  1315. return ret;
  1316. }
  1317. /*
  1318. * validate a single event group
  1319. *
  1320. * validation include:
  1321. * - check events are compatible which each other
  1322. * - events do not compete for the same counter
  1323. * - number of events <= number of counters
  1324. *
  1325. * validation ensures the group can be loaded onto the
  1326. * PMU if it was the only group available.
  1327. */
  1328. static int validate_group(struct perf_event *event)
  1329. {
  1330. struct perf_event *leader = event->group_leader;
  1331. struct cpu_hw_events *fake_cpuc;
  1332. int ret = -EINVAL, n;
  1333. fake_cpuc = allocate_fake_cpuc();
  1334. if (IS_ERR(fake_cpuc))
  1335. return PTR_ERR(fake_cpuc);
  1336. /*
  1337. * the event is not yet connected with its
  1338. * siblings therefore we must first collect
  1339. * existing siblings, then add the new event
  1340. * before we can simulate the scheduling
  1341. */
  1342. n = collect_events(fake_cpuc, leader, true);
  1343. if (n < 0)
  1344. goto out;
  1345. fake_cpuc->n_events = n;
  1346. n = collect_events(fake_cpuc, event, false);
  1347. if (n < 0)
  1348. goto out;
  1349. fake_cpuc->n_events = n;
  1350. ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
  1351. out:
  1352. free_fake_cpuc(fake_cpuc);
  1353. return ret;
  1354. }
  1355. static int x86_pmu_event_init(struct perf_event *event)
  1356. {
  1357. struct pmu *tmp;
  1358. int err;
  1359. switch (event->attr.type) {
  1360. case PERF_TYPE_RAW:
  1361. case PERF_TYPE_HARDWARE:
  1362. case PERF_TYPE_HW_CACHE:
  1363. break;
  1364. default:
  1365. return -ENOENT;
  1366. }
  1367. err = __x86_pmu_event_init(event);
  1368. if (!err) {
  1369. /*
  1370. * we temporarily connect event to its pmu
  1371. * such that validate_group() can classify
  1372. * it as an x86 event using is_x86_event()
  1373. */
  1374. tmp = event->pmu;
  1375. event->pmu = &pmu;
  1376. if (event->group_leader != event)
  1377. err = validate_group(event);
  1378. else
  1379. err = validate_event(event);
  1380. event->pmu = tmp;
  1381. }
  1382. if (err) {
  1383. if (event->destroy)
  1384. event->destroy(event);
  1385. }
  1386. return err;
  1387. }
  1388. static int x86_pmu_event_idx(struct perf_event *event)
  1389. {
  1390. int idx = event->hw.idx;
  1391. if (!x86_pmu.attr_rdpmc)
  1392. return 0;
  1393. if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
  1394. idx -= INTEL_PMC_IDX_FIXED;
  1395. idx |= 1 << 30;
  1396. }
  1397. return idx + 1;
  1398. }
  1399. static ssize_t get_attr_rdpmc(struct device *cdev,
  1400. struct device_attribute *attr,
  1401. char *buf)
  1402. {
  1403. return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
  1404. }
  1405. static void change_rdpmc(void *info)
  1406. {
  1407. bool enable = !!(unsigned long)info;
  1408. if (enable)
  1409. set_in_cr4(X86_CR4_PCE);
  1410. else
  1411. clear_in_cr4(X86_CR4_PCE);
  1412. }
  1413. static ssize_t set_attr_rdpmc(struct device *cdev,
  1414. struct device_attribute *attr,
  1415. const char *buf, size_t count)
  1416. {
  1417. unsigned long val;
  1418. ssize_t ret;
  1419. ret = kstrtoul(buf, 0, &val);
  1420. if (ret)
  1421. return ret;
  1422. if (!!val != !!x86_pmu.attr_rdpmc) {
  1423. x86_pmu.attr_rdpmc = !!val;
  1424. smp_call_function(change_rdpmc, (void *)val, 1);
  1425. }
  1426. return count;
  1427. }
  1428. static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
  1429. static struct attribute *x86_pmu_attrs[] = {
  1430. &dev_attr_rdpmc.attr,
  1431. NULL,
  1432. };
  1433. static struct attribute_group x86_pmu_attr_group = {
  1434. .attrs = x86_pmu_attrs,
  1435. };
  1436. static const struct attribute_group *x86_pmu_attr_groups[] = {
  1437. &x86_pmu_attr_group,
  1438. &x86_pmu_format_group,
  1439. &x86_pmu_events_group,
  1440. NULL,
  1441. };
  1442. static void x86_pmu_flush_branch_stack(void)
  1443. {
  1444. if (x86_pmu.flush_branch_stack)
  1445. x86_pmu.flush_branch_stack();
  1446. }
  1447. void perf_check_microcode(void)
  1448. {
  1449. if (x86_pmu.check_microcode)
  1450. x86_pmu.check_microcode();
  1451. }
  1452. EXPORT_SYMBOL_GPL(perf_check_microcode);
  1453. static struct pmu pmu = {
  1454. .pmu_enable = x86_pmu_enable,
  1455. .pmu_disable = x86_pmu_disable,
  1456. .attr_groups = x86_pmu_attr_groups,
  1457. .event_init = x86_pmu_event_init,
  1458. .add = x86_pmu_add,
  1459. .del = x86_pmu_del,
  1460. .start = x86_pmu_start,
  1461. .stop = x86_pmu_stop,
  1462. .read = x86_pmu_read,
  1463. .start_txn = x86_pmu_start_txn,
  1464. .cancel_txn = x86_pmu_cancel_txn,
  1465. .commit_txn = x86_pmu_commit_txn,
  1466. .event_idx = x86_pmu_event_idx,
  1467. .flush_branch_stack = x86_pmu_flush_branch_stack,
  1468. };
  1469. void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
  1470. {
  1471. userpg->cap_usr_time = 0;
  1472. userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
  1473. userpg->pmc_width = x86_pmu.cntval_bits;
  1474. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  1475. return;
  1476. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  1477. return;
  1478. userpg->cap_usr_time = 1;
  1479. userpg->time_mult = this_cpu_read(cyc2ns);
  1480. userpg->time_shift = CYC2NS_SCALE_FACTOR;
  1481. userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
  1482. }
  1483. /*
  1484. * callchain support
  1485. */
  1486. static int backtrace_stack(void *data, char *name)
  1487. {
  1488. return 0;
  1489. }
  1490. static void backtrace_address(void *data, unsigned long addr, int reliable)
  1491. {
  1492. struct perf_callchain_entry *entry = data;
  1493. perf_callchain_store(entry, addr);
  1494. }
  1495. static const struct stacktrace_ops backtrace_ops = {
  1496. .stack = backtrace_stack,
  1497. .address = backtrace_address,
  1498. .walk_stack = print_context_stack_bp,
  1499. };
  1500. void
  1501. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  1502. {
  1503. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  1504. /* TODO: We don't support guest os callchain now */
  1505. return;
  1506. }
  1507. perf_callchain_store(entry, regs->ip);
  1508. dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
  1509. }
  1510. static inline int
  1511. valid_user_frame(const void __user *fp, unsigned long size)
  1512. {
  1513. return (__range_not_ok(fp, size, TASK_SIZE) == 0);
  1514. }
  1515. static unsigned long get_segment_base(unsigned int segment)
  1516. {
  1517. struct desc_struct *desc;
  1518. int idx = segment >> 3;
  1519. if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
  1520. if (idx > LDT_ENTRIES)
  1521. return 0;
  1522. if (idx > current->active_mm->context.size)
  1523. return 0;
  1524. desc = current->active_mm->context.ldt;
  1525. } else {
  1526. if (idx > GDT_ENTRIES)
  1527. return 0;
  1528. desc = __this_cpu_ptr(&gdt_page.gdt[0]);
  1529. }
  1530. return get_desc_base(desc + idx);
  1531. }
  1532. #ifdef CONFIG_COMPAT
  1533. #include <asm/compat.h>
  1534. static inline int
  1535. perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1536. {
  1537. /* 32-bit process in 64-bit kernel. */
  1538. unsigned long ss_base, cs_base;
  1539. struct stack_frame_ia32 frame;
  1540. const void __user *fp;
  1541. if (!test_thread_flag(TIF_IA32))
  1542. return 0;
  1543. cs_base = get_segment_base(regs->cs);
  1544. ss_base = get_segment_base(regs->ss);
  1545. fp = compat_ptr(ss_base + regs->bp);
  1546. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1547. unsigned long bytes;
  1548. frame.next_frame = 0;
  1549. frame.return_address = 0;
  1550. bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
  1551. if (bytes != sizeof(frame))
  1552. break;
  1553. if (!valid_user_frame(fp, sizeof(frame)))
  1554. break;
  1555. perf_callchain_store(entry, cs_base + frame.return_address);
  1556. fp = compat_ptr(ss_base + frame.next_frame);
  1557. }
  1558. return 1;
  1559. }
  1560. #else
  1561. static inline int
  1562. perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1563. {
  1564. return 0;
  1565. }
  1566. #endif
  1567. void
  1568. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  1569. {
  1570. struct stack_frame frame;
  1571. const void __user *fp;
  1572. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  1573. /* TODO: We don't support guest os callchain now */
  1574. return;
  1575. }
  1576. /*
  1577. * We don't know what to do with VM86 stacks.. ignore them for now.
  1578. */
  1579. if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
  1580. return;
  1581. fp = (void __user *)regs->bp;
  1582. perf_callchain_store(entry, regs->ip);
  1583. if (!current->mm)
  1584. return;
  1585. if (perf_callchain_user32(regs, entry))
  1586. return;
  1587. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1588. unsigned long bytes;
  1589. frame.next_frame = NULL;
  1590. frame.return_address = 0;
  1591. bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
  1592. if (bytes != sizeof(frame))
  1593. break;
  1594. if (!valid_user_frame(fp, sizeof(frame)))
  1595. break;
  1596. perf_callchain_store(entry, frame.return_address);
  1597. fp = frame.next_frame;
  1598. }
  1599. }
  1600. /*
  1601. * Deal with code segment offsets for the various execution modes:
  1602. *
  1603. * VM86 - the good olde 16 bit days, where the linear address is
  1604. * 20 bits and we use regs->ip + 0x10 * regs->cs.
  1605. *
  1606. * IA32 - Where we need to look at GDT/LDT segment descriptor tables
  1607. * to figure out what the 32bit base address is.
  1608. *
  1609. * X32 - has TIF_X32 set, but is running in x86_64
  1610. *
  1611. * X86_64 - CS,DS,SS,ES are all zero based.
  1612. */
  1613. static unsigned long code_segment_base(struct pt_regs *regs)
  1614. {
  1615. /*
  1616. * If we are in VM86 mode, add the segment offset to convert to a
  1617. * linear address.
  1618. */
  1619. if (regs->flags & X86_VM_MASK)
  1620. return 0x10 * regs->cs;
  1621. /*
  1622. * For IA32 we look at the GDT/LDT segment base to convert the
  1623. * effective IP to a linear address.
  1624. */
  1625. #ifdef CONFIG_X86_32
  1626. if (user_mode(regs) && regs->cs != __USER_CS)
  1627. return get_segment_base(regs->cs);
  1628. #else
  1629. if (test_thread_flag(TIF_IA32)) {
  1630. if (user_mode(regs) && regs->cs != __USER32_CS)
  1631. return get_segment_base(regs->cs);
  1632. }
  1633. #endif
  1634. return 0;
  1635. }
  1636. unsigned long perf_instruction_pointer(struct pt_regs *regs)
  1637. {
  1638. if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
  1639. return perf_guest_cbs->get_guest_ip();
  1640. return regs->ip + code_segment_base(regs);
  1641. }
  1642. unsigned long perf_misc_flags(struct pt_regs *regs)
  1643. {
  1644. int misc = 0;
  1645. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  1646. if (perf_guest_cbs->is_user_mode())
  1647. misc |= PERF_RECORD_MISC_GUEST_USER;
  1648. else
  1649. misc |= PERF_RECORD_MISC_GUEST_KERNEL;
  1650. } else {
  1651. if (user_mode(regs))
  1652. misc |= PERF_RECORD_MISC_USER;
  1653. else
  1654. misc |= PERF_RECORD_MISC_KERNEL;
  1655. }
  1656. if (regs->flags & PERF_EFLAGS_EXACT)
  1657. misc |= PERF_RECORD_MISC_EXACT_IP;
  1658. return misc;
  1659. }
  1660. void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
  1661. {
  1662. cap->version = x86_pmu.version;
  1663. cap->num_counters_gp = x86_pmu.num_counters;
  1664. cap->num_counters_fixed = x86_pmu.num_counters_fixed;
  1665. cap->bit_width_gp = x86_pmu.cntval_bits;
  1666. cap->bit_width_fixed = x86_pmu.cntval_bits;
  1667. cap->events_mask = (unsigned int)x86_pmu.events_maskl;
  1668. cap->events_mask_len = x86_pmu.events_mask_len;
  1669. }
  1670. EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);