mmu-hash64.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566
  1. #ifndef _ASM_POWERPC_MMU_HASH64_H_
  2. #define _ASM_POWERPC_MMU_HASH64_H_
  3. /*
  4. * PowerPC64 memory management structures
  5. *
  6. * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
  7. * PPC64 rework.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; either version
  12. * 2 of the License, or (at your option) any later version.
  13. */
  14. #include <asm/asm-compat.h>
  15. #include <asm/page.h>
  16. /*
  17. * This is necessary to get the definition of PGTABLE_RANGE which we
  18. * need for various slices related matters. Note that this isn't the
  19. * complete pgtable.h but only a portion of it.
  20. */
  21. #include <asm/pgtable-ppc64.h>
  22. /*
  23. * Segment table
  24. */
  25. #define STE_ESID_V 0x80
  26. #define STE_ESID_KS 0x20
  27. #define STE_ESID_KP 0x10
  28. #define STE_ESID_N 0x08
  29. #define STE_VSID_SHIFT 12
  30. /* Location of cpu0's segment table */
  31. #define STAB0_PAGE 0x8
  32. #define STAB0_OFFSET (STAB0_PAGE << 12)
  33. #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
  34. #ifndef __ASSEMBLY__
  35. extern char initial_stab[];
  36. #endif /* ! __ASSEMBLY */
  37. /*
  38. * SLB
  39. */
  40. #define SLB_NUM_BOLTED 3
  41. #define SLB_CACHE_ENTRIES 8
  42. #define SLB_MIN_SIZE 32
  43. /* Bits in the SLB ESID word */
  44. #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
  45. /* Bits in the SLB VSID word */
  46. #define SLB_VSID_SHIFT 12
  47. #define SLB_VSID_SHIFT_1T 24
  48. #define SLB_VSID_SSIZE_SHIFT 62
  49. #define SLB_VSID_B ASM_CONST(0xc000000000000000)
  50. #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
  51. #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
  52. #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
  53. #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
  54. #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
  55. #define SLB_VSID_L ASM_CONST(0x0000000000000100)
  56. #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
  57. #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
  58. #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
  59. #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
  60. #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
  61. #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
  62. #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
  63. #define SLB_VSID_KERNEL (SLB_VSID_KP)
  64. #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  65. #define SLBIE_C (0x08000000)
  66. #define SLBIE_SSIZE_SHIFT 25
  67. /*
  68. * Hash table
  69. */
  70. #define HPTES_PER_GROUP 8
  71. #define HPTE_V_SSIZE_SHIFT 62
  72. #define HPTE_V_AVPN_SHIFT 7
  73. #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
  74. #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  75. #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
  76. #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
  77. #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
  78. #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
  79. #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
  80. #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
  81. #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
  82. #define HPTE_R_TS ASM_CONST(0x4000000000000000)
  83. #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
  84. #define HPTE_R_RPN_SHIFT 12
  85. #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
  86. #define HPTE_R_PP ASM_CONST(0x0000000000000003)
  87. #define HPTE_R_N ASM_CONST(0x0000000000000004)
  88. #define HPTE_R_G ASM_CONST(0x0000000000000008)
  89. #define HPTE_R_M ASM_CONST(0x0000000000000010)
  90. #define HPTE_R_I ASM_CONST(0x0000000000000020)
  91. #define HPTE_R_W ASM_CONST(0x0000000000000040)
  92. #define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
  93. #define HPTE_R_C ASM_CONST(0x0000000000000080)
  94. #define HPTE_R_R ASM_CONST(0x0000000000000100)
  95. #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
  96. #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
  97. #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
  98. /* Values for PP (assumes Ks=0, Kp=1) */
  99. #define PP_RWXX 0 /* Supervisor read/write, User none */
  100. #define PP_RWRX 1 /* Supervisor read/write, User read */
  101. #define PP_RWRW 2 /* Supervisor read/write, User read/write */
  102. #define PP_RXRX 3 /* Supervisor read, User read */
  103. #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
  104. /* Fields for tlbiel instruction in architecture 2.06 */
  105. #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
  106. #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
  107. #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
  108. #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
  109. #define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
  110. #define TLBIEL_INVAL_SET_SHIFT 12
  111. #define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
  112. #ifndef __ASSEMBLY__
  113. struct hash_pte {
  114. unsigned long v;
  115. unsigned long r;
  116. };
  117. extern struct hash_pte *htab_address;
  118. extern unsigned long htab_size_bytes;
  119. extern unsigned long htab_hash_mask;
  120. /*
  121. * Page size definition
  122. *
  123. * shift : is the "PAGE_SHIFT" value for that page size
  124. * sllp : is a bit mask with the value of SLB L || LP to be or'ed
  125. * directly to a slbmte "vsid" value
  126. * penc : is the HPTE encoding mask for the "LP" field:
  127. *
  128. */
  129. struct mmu_psize_def
  130. {
  131. unsigned int shift; /* number of bits */
  132. unsigned int penc; /* HPTE encoding */
  133. unsigned int tlbiel; /* tlbiel supported for that page size */
  134. unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
  135. unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
  136. };
  137. #endif /* __ASSEMBLY__ */
  138. /*
  139. * Segment sizes.
  140. * These are the values used by hardware in the B field of
  141. * SLB entries and the first dword of MMU hashtable entries.
  142. * The B field is 2 bits; the values 2 and 3 are unused and reserved.
  143. */
  144. #define MMU_SEGSIZE_256M 0
  145. #define MMU_SEGSIZE_1T 1
  146. /*
  147. * encode page number shift.
  148. * in order to fit the 78 bit va in a 64 bit variable we shift the va by
  149. * 12 bits. This enable us to address upto 76 bit va.
  150. * For hpt hash from a va we can ignore the page size bits of va and for
  151. * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
  152. * we work in all cases including 4k page size.
  153. */
  154. #define VPN_SHIFT 12
  155. #ifndef __ASSEMBLY__
  156. static inline int segment_shift(int ssize)
  157. {
  158. if (ssize == MMU_SEGSIZE_256M)
  159. return SID_SHIFT;
  160. return SID_SHIFT_1T;
  161. }
  162. /*
  163. * The current system page and segment sizes
  164. */
  165. extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  166. extern int mmu_linear_psize;
  167. extern int mmu_virtual_psize;
  168. extern int mmu_vmalloc_psize;
  169. extern int mmu_vmemmap_psize;
  170. extern int mmu_io_psize;
  171. extern int mmu_kernel_ssize;
  172. extern int mmu_highuser_ssize;
  173. extern u16 mmu_slb_size;
  174. extern unsigned long tce_alloc_start, tce_alloc_end;
  175. /*
  176. * If the processor supports 64k normal pages but not 64k cache
  177. * inhibited pages, we have to be prepared to switch processes
  178. * to use 4k pages when they create cache-inhibited mappings.
  179. * If this is the case, mmu_ci_restrictions will be set to 1.
  180. */
  181. extern int mmu_ci_restrictions;
  182. /*
  183. * This computes the AVPN and B fields of the first dword of a HPTE,
  184. * for use when we want to match an existing PTE. The bottom 7 bits
  185. * of the returned value are zero.
  186. */
  187. static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
  188. int ssize)
  189. {
  190. unsigned long v;
  191. /*
  192. * The AVA field omits the low-order 23 bits of the 78 bits VA.
  193. * These bits are not needed in the PTE, because the
  194. * low-order b of these bits are part of the byte offset
  195. * into the virtual page and, if b < 23, the high-order
  196. * 23-b of these bits are always used in selecting the
  197. * PTEGs to be searched
  198. */
  199. v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
  200. v <<= HPTE_V_AVPN_SHIFT;
  201. v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
  202. return v;
  203. }
  204. /*
  205. * This function sets the AVPN and L fields of the HPTE appropriately
  206. * for the page size
  207. */
  208. static inline unsigned long hpte_encode_v(unsigned long vpn,
  209. int psize, int ssize)
  210. {
  211. unsigned long v;
  212. v = hpte_encode_avpn(vpn, psize, ssize);
  213. if (psize != MMU_PAGE_4K)
  214. v |= HPTE_V_LARGE;
  215. return v;
  216. }
  217. /*
  218. * This function sets the ARPN, and LP fields of the HPTE appropriately
  219. * for the page size. We assume the pa is already "clean" that is properly
  220. * aligned for the requested page size
  221. */
  222. static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
  223. {
  224. unsigned long r;
  225. /* A 4K page needs no special encoding */
  226. if (psize == MMU_PAGE_4K)
  227. return pa & HPTE_R_RPN;
  228. else {
  229. unsigned int penc = mmu_psize_defs[psize].penc;
  230. unsigned int shift = mmu_psize_defs[psize].shift;
  231. return (pa & ~((1ul << shift) - 1)) | (penc << 12);
  232. }
  233. return r;
  234. }
  235. /*
  236. * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
  237. */
  238. static inline unsigned long hpt_vpn(unsigned long ea,
  239. unsigned long vsid, int ssize)
  240. {
  241. unsigned long mask;
  242. int s_shift = segment_shift(ssize);
  243. mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
  244. return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
  245. }
  246. /*
  247. * This hashes a virtual address
  248. */
  249. static inline unsigned long hpt_hash(unsigned long vpn,
  250. unsigned int shift, int ssize)
  251. {
  252. int mask;
  253. unsigned long hash, vsid;
  254. /* VPN_SHIFT can be atmost 12 */
  255. if (ssize == MMU_SEGSIZE_256M) {
  256. mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
  257. hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
  258. ((vpn & mask) >> (shift - VPN_SHIFT));
  259. } else {
  260. mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
  261. vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
  262. hash = vsid ^ (vsid << 25) ^
  263. ((vpn & mask) >> (shift - VPN_SHIFT)) ;
  264. }
  265. return hash & 0x7fffffffffUL;
  266. }
  267. extern int __hash_page_4K(unsigned long ea, unsigned long access,
  268. unsigned long vsid, pte_t *ptep, unsigned long trap,
  269. unsigned int local, int ssize, int subpage_prot);
  270. extern int __hash_page_64K(unsigned long ea, unsigned long access,
  271. unsigned long vsid, pte_t *ptep, unsigned long trap,
  272. unsigned int local, int ssize);
  273. struct mm_struct;
  274. unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
  275. extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
  276. int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
  277. pte_t *ptep, unsigned long trap, int local, int ssize,
  278. unsigned int shift, unsigned int mmu_psize);
  279. extern void hash_failure_debug(unsigned long ea, unsigned long access,
  280. unsigned long vsid, unsigned long trap,
  281. int ssize, int psize, unsigned long pte);
  282. extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
  283. unsigned long pstart, unsigned long prot,
  284. int psize, int ssize);
  285. extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
  286. extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
  287. extern void hpte_init_native(void);
  288. extern void hpte_init_lpar(void);
  289. extern void hpte_init_beat(void);
  290. extern void hpte_init_beat_v3(void);
  291. extern void stabs_alloc(void);
  292. extern void slb_initialize(void);
  293. extern void slb_flush_and_rebolt(void);
  294. extern void stab_initialize(unsigned long stab);
  295. extern void slb_vmalloc_update(void);
  296. extern void slb_set_size(u16 size);
  297. #endif /* __ASSEMBLY__ */
  298. /*
  299. * VSID allocation (256MB segment)
  300. *
  301. * We first generate a 38-bit "proto-VSID". For kernel addresses this
  302. * is equal to the ESID | 1 << 37, for user addresses it is:
  303. * (context << USER_ESID_BITS) | (esid & ((1U << USER_ESID_BITS) - 1)
  304. *
  305. * This splits the proto-VSID into the below range
  306. * 0 - (2^(CONTEXT_BITS + USER_ESID_BITS) - 1) : User proto-VSID range
  307. * 2^(CONTEXT_BITS + USER_ESID_BITS) - 2^(VSID_BITS) : Kernel proto-VSID range
  308. *
  309. * We also have CONTEXT_BITS + USER_ESID_BITS = VSID_BITS - 1
  310. * That is, we assign half of the space to user processes and half
  311. * to the kernel.
  312. *
  313. * The proto-VSIDs are then scrambled into real VSIDs with the
  314. * multiplicative hash:
  315. *
  316. * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
  317. *
  318. * VSID_MULTIPLIER is prime, so in particular it is
  319. * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  320. * Because the modulus is 2^n-1 we can compute it efficiently without
  321. * a divide or extra multiply (see below).
  322. *
  323. * This scheme has several advantages over older methods:
  324. *
  325. * - We have VSIDs allocated for every kernel address
  326. * (i.e. everything above 0xC000000000000000), except the very top
  327. * segment, which simplifies several things.
  328. *
  329. * - We allow for USER_ESID_BITS significant bits of ESID and
  330. * CONTEXT_BITS bits of context for user addresses.
  331. * i.e. 64T (46 bits) of address space for up to half a million contexts.
  332. *
  333. * - The scramble function gives robust scattering in the hash
  334. * table (at least based on some initial results). The previous
  335. * method was more susceptible to pathological cases giving excessive
  336. * hash collisions.
  337. */
  338. /*
  339. * This should be computed such that protovosid * vsid_mulitplier
  340. * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
  341. */
  342. #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
  343. #define VSID_BITS_256M 38
  344. #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
  345. #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
  346. #define VSID_BITS_1T 26
  347. #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
  348. #define CONTEXT_BITS 19
  349. #define USER_ESID_BITS 18
  350. #define USER_ESID_BITS_1T 6
  351. #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
  352. /*
  353. * This macro generates asm code to compute the VSID scramble
  354. * function. Used in slb_allocate() and do_stab_bolted. The function
  355. * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
  356. *
  357. * rt = register continaing the proto-VSID and into which the
  358. * VSID will be stored
  359. * rx = scratch register (clobbered)
  360. *
  361. * - rt and rx must be different registers
  362. * - The answer will end up in the low VSID_BITS bits of rt. The higher
  363. * bits may contain other garbage, so you may need to mask the
  364. * result.
  365. */
  366. #define ASM_VSID_SCRAMBLE(rt, rx, size) \
  367. lis rx,VSID_MULTIPLIER_##size@h; \
  368. ori rx,rx,VSID_MULTIPLIER_##size@l; \
  369. mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
  370. \
  371. srdi rx,rt,VSID_BITS_##size; \
  372. clrldi rt,rt,(64-VSID_BITS_##size); \
  373. add rt,rt,rx; /* add high and low bits */ \
  374. /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
  375. * 2^36-1+2^28-1. That in particular means that if r3 >= \
  376. * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
  377. * the bit clear, r3 already has the answer we want, if it \
  378. * doesn't, the answer is the low 36 bits of r3+1. So in all \
  379. * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
  380. addi rx,rt,1; \
  381. srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
  382. add rt,rt,rx
  383. /* 4 bits per slice and we have one slice per 1TB */
  384. #define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41)
  385. #ifndef __ASSEMBLY__
  386. #ifdef CONFIG_PPC_SUBPAGE_PROT
  387. /*
  388. * For the sub-page protection option, we extend the PGD with one of
  389. * these. Basically we have a 3-level tree, with the top level being
  390. * the protptrs array. To optimize speed and memory consumption when
  391. * only addresses < 4GB are being protected, pointers to the first
  392. * four pages of sub-page protection words are stored in the low_prot
  393. * array.
  394. * Each page of sub-page protection words protects 1GB (4 bytes
  395. * protects 64k). For the 3-level tree, each page of pointers then
  396. * protects 8TB.
  397. */
  398. struct subpage_prot_table {
  399. unsigned long maxaddr; /* only addresses < this are protected */
  400. unsigned int **protptrs[2];
  401. unsigned int *low_prot[4];
  402. };
  403. #define SBP_L1_BITS (PAGE_SHIFT - 2)
  404. #define SBP_L2_BITS (PAGE_SHIFT - 3)
  405. #define SBP_L1_COUNT (1 << SBP_L1_BITS)
  406. #define SBP_L2_COUNT (1 << SBP_L2_BITS)
  407. #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
  408. #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
  409. extern void subpage_prot_free(struct mm_struct *mm);
  410. extern void subpage_prot_init_new_context(struct mm_struct *mm);
  411. #else
  412. static inline void subpage_prot_free(struct mm_struct *mm) {}
  413. static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
  414. #endif /* CONFIG_PPC_SUBPAGE_PROT */
  415. typedef unsigned long mm_context_id_t;
  416. struct spinlock;
  417. typedef struct {
  418. mm_context_id_t id;
  419. u16 user_psize; /* page size index */
  420. #ifdef CONFIG_PPC_MM_SLICES
  421. u64 low_slices_psize; /* SLB page size encodings */
  422. unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
  423. #else
  424. u16 sllp; /* SLB page size encoding */
  425. #endif
  426. unsigned long vdso_base;
  427. #ifdef CONFIG_PPC_SUBPAGE_PROT
  428. struct subpage_prot_table spt;
  429. #endif /* CONFIG_PPC_SUBPAGE_PROT */
  430. #ifdef CONFIG_PPC_ICSWX
  431. struct spinlock *cop_lockp; /* guard acop and cop_pid */
  432. unsigned long acop; /* mask of enabled coprocessor types */
  433. unsigned int cop_pid; /* pid value used with coprocessors */
  434. #endif /* CONFIG_PPC_ICSWX */
  435. } mm_context_t;
  436. #if 0
  437. /*
  438. * The code below is equivalent to this function for arguments
  439. * < 2^VSID_BITS, which is all this should ever be called
  440. * with. However gcc is not clever enough to compute the
  441. * modulus (2^n-1) without a second multiply.
  442. */
  443. #define vsid_scramble(protovsid, size) \
  444. ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
  445. #else /* 1 */
  446. #define vsid_scramble(protovsid, size) \
  447. ({ \
  448. unsigned long x; \
  449. x = (protovsid) * VSID_MULTIPLIER_##size; \
  450. x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
  451. (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
  452. })
  453. #endif /* 1 */
  454. /*
  455. * This is only valid for addresses >= PAGE_OFFSET
  456. * The proto-VSID space is divided into two class
  457. * User: 0 to 2^(CONTEXT_BITS + USER_ESID_BITS) -1
  458. * kernel: 2^(CONTEXT_BITS + USER_ESID_BITS) to 2^(VSID_BITS) - 1
  459. *
  460. * With KERNEL_START at 0xc000000000000000, the proto vsid for
  461. * the kernel ends up with 0xc00000000 (36 bits). With 64TB
  462. * support we need to have kernel proto-VSID in the
  463. * [2^37 to 2^38 - 1] range due to the increased USER_ESID_BITS.
  464. */
  465. static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
  466. {
  467. unsigned long proto_vsid;
  468. /*
  469. * We need to make sure proto_vsid for the kernel is
  470. * >= 2^(CONTEXT_BITS + USER_ESID_BITS[_1T])
  471. */
  472. if (ssize == MMU_SEGSIZE_256M) {
  473. proto_vsid = ea >> SID_SHIFT;
  474. proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS));
  475. return vsid_scramble(proto_vsid, 256M);
  476. }
  477. proto_vsid = ea >> SID_SHIFT_1T;
  478. proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS_1T));
  479. return vsid_scramble(proto_vsid, 1T);
  480. }
  481. /* Returns the segment size indicator for a user address */
  482. static inline int user_segment_size(unsigned long addr)
  483. {
  484. /* Use 1T segments if possible for addresses >= 1T */
  485. if (addr >= (1UL << SID_SHIFT_1T))
  486. return mmu_highuser_ssize;
  487. return MMU_SEGSIZE_256M;
  488. }
  489. /* This is only valid for user addresses (which are below 2^44) */
  490. static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
  491. int ssize)
  492. {
  493. if (ssize == MMU_SEGSIZE_256M)
  494. return vsid_scramble((context << USER_ESID_BITS)
  495. | (ea >> SID_SHIFT), 256M);
  496. return vsid_scramble((context << USER_ESID_BITS_1T)
  497. | (ea >> SID_SHIFT_1T), 1T);
  498. }
  499. #endif /* __ASSEMBLY__ */
  500. #endif /* _ASM_POWERPC_MMU_HASH64_H_ */