|
@@ -28,19 +28,6 @@
|
|
|
|
|
|
#include "e1000.h"
|
|
#include "e1000.h"
|
|
|
|
|
|
-enum e1000_mng_mode {
|
|
|
|
- e1000_mng_mode_none = 0,
|
|
|
|
- e1000_mng_mode_asf,
|
|
|
|
- e1000_mng_mode_pt,
|
|
|
|
- e1000_mng_mode_ipmi,
|
|
|
|
- e1000_mng_mode_host_if_only
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-#define E1000_FACTPS_MNGCG 0x20000000
|
|
|
|
-
|
|
|
|
-/* Intel(R) Active Management Technology signature */
|
|
|
|
-#define E1000_IAMT_SIGNATURE 0x544D4149
|
|
|
|
-
|
|
|
|
/**
|
|
/**
|
|
* e1000e_get_bus_info_pcie - Get PCIe bus information
|
|
* e1000e_get_bus_info_pcie - Get PCIe bus information
|
|
* @hw: pointer to the HW structure
|
|
* @hw: pointer to the HW structure
|
|
@@ -151,7 +138,7 @@ void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
|
|
void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
|
|
void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
|
|
{
|
|
{
|
|
u32 i;
|
|
u32 i;
|
|
- u8 mac_addr[ETH_ALEN] = {0};
|
|
|
|
|
|
+ u8 mac_addr[ETH_ALEN] = { 0 };
|
|
|
|
|
|
/* Setup the receive address */
|
|
/* Setup the receive address */
|
|
e_dbg("Programming MAC Address into RAR[0]\n");
|
|
e_dbg("Programming MAC Address into RAR[0]\n");
|
|
@@ -159,7 +146,7 @@ void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
|
|
e1000e_rar_set(hw, hw->mac.addr, 0);
|
|
e1000e_rar_set(hw, hw->mac.addr, 0);
|
|
|
|
|
|
/* Zero out the other (rar_entry_count - 1) receive addresses */
|
|
/* Zero out the other (rar_entry_count - 1) receive addresses */
|
|
- e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
|
|
|
|
|
|
+ e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
|
|
for (i = 1; i < rar_count; i++)
|
|
for (i = 1; i < rar_count; i++)
|
|
e1000e_rar_set(hw, mac_addr, i);
|
|
e1000e_rar_set(hw, mac_addr, i);
|
|
}
|
|
}
|
|
@@ -192,7 +179,7 @@ s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
|
|
goto out;
|
|
goto out;
|
|
|
|
|
|
ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
|
|
ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
|
|
- &nvm_alt_mac_addr_offset);
|
|
|
|
|
|
+ &nvm_alt_mac_addr_offset);
|
|
if (ret_val) {
|
|
if (ret_val) {
|
|
e_dbg("NVM Read Error\n");
|
|
e_dbg("NVM Read Error\n");
|
|
goto out;
|
|
goto out;
|
|
@@ -251,11 +238,10 @@ void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
|
|
* HW expects these in little endian so we reverse the byte order
|
|
* HW expects these in little endian so we reverse the byte order
|
|
* from network order (big endian) to little endian
|
|
* from network order (big endian) to little endian
|
|
*/
|
|
*/
|
|
- rar_low = ((u32) addr[0] |
|
|
|
|
- ((u32) addr[1] << 8) |
|
|
|
|
- ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
|
|
|
|
|
|
+ rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
|
|
|
|
+ ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
|
|
|
|
|
|
- rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
|
|
|
|
|
|
+ rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
|
|
|
|
|
|
/* If MAC address zero, no need to set the AV bit */
|
|
/* If MAC address zero, no need to set the AV bit */
|
|
if (rar_low || rar_high)
|
|
if (rar_low || rar_high)
|
|
@@ -315,7 +301,7 @@ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
|
|
* values resulting from each mc_filter_type...
|
|
* values resulting from each mc_filter_type...
|
|
* [0] [1] [2] [3] [4] [5]
|
|
* [0] [1] [2] [3] [4] [5]
|
|
* 01 AA 00 12 34 56
|
|
* 01 AA 00 12 34 56
|
|
- * LSB MSB
|
|
|
|
|
|
+ * LSB MSB
|
|
*
|
|
*
|
|
* case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
|
|
* case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
|
|
* case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
|
|
* case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
|
|
@@ -338,7 +324,7 @@ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
|
|
}
|
|
}
|
|
|
|
|
|
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
|
|
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
|
|
- (((u16) mc_addr[5]) << bit_shift)));
|
|
|
|
|
|
+ (((u16)mc_addr[5]) << bit_shift)));
|
|
|
|
|
|
return hash_value;
|
|
return hash_value;
|
|
}
|
|
}
|
|
@@ -362,7 +348,7 @@ void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
|
|
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
|
|
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
|
|
|
|
|
|
/* update mta_shadow from mc_addr_list */
|
|
/* update mta_shadow from mc_addr_list */
|
|
- for (i = 0; (u32) i < mc_addr_count; i++) {
|
|
|
|
|
|
+ for (i = 0; (u32)i < mc_addr_count; i++) {
|
|
hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
|
|
hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
|
|
|
|
|
|
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
|
|
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
|
|
@@ -458,7 +444,7 @@ s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
|
|
return ret_val;
|
|
return ret_val;
|
|
|
|
|
|
if (!link)
|
|
if (!link)
|
|
- return ret_val; /* No link detected */
|
|
|
|
|
|
+ return ret_val; /* No link detected */
|
|
|
|
|
|
mac->get_link_status = false;
|
|
mac->get_link_status = false;
|
|
|
|
|
|
@@ -701,8 +687,7 @@ static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
|
|
|
|
|
|
if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
|
|
if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
|
|
hw->fc.requested_mode = e1000_fc_none;
|
|
hw->fc.requested_mode = e1000_fc_none;
|
|
- else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
|
|
|
|
- NVM_WORD0F_ASM_DIR)
|
|
|
|
|
|
+ else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
|
|
hw->fc.requested_mode = e1000_fc_tx_pause;
|
|
hw->fc.requested_mode = e1000_fc_tx_pause;
|
|
else
|
|
else
|
|
hw->fc.requested_mode = e1000_fc_full;
|
|
hw->fc.requested_mode = e1000_fc_full;
|
|
@@ -748,8 +733,7 @@ s32 e1000e_setup_link(struct e1000_hw *hw)
|
|
*/
|
|
*/
|
|
hw->fc.current_mode = hw->fc.requested_mode;
|
|
hw->fc.current_mode = hw->fc.requested_mode;
|
|
|
|
|
|
- e_dbg("After fix-ups FlowControl is now = %x\n",
|
|
|
|
- hw->fc.current_mode);
|
|
|
|
|
|
+ e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
|
|
|
|
|
|
/* Call the necessary media_type subroutine to configure the link. */
|
|
/* Call the necessary media_type subroutine to configure the link. */
|
|
ret_val = mac->ops.setup_physical_interface(hw);
|
|
ret_val = mac->ops.setup_physical_interface(hw);
|
|
@@ -1195,9 +1179,9 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
|
|
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
|
|
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
|
|
*/
|
|
*/
|
|
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
|
|
|
|
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
|
|
|
|
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
|
|
|
|
|
|
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
|
|
|
|
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
|
|
|
|
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
|
|
hw->fc.current_mode = e1000_fc_tx_pause;
|
|
hw->fc.current_mode = e1000_fc_tx_pause;
|
|
e_dbg("Flow Control = Tx PAUSE frames only.\n");
|
|
e_dbg("Flow Control = Tx PAUSE frames only.\n");
|
|
}
|
|
}
|
|
@@ -1261,7 +1245,8 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
|
|
* Read the status register for the current speed/duplex and store the current
|
|
* Read the status register for the current speed/duplex and store the current
|
|
* speed and duplex for copper connections.
|
|
* speed and duplex for copper connections.
|
|
**/
|
|
**/
|
|
-s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
|
|
|
|
|
|
+s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
|
|
|
|
+ u16 *duplex)
|
|
{
|
|
{
|
|
u32 status;
|
|
u32 status;
|
|
|
|
|
|
@@ -1294,7 +1279,8 @@ s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *dup
|
|
* Sets the speed and duplex to gigabit full duplex (the only possible option)
|
|
* Sets the speed and duplex to gigabit full duplex (the only possible option)
|
|
* for fiber/serdes links.
|
|
* for fiber/serdes links.
|
|
**/
|
|
**/
|
|
-s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
|
|
|
|
|
|
+s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed,
|
|
|
|
+ u16 *duplex)
|
|
{
|
|
{
|
|
*speed = SPEED_1000;
|
|
*speed = SPEED_1000;
|
|
*duplex = FULL_DUPLEX;
|
|
*duplex = FULL_DUPLEX;
|
|
@@ -1497,11 +1483,10 @@ s32 e1000e_setup_led_generic(struct e1000_hw *hw)
|
|
ledctl = er32(LEDCTL);
|
|
ledctl = er32(LEDCTL);
|
|
hw->mac.ledctl_default = ledctl;
|
|
hw->mac.ledctl_default = ledctl;
|
|
/* Turn off LED0 */
|
|
/* Turn off LED0 */
|
|
- ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
|
|
|
|
- E1000_LEDCTL_LED0_BLINK |
|
|
|
|
- E1000_LEDCTL_LED0_MODE_MASK);
|
|
|
|
|
|
+ ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
|
|
|
|
+ E1000_LEDCTL_LED0_MODE_MASK);
|
|
ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
|
|
ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
|
|
- E1000_LEDCTL_LED0_MODE_SHIFT);
|
|
|
|
|
|
+ E1000_LEDCTL_LED0_MODE_SHIFT);
|
|
ew32(LEDCTL, ledctl);
|
|
ew32(LEDCTL, ledctl);
|
|
} else if (hw->phy.media_type == e1000_media_type_copper) {
|
|
} else if (hw->phy.media_type == e1000_media_type_copper) {
|
|
ew32(LEDCTL, hw->mac.ledctl_mode1);
|
|
ew32(LEDCTL, hw->mac.ledctl_mode1);
|
|
@@ -1537,7 +1522,7 @@ s32 e1000e_blink_led_generic(struct e1000_hw *hw)
|
|
if (hw->phy.media_type == e1000_media_type_fiber) {
|
|
if (hw->phy.media_type == e1000_media_type_fiber) {
|
|
/* always blink LED0 for PCI-E fiber */
|
|
/* always blink LED0 for PCI-E fiber */
|
|
ledctl_blink = E1000_LEDCTL_LED0_BLINK |
|
|
ledctl_blink = E1000_LEDCTL_LED0_BLINK |
|
|
- (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
|
|
|
|
|
|
+ (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
|
|
} else {
|
|
} else {
|
|
/*
|
|
/*
|
|
* set the blink bit for each LED that's "on" (0x0E)
|
|
* set the blink bit for each LED that's "on" (0x0E)
|
|
@@ -1650,8 +1635,7 @@ s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
|
|
ew32(CTRL, ctrl);
|
|
ew32(CTRL, ctrl);
|
|
|
|
|
|
while (timeout) {
|
|
while (timeout) {
|
|
- if (!(er32(STATUS) &
|
|
|
|
- E1000_STATUS_GIO_MASTER_ENABLE))
|
|
|
|
|
|
+ if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
|
|
break;
|
|
break;
|
|
udelay(100);
|
|
udelay(100);
|
|
timeout--;
|
|
timeout--;
|
|
@@ -1716,7 +1700,7 @@ void e1000e_update_adaptive(struct e1000_hw *hw)
|
|
mac->current_ifs_val = mac->ifs_min_val;
|
|
mac->current_ifs_val = mac->ifs_min_val;
|
|
else
|
|
else
|
|
mac->current_ifs_val +=
|
|
mac->current_ifs_val +=
|
|
- mac->ifs_step_size;
|
|
|
|
|
|
+ mac->ifs_step_size;
|
|
ew32(AIT, mac->current_ifs_val);
|
|
ew32(AIT, mac->current_ifs_val);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
@@ -1731,956 +1715,3 @@ void e1000e_update_adaptive(struct e1000_hw *hw)
|
|
out:
|
|
out:
|
|
return;
|
|
return;
|
|
}
|
|
}
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000_raise_eec_clk - Raise EEPROM clock
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- * @eecd: pointer to the EEPROM
|
|
|
|
- *
|
|
|
|
- * Enable/Raise the EEPROM clock bit.
|
|
|
|
- **/
|
|
|
|
-static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
|
|
|
|
-{
|
|
|
|
- *eecd = *eecd | E1000_EECD_SK;
|
|
|
|
- ew32(EECD, *eecd);
|
|
|
|
- e1e_flush();
|
|
|
|
- udelay(hw->nvm.delay_usec);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000_lower_eec_clk - Lower EEPROM clock
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- * @eecd: pointer to the EEPROM
|
|
|
|
- *
|
|
|
|
- * Clear/Lower the EEPROM clock bit.
|
|
|
|
- **/
|
|
|
|
-static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
|
|
|
|
-{
|
|
|
|
- *eecd = *eecd & ~E1000_EECD_SK;
|
|
|
|
- ew32(EECD, *eecd);
|
|
|
|
- e1e_flush();
|
|
|
|
- udelay(hw->nvm.delay_usec);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- * @data: data to send to the EEPROM
|
|
|
|
- * @count: number of bits to shift out
|
|
|
|
- *
|
|
|
|
- * We need to shift 'count' bits out to the EEPROM. So, the value in the
|
|
|
|
- * "data" parameter will be shifted out to the EEPROM one bit at a time.
|
|
|
|
- * In order to do this, "data" must be broken down into bits.
|
|
|
|
- **/
|
|
|
|
-static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
|
|
|
|
-{
|
|
|
|
- struct e1000_nvm_info *nvm = &hw->nvm;
|
|
|
|
- u32 eecd = er32(EECD);
|
|
|
|
- u32 mask;
|
|
|
|
-
|
|
|
|
- mask = 0x01 << (count - 1);
|
|
|
|
- if (nvm->type == e1000_nvm_eeprom_spi)
|
|
|
|
- eecd |= E1000_EECD_DO;
|
|
|
|
-
|
|
|
|
- do {
|
|
|
|
- eecd &= ~E1000_EECD_DI;
|
|
|
|
-
|
|
|
|
- if (data & mask)
|
|
|
|
- eecd |= E1000_EECD_DI;
|
|
|
|
-
|
|
|
|
- ew32(EECD, eecd);
|
|
|
|
- e1e_flush();
|
|
|
|
-
|
|
|
|
- udelay(nvm->delay_usec);
|
|
|
|
-
|
|
|
|
- e1000_raise_eec_clk(hw, &eecd);
|
|
|
|
- e1000_lower_eec_clk(hw, &eecd);
|
|
|
|
-
|
|
|
|
- mask >>= 1;
|
|
|
|
- } while (mask);
|
|
|
|
-
|
|
|
|
- eecd &= ~E1000_EECD_DI;
|
|
|
|
- ew32(EECD, eecd);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- * @count: number of bits to shift in
|
|
|
|
- *
|
|
|
|
- * In order to read a register from the EEPROM, we need to shift 'count' bits
|
|
|
|
- * in from the EEPROM. Bits are "shifted in" by raising the clock input to
|
|
|
|
- * the EEPROM (setting the SK bit), and then reading the value of the data out
|
|
|
|
- * "DO" bit. During this "shifting in" process the data in "DI" bit should
|
|
|
|
- * always be clear.
|
|
|
|
- **/
|
|
|
|
-static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
|
|
|
|
-{
|
|
|
|
- u32 eecd;
|
|
|
|
- u32 i;
|
|
|
|
- u16 data;
|
|
|
|
-
|
|
|
|
- eecd = er32(EECD);
|
|
|
|
-
|
|
|
|
- eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
|
|
|
|
- data = 0;
|
|
|
|
-
|
|
|
|
- for (i = 0; i < count; i++) {
|
|
|
|
- data <<= 1;
|
|
|
|
- e1000_raise_eec_clk(hw, &eecd);
|
|
|
|
-
|
|
|
|
- eecd = er32(EECD);
|
|
|
|
-
|
|
|
|
- eecd &= ~E1000_EECD_DI;
|
|
|
|
- if (eecd & E1000_EECD_DO)
|
|
|
|
- data |= 1;
|
|
|
|
-
|
|
|
|
- e1000_lower_eec_clk(hw, &eecd);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return data;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- * @ee_reg: EEPROM flag for polling
|
|
|
|
- *
|
|
|
|
- * Polls the EEPROM status bit for either read or write completion based
|
|
|
|
- * upon the value of 'ee_reg'.
|
|
|
|
- **/
|
|
|
|
-s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
|
|
|
|
-{
|
|
|
|
- u32 attempts = 100000;
|
|
|
|
- u32 i, reg = 0;
|
|
|
|
-
|
|
|
|
- for (i = 0; i < attempts; i++) {
|
|
|
|
- if (ee_reg == E1000_NVM_POLL_READ)
|
|
|
|
- reg = er32(EERD);
|
|
|
|
- else
|
|
|
|
- reg = er32(EEWR);
|
|
|
|
-
|
|
|
|
- if (reg & E1000_NVM_RW_REG_DONE)
|
|
|
|
- return 0;
|
|
|
|
-
|
|
|
|
- udelay(5);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return -E1000_ERR_NVM;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000e_acquire_nvm - Generic request for access to EEPROM
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- *
|
|
|
|
- * Set the EEPROM access request bit and wait for EEPROM access grant bit.
|
|
|
|
- * Return successful if access grant bit set, else clear the request for
|
|
|
|
- * EEPROM access and return -E1000_ERR_NVM (-1).
|
|
|
|
- **/
|
|
|
|
-s32 e1000e_acquire_nvm(struct e1000_hw *hw)
|
|
|
|
-{
|
|
|
|
- u32 eecd = er32(EECD);
|
|
|
|
- s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
|
|
|
|
-
|
|
|
|
- ew32(EECD, eecd | E1000_EECD_REQ);
|
|
|
|
- eecd = er32(EECD);
|
|
|
|
-
|
|
|
|
- while (timeout) {
|
|
|
|
- if (eecd & E1000_EECD_GNT)
|
|
|
|
- break;
|
|
|
|
- udelay(5);
|
|
|
|
- eecd = er32(EECD);
|
|
|
|
- timeout--;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (!timeout) {
|
|
|
|
- eecd &= ~E1000_EECD_REQ;
|
|
|
|
- ew32(EECD, eecd);
|
|
|
|
- e_dbg("Could not acquire NVM grant\n");
|
|
|
|
- return -E1000_ERR_NVM;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return 0;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000_standby_nvm - Return EEPROM to standby state
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- *
|
|
|
|
- * Return the EEPROM to a standby state.
|
|
|
|
- **/
|
|
|
|
-static void e1000_standby_nvm(struct e1000_hw *hw)
|
|
|
|
-{
|
|
|
|
- struct e1000_nvm_info *nvm = &hw->nvm;
|
|
|
|
- u32 eecd = er32(EECD);
|
|
|
|
-
|
|
|
|
- if (nvm->type == e1000_nvm_eeprom_spi) {
|
|
|
|
- /* Toggle CS to flush commands */
|
|
|
|
- eecd |= E1000_EECD_CS;
|
|
|
|
- ew32(EECD, eecd);
|
|
|
|
- e1e_flush();
|
|
|
|
- udelay(nvm->delay_usec);
|
|
|
|
- eecd &= ~E1000_EECD_CS;
|
|
|
|
- ew32(EECD, eecd);
|
|
|
|
- e1e_flush();
|
|
|
|
- udelay(nvm->delay_usec);
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000_stop_nvm - Terminate EEPROM command
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- *
|
|
|
|
- * Terminates the current command by inverting the EEPROM's chip select pin.
|
|
|
|
- **/
|
|
|
|
-static void e1000_stop_nvm(struct e1000_hw *hw)
|
|
|
|
-{
|
|
|
|
- u32 eecd;
|
|
|
|
-
|
|
|
|
- eecd = er32(EECD);
|
|
|
|
- if (hw->nvm.type == e1000_nvm_eeprom_spi) {
|
|
|
|
- /* Pull CS high */
|
|
|
|
- eecd |= E1000_EECD_CS;
|
|
|
|
- e1000_lower_eec_clk(hw, &eecd);
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000e_release_nvm - Release exclusive access to EEPROM
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- *
|
|
|
|
- * Stop any current commands to the EEPROM and clear the EEPROM request bit.
|
|
|
|
- **/
|
|
|
|
-void e1000e_release_nvm(struct e1000_hw *hw)
|
|
|
|
-{
|
|
|
|
- u32 eecd;
|
|
|
|
-
|
|
|
|
- e1000_stop_nvm(hw);
|
|
|
|
-
|
|
|
|
- eecd = er32(EECD);
|
|
|
|
- eecd &= ~E1000_EECD_REQ;
|
|
|
|
- ew32(EECD, eecd);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- *
|
|
|
|
- * Setups the EEPROM for reading and writing.
|
|
|
|
- **/
|
|
|
|
-static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
|
|
|
|
-{
|
|
|
|
- struct e1000_nvm_info *nvm = &hw->nvm;
|
|
|
|
- u32 eecd = er32(EECD);
|
|
|
|
- u8 spi_stat_reg;
|
|
|
|
-
|
|
|
|
- if (nvm->type == e1000_nvm_eeprom_spi) {
|
|
|
|
- u16 timeout = NVM_MAX_RETRY_SPI;
|
|
|
|
-
|
|
|
|
- /* Clear SK and CS */
|
|
|
|
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
|
|
|
|
- ew32(EECD, eecd);
|
|
|
|
- e1e_flush();
|
|
|
|
- udelay(1);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Read "Status Register" repeatedly until the LSB is cleared.
|
|
|
|
- * The EEPROM will signal that the command has been completed
|
|
|
|
- * by clearing bit 0 of the internal status register. If it's
|
|
|
|
- * not cleared within 'timeout', then error out.
|
|
|
|
- */
|
|
|
|
- while (timeout) {
|
|
|
|
- e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
|
|
|
|
- hw->nvm.opcode_bits);
|
|
|
|
- spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
|
|
|
|
- if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- udelay(5);
|
|
|
|
- e1000_standby_nvm(hw);
|
|
|
|
- timeout--;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (!timeout) {
|
|
|
|
- e_dbg("SPI NVM Status error\n");
|
|
|
|
- return -E1000_ERR_NVM;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return 0;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- * @offset: offset of word in the EEPROM to read
|
|
|
|
- * @words: number of words to read
|
|
|
|
- * @data: word read from the EEPROM
|
|
|
|
- *
|
|
|
|
- * Reads a 16 bit word from the EEPROM using the EERD register.
|
|
|
|
- **/
|
|
|
|
-s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
|
|
|
|
-{
|
|
|
|
- struct e1000_nvm_info *nvm = &hw->nvm;
|
|
|
|
- u32 i, eerd = 0;
|
|
|
|
- s32 ret_val = 0;
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * A check for invalid values: offset too large, too many words,
|
|
|
|
- * too many words for the offset, and not enough words.
|
|
|
|
- */
|
|
|
|
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
|
|
|
- (words == 0)) {
|
|
|
|
- e_dbg("nvm parameter(s) out of bounds\n");
|
|
|
|
- return -E1000_ERR_NVM;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- for (i = 0; i < words; i++) {
|
|
|
|
- eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
|
|
|
|
- E1000_NVM_RW_REG_START;
|
|
|
|
-
|
|
|
|
- ew32(EERD, eerd);
|
|
|
|
- ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
|
|
|
|
- if (ret_val)
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return ret_val;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000e_write_nvm_spi - Write to EEPROM using SPI
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- * @offset: offset within the EEPROM to be written to
|
|
|
|
- * @words: number of words to write
|
|
|
|
- * @data: 16 bit word(s) to be written to the EEPROM
|
|
|
|
- *
|
|
|
|
- * Writes data to EEPROM at offset using SPI interface.
|
|
|
|
- *
|
|
|
|
- * If e1000e_update_nvm_checksum is not called after this function , the
|
|
|
|
- * EEPROM will most likely contain an invalid checksum.
|
|
|
|
- **/
|
|
|
|
-s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
|
|
|
|
-{
|
|
|
|
- struct e1000_nvm_info *nvm = &hw->nvm;
|
|
|
|
- s32 ret_val;
|
|
|
|
- u16 widx = 0;
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * A check for invalid values: offset too large, too many words,
|
|
|
|
- * and not enough words.
|
|
|
|
- */
|
|
|
|
- if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
|
|
|
- (words == 0)) {
|
|
|
|
- e_dbg("nvm parameter(s) out of bounds\n");
|
|
|
|
- return -E1000_ERR_NVM;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- ret_val = nvm->ops.acquire(hw);
|
|
|
|
- if (ret_val)
|
|
|
|
- return ret_val;
|
|
|
|
-
|
|
|
|
- while (widx < words) {
|
|
|
|
- u8 write_opcode = NVM_WRITE_OPCODE_SPI;
|
|
|
|
-
|
|
|
|
- ret_val = e1000_ready_nvm_eeprom(hw);
|
|
|
|
- if (ret_val) {
|
|
|
|
- nvm->ops.release(hw);
|
|
|
|
- return ret_val;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- e1000_standby_nvm(hw);
|
|
|
|
-
|
|
|
|
- /* Send the WRITE ENABLE command (8 bit opcode) */
|
|
|
|
- e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
|
|
|
|
- nvm->opcode_bits);
|
|
|
|
-
|
|
|
|
- e1000_standby_nvm(hw);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Some SPI eeproms use the 8th address bit embedded in the
|
|
|
|
- * opcode
|
|
|
|
- */
|
|
|
|
- if ((nvm->address_bits == 8) && (offset >= 128))
|
|
|
|
- write_opcode |= NVM_A8_OPCODE_SPI;
|
|
|
|
-
|
|
|
|
- /* Send the Write command (8-bit opcode + addr) */
|
|
|
|
- e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
|
|
|
|
- e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
|
|
|
|
- nvm->address_bits);
|
|
|
|
-
|
|
|
|
- /* Loop to allow for up to whole page write of eeprom */
|
|
|
|
- while (widx < words) {
|
|
|
|
- u16 word_out = data[widx];
|
|
|
|
- word_out = (word_out >> 8) | (word_out << 8);
|
|
|
|
- e1000_shift_out_eec_bits(hw, word_out, 16);
|
|
|
|
- widx++;
|
|
|
|
-
|
|
|
|
- if ((((offset + widx) * 2) % nvm->page_size) == 0) {
|
|
|
|
- e1000_standby_nvm(hw);
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- usleep_range(10000, 20000);
|
|
|
|
- nvm->ops.release(hw);
|
|
|
|
- return 0;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000_read_pba_string_generic - Read device part number
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- * @pba_num: pointer to device part number
|
|
|
|
- * @pba_num_size: size of part number buffer
|
|
|
|
- *
|
|
|
|
- * Reads the product board assembly (PBA) number from the EEPROM and stores
|
|
|
|
- * the value in pba_num.
|
|
|
|
- **/
|
|
|
|
-s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
|
|
|
|
- u32 pba_num_size)
|
|
|
|
-{
|
|
|
|
- s32 ret_val;
|
|
|
|
- u16 nvm_data;
|
|
|
|
- u16 pba_ptr;
|
|
|
|
- u16 offset;
|
|
|
|
- u16 length;
|
|
|
|
-
|
|
|
|
- if (pba_num == NULL) {
|
|
|
|
- e_dbg("PBA string buffer was null\n");
|
|
|
|
- ret_val = E1000_ERR_INVALID_ARGUMENT;
|
|
|
|
- goto out;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
|
|
|
|
- if (ret_val) {
|
|
|
|
- e_dbg("NVM Read Error\n");
|
|
|
|
- goto out;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
|
|
|
|
- if (ret_val) {
|
|
|
|
- e_dbg("NVM Read Error\n");
|
|
|
|
- goto out;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * if nvm_data is not ptr guard the PBA must be in legacy format which
|
|
|
|
- * means pba_ptr is actually our second data word for the PBA number
|
|
|
|
- * and we can decode it into an ascii string
|
|
|
|
- */
|
|
|
|
- if (nvm_data != NVM_PBA_PTR_GUARD) {
|
|
|
|
- e_dbg("NVM PBA number is not stored as string\n");
|
|
|
|
-
|
|
|
|
- /* we will need 11 characters to store the PBA */
|
|
|
|
- if (pba_num_size < 11) {
|
|
|
|
- e_dbg("PBA string buffer too small\n");
|
|
|
|
- return E1000_ERR_NO_SPACE;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /* extract hex string from data and pba_ptr */
|
|
|
|
- pba_num[0] = (nvm_data >> 12) & 0xF;
|
|
|
|
- pba_num[1] = (nvm_data >> 8) & 0xF;
|
|
|
|
- pba_num[2] = (nvm_data >> 4) & 0xF;
|
|
|
|
- pba_num[3] = nvm_data & 0xF;
|
|
|
|
- pba_num[4] = (pba_ptr >> 12) & 0xF;
|
|
|
|
- pba_num[5] = (pba_ptr >> 8) & 0xF;
|
|
|
|
- pba_num[6] = '-';
|
|
|
|
- pba_num[7] = 0;
|
|
|
|
- pba_num[8] = (pba_ptr >> 4) & 0xF;
|
|
|
|
- pba_num[9] = pba_ptr & 0xF;
|
|
|
|
-
|
|
|
|
- /* put a null character on the end of our string */
|
|
|
|
- pba_num[10] = '\0';
|
|
|
|
-
|
|
|
|
- /* switch all the data but the '-' to hex char */
|
|
|
|
- for (offset = 0; offset < 10; offset++) {
|
|
|
|
- if (pba_num[offset] < 0xA)
|
|
|
|
- pba_num[offset] += '0';
|
|
|
|
- else if (pba_num[offset] < 0x10)
|
|
|
|
- pba_num[offset] += 'A' - 0xA;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- goto out;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
|
|
|
|
- if (ret_val) {
|
|
|
|
- e_dbg("NVM Read Error\n");
|
|
|
|
- goto out;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (length == 0xFFFF || length == 0) {
|
|
|
|
- e_dbg("NVM PBA number section invalid length\n");
|
|
|
|
- ret_val = E1000_ERR_NVM_PBA_SECTION;
|
|
|
|
- goto out;
|
|
|
|
- }
|
|
|
|
- /* check if pba_num buffer is big enough */
|
|
|
|
- if (pba_num_size < (((u32)length * 2) - 1)) {
|
|
|
|
- e_dbg("PBA string buffer too small\n");
|
|
|
|
- ret_val = E1000_ERR_NO_SPACE;
|
|
|
|
- goto out;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /* trim pba length from start of string */
|
|
|
|
- pba_ptr++;
|
|
|
|
- length--;
|
|
|
|
-
|
|
|
|
- for (offset = 0; offset < length; offset++) {
|
|
|
|
- ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
|
|
|
|
- if (ret_val) {
|
|
|
|
- e_dbg("NVM Read Error\n");
|
|
|
|
- goto out;
|
|
|
|
- }
|
|
|
|
- pba_num[offset * 2] = (u8)(nvm_data >> 8);
|
|
|
|
- pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
|
|
|
|
- }
|
|
|
|
- pba_num[offset * 2] = '\0';
|
|
|
|
-
|
|
|
|
-out:
|
|
|
|
- return ret_val;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000_read_mac_addr_generic - Read device MAC address
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- *
|
|
|
|
- * Reads the device MAC address from the EEPROM and stores the value.
|
|
|
|
- * Since devices with two ports use the same EEPROM, we increment the
|
|
|
|
- * last bit in the MAC address for the second port.
|
|
|
|
- **/
|
|
|
|
-s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
|
|
|
|
-{
|
|
|
|
- u32 rar_high;
|
|
|
|
- u32 rar_low;
|
|
|
|
- u16 i;
|
|
|
|
-
|
|
|
|
- rar_high = er32(RAH(0));
|
|
|
|
- rar_low = er32(RAL(0));
|
|
|
|
-
|
|
|
|
- for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
|
|
|
|
- hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
|
|
|
|
-
|
|
|
|
- for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
|
|
|
|
- hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
|
|
|
|
-
|
|
|
|
- for (i = 0; i < ETH_ALEN; i++)
|
|
|
|
- hw->mac.addr[i] = hw->mac.perm_addr[i];
|
|
|
|
-
|
|
|
|
- return 0;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- *
|
|
|
|
- * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
|
|
- * and then verifies that the sum of the EEPROM is equal to 0xBABA.
|
|
|
|
- **/
|
|
|
|
-s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
|
|
|
|
-{
|
|
|
|
- s32 ret_val;
|
|
|
|
- u16 checksum = 0;
|
|
|
|
- u16 i, nvm_data;
|
|
|
|
-
|
|
|
|
- for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
|
|
|
|
- ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
|
|
|
|
- if (ret_val) {
|
|
|
|
- e_dbg("NVM Read Error\n");
|
|
|
|
- return ret_val;
|
|
|
|
- }
|
|
|
|
- checksum += nvm_data;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (checksum != (u16) NVM_SUM) {
|
|
|
|
- e_dbg("NVM Checksum Invalid\n");
|
|
|
|
- return -E1000_ERR_NVM;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return 0;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- *
|
|
|
|
- * Updates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
|
|
- * up to the checksum. Then calculates the EEPROM checksum and writes the
|
|
|
|
- * value to the EEPROM.
|
|
|
|
- **/
|
|
|
|
-s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
|
|
|
|
-{
|
|
|
|
- s32 ret_val;
|
|
|
|
- u16 checksum = 0;
|
|
|
|
- u16 i, nvm_data;
|
|
|
|
-
|
|
|
|
- for (i = 0; i < NVM_CHECKSUM_REG; i++) {
|
|
|
|
- ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
|
|
|
|
- if (ret_val) {
|
|
|
|
- e_dbg("NVM Read Error while updating checksum.\n");
|
|
|
|
- return ret_val;
|
|
|
|
- }
|
|
|
|
- checksum += nvm_data;
|
|
|
|
- }
|
|
|
|
- checksum = (u16) NVM_SUM - checksum;
|
|
|
|
- ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
|
|
|
|
- if (ret_val)
|
|
|
|
- e_dbg("NVM Write Error while updating checksum.\n");
|
|
|
|
-
|
|
|
|
- return ret_val;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000e_reload_nvm - Reloads EEPROM
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- *
|
|
|
|
- * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
|
|
|
|
- * extended control register.
|
|
|
|
- **/
|
|
|
|
-void e1000e_reload_nvm(struct e1000_hw *hw)
|
|
|
|
-{
|
|
|
|
- u32 ctrl_ext;
|
|
|
|
-
|
|
|
|
- udelay(10);
|
|
|
|
- ctrl_ext = er32(CTRL_EXT);
|
|
|
|
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
|
|
|
|
- ew32(CTRL_EXT, ctrl_ext);
|
|
|
|
- e1e_flush();
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000_calculate_checksum - Calculate checksum for buffer
|
|
|
|
- * @buffer: pointer to EEPROM
|
|
|
|
- * @length: size of EEPROM to calculate a checksum for
|
|
|
|
- *
|
|
|
|
- * Calculates the checksum for some buffer on a specified length. The
|
|
|
|
- * checksum calculated is returned.
|
|
|
|
- **/
|
|
|
|
-static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
|
|
|
|
-{
|
|
|
|
- u32 i;
|
|
|
|
- u8 sum = 0;
|
|
|
|
-
|
|
|
|
- if (!buffer)
|
|
|
|
- return 0;
|
|
|
|
-
|
|
|
|
- for (i = 0; i < length; i++)
|
|
|
|
- sum += buffer[i];
|
|
|
|
-
|
|
|
|
- return (u8) (0 - sum);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000_mng_enable_host_if - Checks host interface is enabled
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- *
|
|
|
|
- * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
|
|
|
|
- *
|
|
|
|
- * This function checks whether the HOST IF is enabled for command operation
|
|
|
|
- * and also checks whether the previous command is completed. It busy waits
|
|
|
|
- * in case of previous command is not completed.
|
|
|
|
- **/
|
|
|
|
-static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
|
|
|
|
-{
|
|
|
|
- u32 hicr;
|
|
|
|
- u8 i;
|
|
|
|
-
|
|
|
|
- if (!(hw->mac.arc_subsystem_valid)) {
|
|
|
|
- e_dbg("ARC subsystem not valid.\n");
|
|
|
|
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /* Check that the host interface is enabled. */
|
|
|
|
- hicr = er32(HICR);
|
|
|
|
- if ((hicr & E1000_HICR_EN) == 0) {
|
|
|
|
- e_dbg("E1000_HOST_EN bit disabled.\n");
|
|
|
|
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
|
|
|
|
- }
|
|
|
|
- /* check the previous command is completed */
|
|
|
|
- for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
|
|
|
|
- hicr = er32(HICR);
|
|
|
|
- if (!(hicr & E1000_HICR_C))
|
|
|
|
- break;
|
|
|
|
- mdelay(1);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
|
|
|
|
- e_dbg("Previous command timeout failed .\n");
|
|
|
|
- return -E1000_ERR_HOST_INTERFACE_COMMAND;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return 0;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000e_check_mng_mode_generic - check management mode
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- *
|
|
|
|
- * Reads the firmware semaphore register and returns true (>0) if
|
|
|
|
- * manageability is enabled, else false (0).
|
|
|
|
- **/
|
|
|
|
-bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
|
|
|
|
-{
|
|
|
|
- u32 fwsm = er32(FWSM);
|
|
|
|
-
|
|
|
|
- return (fwsm & E1000_FWSM_MODE_MASK) ==
|
|
|
|
- (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- *
|
|
|
|
- * Enables packet filtering on transmit packets if manageability is enabled
|
|
|
|
- * and host interface is enabled.
|
|
|
|
- **/
|
|
|
|
-bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
|
|
|
|
-{
|
|
|
|
- struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
|
|
|
|
- u32 *buffer = (u32 *)&hw->mng_cookie;
|
|
|
|
- u32 offset;
|
|
|
|
- s32 ret_val, hdr_csum, csum;
|
|
|
|
- u8 i, len;
|
|
|
|
-
|
|
|
|
- hw->mac.tx_pkt_filtering = true;
|
|
|
|
-
|
|
|
|
- /* No manageability, no filtering */
|
|
|
|
- if (!e1000e_check_mng_mode(hw)) {
|
|
|
|
- hw->mac.tx_pkt_filtering = false;
|
|
|
|
- goto out;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * If we can't read from the host interface for whatever
|
|
|
|
- * reason, disable filtering.
|
|
|
|
- */
|
|
|
|
- ret_val = e1000_mng_enable_host_if(hw);
|
|
|
|
- if (ret_val) {
|
|
|
|
- hw->mac.tx_pkt_filtering = false;
|
|
|
|
- goto out;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /* Read in the header. Length and offset are in dwords. */
|
|
|
|
- len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
|
|
|
|
- offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
|
|
|
|
- for (i = 0; i < len; i++)
|
|
|
|
- *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
|
|
|
|
- hdr_csum = hdr->checksum;
|
|
|
|
- hdr->checksum = 0;
|
|
|
|
- csum = e1000_calculate_checksum((u8 *)hdr,
|
|
|
|
- E1000_MNG_DHCP_COOKIE_LENGTH);
|
|
|
|
- /*
|
|
|
|
- * If either the checksums or signature don't match, then
|
|
|
|
- * the cookie area isn't considered valid, in which case we
|
|
|
|
- * take the safe route of assuming Tx filtering is enabled.
|
|
|
|
- */
|
|
|
|
- if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
|
|
|
|
- hw->mac.tx_pkt_filtering = true;
|
|
|
|
- goto out;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /* Cookie area is valid, make the final check for filtering. */
|
|
|
|
- if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
|
|
|
|
- hw->mac.tx_pkt_filtering = false;
|
|
|
|
- goto out;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-out:
|
|
|
|
- return hw->mac.tx_pkt_filtering;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000_mng_write_cmd_header - Writes manageability command header
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- * @hdr: pointer to the host interface command header
|
|
|
|
- *
|
|
|
|
- * Writes the command header after does the checksum calculation.
|
|
|
|
- **/
|
|
|
|
-static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
|
|
|
|
- struct e1000_host_mng_command_header *hdr)
|
|
|
|
-{
|
|
|
|
- u16 i, length = sizeof(struct e1000_host_mng_command_header);
|
|
|
|
-
|
|
|
|
- /* Write the whole command header structure with new checksum. */
|
|
|
|
-
|
|
|
|
- hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
|
|
|
|
-
|
|
|
|
- length >>= 2;
|
|
|
|
- /* Write the relevant command block into the ram area. */
|
|
|
|
- for (i = 0; i < length; i++) {
|
|
|
|
- E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
|
|
|
|
- *((u32 *) hdr + i));
|
|
|
|
- e1e_flush();
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return 0;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000_mng_host_if_write - Write to the manageability host interface
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- * @buffer: pointer to the host interface buffer
|
|
|
|
- * @length: size of the buffer
|
|
|
|
- * @offset: location in the buffer to write to
|
|
|
|
- * @sum: sum of the data (not checksum)
|
|
|
|
- *
|
|
|
|
- * This function writes the buffer content at the offset given on the host if.
|
|
|
|
- * It also does alignment considerations to do the writes in most efficient
|
|
|
|
- * way. Also fills up the sum of the buffer in *buffer parameter.
|
|
|
|
- **/
|
|
|
|
-static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
|
|
|
|
- u16 length, u16 offset, u8 *sum)
|
|
|
|
-{
|
|
|
|
- u8 *tmp;
|
|
|
|
- u8 *bufptr = buffer;
|
|
|
|
- u32 data = 0;
|
|
|
|
- u16 remaining, i, j, prev_bytes;
|
|
|
|
-
|
|
|
|
- /* sum = only sum of the data and it is not checksum */
|
|
|
|
-
|
|
|
|
- if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
|
|
|
|
- return -E1000_ERR_PARAM;
|
|
|
|
-
|
|
|
|
- tmp = (u8 *)&data;
|
|
|
|
- prev_bytes = offset & 0x3;
|
|
|
|
- offset >>= 2;
|
|
|
|
-
|
|
|
|
- if (prev_bytes) {
|
|
|
|
- data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
|
|
|
|
- for (j = prev_bytes; j < sizeof(u32); j++) {
|
|
|
|
- *(tmp + j) = *bufptr++;
|
|
|
|
- *sum += *(tmp + j);
|
|
|
|
- }
|
|
|
|
- E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
|
|
|
|
- length -= j - prev_bytes;
|
|
|
|
- offset++;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- remaining = length & 0x3;
|
|
|
|
- length -= remaining;
|
|
|
|
-
|
|
|
|
- /* Calculate length in DWORDs */
|
|
|
|
- length >>= 2;
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * The device driver writes the relevant command block into the
|
|
|
|
- * ram area.
|
|
|
|
- */
|
|
|
|
- for (i = 0; i < length; i++) {
|
|
|
|
- for (j = 0; j < sizeof(u32); j++) {
|
|
|
|
- *(tmp + j) = *bufptr++;
|
|
|
|
- *sum += *(tmp + j);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
|
|
|
|
- }
|
|
|
|
- if (remaining) {
|
|
|
|
- for (j = 0; j < sizeof(u32); j++) {
|
|
|
|
- if (j < remaining)
|
|
|
|
- *(tmp + j) = *bufptr++;
|
|
|
|
- else
|
|
|
|
- *(tmp + j) = 0;
|
|
|
|
-
|
|
|
|
- *sum += *(tmp + j);
|
|
|
|
- }
|
|
|
|
- E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return 0;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- * @buffer: pointer to the host interface
|
|
|
|
- * @length: size of the buffer
|
|
|
|
- *
|
|
|
|
- * Writes the DHCP information to the host interface.
|
|
|
|
- **/
|
|
|
|
-s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
|
|
|
|
-{
|
|
|
|
- struct e1000_host_mng_command_header hdr;
|
|
|
|
- s32 ret_val;
|
|
|
|
- u32 hicr;
|
|
|
|
-
|
|
|
|
- hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
|
|
|
|
- hdr.command_length = length;
|
|
|
|
- hdr.reserved1 = 0;
|
|
|
|
- hdr.reserved2 = 0;
|
|
|
|
- hdr.checksum = 0;
|
|
|
|
-
|
|
|
|
- /* Enable the host interface */
|
|
|
|
- ret_val = e1000_mng_enable_host_if(hw);
|
|
|
|
- if (ret_val)
|
|
|
|
- return ret_val;
|
|
|
|
-
|
|
|
|
- /* Populate the host interface with the contents of "buffer". */
|
|
|
|
- ret_val = e1000_mng_host_if_write(hw, buffer, length,
|
|
|
|
- sizeof(hdr), &(hdr.checksum));
|
|
|
|
- if (ret_val)
|
|
|
|
- return ret_val;
|
|
|
|
-
|
|
|
|
- /* Write the manageability command header */
|
|
|
|
- ret_val = e1000_mng_write_cmd_header(hw, &hdr);
|
|
|
|
- if (ret_val)
|
|
|
|
- return ret_val;
|
|
|
|
-
|
|
|
|
- /* Tell the ARC a new command is pending. */
|
|
|
|
- hicr = er32(HICR);
|
|
|
|
- ew32(HICR, hicr | E1000_HICR_C);
|
|
|
|
-
|
|
|
|
- return 0;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * e1000e_enable_mng_pass_thru - Check if management passthrough is needed
|
|
|
|
- * @hw: pointer to the HW structure
|
|
|
|
- *
|
|
|
|
- * Verifies the hardware needs to leave interface enabled so that frames can
|
|
|
|
- * be directed to and from the management interface.
|
|
|
|
- **/
|
|
|
|
-bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
|
|
|
|
-{
|
|
|
|
- u32 manc;
|
|
|
|
- u32 fwsm, factps;
|
|
|
|
- bool ret_val = false;
|
|
|
|
-
|
|
|
|
- manc = er32(MANC);
|
|
|
|
-
|
|
|
|
- if (!(manc & E1000_MANC_RCV_TCO_EN))
|
|
|
|
- goto out;
|
|
|
|
-
|
|
|
|
- if (hw->mac.has_fwsm) {
|
|
|
|
- fwsm = er32(FWSM);
|
|
|
|
- factps = er32(FACTPS);
|
|
|
|
-
|
|
|
|
- if (!(factps & E1000_FACTPS_MNGCG) &&
|
|
|
|
- ((fwsm & E1000_FWSM_MODE_MASK) ==
|
|
|
|
- (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
|
|
|
|
- ret_val = true;
|
|
|
|
- goto out;
|
|
|
|
- }
|
|
|
|
- } else if ((hw->mac.type == e1000_82574) ||
|
|
|
|
- (hw->mac.type == e1000_82583)) {
|
|
|
|
- u16 data;
|
|
|
|
-
|
|
|
|
- factps = er32(FACTPS);
|
|
|
|
- e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
|
|
|
|
-
|
|
|
|
- if (!(factps & E1000_FACTPS_MNGCG) &&
|
|
|
|
- ((data & E1000_NVM_INIT_CTRL2_MNGM) ==
|
|
|
|
- (e1000_mng_mode_pt << 13))) {
|
|
|
|
- ret_val = true;
|
|
|
|
- goto out;
|
|
|
|
- }
|
|
|
|
- } else if ((manc & E1000_MANC_SMBUS_EN) &&
|
|
|
|
- !(manc & E1000_MANC_ASF_EN)) {
|
|
|
|
- ret_val = true;
|
|
|
|
- goto out;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-out:
|
|
|
|
- return ret_val;
|
|
|
|
-}
|
|
|