|
@@ -0,0 +1,1817 @@
|
|
|
+/*******************************************************************************
|
|
|
+ *
|
|
|
+ * Intel Ethernet Controller XL710 Family Linux Driver
|
|
|
+ * Copyright(c) 2013 Intel Corporation.
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or modify it
|
|
|
+ * under the terms and conditions of the GNU General Public License,
|
|
|
+ * version 2, as published by the Free Software Foundation.
|
|
|
+ *
|
|
|
+ * This program is distributed in the hope it will be useful, but WITHOUT
|
|
|
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
|
+ * more details.
|
|
|
+ *
|
|
|
+ * You should have received a copy of the GNU General Public License along with
|
|
|
+ * this program; if not, write to the Free Software Foundation, Inc.,
|
|
|
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
+ *
|
|
|
+ * The full GNU General Public License is included in this distribution in
|
|
|
+ * the file called "COPYING".
|
|
|
+ *
|
|
|
+ * Contact Information:
|
|
|
+ * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
|
|
+ * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
|
+ *
|
|
|
+ ******************************************************************************/
|
|
|
+
|
|
|
+#include "i40e.h"
|
|
|
+
|
|
|
+static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
|
|
|
+ u32 td_tag)
|
|
|
+{
|
|
|
+ return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
|
|
|
+ ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
|
|
|
+ ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
|
|
|
+ ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
|
|
|
+ ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_program_fdir_filter - Program a Flow Director filter
|
|
|
+ * @fdir_input: Packet data that will be filter parameters
|
|
|
+ * @pf: The pf pointer
|
|
|
+ * @add: True for add/update, False for remove
|
|
|
+ **/
|
|
|
+int i40e_program_fdir_filter(struct i40e_fdir_data *fdir_data,
|
|
|
+ struct i40e_pf *pf, bool add)
|
|
|
+{
|
|
|
+ struct i40e_filter_program_desc *fdir_desc;
|
|
|
+ struct i40e_tx_buffer *tx_buf;
|
|
|
+ struct i40e_tx_desc *tx_desc;
|
|
|
+ struct i40e_ring *tx_ring;
|
|
|
+ struct i40e_vsi *vsi;
|
|
|
+ struct device *dev;
|
|
|
+ dma_addr_t dma;
|
|
|
+ u32 td_cmd = 0;
|
|
|
+ u16 i;
|
|
|
+
|
|
|
+ /* find existing FDIR VSI */
|
|
|
+ vsi = NULL;
|
|
|
+ for (i = 0; i < pf->hw.func_caps.num_vsis; i++)
|
|
|
+ if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
|
|
|
+ vsi = pf->vsi[i];
|
|
|
+ if (!vsi)
|
|
|
+ return -ENOENT;
|
|
|
+
|
|
|
+ tx_ring = &vsi->tx_rings[0];
|
|
|
+ dev = tx_ring->dev;
|
|
|
+
|
|
|
+ dma = dma_map_single(dev, fdir_data->raw_packet,
|
|
|
+ I40E_FDIR_MAX_RAW_PACKET_LOOKUP, DMA_TO_DEVICE);
|
|
|
+ if (dma_mapping_error(dev, dma))
|
|
|
+ goto dma_fail;
|
|
|
+
|
|
|
+ /* grab the next descriptor */
|
|
|
+ fdir_desc = I40E_TX_FDIRDESC(tx_ring, tx_ring->next_to_use);
|
|
|
+ tx_buf = &tx_ring->tx_bi[tx_ring->next_to_use];
|
|
|
+ tx_ring->next_to_use++;
|
|
|
+ if (tx_ring->next_to_use == tx_ring->count)
|
|
|
+ tx_ring->next_to_use = 0;
|
|
|
+
|
|
|
+ fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32((fdir_data->q_index
|
|
|
+ << I40E_TXD_FLTR_QW0_QINDEX_SHIFT)
|
|
|
+ & I40E_TXD_FLTR_QW0_QINDEX_MASK);
|
|
|
+
|
|
|
+ fdir_desc->qindex_flex_ptype_vsi |= cpu_to_le32((fdir_data->flex_off
|
|
|
+ << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT)
|
|
|
+ & I40E_TXD_FLTR_QW0_FLEXOFF_MASK);
|
|
|
+
|
|
|
+ fdir_desc->qindex_flex_ptype_vsi |= cpu_to_le32((fdir_data->pctype
|
|
|
+ << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT)
|
|
|
+ & I40E_TXD_FLTR_QW0_PCTYPE_MASK);
|
|
|
+
|
|
|
+ /* Use LAN VSI Id if not programmed by user */
|
|
|
+ if (fdir_data->dest_vsi == 0)
|
|
|
+ fdir_desc->qindex_flex_ptype_vsi |=
|
|
|
+ cpu_to_le32((pf->vsi[pf->lan_vsi]->id)
|
|
|
+ << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
|
|
|
+ else
|
|
|
+ fdir_desc->qindex_flex_ptype_vsi |=
|
|
|
+ cpu_to_le32((fdir_data->dest_vsi
|
|
|
+ << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT)
|
|
|
+ & I40E_TXD_FLTR_QW0_DEST_VSI_MASK);
|
|
|
+
|
|
|
+ fdir_desc->dtype_cmd_cntindex =
|
|
|
+ cpu_to_le32(I40E_TX_DESC_DTYPE_FILTER_PROG);
|
|
|
+
|
|
|
+ if (add)
|
|
|
+ fdir_desc->dtype_cmd_cntindex |= cpu_to_le32(
|
|
|
+ I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE
|
|
|
+ << I40E_TXD_FLTR_QW1_PCMD_SHIFT);
|
|
|
+ else
|
|
|
+ fdir_desc->dtype_cmd_cntindex |= cpu_to_le32(
|
|
|
+ I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE
|
|
|
+ << I40E_TXD_FLTR_QW1_PCMD_SHIFT);
|
|
|
+
|
|
|
+ fdir_desc->dtype_cmd_cntindex |= cpu_to_le32((fdir_data->dest_ctl
|
|
|
+ << I40E_TXD_FLTR_QW1_DEST_SHIFT)
|
|
|
+ & I40E_TXD_FLTR_QW1_DEST_MASK);
|
|
|
+
|
|
|
+ fdir_desc->dtype_cmd_cntindex |= cpu_to_le32(
|
|
|
+ (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT)
|
|
|
+ & I40E_TXD_FLTR_QW1_FD_STATUS_MASK);
|
|
|
+
|
|
|
+ if (fdir_data->cnt_index != 0) {
|
|
|
+ fdir_desc->dtype_cmd_cntindex |=
|
|
|
+ cpu_to_le32(I40E_TXD_FLTR_QW1_CNT_ENA_MASK);
|
|
|
+ fdir_desc->dtype_cmd_cntindex |=
|
|
|
+ cpu_to_le32((fdir_data->cnt_index
|
|
|
+ << I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT)
|
|
|
+ & I40E_TXD_FLTR_QW1_CNTINDEX_MASK);
|
|
|
+ }
|
|
|
+
|
|
|
+ fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
|
|
|
+
|
|
|
+ /* Now program a dummy descriptor */
|
|
|
+ tx_desc = I40E_TX_DESC(tx_ring, tx_ring->next_to_use);
|
|
|
+ tx_buf = &tx_ring->tx_bi[tx_ring->next_to_use];
|
|
|
+ tx_ring->next_to_use++;
|
|
|
+ if (tx_ring->next_to_use == tx_ring->count)
|
|
|
+ tx_ring->next_to_use = 0;
|
|
|
+
|
|
|
+ tx_desc->buffer_addr = cpu_to_le64(dma);
|
|
|
+ td_cmd = I40E_TX_DESC_CMD_EOP |
|
|
|
+ I40E_TX_DESC_CMD_RS |
|
|
|
+ I40E_TX_DESC_CMD_DUMMY;
|
|
|
+
|
|
|
+ tx_desc->cmd_type_offset_bsz =
|
|
|
+ build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_LOOKUP, 0);
|
|
|
+
|
|
|
+ /* Mark the data descriptor to be watched */
|
|
|
+ tx_buf->next_to_watch = tx_desc;
|
|
|
+
|
|
|
+ /* Force memory writes to complete before letting h/w
|
|
|
+ * know there are new descriptors to fetch. (Only
|
|
|
+ * applicable for weak-ordered memory model archs,
|
|
|
+ * such as IA-64).
|
|
|
+ */
|
|
|
+ wmb();
|
|
|
+
|
|
|
+ writel(tx_ring->next_to_use, tx_ring->tail);
|
|
|
+ return 0;
|
|
|
+
|
|
|
+dma_fail:
|
|
|
+ return -1;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_fd_handle_status - check the Programming Status for FD
|
|
|
+ * @rx_ring: the Rx ring for this descriptor
|
|
|
+ * @qw: the descriptor data
|
|
|
+ * @prog_id: the id originally used for programming
|
|
|
+ *
|
|
|
+ * This is used to verify if the FD programming or invalidation
|
|
|
+ * requested by SW to the HW is successful or not and take actions accordingly.
|
|
|
+ **/
|
|
|
+static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u32 qw, u8 prog_id)
|
|
|
+{
|
|
|
+ struct pci_dev *pdev = rx_ring->vsi->back->pdev;
|
|
|
+ u32 error;
|
|
|
+
|
|
|
+ error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
|
|
|
+ I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
|
|
|
+
|
|
|
+ /* for now just print the Status */
|
|
|
+ dev_info(&pdev->dev, "FD programming id %02x, Status %08x\n",
|
|
|
+ prog_id, error);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_unmap_tx_resource - Release a Tx buffer
|
|
|
+ * @ring: the ring that owns the buffer
|
|
|
+ * @tx_buffer: the buffer to free
|
|
|
+ **/
|
|
|
+static inline void i40e_unmap_tx_resource(struct i40e_ring *ring,
|
|
|
+ struct i40e_tx_buffer *tx_buffer)
|
|
|
+{
|
|
|
+ if (tx_buffer->dma) {
|
|
|
+ if (tx_buffer->tx_flags & I40E_TX_FLAGS_MAPPED_AS_PAGE)
|
|
|
+ dma_unmap_page(ring->dev,
|
|
|
+ tx_buffer->dma,
|
|
|
+ tx_buffer->length,
|
|
|
+ DMA_TO_DEVICE);
|
|
|
+ else
|
|
|
+ dma_unmap_single(ring->dev,
|
|
|
+ tx_buffer->dma,
|
|
|
+ tx_buffer->length,
|
|
|
+ DMA_TO_DEVICE);
|
|
|
+ }
|
|
|
+ tx_buffer->dma = 0;
|
|
|
+ tx_buffer->time_stamp = 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_clean_tx_ring - Free any empty Tx buffers
|
|
|
+ * @tx_ring: ring to be cleaned
|
|
|
+ **/
|
|
|
+void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
|
|
|
+{
|
|
|
+ struct i40e_tx_buffer *tx_buffer;
|
|
|
+ unsigned long bi_size;
|
|
|
+ u16 i;
|
|
|
+
|
|
|
+ /* ring already cleared, nothing to do */
|
|
|
+ if (!tx_ring->tx_bi)
|
|
|
+ return;
|
|
|
+
|
|
|
+ /* Free all the Tx ring sk_buffs */
|
|
|
+ for (i = 0; i < tx_ring->count; i++) {
|
|
|
+ tx_buffer = &tx_ring->tx_bi[i];
|
|
|
+ i40e_unmap_tx_resource(tx_ring, tx_buffer);
|
|
|
+ if (tx_buffer->skb)
|
|
|
+ dev_kfree_skb_any(tx_buffer->skb);
|
|
|
+ tx_buffer->skb = NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
|
|
|
+ memset(tx_ring->tx_bi, 0, bi_size);
|
|
|
+
|
|
|
+ /* Zero out the descriptor ring */
|
|
|
+ memset(tx_ring->desc, 0, tx_ring->size);
|
|
|
+
|
|
|
+ tx_ring->next_to_use = 0;
|
|
|
+ tx_ring->next_to_clean = 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_free_tx_resources - Free Tx resources per queue
|
|
|
+ * @tx_ring: Tx descriptor ring for a specific queue
|
|
|
+ *
|
|
|
+ * Free all transmit software resources
|
|
|
+ **/
|
|
|
+void i40e_free_tx_resources(struct i40e_ring *tx_ring)
|
|
|
+{
|
|
|
+ i40e_clean_tx_ring(tx_ring);
|
|
|
+ kfree(tx_ring->tx_bi);
|
|
|
+ tx_ring->tx_bi = NULL;
|
|
|
+
|
|
|
+ if (tx_ring->desc) {
|
|
|
+ dma_free_coherent(tx_ring->dev, tx_ring->size,
|
|
|
+ tx_ring->desc, tx_ring->dma);
|
|
|
+ tx_ring->desc = NULL;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_get_tx_pending - how many tx descriptors not processed
|
|
|
+ * @tx_ring: the ring of descriptors
|
|
|
+ *
|
|
|
+ * Since there is no access to the ring head register
|
|
|
+ * in XL710, we need to use our local copies
|
|
|
+ **/
|
|
|
+static u32 i40e_get_tx_pending(struct i40e_ring *ring)
|
|
|
+{
|
|
|
+ u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
|
|
|
+ ? ring->next_to_use
|
|
|
+ : ring->next_to_use + ring->count);
|
|
|
+ return ntu - ring->next_to_clean;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_check_tx_hang - Is there a hang in the Tx queue
|
|
|
+ * @tx_ring: the ring of descriptors
|
|
|
+ **/
|
|
|
+static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
|
|
|
+{
|
|
|
+ u32 tx_pending = i40e_get_tx_pending(tx_ring);
|
|
|
+ bool ret = false;
|
|
|
+
|
|
|
+ clear_check_for_tx_hang(tx_ring);
|
|
|
+
|
|
|
+ /* Check for a hung queue, but be thorough. This verifies
|
|
|
+ * that a transmit has been completed since the previous
|
|
|
+ * check AND there is at least one packet pending. The
|
|
|
+ * ARMED bit is set to indicate a potential hang. The
|
|
|
+ * bit is cleared if a pause frame is received to remove
|
|
|
+ * false hang detection due to PFC or 802.3x frames. By
|
|
|
+ * requiring this to fail twice we avoid races with
|
|
|
+ * PFC clearing the ARMED bit and conditions where we
|
|
|
+ * run the check_tx_hang logic with a transmit completion
|
|
|
+ * pending but without time to complete it yet.
|
|
|
+ */
|
|
|
+ if ((tx_ring->tx_stats.tx_done_old == tx_ring->tx_stats.packets) &&
|
|
|
+ tx_pending) {
|
|
|
+ /* make sure it is true for two checks in a row */
|
|
|
+ ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
|
|
|
+ &tx_ring->state);
|
|
|
+ } else {
|
|
|
+ /* update completed stats and disarm the hang check */
|
|
|
+ tx_ring->tx_stats.tx_done_old = tx_ring->tx_stats.packets;
|
|
|
+ clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
|
|
|
+ }
|
|
|
+
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_clean_tx_irq - Reclaim resources after transmit completes
|
|
|
+ * @tx_ring: tx ring to clean
|
|
|
+ * @budget: how many cleans we're allowed
|
|
|
+ *
|
|
|
+ * Returns true if there's any budget left (e.g. the clean is finished)
|
|
|
+ **/
|
|
|
+static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
|
|
|
+{
|
|
|
+ u16 i = tx_ring->next_to_clean;
|
|
|
+ struct i40e_tx_buffer *tx_buf;
|
|
|
+ struct i40e_tx_desc *tx_desc;
|
|
|
+ unsigned int total_packets = 0;
|
|
|
+ unsigned int total_bytes = 0;
|
|
|
+
|
|
|
+ tx_buf = &tx_ring->tx_bi[i];
|
|
|
+ tx_desc = I40E_TX_DESC(tx_ring, i);
|
|
|
+
|
|
|
+ for (; budget; budget--) {
|
|
|
+ struct i40e_tx_desc *eop_desc;
|
|
|
+
|
|
|
+ eop_desc = tx_buf->next_to_watch;
|
|
|
+
|
|
|
+ /* if next_to_watch is not set then there is no work pending */
|
|
|
+ if (!eop_desc)
|
|
|
+ break;
|
|
|
+
|
|
|
+ /* if the descriptor isn't done, no work yet to do */
|
|
|
+ if (!(eop_desc->cmd_type_offset_bsz &
|
|
|
+ cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
|
|
|
+ break;
|
|
|
+
|
|
|
+ /* count the packet as being completed */
|
|
|
+ tx_ring->tx_stats.completed++;
|
|
|
+ tx_buf->next_to_watch = NULL;
|
|
|
+ tx_buf->time_stamp = 0;
|
|
|
+
|
|
|
+ /* set memory barrier before eop_desc is verified */
|
|
|
+ rmb();
|
|
|
+
|
|
|
+ do {
|
|
|
+ i40e_unmap_tx_resource(tx_ring, tx_buf);
|
|
|
+
|
|
|
+ /* clear dtype status */
|
|
|
+ tx_desc->cmd_type_offset_bsz &=
|
|
|
+ ~cpu_to_le64(I40E_TXD_QW1_DTYPE_MASK);
|
|
|
+
|
|
|
+ if (likely(tx_desc == eop_desc)) {
|
|
|
+ eop_desc = NULL;
|
|
|
+
|
|
|
+ dev_kfree_skb_any(tx_buf->skb);
|
|
|
+ tx_buf->skb = NULL;
|
|
|
+
|
|
|
+ total_bytes += tx_buf->bytecount;
|
|
|
+ total_packets += tx_buf->gso_segs;
|
|
|
+ }
|
|
|
+
|
|
|
+ tx_buf++;
|
|
|
+ tx_desc++;
|
|
|
+ i++;
|
|
|
+ if (unlikely(i == tx_ring->count)) {
|
|
|
+ i = 0;
|
|
|
+ tx_buf = tx_ring->tx_bi;
|
|
|
+ tx_desc = I40E_TX_DESC(tx_ring, 0);
|
|
|
+ }
|
|
|
+ } while (eop_desc);
|
|
|
+ }
|
|
|
+
|
|
|
+ tx_ring->next_to_clean = i;
|
|
|
+ tx_ring->tx_stats.bytes += total_bytes;
|
|
|
+ tx_ring->tx_stats.packets += total_packets;
|
|
|
+ tx_ring->q_vector->tx.total_bytes += total_bytes;
|
|
|
+ tx_ring->q_vector->tx.total_packets += total_packets;
|
|
|
+ if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
|
|
|
+ /* schedule immediate reset if we believe we hung */
|
|
|
+ dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
|
|
|
+ " VSI <%d>\n"
|
|
|
+ " Tx Queue <%d>\n"
|
|
|
+ " next_to_use <%x>\n"
|
|
|
+ " next_to_clean <%x>\n",
|
|
|
+ tx_ring->vsi->seid,
|
|
|
+ tx_ring->queue_index,
|
|
|
+ tx_ring->next_to_use, i);
|
|
|
+ dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
|
|
|
+ " time_stamp <%lx>\n"
|
|
|
+ " jiffies <%lx>\n",
|
|
|
+ tx_ring->tx_bi[i].time_stamp, jiffies);
|
|
|
+
|
|
|
+ netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
|
|
|
+
|
|
|
+ dev_info(tx_ring->dev,
|
|
|
+ "tx hang detected on queue %d, resetting adapter\n",
|
|
|
+ tx_ring->queue_index);
|
|
|
+
|
|
|
+ tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
|
|
|
+
|
|
|
+ /* the adapter is about to reset, no point in enabling stuff */
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
|
|
|
+ if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
|
|
|
+ (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
|
|
|
+ /* Make sure that anybody stopping the queue after this
|
|
|
+ * sees the new next_to_clean.
|
|
|
+ */
|
|
|
+ smp_mb();
|
|
|
+ if (__netif_subqueue_stopped(tx_ring->netdev,
|
|
|
+ tx_ring->queue_index) &&
|
|
|
+ !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
|
|
|
+ netif_wake_subqueue(tx_ring->netdev,
|
|
|
+ tx_ring->queue_index);
|
|
|
+ ++tx_ring->tx_stats.restart_queue;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return budget > 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_set_new_dynamic_itr - Find new ITR level
|
|
|
+ * @rc: structure containing ring performance data
|
|
|
+ *
|
|
|
+ * Stores a new ITR value based on packets and byte counts during
|
|
|
+ * the last interrupt. The advantage of per interrupt computation
|
|
|
+ * is faster updates and more accurate ITR for the current traffic
|
|
|
+ * pattern. Constants in this function were computed based on
|
|
|
+ * theoretical maximum wire speed and thresholds were set based on
|
|
|
+ * testing data as well as attempting to minimize response time
|
|
|
+ * while increasing bulk throughput.
|
|
|
+ **/
|
|
|
+static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
|
|
|
+{
|
|
|
+ enum i40e_latency_range new_latency_range = rc->latency_range;
|
|
|
+ u32 new_itr = rc->itr;
|
|
|
+ int bytes_per_int;
|
|
|
+
|
|
|
+ if (rc->total_packets == 0 || !rc->itr)
|
|
|
+ return;
|
|
|
+
|
|
|
+ /* simple throttlerate management
|
|
|
+ * 0-10MB/s lowest (100000 ints/s)
|
|
|
+ * 10-20MB/s low (20000 ints/s)
|
|
|
+ * 20-1249MB/s bulk (8000 ints/s)
|
|
|
+ */
|
|
|
+ bytes_per_int = rc->total_bytes / rc->itr;
|
|
|
+ switch (rc->itr) {
|
|
|
+ case I40E_LOWEST_LATENCY:
|
|
|
+ if (bytes_per_int > 10)
|
|
|
+ new_latency_range = I40E_LOW_LATENCY;
|
|
|
+ break;
|
|
|
+ case I40E_LOW_LATENCY:
|
|
|
+ if (bytes_per_int > 20)
|
|
|
+ new_latency_range = I40E_BULK_LATENCY;
|
|
|
+ else if (bytes_per_int <= 10)
|
|
|
+ new_latency_range = I40E_LOWEST_LATENCY;
|
|
|
+ break;
|
|
|
+ case I40E_BULK_LATENCY:
|
|
|
+ if (bytes_per_int <= 20)
|
|
|
+ rc->latency_range = I40E_LOW_LATENCY;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ switch (new_latency_range) {
|
|
|
+ case I40E_LOWEST_LATENCY:
|
|
|
+ new_itr = I40E_ITR_100K;
|
|
|
+ break;
|
|
|
+ case I40E_LOW_LATENCY:
|
|
|
+ new_itr = I40E_ITR_20K;
|
|
|
+ break;
|
|
|
+ case I40E_BULK_LATENCY:
|
|
|
+ new_itr = I40E_ITR_8K;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (new_itr != rc->itr) {
|
|
|
+ /* do an exponential smoothing */
|
|
|
+ new_itr = (10 * new_itr * rc->itr) /
|
|
|
+ ((9 * new_itr) + rc->itr);
|
|
|
+ rc->itr = new_itr & I40E_MAX_ITR;
|
|
|
+ }
|
|
|
+
|
|
|
+ rc->total_bytes = 0;
|
|
|
+ rc->total_packets = 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
|
|
|
+ * @q_vector: the vector to adjust
|
|
|
+ **/
|
|
|
+static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
|
|
|
+{
|
|
|
+ u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
|
|
|
+ struct i40e_hw *hw = &q_vector->vsi->back->hw;
|
|
|
+ u32 reg_addr;
|
|
|
+ u16 old_itr;
|
|
|
+
|
|
|
+ reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
|
|
|
+ old_itr = q_vector->rx.itr;
|
|
|
+ i40e_set_new_dynamic_itr(&q_vector->rx);
|
|
|
+ if (old_itr != q_vector->rx.itr)
|
|
|
+ wr32(hw, reg_addr, q_vector->rx.itr);
|
|
|
+
|
|
|
+ reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
|
|
|
+ old_itr = q_vector->tx.itr;
|
|
|
+ i40e_set_new_dynamic_itr(&q_vector->tx);
|
|
|
+ if (old_itr != q_vector->tx.itr)
|
|
|
+ wr32(hw, reg_addr, q_vector->tx.itr);
|
|
|
+
|
|
|
+ i40e_flush(hw);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_clean_programming_status - clean the programming status descriptor
|
|
|
+ * @rx_ring: the rx ring that has this descriptor
|
|
|
+ * @rx_desc: the rx descriptor written back by HW
|
|
|
+ *
|
|
|
+ * Flow director should handle FD_FILTER_STATUS to check its filter programming
|
|
|
+ * status being successful or not and take actions accordingly. FCoE should
|
|
|
+ * handle its context/filter programming/invalidation status and take actions.
|
|
|
+ *
|
|
|
+ **/
|
|
|
+static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
|
|
|
+ union i40e_rx_desc *rx_desc)
|
|
|
+{
|
|
|
+ u64 qw;
|
|
|
+ u8 id;
|
|
|
+
|
|
|
+ qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
|
|
|
+ id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
|
|
|
+ I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
|
|
|
+
|
|
|
+ if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
|
|
|
+ i40e_fd_handle_status(rx_ring, qw, id);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_setup_tx_descriptors - Allocate the Tx descriptors
|
|
|
+ * @tx_ring: the tx ring to set up
|
|
|
+ *
|
|
|
+ * Return 0 on success, negative on error
|
|
|
+ **/
|
|
|
+int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
|
|
|
+{
|
|
|
+ struct device *dev = tx_ring->dev;
|
|
|
+ int bi_size;
|
|
|
+
|
|
|
+ if (!dev)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
|
|
|
+ tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
|
|
|
+ if (!tx_ring->tx_bi)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ /* round up to nearest 4K */
|
|
|
+ tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
|
|
|
+ tx_ring->size = ALIGN(tx_ring->size, 4096);
|
|
|
+ tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
|
|
|
+ &tx_ring->dma, GFP_KERNEL);
|
|
|
+ if (!tx_ring->desc) {
|
|
|
+ dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
|
|
|
+ tx_ring->size);
|
|
|
+ goto err;
|
|
|
+ }
|
|
|
+
|
|
|
+ tx_ring->next_to_use = 0;
|
|
|
+ tx_ring->next_to_clean = 0;
|
|
|
+ return 0;
|
|
|
+
|
|
|
+err:
|
|
|
+ kfree(tx_ring->tx_bi);
|
|
|
+ tx_ring->tx_bi = NULL;
|
|
|
+ return -ENOMEM;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_clean_rx_ring - Free Rx buffers
|
|
|
+ * @rx_ring: ring to be cleaned
|
|
|
+ **/
|
|
|
+void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
|
|
|
+{
|
|
|
+ struct device *dev = rx_ring->dev;
|
|
|
+ struct i40e_rx_buffer *rx_bi;
|
|
|
+ unsigned long bi_size;
|
|
|
+ u16 i;
|
|
|
+
|
|
|
+ /* ring already cleared, nothing to do */
|
|
|
+ if (!rx_ring->rx_bi)
|
|
|
+ return;
|
|
|
+
|
|
|
+ /* Free all the Rx ring sk_buffs */
|
|
|
+ for (i = 0; i < rx_ring->count; i++) {
|
|
|
+ rx_bi = &rx_ring->rx_bi[i];
|
|
|
+ if (rx_bi->dma) {
|
|
|
+ dma_unmap_single(dev,
|
|
|
+ rx_bi->dma,
|
|
|
+ rx_ring->rx_buf_len,
|
|
|
+ DMA_FROM_DEVICE);
|
|
|
+ rx_bi->dma = 0;
|
|
|
+ }
|
|
|
+ if (rx_bi->skb) {
|
|
|
+ dev_kfree_skb(rx_bi->skb);
|
|
|
+ rx_bi->skb = NULL;
|
|
|
+ }
|
|
|
+ if (rx_bi->page) {
|
|
|
+ if (rx_bi->page_dma) {
|
|
|
+ dma_unmap_page(dev,
|
|
|
+ rx_bi->page_dma,
|
|
|
+ PAGE_SIZE / 2,
|
|
|
+ DMA_FROM_DEVICE);
|
|
|
+ rx_bi->page_dma = 0;
|
|
|
+ }
|
|
|
+ __free_page(rx_bi->page);
|
|
|
+ rx_bi->page = NULL;
|
|
|
+ rx_bi->page_offset = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
|
|
|
+ memset(rx_ring->rx_bi, 0, bi_size);
|
|
|
+
|
|
|
+ /* Zero out the descriptor ring */
|
|
|
+ memset(rx_ring->desc, 0, rx_ring->size);
|
|
|
+
|
|
|
+ rx_ring->next_to_clean = 0;
|
|
|
+ rx_ring->next_to_use = 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_free_rx_resources - Free Rx resources
|
|
|
+ * @rx_ring: ring to clean the resources from
|
|
|
+ *
|
|
|
+ * Free all receive software resources
|
|
|
+ **/
|
|
|
+void i40e_free_rx_resources(struct i40e_ring *rx_ring)
|
|
|
+{
|
|
|
+ i40e_clean_rx_ring(rx_ring);
|
|
|
+ kfree(rx_ring->rx_bi);
|
|
|
+ rx_ring->rx_bi = NULL;
|
|
|
+
|
|
|
+ if (rx_ring->desc) {
|
|
|
+ dma_free_coherent(rx_ring->dev, rx_ring->size,
|
|
|
+ rx_ring->desc, rx_ring->dma);
|
|
|
+ rx_ring->desc = NULL;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_setup_rx_descriptors - Allocate Rx descriptors
|
|
|
+ * @rx_ring: Rx descriptor ring (for a specific queue) to setup
|
|
|
+ *
|
|
|
+ * Returns 0 on success, negative on failure
|
|
|
+ **/
|
|
|
+int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
|
|
|
+{
|
|
|
+ struct device *dev = rx_ring->dev;
|
|
|
+ int bi_size;
|
|
|
+
|
|
|
+ bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
|
|
|
+ rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
|
|
|
+ if (!rx_ring->rx_bi)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ /* Round up to nearest 4K */
|
|
|
+ rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
|
|
|
+ ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
|
|
|
+ : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
|
|
|
+ rx_ring->size = ALIGN(rx_ring->size, 4096);
|
|
|
+ rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
|
|
|
+ &rx_ring->dma, GFP_KERNEL);
|
|
|
+
|
|
|
+ if (!rx_ring->desc) {
|
|
|
+ dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
|
|
|
+ rx_ring->size);
|
|
|
+ goto err;
|
|
|
+ }
|
|
|
+
|
|
|
+ rx_ring->next_to_clean = 0;
|
|
|
+ rx_ring->next_to_use = 0;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+err:
|
|
|
+ kfree(rx_ring->rx_bi);
|
|
|
+ rx_ring->rx_bi = NULL;
|
|
|
+ return -ENOMEM;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_release_rx_desc - Store the new tail and head values
|
|
|
+ * @rx_ring: ring to bump
|
|
|
+ * @val: new head index
|
|
|
+ **/
|
|
|
+static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
|
|
|
+{
|
|
|
+ rx_ring->next_to_use = val;
|
|
|
+ /* Force memory writes to complete before letting h/w
|
|
|
+ * know there are new descriptors to fetch. (Only
|
|
|
+ * applicable for weak-ordered memory model archs,
|
|
|
+ * such as IA-64).
|
|
|
+ */
|
|
|
+ wmb();
|
|
|
+ writel(val, rx_ring->tail);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_alloc_rx_buffers - Replace used receive buffers; packet split
|
|
|
+ * @rx_ring: ring to place buffers on
|
|
|
+ * @cleaned_count: number of buffers to replace
|
|
|
+ **/
|
|
|
+void i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
|
|
|
+{
|
|
|
+ u16 i = rx_ring->next_to_use;
|
|
|
+ union i40e_rx_desc *rx_desc;
|
|
|
+ struct i40e_rx_buffer *bi;
|
|
|
+ struct sk_buff *skb;
|
|
|
+
|
|
|
+ /* do nothing if no valid netdev defined */
|
|
|
+ if (!rx_ring->netdev || !cleaned_count)
|
|
|
+ return;
|
|
|
+
|
|
|
+ while (cleaned_count--) {
|
|
|
+ rx_desc = I40E_RX_DESC(rx_ring, i);
|
|
|
+ bi = &rx_ring->rx_bi[i];
|
|
|
+ skb = bi->skb;
|
|
|
+
|
|
|
+ if (!skb) {
|
|
|
+ skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
|
|
|
+ rx_ring->rx_buf_len);
|
|
|
+ if (!skb) {
|
|
|
+ rx_ring->rx_stats.alloc_rx_buff_failed++;
|
|
|
+ goto no_buffers;
|
|
|
+ }
|
|
|
+ /* initialize queue mapping */
|
|
|
+ skb_record_rx_queue(skb, rx_ring->queue_index);
|
|
|
+ bi->skb = skb;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!bi->dma) {
|
|
|
+ bi->dma = dma_map_single(rx_ring->dev,
|
|
|
+ skb->data,
|
|
|
+ rx_ring->rx_buf_len,
|
|
|
+ DMA_FROM_DEVICE);
|
|
|
+ if (dma_mapping_error(rx_ring->dev, bi->dma)) {
|
|
|
+ rx_ring->rx_stats.alloc_rx_buff_failed++;
|
|
|
+ bi->dma = 0;
|
|
|
+ goto no_buffers;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (ring_is_ps_enabled(rx_ring)) {
|
|
|
+ if (!bi->page) {
|
|
|
+ bi->page = alloc_page(GFP_ATOMIC);
|
|
|
+ if (!bi->page) {
|
|
|
+ rx_ring->rx_stats.alloc_rx_page_failed++;
|
|
|
+ goto no_buffers;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!bi->page_dma) {
|
|
|
+ /* use a half page if we're re-using */
|
|
|
+ bi->page_offset ^= PAGE_SIZE / 2;
|
|
|
+ bi->page_dma = dma_map_page(rx_ring->dev,
|
|
|
+ bi->page,
|
|
|
+ bi->page_offset,
|
|
|
+ PAGE_SIZE / 2,
|
|
|
+ DMA_FROM_DEVICE);
|
|
|
+ if (dma_mapping_error(rx_ring->dev,
|
|
|
+ bi->page_dma)) {
|
|
|
+ rx_ring->rx_stats.alloc_rx_page_failed++;
|
|
|
+ bi->page_dma = 0;
|
|
|
+ goto no_buffers;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Refresh the desc even if buffer_addrs didn't change
|
|
|
+ * because each write-back erases this info.
|
|
|
+ */
|
|
|
+ rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
|
|
|
+ rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
|
|
|
+ } else {
|
|
|
+ rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
|
|
|
+ rx_desc->read.hdr_addr = 0;
|
|
|
+ }
|
|
|
+ i++;
|
|
|
+ if (i == rx_ring->count)
|
|
|
+ i = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+no_buffers:
|
|
|
+ if (rx_ring->next_to_use != i)
|
|
|
+ i40e_release_rx_desc(rx_ring, i);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_receive_skb - Send a completed packet up the stack
|
|
|
+ * @rx_ring: rx ring in play
|
|
|
+ * @skb: packet to send up
|
|
|
+ * @vlan_tag: vlan tag for packet
|
|
|
+ **/
|
|
|
+static void i40e_receive_skb(struct i40e_ring *rx_ring,
|
|
|
+ struct sk_buff *skb, u16 vlan_tag)
|
|
|
+{
|
|
|
+ struct i40e_q_vector *q_vector = rx_ring->q_vector;
|
|
|
+ struct i40e_vsi *vsi = rx_ring->vsi;
|
|
|
+ u64 flags = vsi->back->flags;
|
|
|
+
|
|
|
+ if (vlan_tag & VLAN_VID_MASK)
|
|
|
+ __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
|
|
|
+
|
|
|
+ if (flags & I40E_FLAG_IN_NETPOLL)
|
|
|
+ netif_rx(skb);
|
|
|
+ else
|
|
|
+ napi_gro_receive(&q_vector->napi, skb);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
|
|
|
+ * @vsi: the VSI we care about
|
|
|
+ * @skb: skb currently being received and modified
|
|
|
+ * @rx_status: status value of last descriptor in packet
|
|
|
+ * @rx_error: error value of last descriptor in packet
|
|
|
+ **/
|
|
|
+static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
|
|
|
+ struct sk_buff *skb,
|
|
|
+ u32 rx_status,
|
|
|
+ u32 rx_error)
|
|
|
+{
|
|
|
+ skb->ip_summed = CHECKSUM_NONE;
|
|
|
+
|
|
|
+ /* Rx csum enabled and ip headers found? */
|
|
|
+ if (!(vsi->netdev->features & NETIF_F_RXCSUM &&
|
|
|
+ rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
|
|
|
+ return;
|
|
|
+
|
|
|
+ /* IP or L4 checksum error */
|
|
|
+ if (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
|
|
|
+ (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))) {
|
|
|
+ vsi->back->hw_csum_rx_error++;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_rx_hash - returns the hash value from the Rx descriptor
|
|
|
+ * @ring: descriptor ring
|
|
|
+ * @rx_desc: specific descriptor
|
|
|
+ **/
|
|
|
+static inline u32 i40e_rx_hash(struct i40e_ring *ring,
|
|
|
+ union i40e_rx_desc *rx_desc)
|
|
|
+{
|
|
|
+ if (ring->netdev->features & NETIF_F_RXHASH) {
|
|
|
+ if ((le64_to_cpu(rx_desc->wb.qword1.status_error_len) >>
|
|
|
+ I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
|
|
|
+ I40E_RX_DESC_FLTSTAT_RSS_HASH)
|
|
|
+ return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_clean_rx_irq - Reclaim resources after receive completes
|
|
|
+ * @rx_ring: rx ring to clean
|
|
|
+ * @budget: how many cleans we're allowed
|
|
|
+ *
|
|
|
+ * Returns true if there's any budget left (e.g. the clean is finished)
|
|
|
+ **/
|
|
|
+static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
|
|
|
+{
|
|
|
+ unsigned int total_rx_bytes = 0, total_rx_packets = 0;
|
|
|
+ u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
|
|
|
+ u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
|
|
|
+ const int current_node = numa_node_id();
|
|
|
+ struct i40e_vsi *vsi = rx_ring->vsi;
|
|
|
+ u16 i = rx_ring->next_to_clean;
|
|
|
+ union i40e_rx_desc *rx_desc;
|
|
|
+ u32 rx_error, rx_status;
|
|
|
+ u64 qword;
|
|
|
+
|
|
|
+ rx_desc = I40E_RX_DESC(rx_ring, i);
|
|
|
+ qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
|
|
|
+ rx_status = (qword & I40E_RXD_QW1_STATUS_MASK)
|
|
|
+ >> I40E_RXD_QW1_STATUS_SHIFT;
|
|
|
+
|
|
|
+ while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
|
|
|
+ union i40e_rx_desc *next_rxd;
|
|
|
+ struct i40e_rx_buffer *rx_bi;
|
|
|
+ struct sk_buff *skb;
|
|
|
+ u16 vlan_tag;
|
|
|
+ if (i40e_rx_is_programming_status(qword)) {
|
|
|
+ i40e_clean_programming_status(rx_ring, rx_desc);
|
|
|
+ I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
|
|
|
+ goto next_desc;
|
|
|
+ }
|
|
|
+ rx_bi = &rx_ring->rx_bi[i];
|
|
|
+ skb = rx_bi->skb;
|
|
|
+ prefetch(skb->data);
|
|
|
+
|
|
|
+ rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK)
|
|
|
+ >> I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
|
|
|
+ rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK)
|
|
|
+ >> I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
|
|
|
+ rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK)
|
|
|
+ >> I40E_RXD_QW1_LENGTH_SPH_SHIFT;
|
|
|
+
|
|
|
+ rx_error = (qword & I40E_RXD_QW1_ERROR_MASK)
|
|
|
+ >> I40E_RXD_QW1_ERROR_SHIFT;
|
|
|
+ rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
|
|
|
+ rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
|
|
|
+
|
|
|
+ rx_bi->skb = NULL;
|
|
|
+
|
|
|
+ /* This memory barrier is needed to keep us from reading
|
|
|
+ * any other fields out of the rx_desc until we know the
|
|
|
+ * STATUS_DD bit is set
|
|
|
+ */
|
|
|
+ rmb();
|
|
|
+
|
|
|
+ /* Get the header and possibly the whole packet
|
|
|
+ * If this is an skb from previous receive dma will be 0
|
|
|
+ */
|
|
|
+ if (rx_bi->dma) {
|
|
|
+ u16 len;
|
|
|
+
|
|
|
+ if (rx_hbo)
|
|
|
+ len = I40E_RX_HDR_SIZE;
|
|
|
+ else if (rx_sph)
|
|
|
+ len = rx_header_len;
|
|
|
+ else if (rx_packet_len)
|
|
|
+ len = rx_packet_len; /* 1buf/no split found */
|
|
|
+ else
|
|
|
+ len = rx_header_len; /* split always mode */
|
|
|
+
|
|
|
+ skb_put(skb, len);
|
|
|
+ dma_unmap_single(rx_ring->dev,
|
|
|
+ rx_bi->dma,
|
|
|
+ rx_ring->rx_buf_len,
|
|
|
+ DMA_FROM_DEVICE);
|
|
|
+ rx_bi->dma = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Get the rest of the data if this was a header split */
|
|
|
+ if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
|
|
|
+
|
|
|
+ skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
|
|
|
+ rx_bi->page,
|
|
|
+ rx_bi->page_offset,
|
|
|
+ rx_packet_len);
|
|
|
+
|
|
|
+ skb->len += rx_packet_len;
|
|
|
+ skb->data_len += rx_packet_len;
|
|
|
+ skb->truesize += rx_packet_len;
|
|
|
+
|
|
|
+ if ((page_count(rx_bi->page) == 1) &&
|
|
|
+ (page_to_nid(rx_bi->page) == current_node))
|
|
|
+ get_page(rx_bi->page);
|
|
|
+ else
|
|
|
+ rx_bi->page = NULL;
|
|
|
+
|
|
|
+ dma_unmap_page(rx_ring->dev,
|
|
|
+ rx_bi->page_dma,
|
|
|
+ PAGE_SIZE / 2,
|
|
|
+ DMA_FROM_DEVICE);
|
|
|
+ rx_bi->page_dma = 0;
|
|
|
+ }
|
|
|
+ I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
|
|
|
+
|
|
|
+ if (unlikely(
|
|
|
+ !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
|
|
|
+ struct i40e_rx_buffer *next_buffer;
|
|
|
+
|
|
|
+ next_buffer = &rx_ring->rx_bi[i];
|
|
|
+
|
|
|
+ if (ring_is_ps_enabled(rx_ring)) {
|
|
|
+ rx_bi->skb = next_buffer->skb;
|
|
|
+ rx_bi->dma = next_buffer->dma;
|
|
|
+ next_buffer->skb = skb;
|
|
|
+ next_buffer->dma = 0;
|
|
|
+ }
|
|
|
+ rx_ring->rx_stats.non_eop_descs++;
|
|
|
+ goto next_desc;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* ERR_MASK will only have valid bits if EOP set */
|
|
|
+ if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
|
|
|
+ dev_kfree_skb_any(skb);
|
|
|
+ goto next_desc;
|
|
|
+ }
|
|
|
+
|
|
|
+ skb->rxhash = i40e_rx_hash(rx_ring, rx_desc);
|
|
|
+ i40e_rx_checksum(vsi, skb, rx_status, rx_error);
|
|
|
+
|
|
|
+ /* probably a little skewed due to removing CRC */
|
|
|
+ total_rx_bytes += skb->len;
|
|
|
+ total_rx_packets++;
|
|
|
+
|
|
|
+ skb->protocol = eth_type_trans(skb, rx_ring->netdev);
|
|
|
+ vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
|
|
|
+ ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
|
|
|
+ : 0;
|
|
|
+ i40e_receive_skb(rx_ring, skb, vlan_tag);
|
|
|
+
|
|
|
+ rx_ring->netdev->last_rx = jiffies;
|
|
|
+ budget--;
|
|
|
+next_desc:
|
|
|
+ rx_desc->wb.qword1.status_error_len = 0;
|
|
|
+ if (!budget)
|
|
|
+ break;
|
|
|
+
|
|
|
+ cleaned_count++;
|
|
|
+ /* return some buffers to hardware, one at a time is too slow */
|
|
|
+ if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
|
|
|
+ i40e_alloc_rx_buffers(rx_ring, cleaned_count);
|
|
|
+ cleaned_count = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* use prefetched values */
|
|
|
+ rx_desc = next_rxd;
|
|
|
+ qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
|
|
|
+ rx_status = (qword & I40E_RXD_QW1_STATUS_MASK)
|
|
|
+ >> I40E_RXD_QW1_STATUS_SHIFT;
|
|
|
+ }
|
|
|
+
|
|
|
+ rx_ring->next_to_clean = i;
|
|
|
+ rx_ring->rx_stats.packets += total_rx_packets;
|
|
|
+ rx_ring->rx_stats.bytes += total_rx_bytes;
|
|
|
+ rx_ring->q_vector->rx.total_packets += total_rx_packets;
|
|
|
+ rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
|
|
|
+
|
|
|
+ if (cleaned_count)
|
|
|
+ i40e_alloc_rx_buffers(rx_ring, cleaned_count);
|
|
|
+
|
|
|
+ return budget > 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
|
|
|
+ * @napi: napi struct with our devices info in it
|
|
|
+ * @budget: amount of work driver is allowed to do this pass, in packets
|
|
|
+ *
|
|
|
+ * This function will clean all queues associated with a q_vector.
|
|
|
+ *
|
|
|
+ * Returns the amount of work done
|
|
|
+ **/
|
|
|
+int i40e_napi_poll(struct napi_struct *napi, int budget)
|
|
|
+{
|
|
|
+ struct i40e_q_vector *q_vector =
|
|
|
+ container_of(napi, struct i40e_q_vector, napi);
|
|
|
+ struct i40e_vsi *vsi = q_vector->vsi;
|
|
|
+ bool clean_complete = true;
|
|
|
+ int budget_per_ring;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ if (test_bit(__I40E_DOWN, &vsi->state)) {
|
|
|
+ napi_complete(napi);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* We attempt to distribute budget to each Rx queue fairly, but don't
|
|
|
+ * allow the budget to go below 1 because that would exit polling early.
|
|
|
+ * Since the actual Tx work is minimal, we can give the Tx a larger
|
|
|
+ * budget and be more aggressive about cleaning up the Tx descriptors.
|
|
|
+ */
|
|
|
+ budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
|
|
|
+ for (i = 0; i < q_vector->num_ringpairs; i++) {
|
|
|
+ clean_complete &= i40e_clean_tx_irq(q_vector->tx.ring[i],
|
|
|
+ vsi->work_limit);
|
|
|
+ clean_complete &= i40e_clean_rx_irq(q_vector->rx.ring[i],
|
|
|
+ budget_per_ring);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* If work not completed, return budget and polling will return */
|
|
|
+ if (!clean_complete)
|
|
|
+ return budget;
|
|
|
+
|
|
|
+ /* Work is done so exit the polling mode and re-enable the interrupt */
|
|
|
+ napi_complete(napi);
|
|
|
+ if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
|
|
|
+ ITR_IS_DYNAMIC(vsi->tx_itr_setting))
|
|
|
+ i40e_update_dynamic_itr(q_vector);
|
|
|
+
|
|
|
+ if (!test_bit(__I40E_DOWN, &vsi->state)) {
|
|
|
+ if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
|
|
|
+ i40e_irq_dynamic_enable(vsi,
|
|
|
+ q_vector->v_idx + vsi->base_vector);
|
|
|
+ } else {
|
|
|
+ struct i40e_hw *hw = &vsi->back->hw;
|
|
|
+ /* We re-enable the queue 0 cause, but
|
|
|
+ * don't worry about dynamic_enable
|
|
|
+ * because we left it on for the other
|
|
|
+ * possible interrupts during napi
|
|
|
+ */
|
|
|
+ u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
|
|
|
+ qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
|
|
|
+ wr32(hw, I40E_QINT_RQCTL(0), qval);
|
|
|
+
|
|
|
+ qval = rd32(hw, I40E_QINT_TQCTL(0));
|
|
|
+ qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
|
|
|
+ wr32(hw, I40E_QINT_TQCTL(0), qval);
|
|
|
+ i40e_flush(hw);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_atr - Add a Flow Director ATR filter
|
|
|
+ * @tx_ring: ring to add programming descriptor to
|
|
|
+ * @skb: send buffer
|
|
|
+ * @flags: send flags
|
|
|
+ * @protocol: wire protocol
|
|
|
+ **/
|
|
|
+static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
|
|
|
+ u32 flags, __be16 protocol)
|
|
|
+{
|
|
|
+ struct i40e_filter_program_desc *fdir_desc;
|
|
|
+ struct i40e_pf *pf = tx_ring->vsi->back;
|
|
|
+ union {
|
|
|
+ unsigned char *network;
|
|
|
+ struct iphdr *ipv4;
|
|
|
+ struct ipv6hdr *ipv6;
|
|
|
+ } hdr;
|
|
|
+ struct tcphdr *th;
|
|
|
+ unsigned int hlen;
|
|
|
+ u32 flex_ptype, dtype_cmd;
|
|
|
+
|
|
|
+ /* make sure ATR is enabled */
|
|
|
+ if (!(pf->flags & I40E_FLAG_FDIR_ATR_ENABLED))
|
|
|
+ return;
|
|
|
+
|
|
|
+ /* if sampling is disabled do nothing */
|
|
|
+ if (!tx_ring->atr_sample_rate)
|
|
|
+ return;
|
|
|
+
|
|
|
+ tx_ring->atr_count++;
|
|
|
+
|
|
|
+ /* snag network header to get L4 type and address */
|
|
|
+ hdr.network = skb_network_header(skb);
|
|
|
+
|
|
|
+ /* Currently only IPv4/IPv6 with TCP is supported */
|
|
|
+ if (protocol == htons(ETH_P_IP)) {
|
|
|
+ if (hdr.ipv4->protocol != IPPROTO_TCP)
|
|
|
+ return;
|
|
|
+
|
|
|
+ /* access ihl as a u8 to avoid unaligned access on ia64 */
|
|
|
+ hlen = (hdr.network[0] & 0x0F) << 2;
|
|
|
+ } else if (protocol == htons(ETH_P_IPV6)) {
|
|
|
+ if (hdr.ipv6->nexthdr != IPPROTO_TCP)
|
|
|
+ return;
|
|
|
+
|
|
|
+ hlen = sizeof(struct ipv6hdr);
|
|
|
+ } else {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ th = (struct tcphdr *)(hdr.network + hlen);
|
|
|
+
|
|
|
+ /* sample on all syn/fin packets or once every atr sample rate */
|
|
|
+ if (!th->fin && !th->syn && (tx_ring->atr_count < tx_ring->atr_sample_rate))
|
|
|
+ return;
|
|
|
+
|
|
|
+ tx_ring->atr_count = 0;
|
|
|
+
|
|
|
+ /* grab the next descriptor */
|
|
|
+ fdir_desc = I40E_TX_FDIRDESC(tx_ring, tx_ring->next_to_use);
|
|
|
+ tx_ring->next_to_use++;
|
|
|
+ if (tx_ring->next_to_use == tx_ring->count)
|
|
|
+ tx_ring->next_to_use = 0;
|
|
|
+
|
|
|
+ flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
|
|
|
+ I40E_TXD_FLTR_QW0_QINDEX_MASK;
|
|
|
+ flex_ptype |= (protocol == htons(ETH_P_IP)) ?
|
|
|
+ (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
|
|
|
+ I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
|
|
|
+ (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
|
|
|
+ I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
|
|
|
+
|
|
|
+ flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
|
|
|
+
|
|
|
+ dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
|
|
|
+
|
|
|
+ dtype_cmd |= th->fin ?
|
|
|
+ (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
|
|
|
+ I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
|
|
|
+ (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
|
|
|
+ I40E_TXD_FLTR_QW1_PCMD_SHIFT);
|
|
|
+
|
|
|
+ dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
|
|
|
+ I40E_TXD_FLTR_QW1_DEST_SHIFT;
|
|
|
+
|
|
|
+ dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
|
|
|
+ I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
|
|
|
+
|
|
|
+ fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
|
|
|
+ fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
|
|
|
+}
|
|
|
+
|
|
|
+#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
|
|
|
+/**
|
|
|
+ * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
|
|
|
+ * @skb: send buffer
|
|
|
+ * @tx_ring: ring to send buffer on
|
|
|
+ * @flags: the tx flags to be set
|
|
|
+ *
|
|
|
+ * Checks the skb and set up correspondingly several generic transmit flags
|
|
|
+ * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
|
|
|
+ *
|
|
|
+ * Returns error code indicate the frame should be dropped upon error and the
|
|
|
+ * otherwise returns 0 to indicate the flags has been set properly.
|
|
|
+ **/
|
|
|
+static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
|
|
|
+ struct i40e_ring *tx_ring,
|
|
|
+ u32 *flags)
|
|
|
+{
|
|
|
+ __be16 protocol = skb->protocol;
|
|
|
+ u32 tx_flags = 0;
|
|
|
+
|
|
|
+ /* if we have a HW VLAN tag being added, default to the HW one */
|
|
|
+ if (vlan_tx_tag_present(skb)) {
|
|
|
+ tx_flags |= vlan_tx_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
|
|
|
+ tx_flags |= I40E_TX_FLAGS_HW_VLAN;
|
|
|
+ /* else if it is a SW VLAN, check the next protocol and store the tag */
|
|
|
+ } else if (protocol == __constant_htons(ETH_P_8021Q)) {
|
|
|
+ struct vlan_hdr *vhdr, _vhdr;
|
|
|
+ vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
|
|
|
+ if (!vhdr)
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ protocol = vhdr->h_vlan_encapsulated_proto;
|
|
|
+ tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
|
|
|
+ tx_flags |= I40E_TX_FLAGS_SW_VLAN;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Insert 802.1p priority into VLAN header */
|
|
|
+ if ((tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED) &&
|
|
|
+ ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
|
|
|
+ (skb->priority != TC_PRIO_CONTROL))) {
|
|
|
+ tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
|
|
|
+ tx_flags |= (skb->priority & 0x7) <<
|
|
|
+ I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
|
|
|
+ if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
|
|
|
+ struct vlan_ethhdr *vhdr;
|
|
|
+ if (skb_header_cloned(skb) &&
|
|
|
+ pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
|
|
|
+ return -ENOMEM;
|
|
|
+ vhdr = (struct vlan_ethhdr *)skb->data;
|
|
|
+ vhdr->h_vlan_TCI = htons(tx_flags >>
|
|
|
+ I40E_TX_FLAGS_VLAN_SHIFT);
|
|
|
+ } else {
|
|
|
+ tx_flags |= I40E_TX_FLAGS_HW_VLAN;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ *flags = tx_flags;
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_tx_csum - is checksum offload requested
|
|
|
+ * @tx_ring: ptr to the ring to send
|
|
|
+ * @skb: ptr to the skb we're sending
|
|
|
+ * @tx_flags: the collected send information
|
|
|
+ * @protocol: the send protocol
|
|
|
+ *
|
|
|
+ * Returns true if checksum offload is requested
|
|
|
+ **/
|
|
|
+static bool i40e_tx_csum(struct i40e_ring *tx_ring, struct sk_buff *skb,
|
|
|
+ u32 tx_flags, __be16 protocol)
|
|
|
+{
|
|
|
+ if ((skb->ip_summed != CHECKSUM_PARTIAL) &&
|
|
|
+ !(tx_flags & I40E_TX_FLAGS_TXSW)) {
|
|
|
+ if (!(tx_flags & I40E_TX_FLAGS_HW_VLAN))
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ return skb->ip_summed == CHECKSUM_PARTIAL;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_tso - set up the tso context descriptor
|
|
|
+ * @tx_ring: ptr to the ring to send
|
|
|
+ * @skb: ptr to the skb we're sending
|
|
|
+ * @tx_flags: the collected send information
|
|
|
+ * @protocol: the send protocol
|
|
|
+ * @hdr_len: ptr to the size of the packet header
|
|
|
+ * @cd_tunneling: ptr to context descriptor bits
|
|
|
+ *
|
|
|
+ * Returns 0 if no TSO can happen, 1 if tso is going, or error
|
|
|
+ **/
|
|
|
+static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
|
|
|
+ u32 tx_flags, __be16 protocol, u8 *hdr_len,
|
|
|
+ u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
|
|
|
+{
|
|
|
+ u32 cd_cmd, cd_tso_len, cd_mss;
|
|
|
+ struct tcphdr *tcph;
|
|
|
+ struct iphdr *iph;
|
|
|
+ u32 l4len;
|
|
|
+ int err;
|
|
|
+ struct ipv6hdr *ipv6h;
|
|
|
+
|
|
|
+ if (!skb_is_gso(skb))
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ if (skb_header_cloned(skb)) {
|
|
|
+ err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
|
|
|
+ if (err)
|
|
|
+ return err;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (protocol == __constant_htons(ETH_P_IP)) {
|
|
|
+ iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
|
|
|
+ tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
|
|
|
+ iph->tot_len = 0;
|
|
|
+ iph->check = 0;
|
|
|
+ tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
|
|
|
+ 0, IPPROTO_TCP, 0);
|
|
|
+ } else if (skb_is_gso_v6(skb)) {
|
|
|
+
|
|
|
+ ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
|
|
|
+ : ipv6_hdr(skb);
|
|
|
+ tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
|
|
|
+ ipv6h->payload_len = 0;
|
|
|
+ tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
|
|
|
+ 0, IPPROTO_TCP, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
|
|
|
+ *hdr_len = (skb->encapsulation
|
|
|
+ ? (skb_inner_transport_header(skb) - skb->data)
|
|
|
+ : skb_transport_offset(skb)) + l4len;
|
|
|
+
|
|
|
+ /* find the field values */
|
|
|
+ cd_cmd = I40E_TX_CTX_DESC_TSO;
|
|
|
+ cd_tso_len = skb->len - *hdr_len;
|
|
|
+ cd_mss = skb_shinfo(skb)->gso_size;
|
|
|
+ *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT)
|
|
|
+ | ((u64)cd_tso_len
|
|
|
+ << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT)
|
|
|
+ | ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_tx_enable_csum - Enable Tx checksum offloads
|
|
|
+ * @skb: send buffer
|
|
|
+ * @tx_flags: Tx flags currently set
|
|
|
+ * @td_cmd: Tx descriptor command bits to set
|
|
|
+ * @td_offset: Tx descriptor header offsets to set
|
|
|
+ * @cd_tunneling: ptr to context desc bits
|
|
|
+ **/
|
|
|
+static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
|
|
|
+ u32 *td_cmd, u32 *td_offset,
|
|
|
+ struct i40e_ring *tx_ring,
|
|
|
+ u32 *cd_tunneling)
|
|
|
+{
|
|
|
+ struct ipv6hdr *this_ipv6_hdr;
|
|
|
+ unsigned int this_tcp_hdrlen;
|
|
|
+ struct iphdr *this_ip_hdr;
|
|
|
+ u32 network_hdr_len;
|
|
|
+ u8 l4_hdr = 0;
|
|
|
+
|
|
|
+ if (skb->encapsulation) {
|
|
|
+ network_hdr_len = skb_inner_network_header_len(skb);
|
|
|
+ this_ip_hdr = inner_ip_hdr(skb);
|
|
|
+ this_ipv6_hdr = inner_ipv6_hdr(skb);
|
|
|
+ this_tcp_hdrlen = inner_tcp_hdrlen(skb);
|
|
|
+
|
|
|
+ if (tx_flags & I40E_TX_FLAGS_IPV4) {
|
|
|
+
|
|
|
+ if (tx_flags & I40E_TX_FLAGS_TSO) {
|
|
|
+ *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
|
|
|
+ ip_hdr(skb)->check = 0;
|
|
|
+ } else {
|
|
|
+ *cd_tunneling |=
|
|
|
+ I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
|
|
|
+ }
|
|
|
+ } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
|
|
|
+ if (tx_flags & I40E_TX_FLAGS_TSO) {
|
|
|
+ *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
|
|
|
+ ip_hdr(skb)->check = 0;
|
|
|
+ } else {
|
|
|
+ *cd_tunneling |=
|
|
|
+ I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Now set the ctx descriptor fields */
|
|
|
+ *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
|
|
|
+ I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
|
|
|
+ I40E_TXD_CTX_UDP_TUNNELING |
|
|
|
+ ((skb_inner_network_offset(skb) -
|
|
|
+ skb_transport_offset(skb)) >> 1) <<
|
|
|
+ I40E_TXD_CTX_QW0_NATLEN_SHIFT;
|
|
|
+
|
|
|
+ } else {
|
|
|
+ network_hdr_len = skb_network_header_len(skb);
|
|
|
+ this_ip_hdr = ip_hdr(skb);
|
|
|
+ this_ipv6_hdr = ipv6_hdr(skb);
|
|
|
+ this_tcp_hdrlen = tcp_hdrlen(skb);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Enable IP checksum offloads */
|
|
|
+ if (tx_flags & I40E_TX_FLAGS_IPV4) {
|
|
|
+ l4_hdr = this_ip_hdr->protocol;
|
|
|
+ /* the stack computes the IP header already, the only time we
|
|
|
+ * need the hardware to recompute it is in the case of TSO.
|
|
|
+ */
|
|
|
+ if (tx_flags & I40E_TX_FLAGS_TSO) {
|
|
|
+ *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
|
|
|
+ this_ip_hdr->check = 0;
|
|
|
+ } else {
|
|
|
+ *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
|
|
|
+ }
|
|
|
+ /* Now set the td_offset for IP header length */
|
|
|
+ *td_offset = (network_hdr_len >> 2) <<
|
|
|
+ I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
|
|
|
+ } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
|
|
|
+ l4_hdr = this_ipv6_hdr->nexthdr;
|
|
|
+ *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
|
|
|
+ /* Now set the td_offset for IP header length */
|
|
|
+ *td_offset = (network_hdr_len >> 2) <<
|
|
|
+ I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
|
|
|
+ }
|
|
|
+ /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
|
|
|
+ *td_offset |= (skb_network_offset(skb) >> 1) <<
|
|
|
+ I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
|
|
|
+
|
|
|
+ /* Enable L4 checksum offloads */
|
|
|
+ switch (l4_hdr) {
|
|
|
+ case IPPROTO_TCP:
|
|
|
+ /* enable checksum offloads */
|
|
|
+ *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
|
|
|
+ *td_offset |= (this_tcp_hdrlen >> 2) <<
|
|
|
+ I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
|
+ break;
|
|
|
+ case IPPROTO_SCTP:
|
|
|
+ /* enable SCTP checksum offload */
|
|
|
+ *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
|
|
|
+ *td_offset |= (sizeof(struct sctphdr) >> 2) <<
|
|
|
+ I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
|
+ break;
|
|
|
+ case IPPROTO_UDP:
|
|
|
+ /* enable UDP checksum offload */
|
|
|
+ *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
|
|
|
+ *td_offset |= (sizeof(struct udphdr) >> 2) <<
|
|
|
+ I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_create_tx_ctx Build the Tx context descriptor
|
|
|
+ * @tx_ring: ring to create the descriptor on
|
|
|
+ * @cd_type_cmd_tso_mss: Quad Word 1
|
|
|
+ * @cd_tunneling: Quad Word 0 - bits 0-31
|
|
|
+ * @cd_l2tag2: Quad Word 0 - bits 32-63
|
|
|
+ **/
|
|
|
+static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
|
|
|
+ const u64 cd_type_cmd_tso_mss,
|
|
|
+ const u32 cd_tunneling, const u32 cd_l2tag2)
|
|
|
+{
|
|
|
+ struct i40e_tx_context_desc *context_desc;
|
|
|
+
|
|
|
+ if (!cd_type_cmd_tso_mss && !cd_tunneling && !cd_l2tag2)
|
|
|
+ return;
|
|
|
+
|
|
|
+ /* grab the next descriptor */
|
|
|
+ context_desc = I40E_TX_CTXTDESC(tx_ring, tx_ring->next_to_use);
|
|
|
+ tx_ring->next_to_use++;
|
|
|
+ if (tx_ring->next_to_use == tx_ring->count)
|
|
|
+ tx_ring->next_to_use = 0;
|
|
|
+
|
|
|
+ /* cpu_to_le32 and assign to struct fields */
|
|
|
+ context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
|
|
|
+ context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
|
|
|
+ context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_tx_map - Build the Tx descriptor
|
|
|
+ * @tx_ring: ring to send buffer on
|
|
|
+ * @skb: send buffer
|
|
|
+ * @first: first buffer info buffer to use
|
|
|
+ * @tx_flags: collected send information
|
|
|
+ * @hdr_len: size of the packet header
|
|
|
+ * @td_cmd: the command field in the descriptor
|
|
|
+ * @td_offset: offset for checksum or crc
|
|
|
+ **/
|
|
|
+static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
|
|
|
+ struct i40e_tx_buffer *first, u32 tx_flags,
|
|
|
+ const u8 hdr_len, u32 td_cmd, u32 td_offset)
|
|
|
+{
|
|
|
+ struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
|
|
|
+ unsigned int data_len = skb->data_len;
|
|
|
+ unsigned int size = skb_headlen(skb);
|
|
|
+ struct device *dev = tx_ring->dev;
|
|
|
+ u32 paylen = skb->len - hdr_len;
|
|
|
+ u16 i = tx_ring->next_to_use;
|
|
|
+ struct i40e_tx_buffer *tx_bi;
|
|
|
+ struct i40e_tx_desc *tx_desc;
|
|
|
+ u32 buf_offset = 0;
|
|
|
+ u32 td_tag = 0;
|
|
|
+ dma_addr_t dma;
|
|
|
+ u16 gso_segs;
|
|
|
+
|
|
|
+ dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
|
|
|
+ if (dma_mapping_error(dev, dma))
|
|
|
+ goto dma_error;
|
|
|
+
|
|
|
+ if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
|
|
|
+ td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
|
|
|
+ td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
|
|
|
+ I40E_TX_FLAGS_VLAN_SHIFT;
|
|
|
+ }
|
|
|
+
|
|
|
+ tx_desc = I40E_TX_DESC(tx_ring, i);
|
|
|
+ for (;;) {
|
|
|
+ while (size > I40E_MAX_DATA_PER_TXD) {
|
|
|
+ tx_desc->buffer_addr = cpu_to_le64(dma + buf_offset);
|
|
|
+ tx_desc->cmd_type_offset_bsz =
|
|
|
+ build_ctob(td_cmd, td_offset,
|
|
|
+ I40E_MAX_DATA_PER_TXD, td_tag);
|
|
|
+
|
|
|
+ buf_offset += I40E_MAX_DATA_PER_TXD;
|
|
|
+ size -= I40E_MAX_DATA_PER_TXD;
|
|
|
+
|
|
|
+ tx_desc++;
|
|
|
+ i++;
|
|
|
+ if (i == tx_ring->count) {
|
|
|
+ tx_desc = I40E_TX_DESC(tx_ring, 0);
|
|
|
+ i = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ tx_bi = &tx_ring->tx_bi[i];
|
|
|
+ tx_bi->length = buf_offset + size;
|
|
|
+ tx_bi->tx_flags = tx_flags;
|
|
|
+ tx_bi->dma = dma;
|
|
|
+
|
|
|
+ tx_desc->buffer_addr = cpu_to_le64(dma + buf_offset);
|
|
|
+ tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
|
|
|
+ size, td_tag);
|
|
|
+
|
|
|
+ if (likely(!data_len))
|
|
|
+ break;
|
|
|
+
|
|
|
+ size = skb_frag_size(frag);
|
|
|
+ data_len -= size;
|
|
|
+ buf_offset = 0;
|
|
|
+ tx_flags |= I40E_TX_FLAGS_MAPPED_AS_PAGE;
|
|
|
+
|
|
|
+ dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
|
|
|
+ if (dma_mapping_error(dev, dma))
|
|
|
+ goto dma_error;
|
|
|
+
|
|
|
+ tx_desc++;
|
|
|
+ i++;
|
|
|
+ if (i == tx_ring->count) {
|
|
|
+ tx_desc = I40E_TX_DESC(tx_ring, 0);
|
|
|
+ i = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ frag++;
|
|
|
+ }
|
|
|
+
|
|
|
+ tx_desc->cmd_type_offset_bsz |=
|
|
|
+ cpu_to_le64((u64)I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
|
|
|
+
|
|
|
+ i++;
|
|
|
+ if (i == tx_ring->count)
|
|
|
+ i = 0;
|
|
|
+
|
|
|
+ tx_ring->next_to_use = i;
|
|
|
+
|
|
|
+ if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
|
|
|
+ gso_segs = skb_shinfo(skb)->gso_segs;
|
|
|
+ else
|
|
|
+ gso_segs = 1;
|
|
|
+
|
|
|
+ /* multiply data chunks by size of headers */
|
|
|
+ tx_bi->bytecount = paylen + (gso_segs * hdr_len);
|
|
|
+ tx_bi->gso_segs = gso_segs;
|
|
|
+ tx_bi->skb = skb;
|
|
|
+
|
|
|
+ /* set the timestamp and next to watch values */
|
|
|
+ first->time_stamp = jiffies;
|
|
|
+ first->next_to_watch = tx_desc;
|
|
|
+
|
|
|
+ /* Force memory writes to complete before letting h/w
|
|
|
+ * know there are new descriptors to fetch. (Only
|
|
|
+ * applicable for weak-ordered memory model archs,
|
|
|
+ * such as IA-64).
|
|
|
+ */
|
|
|
+ wmb();
|
|
|
+
|
|
|
+ writel(i, tx_ring->tail);
|
|
|
+ return;
|
|
|
+
|
|
|
+dma_error:
|
|
|
+ dev_info(dev, "TX DMA map failed\n");
|
|
|
+
|
|
|
+ /* clear dma mappings for failed tx_bi map */
|
|
|
+ for (;;) {
|
|
|
+ tx_bi = &tx_ring->tx_bi[i];
|
|
|
+ i40e_unmap_tx_resource(tx_ring, tx_bi);
|
|
|
+ if (tx_bi == first)
|
|
|
+ break;
|
|
|
+ if (i == 0)
|
|
|
+ i = tx_ring->count;
|
|
|
+ i--;
|
|
|
+ }
|
|
|
+
|
|
|
+ dev_kfree_skb_any(skb);
|
|
|
+
|
|
|
+ tx_ring->next_to_use = i;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
|
|
|
+ * @tx_ring: the ring to be checked
|
|
|
+ * @size: the size buffer we want to assure is available
|
|
|
+ *
|
|
|
+ * Returns -EBUSY if a stop is needed, else 0
|
|
|
+ **/
|
|
|
+static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
|
|
|
+{
|
|
|
+ netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
|
|
|
+ smp_mb();
|
|
|
+
|
|
|
+ /* Check again in a case another CPU has just made room available. */
|
|
|
+ if (likely(I40E_DESC_UNUSED(tx_ring) < size))
|
|
|
+ return -EBUSY;
|
|
|
+
|
|
|
+ /* A reprieve! - use start_queue because it doesn't call schedule */
|
|
|
+ netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
|
|
|
+ ++tx_ring->tx_stats.restart_queue;
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_maybe_stop_tx - 1st level check for tx stop conditions
|
|
|
+ * @tx_ring: the ring to be checked
|
|
|
+ * @size: the size buffer we want to assure is available
|
|
|
+ *
|
|
|
+ * Returns 0 if stop is not needed
|
|
|
+ **/
|
|
|
+static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
|
|
|
+{
|
|
|
+ if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
|
|
|
+ return 0;
|
|
|
+ return __i40e_maybe_stop_tx(tx_ring, size);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
|
|
|
+ * @skb: send buffer
|
|
|
+ * @tx_ring: ring to send buffer on
|
|
|
+ *
|
|
|
+ * Returns number of data descriptors needed for this skb. Returns 0 to indicate
|
|
|
+ * there is not enough descriptors available in this ring since we need at least
|
|
|
+ * one descriptor.
|
|
|
+ **/
|
|
|
+static int i40e_xmit_descriptor_count(struct sk_buff *skb,
|
|
|
+ struct i40e_ring *tx_ring)
|
|
|
+{
|
|
|
+#if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
|
|
|
+ unsigned int f;
|
|
|
+#endif
|
|
|
+ int count = 0;
|
|
|
+
|
|
|
+ /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
|
|
|
+ * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
|
|
|
+ * + 2 desc gap to keep tail from touching head,
|
|
|
+ * + 1 desc for context descriptor,
|
|
|
+ * otherwise try next time
|
|
|
+ */
|
|
|
+#if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
|
|
|
+ for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
|
|
|
+ count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
|
|
|
+#else
|
|
|
+ count += skb_shinfo(skb)->nr_frags;
|
|
|
+#endif
|
|
|
+ count += TXD_USE_COUNT(skb_headlen(skb));
|
|
|
+ if (i40e_maybe_stop_tx(tx_ring, count + 3)) {
|
|
|
+ tx_ring->tx_stats.tx_busy++;
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ return count;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_xmit_frame_ring - Sends buffer on Tx ring
|
|
|
+ * @skb: send buffer
|
|
|
+ * @tx_ring: ring to send buffer on
|
|
|
+ *
|
|
|
+ * Returns NETDEV_TX_OK if sent, else an error code
|
|
|
+ **/
|
|
|
+static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
|
|
|
+ struct i40e_ring *tx_ring)
|
|
|
+{
|
|
|
+ u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
|
|
|
+ u32 cd_tunneling = 0, cd_l2tag2 = 0;
|
|
|
+ struct i40e_tx_buffer *first;
|
|
|
+ u32 td_offset = 0;
|
|
|
+ u32 tx_flags = 0;
|
|
|
+ __be16 protocol;
|
|
|
+ u32 td_cmd = 0;
|
|
|
+ u8 hdr_len = 0;
|
|
|
+ int tso;
|
|
|
+ if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
|
|
|
+ return NETDEV_TX_BUSY;
|
|
|
+
|
|
|
+ /* prepare the xmit flags */
|
|
|
+ if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
|
|
|
+ goto out_drop;
|
|
|
+
|
|
|
+ /* obtain protocol of skb */
|
|
|
+ protocol = skb->protocol;
|
|
|
+
|
|
|
+ /* record the location of the first descriptor for this packet */
|
|
|
+ first = &tx_ring->tx_bi[tx_ring->next_to_use];
|
|
|
+
|
|
|
+ /* setup IPv4/IPv6 offloads */
|
|
|
+ if (protocol == __constant_htons(ETH_P_IP))
|
|
|
+ tx_flags |= I40E_TX_FLAGS_IPV4;
|
|
|
+ else if (protocol == __constant_htons(ETH_P_IPV6))
|
|
|
+ tx_flags |= I40E_TX_FLAGS_IPV6;
|
|
|
+
|
|
|
+ tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
|
|
|
+ &cd_type_cmd_tso_mss, &cd_tunneling);
|
|
|
+
|
|
|
+ if (tso < 0)
|
|
|
+ goto out_drop;
|
|
|
+ else if (tso)
|
|
|
+ tx_flags |= I40E_TX_FLAGS_TSO;
|
|
|
+
|
|
|
+ skb_tx_timestamp(skb);
|
|
|
+
|
|
|
+ /* Always offload the checksum, since it's in the data descriptor */
|
|
|
+ if (i40e_tx_csum(tx_ring, skb, tx_flags, protocol))
|
|
|
+ tx_flags |= I40E_TX_FLAGS_CSUM;
|
|
|
+
|
|
|
+ /* always enable offload insertion */
|
|
|
+ td_cmd |= I40E_TX_DESC_CMD_ICRC;
|
|
|
+
|
|
|
+ if (tx_flags & I40E_TX_FLAGS_CSUM)
|
|
|
+ i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
|
|
|
+ tx_ring, &cd_tunneling);
|
|
|
+
|
|
|
+ i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
|
|
|
+ cd_tunneling, cd_l2tag2);
|
|
|
+
|
|
|
+ /* Add Flow Director ATR if it's enabled.
|
|
|
+ *
|
|
|
+ * NOTE: this must always be directly before the data descriptor.
|
|
|
+ */
|
|
|
+ i40e_atr(tx_ring, skb, tx_flags, protocol);
|
|
|
+
|
|
|
+ i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
|
|
|
+ td_cmd, td_offset);
|
|
|
+
|
|
|
+ i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
|
|
|
+
|
|
|
+ return NETDEV_TX_OK;
|
|
|
+
|
|
|
+out_drop:
|
|
|
+ dev_kfree_skb_any(skb);
|
|
|
+ return NETDEV_TX_OK;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
|
|
|
+ * @skb: send buffer
|
|
|
+ * @netdev: network interface device structure
|
|
|
+ *
|
|
|
+ * Returns NETDEV_TX_OK if sent, else an error code
|
|
|
+ **/
|
|
|
+netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
|
|
|
+{
|
|
|
+ struct i40e_netdev_priv *np = netdev_priv(netdev);
|
|
|
+ struct i40e_vsi *vsi = np->vsi;
|
|
|
+ struct i40e_ring *tx_ring = &vsi->tx_rings[skb->queue_mapping];
|
|
|
+
|
|
|
+ /* hardware can't handle really short frames, hardware padding works
|
|
|
+ * beyond this point
|
|
|
+ */
|
|
|
+ if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
|
|
|
+ if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
|
|
|
+ return NETDEV_TX_OK;
|
|
|
+ skb->len = I40E_MIN_TX_LEN;
|
|
|
+ skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
|
|
|
+ }
|
|
|
+
|
|
|
+ return i40e_xmit_frame_ring(skb, tx_ring);
|
|
|
+}
|