|
@@ -0,0 +1,370 @@
|
|
|
+/*
|
|
|
+ * Macros and functions to manipulate Meta page tables.
|
|
|
+ */
|
|
|
+
|
|
|
+#ifndef _METAG_PGTABLE_H
|
|
|
+#define _METAG_PGTABLE_H
|
|
|
+
|
|
|
+#include <asm-generic/pgtable-nopmd.h>
|
|
|
+
|
|
|
+/* Invalid regions on Meta: 0x00000000-0x001FFFFF and 0xFFFF0000-0xFFFFFFFF */
|
|
|
+#if PAGE_OFFSET >= LINGLOBAL_BASE
|
|
|
+#define CONSISTENT_START 0xF7000000
|
|
|
+#define CONSISTENT_END 0xF73FFFFF
|
|
|
+#define VMALLOC_START 0xF8000000
|
|
|
+#define VMALLOC_END 0xFFFEFFFF
|
|
|
+#else
|
|
|
+#define CONSISTENT_START 0x77000000
|
|
|
+#define CONSISTENT_END 0x773FFFFF
|
|
|
+#define VMALLOC_START 0x78000000
|
|
|
+#define VMALLOC_END 0x7FFFFFFF
|
|
|
+#endif
|
|
|
+
|
|
|
+/*
|
|
|
+ * Definitions for MMU descriptors
|
|
|
+ *
|
|
|
+ * These are the hardware bits in the MMCU pte entries.
|
|
|
+ * Derived from the Meta toolkit headers.
|
|
|
+ */
|
|
|
+#define _PAGE_PRESENT MMCU_ENTRY_VAL_BIT
|
|
|
+#define _PAGE_WRITE MMCU_ENTRY_WR_BIT
|
|
|
+#define _PAGE_PRIV MMCU_ENTRY_PRIV_BIT
|
|
|
+/* Write combine bit - this can cause writes to occur out of order */
|
|
|
+#define _PAGE_WR_COMBINE MMCU_ENTRY_WRC_BIT
|
|
|
+/* Sys coherent bit - this bit is never used by Linux */
|
|
|
+#define _PAGE_SYS_COHERENT MMCU_ENTRY_SYS_BIT
|
|
|
+#define _PAGE_ALWAYS_ZERO_1 0x020
|
|
|
+#define _PAGE_CACHE_CTRL0 0x040
|
|
|
+#define _PAGE_CACHE_CTRL1 0x080
|
|
|
+#define _PAGE_ALWAYS_ZERO_2 0x100
|
|
|
+#define _PAGE_ALWAYS_ZERO_3 0x200
|
|
|
+#define _PAGE_ALWAYS_ZERO_4 0x400
|
|
|
+#define _PAGE_ALWAYS_ZERO_5 0x800
|
|
|
+
|
|
|
+/* These are software bits that we stuff into the gaps in the hardware
|
|
|
+ * pte entries that are not used. Note, these DO get stored in the actual
|
|
|
+ * hardware, but the hardware just does not use them.
|
|
|
+ */
|
|
|
+#define _PAGE_ACCESSED _PAGE_ALWAYS_ZERO_1
|
|
|
+#define _PAGE_DIRTY _PAGE_ALWAYS_ZERO_2
|
|
|
+#define _PAGE_FILE _PAGE_ALWAYS_ZERO_3
|
|
|
+
|
|
|
+/* Pages owned, and protected by, the kernel. */
|
|
|
+#define _PAGE_KERNEL _PAGE_PRIV
|
|
|
+
|
|
|
+/* No cacheing of this page */
|
|
|
+#define _PAGE_CACHE_WIN0 (MMCU_CWIN_UNCACHED << MMCU_ENTRY_CWIN_S)
|
|
|
+/* burst cacheing - good for data streaming */
|
|
|
+#define _PAGE_CACHE_WIN1 (MMCU_CWIN_BURST << MMCU_ENTRY_CWIN_S)
|
|
|
+/* One cache way per thread */
|
|
|
+#define _PAGE_CACHE_WIN2 (MMCU_CWIN_C1SET << MMCU_ENTRY_CWIN_S)
|
|
|
+/* Full on cacheing */
|
|
|
+#define _PAGE_CACHE_WIN3 (MMCU_CWIN_CACHED << MMCU_ENTRY_CWIN_S)
|
|
|
+
|
|
|
+#define _PAGE_CACHEABLE (_PAGE_CACHE_WIN3 | _PAGE_WR_COMBINE)
|
|
|
+
|
|
|
+/* which bits are used for cache control ... */
|
|
|
+#define _PAGE_CACHE_MASK (_PAGE_CACHE_CTRL0 | _PAGE_CACHE_CTRL1 | \
|
|
|
+ _PAGE_WR_COMBINE)
|
|
|
+
|
|
|
+/* This is a mask of the bits that pte_modify is allowed to change. */
|
|
|
+#define _PAGE_CHG_MASK (PAGE_MASK)
|
|
|
+
|
|
|
+#define _PAGE_SZ_SHIFT 1
|
|
|
+#define _PAGE_SZ_4K (0x0)
|
|
|
+#define _PAGE_SZ_8K (0x1 << _PAGE_SZ_SHIFT)
|
|
|
+#define _PAGE_SZ_16K (0x2 << _PAGE_SZ_SHIFT)
|
|
|
+#define _PAGE_SZ_32K (0x3 << _PAGE_SZ_SHIFT)
|
|
|
+#define _PAGE_SZ_64K (0x4 << _PAGE_SZ_SHIFT)
|
|
|
+#define _PAGE_SZ_128K (0x5 << _PAGE_SZ_SHIFT)
|
|
|
+#define _PAGE_SZ_256K (0x6 << _PAGE_SZ_SHIFT)
|
|
|
+#define _PAGE_SZ_512K (0x7 << _PAGE_SZ_SHIFT)
|
|
|
+#define _PAGE_SZ_1M (0x8 << _PAGE_SZ_SHIFT)
|
|
|
+#define _PAGE_SZ_2M (0x9 << _PAGE_SZ_SHIFT)
|
|
|
+#define _PAGE_SZ_4M (0xa << _PAGE_SZ_SHIFT)
|
|
|
+#define _PAGE_SZ_MASK (0xf << _PAGE_SZ_SHIFT)
|
|
|
+
|
|
|
+#if defined(CONFIG_PAGE_SIZE_4K)
|
|
|
+#define _PAGE_SZ (_PAGE_SZ_4K)
|
|
|
+#elif defined(CONFIG_PAGE_SIZE_8K)
|
|
|
+#define _PAGE_SZ (_PAGE_SZ_8K)
|
|
|
+#elif defined(CONFIG_PAGE_SIZE_16K)
|
|
|
+#define _PAGE_SZ (_PAGE_SZ_16K)
|
|
|
+#endif
|
|
|
+#define _PAGE_TABLE (_PAGE_SZ | _PAGE_PRESENT)
|
|
|
+
|
|
|
+#if defined(CONFIG_HUGETLB_PAGE_SIZE_8K)
|
|
|
+# define _PAGE_SZHUGE (_PAGE_SZ_8K)
|
|
|
+#elif defined(CONFIG_HUGETLB_PAGE_SIZE_16K)
|
|
|
+# define _PAGE_SZHUGE (_PAGE_SZ_16K)
|
|
|
+#elif defined(CONFIG_HUGETLB_PAGE_SIZE_32K)
|
|
|
+# define _PAGE_SZHUGE (_PAGE_SZ_32K)
|
|
|
+#elif defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
|
|
|
+# define _PAGE_SZHUGE (_PAGE_SZ_64K)
|
|
|
+#elif defined(CONFIG_HUGETLB_PAGE_SIZE_128K)
|
|
|
+# define _PAGE_SZHUGE (_PAGE_SZ_128K)
|
|
|
+#elif defined(CONFIG_HUGETLB_PAGE_SIZE_256K)
|
|
|
+# define _PAGE_SZHUGE (_PAGE_SZ_256K)
|
|
|
+#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
|
|
|
+# define _PAGE_SZHUGE (_PAGE_SZ_512K)
|
|
|
+#elif defined(CONFIG_HUGETLB_PAGE_SIZE_1M)
|
|
|
+# define _PAGE_SZHUGE (_PAGE_SZ_1M)
|
|
|
+#elif defined(CONFIG_HUGETLB_PAGE_SIZE_2M)
|
|
|
+# define _PAGE_SZHUGE (_PAGE_SZ_2M)
|
|
|
+#elif defined(CONFIG_HUGETLB_PAGE_SIZE_4M)
|
|
|
+# define _PAGE_SZHUGE (_PAGE_SZ_4M)
|
|
|
+#endif
|
|
|
+
|
|
|
+/*
|
|
|
+ * The Linux memory management assumes a three-level page table setup. On
|
|
|
+ * Meta, we use that, but "fold" the mid level into the top-level page
|
|
|
+ * table.
|
|
|
+ */
|
|
|
+
|
|
|
+/* PGDIR_SHIFT determines the size of the area a second-level page table can
|
|
|
+ * map. This is always 4MB.
|
|
|
+ */
|
|
|
+
|
|
|
+#define PGDIR_SHIFT 22
|
|
|
+#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
|
|
+#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
|
|
+
|
|
|
+/*
|
|
|
+ * Entries per page directory level: we use a two-level, so
|
|
|
+ * we don't really have any PMD directory physically. First level tables
|
|
|
+ * always map 2Gb (local or global) at a granularity of 4MB, second-level
|
|
|
+ * tables map 4MB with a granularity between 4MB and 4kB (between 1 and
|
|
|
+ * 1024 entries).
|
|
|
+ */
|
|
|
+#define PTRS_PER_PTE (PGDIR_SIZE/PAGE_SIZE)
|
|
|
+#define HPTRS_PER_PTE (PGDIR_SIZE/HPAGE_SIZE)
|
|
|
+#define PTRS_PER_PGD 512
|
|
|
+
|
|
|
+#define USER_PTRS_PER_PGD 256
|
|
|
+#define FIRST_USER_ADDRESS META_MEMORY_BASE
|
|
|
+#define FIRST_USER_PGD_NR pgd_index(FIRST_USER_ADDRESS)
|
|
|
+
|
|
|
+#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
|
|
|
+ _PAGE_CACHEABLE)
|
|
|
+
|
|
|
+#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_WRITE | \
|
|
|
+ _PAGE_ACCESSED | _PAGE_CACHEABLE)
|
|
|
+#define PAGE_SHARED_C PAGE_SHARED
|
|
|
+#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
|
|
|
+ _PAGE_CACHEABLE)
|
|
|
+#define PAGE_COPY_C PAGE_COPY
|
|
|
+
|
|
|
+#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
|
|
|
+ _PAGE_CACHEABLE)
|
|
|
+#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | \
|
|
|
+ _PAGE_ACCESSED | _PAGE_WRITE | \
|
|
|
+ _PAGE_CACHEABLE | _PAGE_KERNEL)
|
|
|
+
|
|
|
+#define __P000 PAGE_NONE
|
|
|
+#define __P001 PAGE_READONLY
|
|
|
+#define __P010 PAGE_COPY
|
|
|
+#define __P011 PAGE_COPY
|
|
|
+#define __P100 PAGE_READONLY
|
|
|
+#define __P101 PAGE_READONLY
|
|
|
+#define __P110 PAGE_COPY_C
|
|
|
+#define __P111 PAGE_COPY_C
|
|
|
+
|
|
|
+#define __S000 PAGE_NONE
|
|
|
+#define __S001 PAGE_READONLY
|
|
|
+#define __S010 PAGE_SHARED
|
|
|
+#define __S011 PAGE_SHARED
|
|
|
+#define __S100 PAGE_READONLY
|
|
|
+#define __S101 PAGE_READONLY
|
|
|
+#define __S110 PAGE_SHARED_C
|
|
|
+#define __S111 PAGE_SHARED_C
|
|
|
+
|
|
|
+#ifndef __ASSEMBLY__
|
|
|
+
|
|
|
+#include <asm/page.h>
|
|
|
+
|
|
|
+/* zero page used for uninitialized stuff */
|
|
|
+extern unsigned long empty_zero_page;
|
|
|
+#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
|
|
|
+
|
|
|
+/* Certain architectures need to do special things when pte's
|
|
|
+ * within a page table are directly modified. Thus, the following
|
|
|
+ * hook is made available.
|
|
|
+ */
|
|
|
+#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
|
|
|
+#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
|
|
|
+
|
|
|
+#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
|
|
|
+
|
|
|
+#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
|
|
|
+
|
|
|
+#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
|
|
|
+
|
|
|
+#define pte_none(x) (!pte_val(x))
|
|
|
+#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
|
|
|
+#define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0)
|
|
|
+
|
|
|
+#define pmd_none(x) (!pmd_val(x))
|
|
|
+#define pmd_bad(x) ((pmd_val(x) & ~(PAGE_MASK | _PAGE_SZ_MASK)) \
|
|
|
+ != (_PAGE_TABLE & ~_PAGE_SZ_MASK))
|
|
|
+#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
|
|
|
+#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
|
|
|
+
|
|
|
+#define pte_page(x) pfn_to_page(pte_pfn(x))
|
|
|
+
|
|
|
+/*
|
|
|
+ * The following only work if pte_present() is true.
|
|
|
+ * Undefined behaviour if not..
|
|
|
+ */
|
|
|
+
|
|
|
+static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
|
|
|
+static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
|
|
|
+static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
|
|
|
+static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
|
|
|
+static inline int pte_special(pte_t pte) { return 0; }
|
|
|
+
|
|
|
+static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= (~_PAGE_WRITE); return pte; }
|
|
|
+static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
|
|
|
+static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
|
|
|
+static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; }
|
|
|
+static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
|
|
|
+static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
|
|
|
+static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
|
|
|
+static inline pte_t pte_mkhuge(pte_t pte) { return pte; }
|
|
|
+
|
|
|
+/*
|
|
|
+ * Macro and implementation to make a page protection as uncacheable.
|
|
|
+ */
|
|
|
+#define pgprot_writecombine(prot) \
|
|
|
+ __pgprot(pgprot_val(prot) & ~(_PAGE_CACHE_CTRL1 | _PAGE_CACHE_CTRL0))
|
|
|
+
|
|
|
+#define pgprot_noncached(prot) \
|
|
|
+ __pgprot(pgprot_val(prot) & ~_PAGE_CACHEABLE)
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ * Conversion functions: convert a page and protection to a page entry,
|
|
|
+ * and a page entry and page directory to the page they refer to.
|
|
|
+ */
|
|
|
+
|
|
|
+#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
|
|
|
+
|
|
|
+static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
|
|
+{
|
|
|
+ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
|
|
|
+ return pte;
|
|
|
+}
|
|
|
+
|
|
|
+static inline unsigned long pmd_page_vaddr(pmd_t pmd)
|
|
|
+{
|
|
|
+ unsigned long paddr = pmd_val(pmd) & PAGE_MASK;
|
|
|
+ if (!paddr)
|
|
|
+ return 0;
|
|
|
+ return (unsigned long)__va(paddr);
|
|
|
+}
|
|
|
+
|
|
|
+#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
|
|
|
+#define pmd_page_shift(pmd) (12 + ((pmd_val(pmd) & _PAGE_SZ_MASK) \
|
|
|
+ >> _PAGE_SZ_SHIFT))
|
|
|
+#define pmd_num_ptrs(pmd) (PGDIR_SIZE >> pmd_page_shift(pmd))
|
|
|
+
|
|
|
+/*
|
|
|
+ * Each pgd is only 2k, mapping 2Gb (local or global). If we're in global
|
|
|
+ * space drop the top bit before indexing the pgd.
|
|
|
+ */
|
|
|
+#if PAGE_OFFSET >= LINGLOBAL_BASE
|
|
|
+#define pgd_index(address) ((((address) & ~0x80000000) >> PGDIR_SHIFT) \
|
|
|
+ & (PTRS_PER_PGD-1))
|
|
|
+#else
|
|
|
+#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
|
|
|
+#endif
|
|
|
+
|
|
|
+#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
|
|
|
+
|
|
|
+#define pgd_offset_k(address) pgd_offset(&init_mm, address)
|
|
|
+
|
|
|
+#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
|
|
|
+
|
|
|
+/* Find an entry in the second-level page table.. */
|
|
|
+#if !defined(CONFIG_HUGETLB_PAGE)
|
|
|
+ /* all pages are of size (1 << PAGE_SHIFT), so no need to read 1st level pt */
|
|
|
+# define pte_index(pmd, address) \
|
|
|
+ (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
|
|
|
+#else
|
|
|
+ /* some pages are huge, so read 1st level pt to find out */
|
|
|
+# define pte_index(pmd, address) \
|
|
|
+ (((address) >> pmd_page_shift(pmd)) & (pmd_num_ptrs(pmd) - 1))
|
|
|
+#endif
|
|
|
+#define pte_offset_kernel(dir, address) \
|
|
|
+ ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(*(dir), address))
|
|
|
+#define pte_offset_map(dir, address) pte_offset_kernel(dir, address)
|
|
|
+#define pte_offset_map_nested(dir, address) pte_offset_kernel(dir, address)
|
|
|
+
|
|
|
+#define pte_unmap(pte) do { } while (0)
|
|
|
+#define pte_unmap_nested(pte) do { } while (0)
|
|
|
+
|
|
|
+#define pte_ERROR(e) \
|
|
|
+ pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
|
|
|
+#define pgd_ERROR(e) \
|
|
|
+ pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
|
|
|
+
|
|
|
+/*
|
|
|
+ * Meta doesn't have any external MMU info: the kernel page
|
|
|
+ * tables contain all the necessary information.
|
|
|
+ */
|
|
|
+static inline void update_mmu_cache(struct vm_area_struct *vma,
|
|
|
+ unsigned long address, pte_t *pte)
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Encode and decode a swap entry (must be !pte_none(e) && !pte_present(e))
|
|
|
+ * Since PAGE_PRESENT is bit 1, we can use the bits above that.
|
|
|
+ */
|
|
|
+#define __swp_type(x) (((x).val >> 1) & 0xff)
|
|
|
+#define __swp_offset(x) ((x).val >> 10)
|
|
|
+#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | \
|
|
|
+ ((offset) << 10) })
|
|
|
+#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
|
|
|
+#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
|
|
|
+
|
|
|
+#define PTE_FILE_MAX_BITS 22
|
|
|
+#define pte_to_pgoff(x) (pte_val(x) >> 10)
|
|
|
+#define pgoff_to_pte(x) __pte(((x) << 10) | _PAGE_FILE)
|
|
|
+
|
|
|
+#define kern_addr_valid(addr) (1)
|
|
|
+
|
|
|
+#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
|
|
|
+ remap_pfn_range(vma, vaddr, pfn, size, prot)
|
|
|
+
|
|
|
+/*
|
|
|
+ * No page table caches to initialise
|
|
|
+ */
|
|
|
+#define pgtable_cache_init() do { } while (0)
|
|
|
+
|
|
|
+extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
|
|
|
+void paging_init(unsigned long mem_end);
|
|
|
+
|
|
|
+#ifdef CONFIG_METAG_META12
|
|
|
+/* This is a workaround for an issue in Meta 1 cores. These cores cache
|
|
|
+ * invalid entries in the TLB so we always need to flush whenever we add
|
|
|
+ * a new pte. Unfortunately we can only flush the whole TLB not shoot down
|
|
|
+ * single entries so this is sub-optimal. This implementation ensures that
|
|
|
+ * we will get a flush at the second attempt, so we may still get repeated
|
|
|
+ * faults, we just don't overflow the kernel stack handling them.
|
|
|
+ */
|
|
|
+#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
|
|
+#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
|
|
|
+({ \
|
|
|
+ int __changed = !pte_same(*(__ptep), __entry); \
|
|
|
+ if (__changed) { \
|
|
|
+ set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \
|
|
|
+ } \
|
|
|
+ flush_tlb_page(__vma, __address); \
|
|
|
+ __changed; \
|
|
|
+})
|
|
|
+#endif
|
|
|
+
|
|
|
+#include <asm-generic/pgtable.h>
|
|
|
+
|
|
|
+#endif /* __ASSEMBLY__ */
|
|
|
+#endif /* _METAG_PGTABLE_H */
|