|
@@ -0,0 +1,507 @@
|
|
|
+/*
|
|
|
+ * Meta version derived from arch/powerpc/lib/dma-noncoherent.c
|
|
|
+ * Copyright (C) 2008 Imagination Technologies Ltd.
|
|
|
+ *
|
|
|
+ * PowerPC version derived from arch/arm/mm/consistent.c
|
|
|
+ * Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
|
|
|
+ *
|
|
|
+ * Copyright (C) 2000 Russell King
|
|
|
+ *
|
|
|
+ * Consistent memory allocators. Used for DMA devices that want to
|
|
|
+ * share uncached memory with the processor core. The function return
|
|
|
+ * is the virtual address and 'dma_handle' is the physical address.
|
|
|
+ * Mostly stolen from the ARM port, with some changes for PowerPC.
|
|
|
+ * -- Dan
|
|
|
+ *
|
|
|
+ * Reorganized to get rid of the arch-specific consistent_* functions
|
|
|
+ * and provide non-coherent implementations for the DMA API. -Matt
|
|
|
+ *
|
|
|
+ * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent()
|
|
|
+ * implementation. This is pulled straight from ARM and barely
|
|
|
+ * modified. -Matt
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or modify
|
|
|
+ * it under the terms of the GNU General Public License version 2 as
|
|
|
+ * published by the Free Software Foundation.
|
|
|
+ */
|
|
|
+
|
|
|
+#include <linux/sched.h>
|
|
|
+#include <linux/kernel.h>
|
|
|
+#include <linux/errno.h>
|
|
|
+#include <linux/export.h>
|
|
|
+#include <linux/string.h>
|
|
|
+#include <linux/types.h>
|
|
|
+#include <linux/highmem.h>
|
|
|
+#include <linux/dma-mapping.h>
|
|
|
+#include <linux/slab.h>
|
|
|
+
|
|
|
+#include <asm/tlbflush.h>
|
|
|
+#include <asm/mmu.h>
|
|
|
+
|
|
|
+#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_START) \
|
|
|
+ >> PAGE_SHIFT)
|
|
|
+
|
|
|
+static u64 get_coherent_dma_mask(struct device *dev)
|
|
|
+{
|
|
|
+ u64 mask = ~0ULL;
|
|
|
+
|
|
|
+ if (dev) {
|
|
|
+ mask = dev->coherent_dma_mask;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Sanity check the DMA mask - it must be non-zero, and
|
|
|
+ * must be able to be satisfied by a DMA allocation.
|
|
|
+ */
|
|
|
+ if (mask == 0) {
|
|
|
+ dev_warn(dev, "coherent DMA mask is unset\n");
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return mask;
|
|
|
+}
|
|
|
+/*
|
|
|
+ * This is the page table (2MB) covering uncached, DMA consistent allocations
|
|
|
+ */
|
|
|
+static pte_t *consistent_pte;
|
|
|
+static DEFINE_SPINLOCK(consistent_lock);
|
|
|
+
|
|
|
+/*
|
|
|
+ * VM region handling support.
|
|
|
+ *
|
|
|
+ * This should become something generic, handling VM region allocations for
|
|
|
+ * vmalloc and similar (ioremap, module space, etc).
|
|
|
+ *
|
|
|
+ * I envisage vmalloc()'s supporting vm_struct becoming:
|
|
|
+ *
|
|
|
+ * struct vm_struct {
|
|
|
+ * struct metag_vm_region region;
|
|
|
+ * unsigned long flags;
|
|
|
+ * struct page **pages;
|
|
|
+ * unsigned int nr_pages;
|
|
|
+ * unsigned long phys_addr;
|
|
|
+ * };
|
|
|
+ *
|
|
|
+ * get_vm_area() would then call metag_vm_region_alloc with an appropriate
|
|
|
+ * struct metag_vm_region head (eg):
|
|
|
+ *
|
|
|
+ * struct metag_vm_region vmalloc_head = {
|
|
|
+ * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list),
|
|
|
+ * .vm_start = VMALLOC_START,
|
|
|
+ * .vm_end = VMALLOC_END,
|
|
|
+ * };
|
|
|
+ *
|
|
|
+ * However, vmalloc_head.vm_start is variable (typically, it is dependent on
|
|
|
+ * the amount of RAM found at boot time.) I would imagine that get_vm_area()
|
|
|
+ * would have to initialise this each time prior to calling
|
|
|
+ * metag_vm_region_alloc().
|
|
|
+ */
|
|
|
+struct metag_vm_region {
|
|
|
+ struct list_head vm_list;
|
|
|
+ unsigned long vm_start;
|
|
|
+ unsigned long vm_end;
|
|
|
+ struct page *vm_pages;
|
|
|
+ int vm_active;
|
|
|
+};
|
|
|
+
|
|
|
+static struct metag_vm_region consistent_head = {
|
|
|
+ .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
|
|
|
+ .vm_start = CONSISTENT_START,
|
|
|
+ .vm_end = CONSISTENT_END,
|
|
|
+};
|
|
|
+
|
|
|
+static struct metag_vm_region *metag_vm_region_alloc(struct metag_vm_region
|
|
|
+ *head, size_t size,
|
|
|
+ gfp_t gfp)
|
|
|
+{
|
|
|
+ unsigned long addr = head->vm_start, end = head->vm_end - size;
|
|
|
+ unsigned long flags;
|
|
|
+ struct metag_vm_region *c, *new;
|
|
|
+
|
|
|
+ new = kmalloc(sizeof(struct metag_vm_region), gfp);
|
|
|
+ if (!new)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ spin_lock_irqsave(&consistent_lock, flags);
|
|
|
+
|
|
|
+ list_for_each_entry(c, &head->vm_list, vm_list) {
|
|
|
+ if ((addr + size) < addr)
|
|
|
+ goto nospc;
|
|
|
+ if ((addr + size) <= c->vm_start)
|
|
|
+ goto found;
|
|
|
+ addr = c->vm_end;
|
|
|
+ if (addr > end)
|
|
|
+ goto nospc;
|
|
|
+ }
|
|
|
+
|
|
|
+found:
|
|
|
+ /*
|
|
|
+ * Insert this entry _before_ the one we found.
|
|
|
+ */
|
|
|
+ list_add_tail(&new->vm_list, &c->vm_list);
|
|
|
+ new->vm_start = addr;
|
|
|
+ new->vm_end = addr + size;
|
|
|
+ new->vm_active = 1;
|
|
|
+
|
|
|
+ spin_unlock_irqrestore(&consistent_lock, flags);
|
|
|
+ return new;
|
|
|
+
|
|
|
+nospc:
|
|
|
+ spin_unlock_irqrestore(&consistent_lock, flags);
|
|
|
+ kfree(new);
|
|
|
+out:
|
|
|
+ return NULL;
|
|
|
+}
|
|
|
+
|
|
|
+static struct metag_vm_region *metag_vm_region_find(struct metag_vm_region
|
|
|
+ *head, unsigned long addr)
|
|
|
+{
|
|
|
+ struct metag_vm_region *c;
|
|
|
+
|
|
|
+ list_for_each_entry(c, &head->vm_list, vm_list) {
|
|
|
+ if (c->vm_active && c->vm_start == addr)
|
|
|
+ goto out;
|
|
|
+ }
|
|
|
+ c = NULL;
|
|
|
+out:
|
|
|
+ return c;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Allocate DMA-coherent memory space and return both the kernel remapped
|
|
|
+ * virtual and bus address for that space.
|
|
|
+ */
|
|
|
+void *dma_alloc_coherent(struct device *dev, size_t size,
|
|
|
+ dma_addr_t *handle, gfp_t gfp)
|
|
|
+{
|
|
|
+ struct page *page;
|
|
|
+ struct metag_vm_region *c;
|
|
|
+ unsigned long order;
|
|
|
+ u64 mask = get_coherent_dma_mask(dev);
|
|
|
+ u64 limit;
|
|
|
+
|
|
|
+ if (!consistent_pte) {
|
|
|
+ pr_err("%s: not initialised\n", __func__);
|
|
|
+ dump_stack();
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!mask)
|
|
|
+ goto no_page;
|
|
|
+ size = PAGE_ALIGN(size);
|
|
|
+ limit = (mask + 1) & ~mask;
|
|
|
+ if ((limit && size >= limit)
|
|
|
+ || size >= (CONSISTENT_END - CONSISTENT_START)) {
|
|
|
+ pr_warn("coherent allocation too big (requested %#x mask %#Lx)\n",
|
|
|
+ size, mask);
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ order = get_order(size);
|
|
|
+
|
|
|
+ if (mask != 0xffffffff)
|
|
|
+ gfp |= GFP_DMA;
|
|
|
+
|
|
|
+ page = alloc_pages(gfp, order);
|
|
|
+ if (!page)
|
|
|
+ goto no_page;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Invalidate any data that might be lurking in the
|
|
|
+ * kernel direct-mapped region for device DMA.
|
|
|
+ */
|
|
|
+ {
|
|
|
+ void *kaddr = page_address(page);
|
|
|
+ memset(kaddr, 0, size);
|
|
|
+ flush_dcache_region(kaddr, size);
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Allocate a virtual address in the consistent mapping region.
|
|
|
+ */
|
|
|
+ c = metag_vm_region_alloc(&consistent_head, size,
|
|
|
+ gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
|
|
|
+ if (c) {
|
|
|
+ unsigned long vaddr = c->vm_start;
|
|
|
+ pte_t *pte = consistent_pte + CONSISTENT_OFFSET(vaddr);
|
|
|
+ struct page *end = page + (1 << order);
|
|
|
+
|
|
|
+ c->vm_pages = page;
|
|
|
+ split_page(page, order);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Set the "dma handle"
|
|
|
+ */
|
|
|
+ *handle = page_to_bus(page);
|
|
|
+
|
|
|
+ do {
|
|
|
+ BUG_ON(!pte_none(*pte));
|
|
|
+
|
|
|
+ SetPageReserved(page);
|
|
|
+ set_pte_at(&init_mm, vaddr,
|
|
|
+ pte, mk_pte(page,
|
|
|
+ pgprot_writecombine
|
|
|
+ (PAGE_KERNEL)));
|
|
|
+ page++;
|
|
|
+ pte++;
|
|
|
+ vaddr += PAGE_SIZE;
|
|
|
+ } while (size -= PAGE_SIZE);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Free the otherwise unused pages.
|
|
|
+ */
|
|
|
+ while (page < end) {
|
|
|
+ __free_page(page);
|
|
|
+ page++;
|
|
|
+ }
|
|
|
+
|
|
|
+ return (void *)c->vm_start;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (page)
|
|
|
+ __free_pages(page, order);
|
|
|
+no_page:
|
|
|
+ return NULL;
|
|
|
+}
|
|
|
+EXPORT_SYMBOL(dma_alloc_coherent);
|
|
|
+
|
|
|
+/*
|
|
|
+ * free a page as defined by the above mapping.
|
|
|
+ */
|
|
|
+void dma_free_coherent(struct device *dev, size_t size,
|
|
|
+ void *vaddr, dma_addr_t dma_handle)
|
|
|
+{
|
|
|
+ struct metag_vm_region *c;
|
|
|
+ unsigned long flags, addr;
|
|
|
+ pte_t *ptep;
|
|
|
+
|
|
|
+ size = PAGE_ALIGN(size);
|
|
|
+
|
|
|
+ spin_lock_irqsave(&consistent_lock, flags);
|
|
|
+
|
|
|
+ c = metag_vm_region_find(&consistent_head, (unsigned long)vaddr);
|
|
|
+ if (!c)
|
|
|
+ goto no_area;
|
|
|
+
|
|
|
+ c->vm_active = 0;
|
|
|
+ if ((c->vm_end - c->vm_start) != size) {
|
|
|
+ pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
|
|
|
+ __func__, c->vm_end - c->vm_start, size);
|
|
|
+ dump_stack();
|
|
|
+ size = c->vm_end - c->vm_start;
|
|
|
+ }
|
|
|
+
|
|
|
+ ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
|
|
|
+ addr = c->vm_start;
|
|
|
+ do {
|
|
|
+ pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
|
|
|
+ unsigned long pfn;
|
|
|
+
|
|
|
+ ptep++;
|
|
|
+ addr += PAGE_SIZE;
|
|
|
+
|
|
|
+ if (!pte_none(pte) && pte_present(pte)) {
|
|
|
+ pfn = pte_pfn(pte);
|
|
|
+
|
|
|
+ if (pfn_valid(pfn)) {
|
|
|
+ struct page *page = pfn_to_page(pfn);
|
|
|
+ ClearPageReserved(page);
|
|
|
+
|
|
|
+ __free_page(page);
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ pr_crit("%s: bad page in kernel page table\n",
|
|
|
+ __func__);
|
|
|
+ } while (size -= PAGE_SIZE);
|
|
|
+
|
|
|
+ flush_tlb_kernel_range(c->vm_start, c->vm_end);
|
|
|
+
|
|
|
+ list_del(&c->vm_list);
|
|
|
+
|
|
|
+ spin_unlock_irqrestore(&consistent_lock, flags);
|
|
|
+
|
|
|
+ kfree(c);
|
|
|
+ return;
|
|
|
+
|
|
|
+no_area:
|
|
|
+ spin_unlock_irqrestore(&consistent_lock, flags);
|
|
|
+ pr_err("%s: trying to free invalid coherent area: %p\n",
|
|
|
+ __func__, vaddr);
|
|
|
+ dump_stack();
|
|
|
+}
|
|
|
+EXPORT_SYMBOL(dma_free_coherent);
|
|
|
+
|
|
|
+
|
|
|
+static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
|
|
|
+ void *cpu_addr, dma_addr_t dma_addr, size_t size)
|
|
|
+{
|
|
|
+ int ret = -ENXIO;
|
|
|
+
|
|
|
+ unsigned long flags, user_size, kern_size;
|
|
|
+ struct metag_vm_region *c;
|
|
|
+
|
|
|
+ user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
|
|
|
+
|
|
|
+ spin_lock_irqsave(&consistent_lock, flags);
|
|
|
+ c = metag_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
|
|
|
+ spin_unlock_irqrestore(&consistent_lock, flags);
|
|
|
+
|
|
|
+ if (c) {
|
|
|
+ unsigned long off = vma->vm_pgoff;
|
|
|
+
|
|
|
+ kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
|
|
|
+
|
|
|
+ if (off < kern_size &&
|
|
|
+ user_size <= (kern_size - off)) {
|
|
|
+ ret = remap_pfn_range(vma, vma->vm_start,
|
|
|
+ page_to_pfn(c->vm_pages) + off,
|
|
|
+ user_size << PAGE_SHIFT,
|
|
|
+ vma->vm_page_prot);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
|
|
|
+ void *cpu_addr, dma_addr_t dma_addr, size_t size)
|
|
|
+{
|
|
|
+ vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
|
+ return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
|
|
|
+}
|
|
|
+EXPORT_SYMBOL(dma_mmap_coherent);
|
|
|
+
|
|
|
+int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
|
|
|
+ void *cpu_addr, dma_addr_t dma_addr, size_t size)
|
|
|
+{
|
|
|
+ vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
|
|
|
+ return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
|
|
|
+}
|
|
|
+EXPORT_SYMBOL(dma_mmap_writecombine);
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ * Initialise the consistent memory allocation.
|
|
|
+ */
|
|
|
+static int __init dma_alloc_init(void)
|
|
|
+{
|
|
|
+ pgd_t *pgd, *pgd_k;
|
|
|
+ pud_t *pud, *pud_k;
|
|
|
+ pmd_t *pmd, *pmd_k;
|
|
|
+ pte_t *pte;
|
|
|
+ int ret = 0;
|
|
|
+
|
|
|
+ do {
|
|
|
+ int offset = pgd_index(CONSISTENT_START);
|
|
|
+ pgd = pgd_offset(&init_mm, CONSISTENT_START);
|
|
|
+ pud = pud_alloc(&init_mm, pgd, CONSISTENT_START);
|
|
|
+ pmd = pmd_alloc(&init_mm, pud, CONSISTENT_START);
|
|
|
+ if (!pmd) {
|
|
|
+ pr_err("%s: no pmd tables\n", __func__);
|
|
|
+ ret = -ENOMEM;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ WARN_ON(!pmd_none(*pmd));
|
|
|
+
|
|
|
+ pte = pte_alloc_kernel(pmd, CONSISTENT_START);
|
|
|
+ if (!pte) {
|
|
|
+ pr_err("%s: no pte tables\n", __func__);
|
|
|
+ ret = -ENOMEM;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ pgd_k = ((pgd_t *) mmu_get_base()) + offset;
|
|
|
+ pud_k = pud_offset(pgd_k, CONSISTENT_START);
|
|
|
+ pmd_k = pmd_offset(pud_k, CONSISTENT_START);
|
|
|
+ set_pmd(pmd_k, *pmd);
|
|
|
+
|
|
|
+ consistent_pte = pte;
|
|
|
+ } while (0);
|
|
|
+
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+early_initcall(dma_alloc_init);
|
|
|
+
|
|
|
+/*
|
|
|
+ * make an area consistent to devices.
|
|
|
+ */
|
|
|
+void dma_sync_for_device(void *vaddr, size_t size, int dma_direction)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * Ensure any writes get through the write combiner. This is necessary
|
|
|
+ * even with DMA_FROM_DEVICE, or the write may dirty the cache after
|
|
|
+ * we've invalidated it and get written back during the DMA.
|
|
|
+ */
|
|
|
+
|
|
|
+ barrier();
|
|
|
+
|
|
|
+ switch (dma_direction) {
|
|
|
+ case DMA_BIDIRECTIONAL:
|
|
|
+ /*
|
|
|
+ * Writeback to ensure the device can see our latest changes and
|
|
|
+ * so that we have no dirty lines, and invalidate the cache
|
|
|
+ * lines too in preparation for receiving the buffer back
|
|
|
+ * (dma_sync_for_cpu) later.
|
|
|
+ */
|
|
|
+ flush_dcache_region(vaddr, size);
|
|
|
+ break;
|
|
|
+ case DMA_TO_DEVICE:
|
|
|
+ /*
|
|
|
+ * Writeback to ensure the device can see our latest changes.
|
|
|
+ * There's no need to invalidate as the device shouldn't write
|
|
|
+ * to the buffer.
|
|
|
+ */
|
|
|
+ writeback_dcache_region(vaddr, size);
|
|
|
+ break;
|
|
|
+ case DMA_FROM_DEVICE:
|
|
|
+ /*
|
|
|
+ * Invalidate to ensure we have no dirty lines that could get
|
|
|
+ * written back during the DMA. It's also safe to flush
|
|
|
+ * (writeback) here if necessary.
|
|
|
+ */
|
|
|
+ invalidate_dcache_region(vaddr, size);
|
|
|
+ break;
|
|
|
+ case DMA_NONE:
|
|
|
+ BUG();
|
|
|
+ }
|
|
|
+
|
|
|
+ wmb();
|
|
|
+}
|
|
|
+EXPORT_SYMBOL(dma_sync_for_device);
|
|
|
+
|
|
|
+/*
|
|
|
+ * make an area consistent to the core.
|
|
|
+ */
|
|
|
+void dma_sync_for_cpu(void *vaddr, size_t size, int dma_direction)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * Hardware L2 cache prefetch doesn't occur across 4K physical
|
|
|
+ * boundaries, however according to Documentation/DMA-API-HOWTO.txt
|
|
|
+ * kmalloc'd memory is DMA'able, so accesses in nearby memory could
|
|
|
+ * trigger a cache fill in the DMA buffer.
|
|
|
+ *
|
|
|
+ * This should never cause dirty lines, so a flush or invalidate should
|
|
|
+ * be safe to allow us to see data from the device.
|
|
|
+ */
|
|
|
+ if (_meta_l2c_pf_is_enabled()) {
|
|
|
+ switch (dma_direction) {
|
|
|
+ case DMA_BIDIRECTIONAL:
|
|
|
+ case DMA_FROM_DEVICE:
|
|
|
+ invalidate_dcache_region(vaddr, size);
|
|
|
+ break;
|
|
|
+ case DMA_TO_DEVICE:
|
|
|
+ /* The device shouldn't have written to the buffer */
|
|
|
+ break;
|
|
|
+ case DMA_NONE:
|
|
|
+ BUG();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ rmb();
|
|
|
+}
|
|
|
+EXPORT_SYMBOL(dma_sync_for_cpu);
|