|
@@ -0,0 +1,408 @@
|
|
|
+/*
|
|
|
+ * Elonics E4000 silicon tuner driver
|
|
|
+ *
|
|
|
+ * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or modify
|
|
|
+ * it under the terms of the GNU General Public License as published by
|
|
|
+ * the Free Software Foundation; either version 2 of the License, or
|
|
|
+ * (at your option) any later version.
|
|
|
+ *
|
|
|
+ * This program is distributed in the hope that it will be useful,
|
|
|
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
+ * GNU General Public License for more details.
|
|
|
+ *
|
|
|
+ * You should have received a copy of the GNU General Public License along
|
|
|
+ * with this program; if not, write to the Free Software Foundation, Inc.,
|
|
|
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
+ */
|
|
|
+
|
|
|
+#include "e4000_priv.h"
|
|
|
+
|
|
|
+/* write multiple registers */
|
|
|
+static int e4000_wr_regs(struct e4000_priv *priv, u8 reg, u8 *val, int len)
|
|
|
+{
|
|
|
+ int ret;
|
|
|
+ u8 buf[1 + len];
|
|
|
+ struct i2c_msg msg[1] = {
|
|
|
+ {
|
|
|
+ .addr = priv->cfg->i2c_addr,
|
|
|
+ .flags = 0,
|
|
|
+ .len = sizeof(buf),
|
|
|
+ .buf = buf,
|
|
|
+ }
|
|
|
+ };
|
|
|
+
|
|
|
+ buf[0] = reg;
|
|
|
+ memcpy(&buf[1], val, len);
|
|
|
+
|
|
|
+ ret = i2c_transfer(priv->i2c, msg, 1);
|
|
|
+ if (ret == 1) {
|
|
|
+ ret = 0;
|
|
|
+ } else {
|
|
|
+ dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%02x " \
|
|
|
+ "len=%d\n", KBUILD_MODNAME, ret, reg, len);
|
|
|
+ ret = -EREMOTEIO;
|
|
|
+ }
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+/* read multiple registers */
|
|
|
+static int e4000_rd_regs(struct e4000_priv *priv, u8 reg, u8 *val, int len)
|
|
|
+{
|
|
|
+ int ret;
|
|
|
+ u8 buf[len];
|
|
|
+ struct i2c_msg msg[2] = {
|
|
|
+ {
|
|
|
+ .addr = priv->cfg->i2c_addr,
|
|
|
+ .flags = 0,
|
|
|
+ .len = 1,
|
|
|
+ .buf = ®,
|
|
|
+ }, {
|
|
|
+ .addr = priv->cfg->i2c_addr,
|
|
|
+ .flags = I2C_M_RD,
|
|
|
+ .len = sizeof(buf),
|
|
|
+ .buf = buf,
|
|
|
+ }
|
|
|
+ };
|
|
|
+
|
|
|
+ ret = i2c_transfer(priv->i2c, msg, 2);
|
|
|
+ if (ret == 2) {
|
|
|
+ memcpy(val, buf, len);
|
|
|
+ ret = 0;
|
|
|
+ } else {
|
|
|
+ dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%02x " \
|
|
|
+ "len=%d\n", KBUILD_MODNAME, ret, reg, len);
|
|
|
+ ret = -EREMOTEIO;
|
|
|
+ }
|
|
|
+
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+/* write single register */
|
|
|
+static int e4000_wr_reg(struct e4000_priv *priv, u8 reg, u8 val)
|
|
|
+{
|
|
|
+ return e4000_wr_regs(priv, reg, &val, 1);
|
|
|
+}
|
|
|
+
|
|
|
+/* read single register */
|
|
|
+static int e4000_rd_reg(struct e4000_priv *priv, u8 reg, u8 *val)
|
|
|
+{
|
|
|
+ return e4000_rd_regs(priv, reg, val, 1);
|
|
|
+}
|
|
|
+
|
|
|
+static int e4000_init(struct dvb_frontend *fe)
|
|
|
+{
|
|
|
+ struct e4000_priv *priv = fe->tuner_priv;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
|
|
|
+
|
|
|
+ if (fe->ops.i2c_gate_ctrl)
|
|
|
+ fe->ops.i2c_gate_ctrl(fe, 1);
|
|
|
+
|
|
|
+ /* dummy I2C to ensure I2C wakes up */
|
|
|
+ ret = e4000_wr_reg(priv, 0x02, 0x40);
|
|
|
+
|
|
|
+ /* reset */
|
|
|
+ ret = e4000_wr_reg(priv, 0x00, 0x01);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ /* disable output clock */
|
|
|
+ ret = e4000_wr_reg(priv, 0x06, 0x00);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ ret = e4000_wr_reg(priv, 0x7a, 0x96);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ /* configure gains */
|
|
|
+ ret = e4000_wr_regs(priv, 0x7e, "\x01\xfe", 2);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ ret = e4000_wr_reg(priv, 0x82, 0x00);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ ret = e4000_wr_reg(priv, 0x24, 0x05);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ ret = e4000_wr_regs(priv, 0x87, "\x20\x01", 2);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ ret = e4000_wr_regs(priv, 0x9f, "\x7f\x07", 2);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * TODO: Implement DC offset control correctly.
|
|
|
+ * DC offsets has quite much effect for received signal quality in case
|
|
|
+ * of direct conversion tuners (Zero-IF). Surely we will now lose few
|
|
|
+ * decimals or even decibels from SNR...
|
|
|
+ */
|
|
|
+ /* DC offset control */
|
|
|
+ ret = e4000_wr_reg(priv, 0x2d, 0x0c);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ /* gain control */
|
|
|
+ ret = e4000_wr_reg(priv, 0x1a, 0x17);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ ret = e4000_wr_reg(priv, 0x1f, 0x1a);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ if (fe->ops.i2c_gate_ctrl)
|
|
|
+ fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+err:
|
|
|
+ if (fe->ops.i2c_gate_ctrl)
|
|
|
+ fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
+
|
|
|
+ dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+static int e4000_sleep(struct dvb_frontend *fe)
|
|
|
+{
|
|
|
+ struct e4000_priv *priv = fe->tuner_priv;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
|
|
|
+
|
|
|
+ if (fe->ops.i2c_gate_ctrl)
|
|
|
+ fe->ops.i2c_gate_ctrl(fe, 1);
|
|
|
+
|
|
|
+ ret = e4000_wr_reg(priv, 0x00, 0x00);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ if (fe->ops.i2c_gate_ctrl)
|
|
|
+ fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+err:
|
|
|
+ if (fe->ops.i2c_gate_ctrl)
|
|
|
+ fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
+
|
|
|
+ dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+static int e4000_set_params(struct dvb_frontend *fe)
|
|
|
+{
|
|
|
+ struct e4000_priv *priv = fe->tuner_priv;
|
|
|
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
|
|
|
+ int ret, i, sigma_delta;
|
|
|
+ unsigned int f_VCO;
|
|
|
+ u8 buf[5];
|
|
|
+
|
|
|
+ dev_dbg(&priv->i2c->dev, "%s: delivery_system=%d frequency=%d " \
|
|
|
+ "bandwidth_hz=%d\n", __func__,
|
|
|
+ c->delivery_system, c->frequency, c->bandwidth_hz);
|
|
|
+
|
|
|
+ if (fe->ops.i2c_gate_ctrl)
|
|
|
+ fe->ops.i2c_gate_ctrl(fe, 1);
|
|
|
+
|
|
|
+ /* gain control manual */
|
|
|
+ ret = e4000_wr_reg(priv, 0x1a, 0x00);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ /* PLL */
|
|
|
+ for (i = 0; i < ARRAY_SIZE(e4000_pll_lut); i++) {
|
|
|
+ if (c->frequency <= e4000_pll_lut[i].freq)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (i == ARRAY_SIZE(e4000_pll_lut))
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Note: Currently f_VCO overflows when c->frequency is 1 073 741 824 Hz
|
|
|
+ * or more.
|
|
|
+ */
|
|
|
+ f_VCO = c->frequency * e4000_pll_lut[i].mul;
|
|
|
+ sigma_delta = 0x10000UL * (f_VCO % priv->cfg->clock) / priv->cfg->clock;
|
|
|
+ buf[0] = f_VCO / priv->cfg->clock;
|
|
|
+ buf[1] = (sigma_delta >> 0) & 0xff;
|
|
|
+ buf[2] = (sigma_delta >> 8) & 0xff;
|
|
|
+ buf[3] = 0x00;
|
|
|
+ buf[4] = e4000_pll_lut[i].div;
|
|
|
+
|
|
|
+ dev_dbg(&priv->i2c->dev, "%s: f_VCO=%u pll div=%d sigma_delta=%04x\n",
|
|
|
+ __func__, f_VCO, buf[0], sigma_delta);
|
|
|
+
|
|
|
+ ret = e4000_wr_regs(priv, 0x09, buf, 5);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ /* LNA filter (RF filter) */
|
|
|
+ for (i = 0; i < ARRAY_SIZE(e400_lna_filter_lut); i++) {
|
|
|
+ if (c->frequency <= e400_lna_filter_lut[i].freq)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (i == ARRAY_SIZE(e400_lna_filter_lut))
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ ret = e4000_wr_reg(priv, 0x10, e400_lna_filter_lut[i].val);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ /* IF filters */
|
|
|
+ for (i = 0; i < ARRAY_SIZE(e4000_if_filter_lut); i++) {
|
|
|
+ if (c->bandwidth_hz <= e4000_if_filter_lut[i].freq)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (i == ARRAY_SIZE(e4000_if_filter_lut))
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ buf[0] = e4000_if_filter_lut[i].reg11_val;
|
|
|
+ buf[1] = e4000_if_filter_lut[i].reg12_val;
|
|
|
+
|
|
|
+ ret = e4000_wr_regs(priv, 0x11, buf, 2);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ /* frequency band */
|
|
|
+ for (i = 0; i < ARRAY_SIZE(e4000_band_lut); i++) {
|
|
|
+ if (c->frequency <= e4000_band_lut[i].freq)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (i == ARRAY_SIZE(e4000_band_lut))
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ ret = e4000_wr_reg(priv, 0x07, e4000_band_lut[i].reg07_val);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ ret = e4000_wr_reg(priv, 0x78, e4000_band_lut[i].reg78_val);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ /* gain control auto */
|
|
|
+ ret = e4000_wr_reg(priv, 0x1a, 0x17);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ if (fe->ops.i2c_gate_ctrl)
|
|
|
+ fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+err:
|
|
|
+ if (fe->ops.i2c_gate_ctrl)
|
|
|
+ fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
+
|
|
|
+ dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+static int e4000_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
|
|
|
+{
|
|
|
+ struct e4000_priv *priv = fe->tuner_priv;
|
|
|
+
|
|
|
+ dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
|
|
|
+
|
|
|
+ *frequency = 0; /* Zero-IF */
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int e4000_release(struct dvb_frontend *fe)
|
|
|
+{
|
|
|
+ struct e4000_priv *priv = fe->tuner_priv;
|
|
|
+
|
|
|
+ dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
|
|
|
+
|
|
|
+ kfree(fe->tuner_priv);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static const struct dvb_tuner_ops e4000_tuner_ops = {
|
|
|
+ .info = {
|
|
|
+ .name = "Elonics E4000",
|
|
|
+ .frequency_min = 174000000,
|
|
|
+ .frequency_max = 862000000,
|
|
|
+ },
|
|
|
+
|
|
|
+ .release = e4000_release,
|
|
|
+
|
|
|
+ .init = e4000_init,
|
|
|
+ .sleep = e4000_sleep,
|
|
|
+ .set_params = e4000_set_params,
|
|
|
+
|
|
|
+ .get_if_frequency = e4000_get_if_frequency,
|
|
|
+};
|
|
|
+
|
|
|
+struct dvb_frontend *e4000_attach(struct dvb_frontend *fe,
|
|
|
+ struct i2c_adapter *i2c, const struct e4000_config *cfg)
|
|
|
+{
|
|
|
+ struct e4000_priv *priv;
|
|
|
+ int ret;
|
|
|
+ u8 chip_id;
|
|
|
+
|
|
|
+ if (fe->ops.i2c_gate_ctrl)
|
|
|
+ fe->ops.i2c_gate_ctrl(fe, 1);
|
|
|
+
|
|
|
+ priv = kzalloc(sizeof(struct e4000_priv), GFP_KERNEL);
|
|
|
+ if (!priv) {
|
|
|
+ ret = -ENOMEM;
|
|
|
+ dev_err(&i2c->dev, "%s: kzalloc() failed\n", KBUILD_MODNAME);
|
|
|
+ goto err;
|
|
|
+ }
|
|
|
+
|
|
|
+ priv->cfg = cfg;
|
|
|
+ priv->i2c = i2c;
|
|
|
+ fe->tuner_priv = priv;
|
|
|
+ memcpy(&fe->ops.tuner_ops, &e4000_tuner_ops,
|
|
|
+ sizeof(struct dvb_tuner_ops));
|
|
|
+
|
|
|
+ /* check if the tuner is there */
|
|
|
+ ret = e4000_rd_reg(priv, 0x02, &chip_id);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ dev_dbg(&priv->i2c->dev, "%s: chip_id=%02x\n", __func__, chip_id);
|
|
|
+
|
|
|
+ if (chip_id != 0x40)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ /* put sleep as chip seems to be in normal mode by default */
|
|
|
+ ret = e4000_wr_reg(priv, 0x00, 0x00);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ dev_info(&priv->i2c->dev,
|
|
|
+ "%s: Elonics E4000 successfully identified\n",
|
|
|
+ KBUILD_MODNAME);
|
|
|
+
|
|
|
+ if (fe->ops.i2c_gate_ctrl)
|
|
|
+ fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
+
|
|
|
+ return fe;
|
|
|
+err:
|
|
|
+ if (fe->ops.i2c_gate_ctrl)
|
|
|
+ fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
+
|
|
|
+ dev_dbg(&i2c->dev, "%s: failed=%d\n", __func__, ret);
|
|
|
+ kfree(priv);
|
|
|
+ return NULL;
|
|
|
+}
|
|
|
+EXPORT_SYMBOL(e4000_attach);
|
|
|
+
|
|
|
+MODULE_DESCRIPTION("Elonics E4000 silicon tuner driver");
|
|
|
+MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
|
|
|
+MODULE_LICENSE("GPL");
|