|
@@ -0,0 +1,2080 @@
|
|
|
|
+/*
|
|
|
|
+ * Copyright (C) 2012 Fusion-io All rights reserved.
|
|
|
|
+ * Copyright (C) 2012 Intel Corp. All rights reserved.
|
|
|
|
+ *
|
|
|
|
+ * This program is free software; you can redistribute it and/or
|
|
|
|
+ * modify it under the terms of the GNU General Public
|
|
|
|
+ * License v2 as published by the Free Software Foundation.
|
|
|
|
+ *
|
|
|
|
+ * This program is distributed in the hope that it will be useful,
|
|
|
|
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
+ * General Public License for more details.
|
|
|
|
+ *
|
|
|
|
+ * You should have received a copy of the GNU General Public
|
|
|
|
+ * License along with this program; if not, write to the
|
|
|
|
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
|
|
+ * Boston, MA 021110-1307, USA.
|
|
|
|
+ */
|
|
|
|
+#include <linux/sched.h>
|
|
|
|
+#include <linux/wait.h>
|
|
|
|
+#include <linux/bio.h>
|
|
|
|
+#include <linux/slab.h>
|
|
|
|
+#include <linux/buffer_head.h>
|
|
|
|
+#include <linux/blkdev.h>
|
|
|
|
+#include <linux/random.h>
|
|
|
|
+#include <linux/iocontext.h>
|
|
|
|
+#include <linux/capability.h>
|
|
|
|
+#include <linux/ratelimit.h>
|
|
|
|
+#include <linux/kthread.h>
|
|
|
|
+#include <linux/raid/pq.h>
|
|
|
|
+#include <linux/hash.h>
|
|
|
|
+#include <linux/list_sort.h>
|
|
|
|
+#include <linux/raid/xor.h>
|
|
|
|
+#include <asm/div64.h>
|
|
|
|
+#include "compat.h"
|
|
|
|
+#include "ctree.h"
|
|
|
|
+#include "extent_map.h"
|
|
|
|
+#include "disk-io.h"
|
|
|
|
+#include "transaction.h"
|
|
|
|
+#include "print-tree.h"
|
|
|
|
+#include "volumes.h"
|
|
|
|
+#include "raid56.h"
|
|
|
|
+#include "async-thread.h"
|
|
|
|
+#include "check-integrity.h"
|
|
|
|
+#include "rcu-string.h"
|
|
|
|
+
|
|
|
|
+/* set when additional merges to this rbio are not allowed */
|
|
|
|
+#define RBIO_RMW_LOCKED_BIT 1
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * set when this rbio is sitting in the hash, but it is just a cache
|
|
|
|
+ * of past RMW
|
|
|
|
+ */
|
|
|
|
+#define RBIO_CACHE_BIT 2
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * set when it is safe to trust the stripe_pages for caching
|
|
|
|
+ */
|
|
|
|
+#define RBIO_CACHE_READY_BIT 3
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+#define RBIO_CACHE_SIZE 1024
|
|
|
|
+
|
|
|
|
+struct btrfs_raid_bio {
|
|
|
|
+ struct btrfs_fs_info *fs_info;
|
|
|
|
+ struct btrfs_bio *bbio;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * logical block numbers for the start of each stripe
|
|
|
|
+ * The last one or two are p/q. These are sorted,
|
|
|
|
+ * so raid_map[0] is the start of our full stripe
|
|
|
|
+ */
|
|
|
|
+ u64 *raid_map;
|
|
|
|
+
|
|
|
|
+ /* while we're doing rmw on a stripe
|
|
|
|
+ * we put it into a hash table so we can
|
|
|
|
+ * lock the stripe and merge more rbios
|
|
|
|
+ * into it.
|
|
|
|
+ */
|
|
|
|
+ struct list_head hash_list;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * LRU list for the stripe cache
|
|
|
|
+ */
|
|
|
|
+ struct list_head stripe_cache;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * for scheduling work in the helper threads
|
|
|
|
+ */
|
|
|
|
+ struct btrfs_work work;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * bio list and bio_list_lock are used
|
|
|
|
+ * to add more bios into the stripe
|
|
|
|
+ * in hopes of avoiding the full rmw
|
|
|
|
+ */
|
|
|
|
+ struct bio_list bio_list;
|
|
|
|
+ spinlock_t bio_list_lock;
|
|
|
|
+
|
|
|
|
+ /* also protected by the bio_list_lock, the
|
|
|
|
+ * plug list is used by the plugging code
|
|
|
|
+ * to collect partial bios while plugged. The
|
|
|
|
+ * stripe locking code also uses it to hand off
|
|
|
|
+ * the stripe lock to the next pending IO
|
|
|
|
+ */
|
|
|
|
+ struct list_head plug_list;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * flags that tell us if it is safe to
|
|
|
|
+ * merge with this bio
|
|
|
|
+ */
|
|
|
|
+ unsigned long flags;
|
|
|
|
+
|
|
|
|
+ /* size of each individual stripe on disk */
|
|
|
|
+ int stripe_len;
|
|
|
|
+
|
|
|
|
+ /* number of data stripes (no p/q) */
|
|
|
|
+ int nr_data;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * set if we're doing a parity rebuild
|
|
|
|
+ * for a read from higher up, which is handled
|
|
|
|
+ * differently from a parity rebuild as part of
|
|
|
|
+ * rmw
|
|
|
|
+ */
|
|
|
|
+ int read_rebuild;
|
|
|
|
+
|
|
|
|
+ /* first bad stripe */
|
|
|
|
+ int faila;
|
|
|
|
+
|
|
|
|
+ /* second bad stripe (for raid6 use) */
|
|
|
|
+ int failb;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * number of pages needed to represent the full
|
|
|
|
+ * stripe
|
|
|
|
+ */
|
|
|
|
+ int nr_pages;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * size of all the bios in the bio_list. This
|
|
|
|
+ * helps us decide if the rbio maps to a full
|
|
|
|
+ * stripe or not
|
|
|
|
+ */
|
|
|
|
+ int bio_list_bytes;
|
|
|
|
+
|
|
|
|
+ atomic_t refs;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * these are two arrays of pointers. We allocate the
|
|
|
|
+ * rbio big enough to hold them both and setup their
|
|
|
|
+ * locations when the rbio is allocated
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+ /* pointers to pages that we allocated for
|
|
|
|
+ * reading/writing stripes directly from the disk (including P/Q)
|
|
|
|
+ */
|
|
|
|
+ struct page **stripe_pages;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * pointers to the pages in the bio_list. Stored
|
|
|
|
+ * here for faster lookup
|
|
|
|
+ */
|
|
|
|
+ struct page **bio_pages;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
|
|
|
|
+static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
|
|
|
|
+static void rmw_work(struct btrfs_work *work);
|
|
|
|
+static void read_rebuild_work(struct btrfs_work *work);
|
|
|
|
+static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
|
|
|
|
+static void async_read_rebuild(struct btrfs_raid_bio *rbio);
|
|
|
|
+static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
|
|
|
|
+static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
|
|
|
|
+static void __free_raid_bio(struct btrfs_raid_bio *rbio);
|
|
|
|
+static void index_rbio_pages(struct btrfs_raid_bio *rbio);
|
|
|
|
+static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * the stripe hash table is used for locking, and to collect
|
|
|
|
+ * bios in hopes of making a full stripe
|
|
|
|
+ */
|
|
|
|
+int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_stripe_hash_table *table;
|
|
|
|
+ struct btrfs_stripe_hash_table *x;
|
|
|
|
+ struct btrfs_stripe_hash *cur;
|
|
|
|
+ struct btrfs_stripe_hash *h;
|
|
|
|
+ int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
|
|
|
|
+ int i;
|
|
|
|
+
|
|
|
|
+ if (info->stripe_hash_table)
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ table = kzalloc(sizeof(*table) + sizeof(*h) * num_entries, GFP_NOFS);
|
|
|
|
+ if (!table)
|
|
|
|
+ return -ENOMEM;
|
|
|
|
+
|
|
|
|
+ spin_lock_init(&table->cache_lock);
|
|
|
|
+ INIT_LIST_HEAD(&table->stripe_cache);
|
|
|
|
+
|
|
|
|
+ h = table->table;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < num_entries; i++) {
|
|
|
|
+ cur = h + i;
|
|
|
|
+ INIT_LIST_HEAD(&cur->hash_list);
|
|
|
|
+ spin_lock_init(&cur->lock);
|
|
|
|
+ init_waitqueue_head(&cur->wait);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ x = cmpxchg(&info->stripe_hash_table, NULL, table);
|
|
|
|
+ if (x)
|
|
|
|
+ kfree(x);
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * caching an rbio means to copy anything from the
|
|
|
|
+ * bio_pages array into the stripe_pages array. We
|
|
|
|
+ * use the page uptodate bit in the stripe cache array
|
|
|
|
+ * to indicate if it has valid data
|
|
|
|
+ *
|
|
|
|
+ * once the caching is done, we set the cache ready
|
|
|
|
+ * bit.
|
|
|
|
+ */
|
|
|
|
+static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ int i;
|
|
|
|
+ char *s;
|
|
|
|
+ char *d;
|
|
|
|
+ int ret;
|
|
|
|
+
|
|
|
|
+ ret = alloc_rbio_pages(rbio);
|
|
|
|
+ if (ret)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < rbio->nr_pages; i++) {
|
|
|
|
+ if (!rbio->bio_pages[i])
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ s = kmap(rbio->bio_pages[i]);
|
|
|
|
+ d = kmap(rbio->stripe_pages[i]);
|
|
|
|
+
|
|
|
|
+ memcpy(d, s, PAGE_CACHE_SIZE);
|
|
|
|
+
|
|
|
|
+ kunmap(rbio->bio_pages[i]);
|
|
|
|
+ kunmap(rbio->stripe_pages[i]);
|
|
|
|
+ SetPageUptodate(rbio->stripe_pages[i]);
|
|
|
|
+ }
|
|
|
|
+ set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * we hash on the first logical address of the stripe
|
|
|
|
+ */
|
|
|
|
+static int rbio_bucket(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ u64 num = rbio->raid_map[0];
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * we shift down quite a bit. We're using byte
|
|
|
|
+ * addressing, and most of the lower bits are zeros.
|
|
|
|
+ * This tends to upset hash_64, and it consistently
|
|
|
|
+ * returns just one or two different values.
|
|
|
|
+ *
|
|
|
|
+ * shifting off the lower bits fixes things.
|
|
|
|
+ */
|
|
|
|
+ return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * stealing an rbio means taking all the uptodate pages from the stripe
|
|
|
|
+ * array in the source rbio and putting them into the destination rbio
|
|
|
|
+ */
|
|
|
|
+static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
|
|
|
|
+{
|
|
|
|
+ int i;
|
|
|
|
+ struct page *s;
|
|
|
|
+ struct page *d;
|
|
|
|
+
|
|
|
|
+ if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < dest->nr_pages; i++) {
|
|
|
|
+ s = src->stripe_pages[i];
|
|
|
|
+ if (!s || !PageUptodate(s)) {
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ d = dest->stripe_pages[i];
|
|
|
|
+ if (d)
|
|
|
|
+ __free_page(d);
|
|
|
|
+
|
|
|
|
+ dest->stripe_pages[i] = s;
|
|
|
|
+ src->stripe_pages[i] = NULL;
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * merging means we take the bio_list from the victim and
|
|
|
|
+ * splice it into the destination. The victim should
|
|
|
|
+ * be discarded afterwards.
|
|
|
|
+ *
|
|
|
|
+ * must be called with dest->rbio_list_lock held
|
|
|
|
+ */
|
|
|
|
+static void merge_rbio(struct btrfs_raid_bio *dest,
|
|
|
|
+ struct btrfs_raid_bio *victim)
|
|
|
|
+{
|
|
|
|
+ bio_list_merge(&dest->bio_list, &victim->bio_list);
|
|
|
|
+ dest->bio_list_bytes += victim->bio_list_bytes;
|
|
|
|
+ bio_list_init(&victim->bio_list);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * used to prune items that are in the cache. The caller
|
|
|
|
+ * must hold the hash table lock.
|
|
|
|
+ */
|
|
|
|
+static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ int bucket = rbio_bucket(rbio);
|
|
|
|
+ struct btrfs_stripe_hash_table *table;
|
|
|
|
+ struct btrfs_stripe_hash *h;
|
|
|
|
+ int freeit = 0;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * check the bit again under the hash table lock.
|
|
|
|
+ */
|
|
|
|
+ if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ table = rbio->fs_info->stripe_hash_table;
|
|
|
|
+ h = table->table + bucket;
|
|
|
|
+
|
|
|
|
+ /* hold the lock for the bucket because we may be
|
|
|
|
+ * removing it from the hash table
|
|
|
|
+ */
|
|
|
|
+ spin_lock(&h->lock);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * hold the lock for the bio list because we need
|
|
|
|
+ * to make sure the bio list is empty
|
|
|
|
+ */
|
|
|
|
+ spin_lock(&rbio->bio_list_lock);
|
|
|
|
+
|
|
|
|
+ if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
|
|
|
|
+ list_del_init(&rbio->stripe_cache);
|
|
|
|
+ table->cache_size -= 1;
|
|
|
|
+ freeit = 1;
|
|
|
|
+
|
|
|
|
+ /* if the bio list isn't empty, this rbio is
|
|
|
|
+ * still involved in an IO. We take it out
|
|
|
|
+ * of the cache list, and drop the ref that
|
|
|
|
+ * was held for the list.
|
|
|
|
+ *
|
|
|
|
+ * If the bio_list was empty, we also remove
|
|
|
|
+ * the rbio from the hash_table, and drop
|
|
|
|
+ * the corresponding ref
|
|
|
|
+ */
|
|
|
|
+ if (bio_list_empty(&rbio->bio_list)) {
|
|
|
|
+ if (!list_empty(&rbio->hash_list)) {
|
|
|
|
+ list_del_init(&rbio->hash_list);
|
|
|
|
+ atomic_dec(&rbio->refs);
|
|
|
|
+ BUG_ON(!list_empty(&rbio->plug_list));
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ spin_unlock(&rbio->bio_list_lock);
|
|
|
|
+ spin_unlock(&h->lock);
|
|
|
|
+
|
|
|
|
+ if (freeit)
|
|
|
|
+ __free_raid_bio(rbio);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * prune a given rbio from the cache
|
|
|
|
+ */
|
|
|
|
+static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_stripe_hash_table *table;
|
|
|
|
+ unsigned long flags;
|
|
|
|
+
|
|
|
|
+ if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ table = rbio->fs_info->stripe_hash_table;
|
|
|
|
+
|
|
|
|
+ spin_lock_irqsave(&table->cache_lock, flags);
|
|
|
|
+ __remove_rbio_from_cache(rbio);
|
|
|
|
+ spin_unlock_irqrestore(&table->cache_lock, flags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * remove everything in the cache
|
|
|
|
+ */
|
|
|
|
+void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_stripe_hash_table *table;
|
|
|
|
+ unsigned long flags;
|
|
|
|
+ struct btrfs_raid_bio *rbio;
|
|
|
|
+
|
|
|
|
+ table = info->stripe_hash_table;
|
|
|
|
+
|
|
|
|
+ spin_lock_irqsave(&table->cache_lock, flags);
|
|
|
|
+ while (!list_empty(&table->stripe_cache)) {
|
|
|
|
+ rbio = list_entry(table->stripe_cache.next,
|
|
|
|
+ struct btrfs_raid_bio,
|
|
|
|
+ stripe_cache);
|
|
|
|
+ __remove_rbio_from_cache(rbio);
|
|
|
|
+ }
|
|
|
|
+ spin_unlock_irqrestore(&table->cache_lock, flags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * remove all cached entries and free the hash table
|
|
|
|
+ * used by unmount
|
|
|
|
+ */
|
|
|
|
+void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
|
|
|
|
+{
|
|
|
|
+ if (!info->stripe_hash_table)
|
|
|
|
+ return;
|
|
|
|
+ btrfs_clear_rbio_cache(info);
|
|
|
|
+ kfree(info->stripe_hash_table);
|
|
|
|
+ info->stripe_hash_table = NULL;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * insert an rbio into the stripe cache. It
|
|
|
|
+ * must have already been prepared by calling
|
|
|
|
+ * cache_rbio_pages
|
|
|
|
+ *
|
|
|
|
+ * If this rbio was already cached, it gets
|
|
|
|
+ * moved to the front of the lru.
|
|
|
|
+ *
|
|
|
|
+ * If the size of the rbio cache is too big, we
|
|
|
|
+ * prune an item.
|
|
|
|
+ */
|
|
|
|
+static void cache_rbio(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_stripe_hash_table *table;
|
|
|
|
+ unsigned long flags;
|
|
|
|
+
|
|
|
|
+ if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ table = rbio->fs_info->stripe_hash_table;
|
|
|
|
+
|
|
|
|
+ spin_lock_irqsave(&table->cache_lock, flags);
|
|
|
|
+ spin_lock(&rbio->bio_list_lock);
|
|
|
|
+
|
|
|
|
+ /* bump our ref if we were not in the list before */
|
|
|
|
+ if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
|
|
|
|
+ atomic_inc(&rbio->refs);
|
|
|
|
+
|
|
|
|
+ if (!list_empty(&rbio->stripe_cache)){
|
|
|
|
+ list_move(&rbio->stripe_cache, &table->stripe_cache);
|
|
|
|
+ } else {
|
|
|
|
+ list_add(&rbio->stripe_cache, &table->stripe_cache);
|
|
|
|
+ table->cache_size += 1;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ spin_unlock(&rbio->bio_list_lock);
|
|
|
|
+
|
|
|
|
+ if (table->cache_size > RBIO_CACHE_SIZE) {
|
|
|
|
+ struct btrfs_raid_bio *found;
|
|
|
|
+
|
|
|
|
+ found = list_entry(table->stripe_cache.prev,
|
|
|
|
+ struct btrfs_raid_bio,
|
|
|
|
+ stripe_cache);
|
|
|
|
+
|
|
|
|
+ if (found != rbio)
|
|
|
|
+ __remove_rbio_from_cache(found);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ spin_unlock_irqrestore(&table->cache_lock, flags);
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * helper function to run the xor_blocks api. It is only
|
|
|
|
+ * able to do MAX_XOR_BLOCKS at a time, so we need to
|
|
|
|
+ * loop through.
|
|
|
|
+ */
|
|
|
|
+static void run_xor(void **pages, int src_cnt, ssize_t len)
|
|
|
|
+{
|
|
|
|
+ int src_off = 0;
|
|
|
|
+ int xor_src_cnt = 0;
|
|
|
|
+ void *dest = pages[src_cnt];
|
|
|
|
+
|
|
|
|
+ while(src_cnt > 0) {
|
|
|
|
+ xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
|
|
|
|
+ xor_blocks(xor_src_cnt, len, dest, pages + src_off);
|
|
|
|
+
|
|
|
|
+ src_cnt -= xor_src_cnt;
|
|
|
|
+ src_off += xor_src_cnt;
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * returns true if the bio list inside this rbio
|
|
|
|
+ * covers an entire stripe (no rmw required).
|
|
|
|
+ * Must be called with the bio list lock held, or
|
|
|
|
+ * at a time when you know it is impossible to add
|
|
|
|
+ * new bios into the list
|
|
|
|
+ */
|
|
|
|
+static int __rbio_is_full(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ unsigned long size = rbio->bio_list_bytes;
|
|
|
|
+ int ret = 1;
|
|
|
|
+
|
|
|
|
+ if (size != rbio->nr_data * rbio->stripe_len)
|
|
|
|
+ ret = 0;
|
|
|
|
+
|
|
|
|
+ BUG_ON(size > rbio->nr_data * rbio->stripe_len);
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int rbio_is_full(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ unsigned long flags;
|
|
|
|
+ int ret;
|
|
|
|
+
|
|
|
|
+ spin_lock_irqsave(&rbio->bio_list_lock, flags);
|
|
|
|
+ ret = __rbio_is_full(rbio);
|
|
|
|
+ spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * returns 1 if it is safe to merge two rbios together.
|
|
|
|
+ * The merging is safe if the two rbios correspond to
|
|
|
|
+ * the same stripe and if they are both going in the same
|
|
|
|
+ * direction (read vs write), and if neither one is
|
|
|
|
+ * locked for final IO
|
|
|
|
+ *
|
|
|
|
+ * The caller is responsible for locking such that
|
|
|
|
+ * rmw_locked is safe to test
|
|
|
|
+ */
|
|
|
|
+static int rbio_can_merge(struct btrfs_raid_bio *last,
|
|
|
|
+ struct btrfs_raid_bio *cur)
|
|
|
|
+{
|
|
|
|
+ if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
|
|
|
|
+ test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * we can't merge with cached rbios, since the
|
|
|
|
+ * idea is that when we merge the destination
|
|
|
|
+ * rbio is going to run our IO for us. We can
|
|
|
|
+ * steal from cached rbio's though, other functions
|
|
|
|
+ * handle that.
|
|
|
|
+ */
|
|
|
|
+ if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
|
|
|
|
+ test_bit(RBIO_CACHE_BIT, &cur->flags))
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ if (last->raid_map[0] !=
|
|
|
|
+ cur->raid_map[0])
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ /* reads can't merge with writes */
|
|
|
|
+ if (last->read_rebuild !=
|
|
|
|
+ cur->read_rebuild) {
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return 1;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * helper to index into the pstripe
|
|
|
|
+ */
|
|
|
|
+static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
|
|
|
|
+{
|
|
|
|
+ index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
|
|
|
|
+ return rbio->stripe_pages[index];
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * helper to index into the qstripe, returns null
|
|
|
|
+ * if there is no qstripe
|
|
|
|
+ */
|
|
|
|
+static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
|
|
|
|
+{
|
|
|
|
+ if (rbio->nr_data + 1 == rbio->bbio->num_stripes)
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
|
|
|
|
+ PAGE_CACHE_SHIFT;
|
|
|
|
+ return rbio->stripe_pages[index];
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * The first stripe in the table for a logical address
|
|
|
|
+ * has the lock. rbios are added in one of three ways:
|
|
|
|
+ *
|
|
|
|
+ * 1) Nobody has the stripe locked yet. The rbio is given
|
|
|
|
+ * the lock and 0 is returned. The caller must start the IO
|
|
|
|
+ * themselves.
|
|
|
|
+ *
|
|
|
|
+ * 2) Someone has the stripe locked, but we're able to merge
|
|
|
|
+ * with the lock owner. The rbio is freed and the IO will
|
|
|
|
+ * start automatically along with the existing rbio. 1 is returned.
|
|
|
|
+ *
|
|
|
|
+ * 3) Someone has the stripe locked, but we're not able to merge.
|
|
|
|
+ * The rbio is added to the lock owner's plug list, or merged into
|
|
|
|
+ * an rbio already on the plug list. When the lock owner unlocks,
|
|
|
|
+ * the next rbio on the list is run and the IO is started automatically.
|
|
|
|
+ * 1 is returned
|
|
|
|
+ *
|
|
|
|
+ * If we return 0, the caller still owns the rbio and must continue with
|
|
|
|
+ * IO submission. If we return 1, the caller must assume the rbio has
|
|
|
|
+ * already been freed.
|
|
|
|
+ */
|
|
|
|
+static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ int bucket = rbio_bucket(rbio);
|
|
|
|
+ struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
|
|
|
|
+ struct btrfs_raid_bio *cur;
|
|
|
|
+ struct btrfs_raid_bio *pending;
|
|
|
|
+ unsigned long flags;
|
|
|
|
+ DEFINE_WAIT(wait);
|
|
|
|
+ struct btrfs_raid_bio *freeit = NULL;
|
|
|
|
+ struct btrfs_raid_bio *cache_drop = NULL;
|
|
|
|
+ int ret = 0;
|
|
|
|
+ int walk = 0;
|
|
|
|
+
|
|
|
|
+ spin_lock_irqsave(&h->lock, flags);
|
|
|
|
+ list_for_each_entry(cur, &h->hash_list, hash_list) {
|
|
|
|
+ walk++;
|
|
|
|
+ if (cur->raid_map[0] == rbio->raid_map[0]) {
|
|
|
|
+ spin_lock(&cur->bio_list_lock);
|
|
|
|
+
|
|
|
|
+ /* can we steal this cached rbio's pages? */
|
|
|
|
+ if (bio_list_empty(&cur->bio_list) &&
|
|
|
|
+ list_empty(&cur->plug_list) &&
|
|
|
|
+ test_bit(RBIO_CACHE_BIT, &cur->flags) &&
|
|
|
|
+ !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
|
|
|
|
+ list_del_init(&cur->hash_list);
|
|
|
|
+ atomic_dec(&cur->refs);
|
|
|
|
+
|
|
|
|
+ steal_rbio(cur, rbio);
|
|
|
|
+ cache_drop = cur;
|
|
|
|
+ spin_unlock(&cur->bio_list_lock);
|
|
|
|
+
|
|
|
|
+ goto lockit;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* can we merge into the lock owner? */
|
|
|
|
+ if (rbio_can_merge(cur, rbio)) {
|
|
|
|
+ merge_rbio(cur, rbio);
|
|
|
|
+ spin_unlock(&cur->bio_list_lock);
|
|
|
|
+ freeit = rbio;
|
|
|
|
+ ret = 1;
|
|
|
|
+ goto out;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * we couldn't merge with the running
|
|
|
|
+ * rbio, see if we can merge with the
|
|
|
|
+ * pending ones. We don't have to
|
|
|
|
+ * check for rmw_locked because there
|
|
|
|
+ * is no way they are inside finish_rmw
|
|
|
|
+ * right now
|
|
|
|
+ */
|
|
|
|
+ list_for_each_entry(pending, &cur->plug_list,
|
|
|
|
+ plug_list) {
|
|
|
|
+ if (rbio_can_merge(pending, rbio)) {
|
|
|
|
+ merge_rbio(pending, rbio);
|
|
|
|
+ spin_unlock(&cur->bio_list_lock);
|
|
|
|
+ freeit = rbio;
|
|
|
|
+ ret = 1;
|
|
|
|
+ goto out;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* no merging, put us on the tail of the plug list,
|
|
|
|
+ * our rbio will be started with the currently
|
|
|
|
+ * running rbio unlocks
|
|
|
|
+ */
|
|
|
|
+ list_add_tail(&rbio->plug_list, &cur->plug_list);
|
|
|
|
+ spin_unlock(&cur->bio_list_lock);
|
|
|
|
+ ret = 1;
|
|
|
|
+ goto out;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+lockit:
|
|
|
|
+ atomic_inc(&rbio->refs);
|
|
|
|
+ list_add(&rbio->hash_list, &h->hash_list);
|
|
|
|
+out:
|
|
|
|
+ spin_unlock_irqrestore(&h->lock, flags);
|
|
|
|
+ if (cache_drop)
|
|
|
|
+ remove_rbio_from_cache(cache_drop);
|
|
|
|
+ if (freeit)
|
|
|
|
+ __free_raid_bio(freeit);
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * called as rmw or parity rebuild is completed. If the plug list has more
|
|
|
|
+ * rbios waiting for this stripe, the next one on the list will be started
|
|
|
|
+ */
|
|
|
|
+static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ int bucket;
|
|
|
|
+ struct btrfs_stripe_hash *h;
|
|
|
|
+ unsigned long flags;
|
|
|
|
+ int keep_cache = 0;
|
|
|
|
+
|
|
|
|
+ bucket = rbio_bucket(rbio);
|
|
|
|
+ h = rbio->fs_info->stripe_hash_table->table + bucket;
|
|
|
|
+
|
|
|
|
+ if (list_empty(&rbio->plug_list))
|
|
|
|
+ cache_rbio(rbio);
|
|
|
|
+
|
|
|
|
+ spin_lock_irqsave(&h->lock, flags);
|
|
|
|
+ spin_lock(&rbio->bio_list_lock);
|
|
|
|
+
|
|
|
|
+ if (!list_empty(&rbio->hash_list)) {
|
|
|
|
+ /*
|
|
|
|
+ * if we're still cached and there is no other IO
|
|
|
|
+ * to perform, just leave this rbio here for others
|
|
|
|
+ * to steal from later
|
|
|
|
+ */
|
|
|
|
+ if (list_empty(&rbio->plug_list) &&
|
|
|
|
+ test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
|
|
|
|
+ keep_cache = 1;
|
|
|
|
+ clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
|
|
|
|
+ BUG_ON(!bio_list_empty(&rbio->bio_list));
|
|
|
|
+ goto done;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ list_del_init(&rbio->hash_list);
|
|
|
|
+ atomic_dec(&rbio->refs);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * we use the plug list to hold all the rbios
|
|
|
|
+ * waiting for the chance to lock this stripe.
|
|
|
|
+ * hand the lock over to one of them.
|
|
|
|
+ */
|
|
|
|
+ if (!list_empty(&rbio->plug_list)) {
|
|
|
|
+ struct btrfs_raid_bio *next;
|
|
|
|
+ struct list_head *head = rbio->plug_list.next;
|
|
|
|
+
|
|
|
|
+ next = list_entry(head, struct btrfs_raid_bio,
|
|
|
|
+ plug_list);
|
|
|
|
+
|
|
|
|
+ list_del_init(&rbio->plug_list);
|
|
|
|
+
|
|
|
|
+ list_add(&next->hash_list, &h->hash_list);
|
|
|
|
+ atomic_inc(&next->refs);
|
|
|
|
+ spin_unlock(&rbio->bio_list_lock);
|
|
|
|
+ spin_unlock_irqrestore(&h->lock, flags);
|
|
|
|
+
|
|
|
|
+ if (next->read_rebuild)
|
|
|
|
+ async_read_rebuild(next);
|
|
|
|
+ else {
|
|
|
|
+ steal_rbio(rbio, next);
|
|
|
|
+ async_rmw_stripe(next);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ goto done_nolock;
|
|
|
|
+ } else if (waitqueue_active(&h->wait)) {
|
|
|
|
+ spin_unlock(&rbio->bio_list_lock);
|
|
|
|
+ spin_unlock_irqrestore(&h->lock, flags);
|
|
|
|
+ wake_up(&h->wait);
|
|
|
|
+ goto done_nolock;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+done:
|
|
|
|
+ spin_unlock(&rbio->bio_list_lock);
|
|
|
|
+ spin_unlock_irqrestore(&h->lock, flags);
|
|
|
|
+
|
|
|
|
+done_nolock:
|
|
|
|
+ if (!keep_cache)
|
|
|
|
+ remove_rbio_from_cache(rbio);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void __free_raid_bio(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ int i;
|
|
|
|
+
|
|
|
|
+ WARN_ON(atomic_read(&rbio->refs) < 0);
|
|
|
|
+ if (!atomic_dec_and_test(&rbio->refs))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ WARN_ON(!list_empty(&rbio->stripe_cache));
|
|
|
|
+ WARN_ON(!list_empty(&rbio->hash_list));
|
|
|
|
+ WARN_ON(!bio_list_empty(&rbio->bio_list));
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < rbio->nr_pages; i++) {
|
|
|
|
+ if (rbio->stripe_pages[i]) {
|
|
|
|
+ __free_page(rbio->stripe_pages[i]);
|
|
|
|
+ rbio->stripe_pages[i] = NULL;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ kfree(rbio->raid_map);
|
|
|
|
+ kfree(rbio->bbio);
|
|
|
|
+ kfree(rbio);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void free_raid_bio(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ unlock_stripe(rbio);
|
|
|
|
+ __free_raid_bio(rbio);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * this frees the rbio and runs through all the bios in the
|
|
|
|
+ * bio_list and calls end_io on them
|
|
|
|
+ */
|
|
|
|
+static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate)
|
|
|
|
+{
|
|
|
|
+ struct bio *cur = bio_list_get(&rbio->bio_list);
|
|
|
|
+ struct bio *next;
|
|
|
|
+ free_raid_bio(rbio);
|
|
|
|
+
|
|
|
|
+ while (cur) {
|
|
|
|
+ next = cur->bi_next;
|
|
|
|
+ cur->bi_next = NULL;
|
|
|
|
+ if (uptodate)
|
|
|
|
+ set_bit(BIO_UPTODATE, &cur->bi_flags);
|
|
|
|
+ bio_endio(cur, err);
|
|
|
|
+ cur = next;
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * end io function used by finish_rmw. When we finally
|
|
|
|
+ * get here, we've written a full stripe
|
|
|
|
+ */
|
|
|
|
+static void raid_write_end_io(struct bio *bio, int err)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_raid_bio *rbio = bio->bi_private;
|
|
|
|
+
|
|
|
|
+ if (err)
|
|
|
|
+ fail_bio_stripe(rbio, bio);
|
|
|
|
+
|
|
|
|
+ bio_put(bio);
|
|
|
|
+
|
|
|
|
+ if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ err = 0;
|
|
|
|
+
|
|
|
|
+ /* OK, we have read all the stripes we need to. */
|
|
|
|
+ if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
|
|
|
|
+ err = -EIO;
|
|
|
|
+
|
|
|
|
+ rbio_orig_end_io(rbio, err, 0);
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * the read/modify/write code wants to use the original bio for
|
|
|
|
+ * any pages it included, and then use the rbio for everything
|
|
|
|
+ * else. This function decides if a given index (stripe number)
|
|
|
|
+ * and page number in that stripe fall inside the original bio
|
|
|
|
+ * or the rbio.
|
|
|
|
+ *
|
|
|
|
+ * if you set bio_list_only, you'll get a NULL back for any ranges
|
|
|
|
+ * that are outside the bio_list
|
|
|
|
+ *
|
|
|
|
+ * This doesn't take any refs on anything, you get a bare page pointer
|
|
|
|
+ * and the caller must bump refs as required.
|
|
|
|
+ *
|
|
|
|
+ * You must call index_rbio_pages once before you can trust
|
|
|
|
+ * the answers from this function.
|
|
|
|
+ */
|
|
|
|
+static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
|
|
|
|
+ int index, int pagenr, int bio_list_only)
|
|
|
|
+{
|
|
|
|
+ int chunk_page;
|
|
|
|
+ struct page *p = NULL;
|
|
|
|
+
|
|
|
|
+ chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
|
|
|
|
+
|
|
|
|
+ spin_lock_irq(&rbio->bio_list_lock);
|
|
|
|
+ p = rbio->bio_pages[chunk_page];
|
|
|
|
+ spin_unlock_irq(&rbio->bio_list_lock);
|
|
|
|
+
|
|
|
|
+ if (p || bio_list_only)
|
|
|
|
+ return p;
|
|
|
|
+
|
|
|
|
+ return rbio->stripe_pages[chunk_page];
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * number of pages we need for the entire stripe across all the
|
|
|
|
+ * drives
|
|
|
|
+ */
|
|
|
|
+static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
|
|
|
|
+{
|
|
|
|
+ unsigned long nr = stripe_len * nr_stripes;
|
|
|
|
+ return (nr + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * allocation and initial setup for the btrfs_raid_bio. Not
|
|
|
|
+ * this does not allocate any pages for rbio->pages.
|
|
|
|
+ */
|
|
|
|
+static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
|
|
|
|
+ struct btrfs_bio *bbio, u64 *raid_map,
|
|
|
|
+ u64 stripe_len)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_raid_bio *rbio;
|
|
|
|
+ int nr_data = 0;
|
|
|
|
+ int num_pages = rbio_nr_pages(stripe_len, bbio->num_stripes);
|
|
|
|
+ void *p;
|
|
|
|
+
|
|
|
|
+ rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2,
|
|
|
|
+ GFP_NOFS);
|
|
|
|
+ if (!rbio) {
|
|
|
|
+ kfree(raid_map);
|
|
|
|
+ kfree(bbio);
|
|
|
|
+ return ERR_PTR(-ENOMEM);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ bio_list_init(&rbio->bio_list);
|
|
|
|
+ INIT_LIST_HEAD(&rbio->plug_list);
|
|
|
|
+ spin_lock_init(&rbio->bio_list_lock);
|
|
|
|
+ INIT_LIST_HEAD(&rbio->stripe_cache);
|
|
|
|
+ INIT_LIST_HEAD(&rbio->hash_list);
|
|
|
|
+ rbio->bbio = bbio;
|
|
|
|
+ rbio->raid_map = raid_map;
|
|
|
|
+ rbio->fs_info = root->fs_info;
|
|
|
|
+ rbio->stripe_len = stripe_len;
|
|
|
|
+ rbio->nr_pages = num_pages;
|
|
|
|
+ rbio->faila = -1;
|
|
|
|
+ rbio->failb = -1;
|
|
|
|
+ atomic_set(&rbio->refs, 1);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * the stripe_pages and bio_pages array point to the extra
|
|
|
|
+ * memory we allocated past the end of the rbio
|
|
|
|
+ */
|
|
|
|
+ p = rbio + 1;
|
|
|
|
+ rbio->stripe_pages = p;
|
|
|
|
+ rbio->bio_pages = p + sizeof(struct page *) * num_pages;
|
|
|
|
+
|
|
|
|
+ if (raid_map[bbio->num_stripes - 1] == RAID6_Q_STRIPE)
|
|
|
|
+ nr_data = bbio->num_stripes - 2;
|
|
|
|
+ else
|
|
|
|
+ nr_data = bbio->num_stripes - 1;
|
|
|
|
+
|
|
|
|
+ rbio->nr_data = nr_data;
|
|
|
|
+ return rbio;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* allocate pages for all the stripes in the bio, including parity */
|
|
|
|
+static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ int i;
|
|
|
|
+ struct page *page;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < rbio->nr_pages; i++) {
|
|
|
|
+ if (rbio->stripe_pages[i])
|
|
|
|
+ continue;
|
|
|
|
+ page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
|
|
|
|
+ if (!page)
|
|
|
|
+ return -ENOMEM;
|
|
|
|
+ rbio->stripe_pages[i] = page;
|
|
|
|
+ ClearPageUptodate(page);
|
|
|
|
+ }
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* allocate pages for just the p/q stripes */
|
|
|
|
+static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ int i;
|
|
|
|
+ struct page *page;
|
|
|
|
+
|
|
|
|
+ i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
|
|
|
|
+
|
|
|
|
+ for (; i < rbio->nr_pages; i++) {
|
|
|
|
+ if (rbio->stripe_pages[i])
|
|
|
|
+ continue;
|
|
|
|
+ page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
|
|
|
|
+ if (!page)
|
|
|
|
+ return -ENOMEM;
|
|
|
|
+ rbio->stripe_pages[i] = page;
|
|
|
|
+ }
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * add a single page from a specific stripe into our list of bios for IO
|
|
|
|
+ * this will try to merge into existing bios if possible, and returns
|
|
|
|
+ * zero if all went well.
|
|
|
|
+ */
|
|
|
|
+int rbio_add_io_page(struct btrfs_raid_bio *rbio,
|
|
|
|
+ struct bio_list *bio_list,
|
|
|
|
+ struct page *page,
|
|
|
|
+ int stripe_nr,
|
|
|
|
+ unsigned long page_index,
|
|
|
|
+ unsigned long bio_max_len)
|
|
|
|
+{
|
|
|
|
+ struct bio *last = bio_list->tail;
|
|
|
|
+ u64 last_end = 0;
|
|
|
|
+ int ret;
|
|
|
|
+ struct bio *bio;
|
|
|
|
+ struct btrfs_bio_stripe *stripe;
|
|
|
|
+ u64 disk_start;
|
|
|
|
+
|
|
|
|
+ stripe = &rbio->bbio->stripes[stripe_nr];
|
|
|
|
+ disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
|
|
|
|
+
|
|
|
|
+ /* if the device is missing, just fail this stripe */
|
|
|
|
+ if (!stripe->dev->bdev)
|
|
|
|
+ return fail_rbio_index(rbio, stripe_nr);
|
|
|
|
+
|
|
|
|
+ /* see if we can add this page onto our existing bio */
|
|
|
|
+ if (last) {
|
|
|
|
+ last_end = (u64)last->bi_sector << 9;
|
|
|
|
+ last_end += last->bi_size;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * we can't merge these if they are from different
|
|
|
|
+ * devices or if they are not contiguous
|
|
|
|
+ */
|
|
|
|
+ if (last_end == disk_start && stripe->dev->bdev &&
|
|
|
|
+ test_bit(BIO_UPTODATE, &last->bi_flags) &&
|
|
|
|
+ last->bi_bdev == stripe->dev->bdev) {
|
|
|
|
+ ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
|
|
|
|
+ if (ret == PAGE_CACHE_SIZE)
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* put a new bio on the list */
|
|
|
|
+ bio = bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
|
|
|
|
+ if (!bio)
|
|
|
|
+ return -ENOMEM;
|
|
|
|
+
|
|
|
|
+ bio->bi_size = 0;
|
|
|
|
+ bio->bi_bdev = stripe->dev->bdev;
|
|
|
|
+ bio->bi_sector = disk_start >> 9;
|
|
|
|
+ set_bit(BIO_UPTODATE, &bio->bi_flags);
|
|
|
|
+
|
|
|
|
+ bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
|
|
|
|
+ bio_list_add(bio_list, bio);
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * while we're doing the read/modify/write cycle, we could
|
|
|
|
+ * have errors in reading pages off the disk. This checks
|
|
|
|
+ * for errors and if we're not able to read the page it'll
|
|
|
|
+ * trigger parity reconstruction. The rmw will be finished
|
|
|
|
+ * after we've reconstructed the failed stripes
|
|
|
|
+ */
|
|
|
|
+static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ if (rbio->faila >= 0 || rbio->failb >= 0) {
|
|
|
|
+ BUG_ON(rbio->faila == rbio->bbio->num_stripes - 1);
|
|
|
|
+ __raid56_parity_recover(rbio);
|
|
|
|
+ } else {
|
|
|
|
+ finish_rmw(rbio);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * these are just the pages from the rbio array, not from anything
|
|
|
|
+ * the FS sent down to us
|
|
|
|
+ */
|
|
|
|
+static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
|
|
|
|
+{
|
|
|
|
+ int index;
|
|
|
|
+ index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
|
|
|
|
+ index += page;
|
|
|
|
+ return rbio->stripe_pages[index];
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * helper function to walk our bio list and populate the bio_pages array with
|
|
|
|
+ * the result. This seems expensive, but it is faster than constantly
|
|
|
|
+ * searching through the bio list as we setup the IO in finish_rmw or stripe
|
|
|
|
+ * reconstruction.
|
|
|
|
+ *
|
|
|
|
+ * This must be called before you trust the answers from page_in_rbio
|
|
|
|
+ */
|
|
|
|
+static void index_rbio_pages(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ struct bio *bio;
|
|
|
|
+ u64 start;
|
|
|
|
+ unsigned long stripe_offset;
|
|
|
|
+ unsigned long page_index;
|
|
|
|
+ struct page *p;
|
|
|
|
+ int i;
|
|
|
|
+
|
|
|
|
+ spin_lock_irq(&rbio->bio_list_lock);
|
|
|
|
+ bio_list_for_each(bio, &rbio->bio_list) {
|
|
|
|
+ start = (u64)bio->bi_sector << 9;
|
|
|
|
+ stripe_offset = start - rbio->raid_map[0];
|
|
|
|
+ page_index = stripe_offset >> PAGE_CACHE_SHIFT;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < bio->bi_vcnt; i++) {
|
|
|
|
+ p = bio->bi_io_vec[i].bv_page;
|
|
|
|
+ rbio->bio_pages[page_index + i] = p;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ spin_unlock_irq(&rbio->bio_list_lock);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * this is called from one of two situations. We either
|
|
|
|
+ * have a full stripe from the higher layers, or we've read all
|
|
|
|
+ * the missing bits off disk.
|
|
|
|
+ *
|
|
|
|
+ * This will calculate the parity and then send down any
|
|
|
|
+ * changed blocks.
|
|
|
|
+ */
|
|
|
|
+static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_bio *bbio = rbio->bbio;
|
|
|
|
+ void *pointers[bbio->num_stripes];
|
|
|
|
+ int stripe_len = rbio->stripe_len;
|
|
|
|
+ int nr_data = rbio->nr_data;
|
|
|
|
+ int stripe;
|
|
|
|
+ int pagenr;
|
|
|
|
+ int p_stripe = -1;
|
|
|
|
+ int q_stripe = -1;
|
|
|
|
+ struct bio_list bio_list;
|
|
|
|
+ struct bio *bio;
|
|
|
|
+ int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
|
|
|
|
+ int ret;
|
|
|
|
+
|
|
|
|
+ bio_list_init(&bio_list);
|
|
|
|
+
|
|
|
|
+ if (bbio->num_stripes - rbio->nr_data == 1) {
|
|
|
|
+ p_stripe = bbio->num_stripes - 1;
|
|
|
|
+ } else if (bbio->num_stripes - rbio->nr_data == 2) {
|
|
|
|
+ p_stripe = bbio->num_stripes - 2;
|
|
|
|
+ q_stripe = bbio->num_stripes - 1;
|
|
|
|
+ } else {
|
|
|
|
+ BUG();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* at this point we either have a full stripe,
|
|
|
|
+ * or we've read the full stripe from the drive.
|
|
|
|
+ * recalculate the parity and write the new results.
|
|
|
|
+ *
|
|
|
|
+ * We're not allowed to add any new bios to the
|
|
|
|
+ * bio list here, anyone else that wants to
|
|
|
|
+ * change this stripe needs to do their own rmw.
|
|
|
|
+ */
|
|
|
|
+ spin_lock_irq(&rbio->bio_list_lock);
|
|
|
|
+ set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
|
|
|
|
+ spin_unlock_irq(&rbio->bio_list_lock);
|
|
|
|
+
|
|
|
|
+ atomic_set(&rbio->bbio->error, 0);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * now that we've set rmw_locked, run through the
|
|
|
|
+ * bio list one last time and map the page pointers
|
|
|
|
+ *
|
|
|
|
+ * We don't cache full rbios because we're assuming
|
|
|
|
+ * the higher layers are unlikely to use this area of
|
|
|
|
+ * the disk again soon. If they do use it again,
|
|
|
|
+ * hopefully they will send another full bio.
|
|
|
|
+ */
|
|
|
|
+ index_rbio_pages(rbio);
|
|
|
|
+ if (!rbio_is_full(rbio))
|
|
|
|
+ cache_rbio_pages(rbio);
|
|
|
|
+ else
|
|
|
|
+ clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
|
|
|
|
+
|
|
|
|
+ for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
|
|
|
|
+ struct page *p;
|
|
|
|
+ /* first collect one page from each data stripe */
|
|
|
|
+ for (stripe = 0; stripe < nr_data; stripe++) {
|
|
|
|
+ p = page_in_rbio(rbio, stripe, pagenr, 0);
|
|
|
|
+ pointers[stripe] = kmap(p);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* then add the parity stripe */
|
|
|
|
+ p = rbio_pstripe_page(rbio, pagenr);
|
|
|
|
+ SetPageUptodate(p);
|
|
|
|
+ pointers[stripe++] = kmap(p);
|
|
|
|
+
|
|
|
|
+ if (q_stripe != -1) {
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * raid6, add the qstripe and call the
|
|
|
|
+ * library function to fill in our p/q
|
|
|
|
+ */
|
|
|
|
+ p = rbio_qstripe_page(rbio, pagenr);
|
|
|
|
+ SetPageUptodate(p);
|
|
|
|
+ pointers[stripe++] = kmap(p);
|
|
|
|
+
|
|
|
|
+ raid6_call.gen_syndrome(bbio->num_stripes, PAGE_SIZE,
|
|
|
|
+ pointers);
|
|
|
|
+ } else {
|
|
|
|
+ /* raid5 */
|
|
|
|
+ memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
|
|
|
|
+ run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ for (stripe = 0; stripe < bbio->num_stripes; stripe++)
|
|
|
|
+ kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * time to start writing. Make bios for everything from the
|
|
|
|
+ * higher layers (the bio_list in our rbio) and our p/q. Ignore
|
|
|
|
+ * everything else.
|
|
|
|
+ */
|
|
|
|
+ for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
|
|
|
|
+ for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
|
|
|
|
+ struct page *page;
|
|
|
|
+ if (stripe < rbio->nr_data) {
|
|
|
|
+ page = page_in_rbio(rbio, stripe, pagenr, 1);
|
|
|
|
+ if (!page)
|
|
|
|
+ continue;
|
|
|
|
+ } else {
|
|
|
|
+ page = rbio_stripe_page(rbio, stripe, pagenr);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ ret = rbio_add_io_page(rbio, &bio_list,
|
|
|
|
+ page, stripe, pagenr, rbio->stripe_len);
|
|
|
|
+ if (ret)
|
|
|
|
+ goto cleanup;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ atomic_set(&bbio->stripes_pending, bio_list_size(&bio_list));
|
|
|
|
+ BUG_ON(atomic_read(&bbio->stripes_pending) == 0);
|
|
|
|
+
|
|
|
|
+ while (1) {
|
|
|
|
+ bio = bio_list_pop(&bio_list);
|
|
|
|
+ if (!bio)
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ bio->bi_private = rbio;
|
|
|
|
+ bio->bi_end_io = raid_write_end_io;
|
|
|
|
+ BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
|
|
|
|
+ submit_bio(WRITE, bio);
|
|
|
|
+ }
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+cleanup:
|
|
|
|
+ rbio_orig_end_io(rbio, -EIO, 0);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * helper to find the stripe number for a given bio. Used to figure out which
|
|
|
|
+ * stripe has failed. This expects the bio to correspond to a physical disk,
|
|
|
|
+ * so it looks up based on physical sector numbers.
|
|
|
|
+ */
|
|
|
|
+static int find_bio_stripe(struct btrfs_raid_bio *rbio,
|
|
|
|
+ struct bio *bio)
|
|
|
|
+{
|
|
|
|
+ u64 physical = bio->bi_sector;
|
|
|
|
+ u64 stripe_start;
|
|
|
|
+ int i;
|
|
|
|
+ struct btrfs_bio_stripe *stripe;
|
|
|
|
+
|
|
|
|
+ physical <<= 9;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < rbio->bbio->num_stripes; i++) {
|
|
|
|
+ stripe = &rbio->bbio->stripes[i];
|
|
|
|
+ stripe_start = stripe->physical;
|
|
|
|
+ if (physical >= stripe_start &&
|
|
|
|
+ physical < stripe_start + rbio->stripe_len) {
|
|
|
|
+ return i;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ return -1;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * helper to find the stripe number for a given
|
|
|
|
+ * bio (before mapping). Used to figure out which stripe has
|
|
|
|
+ * failed. This looks up based on logical block numbers.
|
|
|
|
+ */
|
|
|
|
+static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
|
|
|
|
+ struct bio *bio)
|
|
|
|
+{
|
|
|
|
+ u64 logical = bio->bi_sector;
|
|
|
|
+ u64 stripe_start;
|
|
|
|
+ int i;
|
|
|
|
+
|
|
|
|
+ logical <<= 9;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < rbio->nr_data; i++) {
|
|
|
|
+ stripe_start = rbio->raid_map[i];
|
|
|
|
+ if (logical >= stripe_start &&
|
|
|
|
+ logical < stripe_start + rbio->stripe_len) {
|
|
|
|
+ return i;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ return -1;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * returns -EIO if we had too many failures
|
|
|
|
+ */
|
|
|
|
+static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
|
|
|
|
+{
|
|
|
|
+ unsigned long flags;
|
|
|
|
+ int ret = 0;
|
|
|
|
+
|
|
|
|
+ spin_lock_irqsave(&rbio->bio_list_lock, flags);
|
|
|
|
+
|
|
|
|
+ /* we already know this stripe is bad, move on */
|
|
|
|
+ if (rbio->faila == failed || rbio->failb == failed)
|
|
|
|
+ goto out;
|
|
|
|
+
|
|
|
|
+ if (rbio->faila == -1) {
|
|
|
|
+ /* first failure on this rbio */
|
|
|
|
+ rbio->faila = failed;
|
|
|
|
+ atomic_inc(&rbio->bbio->error);
|
|
|
|
+ } else if (rbio->failb == -1) {
|
|
|
|
+ /* second failure on this rbio */
|
|
|
|
+ rbio->failb = failed;
|
|
|
|
+ atomic_inc(&rbio->bbio->error);
|
|
|
|
+ } else {
|
|
|
|
+ ret = -EIO;
|
|
|
|
+ }
|
|
|
|
+out:
|
|
|
|
+ spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
|
|
|
|
+
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * helper to fail a stripe based on a physical disk
|
|
|
|
+ * bio.
|
|
|
|
+ */
|
|
|
|
+static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
|
|
|
|
+ struct bio *bio)
|
|
|
|
+{
|
|
|
|
+ int failed = find_bio_stripe(rbio, bio);
|
|
|
|
+
|
|
|
|
+ if (failed < 0)
|
|
|
|
+ return -EIO;
|
|
|
|
+
|
|
|
|
+ return fail_rbio_index(rbio, failed);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * this sets each page in the bio uptodate. It should only be used on private
|
|
|
|
+ * rbio pages, nothing that comes in from the higher layers
|
|
|
|
+ */
|
|
|
|
+static void set_bio_pages_uptodate(struct bio *bio)
|
|
|
|
+{
|
|
|
|
+ int i;
|
|
|
|
+ struct page *p;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < bio->bi_vcnt; i++) {
|
|
|
|
+ p = bio->bi_io_vec[i].bv_page;
|
|
|
|
+ SetPageUptodate(p);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * end io for the read phase of the rmw cycle. All the bios here are physical
|
|
|
|
+ * stripe bios we've read from the disk so we can recalculate the parity of the
|
|
|
|
+ * stripe.
|
|
|
|
+ *
|
|
|
|
+ * This will usually kick off finish_rmw once all the bios are read in, but it
|
|
|
|
+ * may trigger parity reconstruction if we had any errors along the way
|
|
|
|
+ */
|
|
|
|
+static void raid_rmw_end_io(struct bio *bio, int err)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_raid_bio *rbio = bio->bi_private;
|
|
|
|
+
|
|
|
|
+ if (err)
|
|
|
|
+ fail_bio_stripe(rbio, bio);
|
|
|
|
+ else
|
|
|
|
+ set_bio_pages_uptodate(bio);
|
|
|
|
+
|
|
|
|
+ bio_put(bio);
|
|
|
|
+
|
|
|
|
+ if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ err = 0;
|
|
|
|
+ if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
|
|
|
|
+ goto cleanup;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * this will normally call finish_rmw to start our write
|
|
|
|
+ * but if there are any failed stripes we'll reconstruct
|
|
|
|
+ * from parity first
|
|
|
|
+ */
|
|
|
|
+ validate_rbio_for_rmw(rbio);
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+cleanup:
|
|
|
|
+
|
|
|
|
+ rbio_orig_end_io(rbio, -EIO, 0);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ rbio->work.flags = 0;
|
|
|
|
+ rbio->work.func = rmw_work;
|
|
|
|
+
|
|
|
|
+ btrfs_queue_worker(&rbio->fs_info->rmw_workers,
|
|
|
|
+ &rbio->work);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void async_read_rebuild(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ rbio->work.flags = 0;
|
|
|
|
+ rbio->work.func = read_rebuild_work;
|
|
|
|
+
|
|
|
|
+ btrfs_queue_worker(&rbio->fs_info->rmw_workers,
|
|
|
|
+ &rbio->work);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * the stripe must be locked by the caller. It will
|
|
|
|
+ * unlock after all the writes are done
|
|
|
|
+ */
|
|
|
|
+static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ int bios_to_read = 0;
|
|
|
|
+ struct btrfs_bio *bbio = rbio->bbio;
|
|
|
|
+ struct bio_list bio_list;
|
|
|
|
+ int ret;
|
|
|
|
+ int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
|
|
|
|
+ int pagenr;
|
|
|
|
+ int stripe;
|
|
|
|
+ struct bio *bio;
|
|
|
|
+
|
|
|
|
+ bio_list_init(&bio_list);
|
|
|
|
+
|
|
|
|
+ ret = alloc_rbio_pages(rbio);
|
|
|
|
+ if (ret)
|
|
|
|
+ goto cleanup;
|
|
|
|
+
|
|
|
|
+ index_rbio_pages(rbio);
|
|
|
|
+
|
|
|
|
+ atomic_set(&rbio->bbio->error, 0);
|
|
|
|
+ /*
|
|
|
|
+ * build a list of bios to read all the missing parts of this
|
|
|
|
+ * stripe
|
|
|
|
+ */
|
|
|
|
+ for (stripe = 0; stripe < rbio->nr_data; stripe++) {
|
|
|
|
+ for (pagenr = 0; pagenr < nr_pages; pagenr++) {
|
|
|
|
+ struct page *page;
|
|
|
|
+ /*
|
|
|
|
+ * we want to find all the pages missing from
|
|
|
|
+ * the rbio and read them from the disk. If
|
|
|
|
+ * page_in_rbio finds a page in the bio list
|
|
|
|
+ * we don't need to read it off the stripe.
|
|
|
|
+ */
|
|
|
|
+ page = page_in_rbio(rbio, stripe, pagenr, 1);
|
|
|
|
+ if (page)
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ page = rbio_stripe_page(rbio, stripe, pagenr);
|
|
|
|
+ /*
|
|
|
|
+ * the bio cache may have handed us an uptodate
|
|
|
|
+ * page. If so, be happy and use it
|
|
|
|
+ */
|
|
|
|
+ if (PageUptodate(page))
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ ret = rbio_add_io_page(rbio, &bio_list, page,
|
|
|
|
+ stripe, pagenr, rbio->stripe_len);
|
|
|
|
+ if (ret)
|
|
|
|
+ goto cleanup;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ bios_to_read = bio_list_size(&bio_list);
|
|
|
|
+ if (!bios_to_read) {
|
|
|
|
+ /*
|
|
|
|
+ * this can happen if others have merged with
|
|
|
|
+ * us, it means there is nothing left to read.
|
|
|
|
+ * But if there are missing devices it may not be
|
|
|
|
+ * safe to do the full stripe write yet.
|
|
|
|
+ */
|
|
|
|
+ goto finish;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * the bbio may be freed once we submit the last bio. Make sure
|
|
|
|
+ * not to touch it after that
|
|
|
|
+ */
|
|
|
|
+ atomic_set(&bbio->stripes_pending, bios_to_read);
|
|
|
|
+ while (1) {
|
|
|
|
+ bio = bio_list_pop(&bio_list);
|
|
|
|
+ if (!bio)
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ bio->bi_private = rbio;
|
|
|
|
+ bio->bi_end_io = raid_rmw_end_io;
|
|
|
|
+
|
|
|
|
+ btrfs_bio_wq_end_io(rbio->fs_info, bio,
|
|
|
|
+ BTRFS_WQ_ENDIO_RAID56);
|
|
|
|
+
|
|
|
|
+ BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
|
|
|
|
+ submit_bio(READ, bio);
|
|
|
|
+ }
|
|
|
|
+ /* the actual write will happen once the reads are done */
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+cleanup:
|
|
|
|
+ rbio_orig_end_io(rbio, -EIO, 0);
|
|
|
|
+ return -EIO;
|
|
|
|
+
|
|
|
|
+finish:
|
|
|
|
+ validate_rbio_for_rmw(rbio);
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * if the upper layers pass in a full stripe, we thank them by only allocating
|
|
|
|
+ * enough pages to hold the parity, and sending it all down quickly.
|
|
|
|
+ */
|
|
|
|
+static int full_stripe_write(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ int ret;
|
|
|
|
+
|
|
|
|
+ ret = alloc_rbio_parity_pages(rbio);
|
|
|
|
+ if (ret)
|
|
|
|
+ return ret;
|
|
|
|
+
|
|
|
|
+ ret = lock_stripe_add(rbio);
|
|
|
|
+ if (ret == 0)
|
|
|
|
+ finish_rmw(rbio);
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * partial stripe writes get handed over to async helpers.
|
|
|
|
+ * We're really hoping to merge a few more writes into this
|
|
|
|
+ * rbio before calculating new parity
|
|
|
|
+ */
|
|
|
|
+static int partial_stripe_write(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ int ret;
|
|
|
|
+
|
|
|
|
+ ret = lock_stripe_add(rbio);
|
|
|
|
+ if (ret == 0)
|
|
|
|
+ async_rmw_stripe(rbio);
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * sometimes while we were reading from the drive to
|
|
|
|
+ * recalculate parity, enough new bios come into create
|
|
|
|
+ * a full stripe. So we do a check here to see if we can
|
|
|
|
+ * go directly to finish_rmw
|
|
|
|
+ */
|
|
|
|
+static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ /* head off into rmw land if we don't have a full stripe */
|
|
|
|
+ if (!rbio_is_full(rbio))
|
|
|
|
+ return partial_stripe_write(rbio);
|
|
|
|
+ return full_stripe_write(rbio);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * We use plugging call backs to collect full stripes.
|
|
|
|
+ * Any time we get a partial stripe write while plugged
|
|
|
|
+ * we collect it into a list. When the unplug comes down,
|
|
|
|
+ * we sort the list by logical block number and merge
|
|
|
|
+ * everything we can into the same rbios
|
|
|
|
+ */
|
|
|
|
+struct btrfs_plug_cb {
|
|
|
|
+ struct blk_plug_cb cb;
|
|
|
|
+ struct btrfs_fs_info *info;
|
|
|
|
+ struct list_head rbio_list;
|
|
|
|
+ struct btrfs_work work;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * rbios on the plug list are sorted for easier merging.
|
|
|
|
+ */
|
|
|
|
+static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
|
|
|
|
+ plug_list);
|
|
|
|
+ struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
|
|
|
|
+ plug_list);
|
|
|
|
+ u64 a_sector = ra->bio_list.head->bi_sector;
|
|
|
|
+ u64 b_sector = rb->bio_list.head->bi_sector;
|
|
|
|
+
|
|
|
|
+ if (a_sector < b_sector)
|
|
|
|
+ return -1;
|
|
|
|
+ if (a_sector > b_sector)
|
|
|
|
+ return 1;
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void run_plug(struct btrfs_plug_cb *plug)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_raid_bio *cur;
|
|
|
|
+ struct btrfs_raid_bio *last = NULL;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * sort our plug list then try to merge
|
|
|
|
+ * everything we can in hopes of creating full
|
|
|
|
+ * stripes.
|
|
|
|
+ */
|
|
|
|
+ list_sort(NULL, &plug->rbio_list, plug_cmp);
|
|
|
|
+ while (!list_empty(&plug->rbio_list)) {
|
|
|
|
+ cur = list_entry(plug->rbio_list.next,
|
|
|
|
+ struct btrfs_raid_bio, plug_list);
|
|
|
|
+ list_del_init(&cur->plug_list);
|
|
|
|
+
|
|
|
|
+ if (rbio_is_full(cur)) {
|
|
|
|
+ /* we have a full stripe, send it down */
|
|
|
|
+ full_stripe_write(cur);
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+ if (last) {
|
|
|
|
+ if (rbio_can_merge(last, cur)) {
|
|
|
|
+ merge_rbio(last, cur);
|
|
|
|
+ __free_raid_bio(cur);
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+ __raid56_parity_write(last);
|
|
|
|
+ }
|
|
|
|
+ last = cur;
|
|
|
|
+ }
|
|
|
|
+ if (last) {
|
|
|
|
+ __raid56_parity_write(last);
|
|
|
|
+ }
|
|
|
|
+ kfree(plug);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * if the unplug comes from schedule, we have to push the
|
|
|
|
+ * work off to a helper thread
|
|
|
|
+ */
|
|
|
|
+static void unplug_work(struct btrfs_work *work)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_plug_cb *plug;
|
|
|
|
+ plug = container_of(work, struct btrfs_plug_cb, work);
|
|
|
|
+ run_plug(plug);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_plug_cb *plug;
|
|
|
|
+ plug = container_of(cb, struct btrfs_plug_cb, cb);
|
|
|
|
+
|
|
|
|
+ if (from_schedule) {
|
|
|
|
+ plug->work.flags = 0;
|
|
|
|
+ plug->work.func = unplug_work;
|
|
|
|
+ btrfs_queue_worker(&plug->info->rmw_workers,
|
|
|
|
+ &plug->work);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+ run_plug(plug);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * our main entry point for writes from the rest of the FS.
|
|
|
|
+ */
|
|
|
|
+int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
|
|
|
|
+ struct btrfs_bio *bbio, u64 *raid_map,
|
|
|
|
+ u64 stripe_len)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_raid_bio *rbio;
|
|
|
|
+ struct btrfs_plug_cb *plug = NULL;
|
|
|
|
+ struct blk_plug_cb *cb;
|
|
|
|
+
|
|
|
|
+ rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
|
|
|
|
+ if (IS_ERR(rbio)) {
|
|
|
|
+ kfree(raid_map);
|
|
|
|
+ kfree(bbio);
|
|
|
|
+ return PTR_ERR(rbio);
|
|
|
|
+ }
|
|
|
|
+ bio_list_add(&rbio->bio_list, bio);
|
|
|
|
+ rbio->bio_list_bytes = bio->bi_size;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * don't plug on full rbios, just get them out the door
|
|
|
|
+ * as quickly as we can
|
|
|
|
+ */
|
|
|
|
+ if (rbio_is_full(rbio))
|
|
|
|
+ return full_stripe_write(rbio);
|
|
|
|
+
|
|
|
|
+ cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
|
|
|
|
+ sizeof(*plug));
|
|
|
|
+ if (cb) {
|
|
|
|
+ plug = container_of(cb, struct btrfs_plug_cb, cb);
|
|
|
|
+ if (!plug->info) {
|
|
|
|
+ plug->info = root->fs_info;
|
|
|
|
+ INIT_LIST_HEAD(&plug->rbio_list);
|
|
|
|
+ }
|
|
|
|
+ list_add_tail(&rbio->plug_list, &plug->rbio_list);
|
|
|
|
+ } else {
|
|
|
|
+ return __raid56_parity_write(rbio);
|
|
|
|
+ }
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * all parity reconstruction happens here. We've read in everything
|
|
|
|
+ * we can find from the drives and this does the heavy lifting of
|
|
|
|
+ * sorting the good from the bad.
|
|
|
|
+ */
|
|
|
|
+static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ int pagenr, stripe;
|
|
|
|
+ void **pointers;
|
|
|
|
+ int faila = -1, failb = -1;
|
|
|
|
+ int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
|
|
|
|
+ struct page *page;
|
|
|
|
+ int err;
|
|
|
|
+ int i;
|
|
|
|
+
|
|
|
|
+ pointers = kzalloc(rbio->bbio->num_stripes * sizeof(void *),
|
|
|
|
+ GFP_NOFS);
|
|
|
|
+ if (!pointers) {
|
|
|
|
+ err = -ENOMEM;
|
|
|
|
+ goto cleanup_io;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ faila = rbio->faila;
|
|
|
|
+ failb = rbio->failb;
|
|
|
|
+
|
|
|
|
+ if (rbio->read_rebuild) {
|
|
|
|
+ spin_lock_irq(&rbio->bio_list_lock);
|
|
|
|
+ set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
|
|
|
|
+ spin_unlock_irq(&rbio->bio_list_lock);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ index_rbio_pages(rbio);
|
|
|
|
+
|
|
|
|
+ for (pagenr = 0; pagenr < nr_pages; pagenr++) {
|
|
|
|
+ /* setup our array of pointers with pages
|
|
|
|
+ * from each stripe
|
|
|
|
+ */
|
|
|
|
+ for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) {
|
|
|
|
+ /*
|
|
|
|
+ * if we're rebuilding a read, we have to use
|
|
|
|
+ * pages from the bio list
|
|
|
|
+ */
|
|
|
|
+ if (rbio->read_rebuild &&
|
|
|
|
+ (stripe == faila || stripe == failb)) {
|
|
|
|
+ page = page_in_rbio(rbio, stripe, pagenr, 0);
|
|
|
|
+ } else {
|
|
|
|
+ page = rbio_stripe_page(rbio, stripe, pagenr);
|
|
|
|
+ }
|
|
|
|
+ pointers[stripe] = kmap(page);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* all raid6 handling here */
|
|
|
|
+ if (rbio->raid_map[rbio->bbio->num_stripes - 1] ==
|
|
|
|
+ RAID6_Q_STRIPE) {
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * single failure, rebuild from parity raid5
|
|
|
|
+ * style
|
|
|
|
+ */
|
|
|
|
+ if (failb < 0) {
|
|
|
|
+ if (faila == rbio->nr_data) {
|
|
|
|
+ /*
|
|
|
|
+ * Just the P stripe has failed, without
|
|
|
|
+ * a bad data or Q stripe.
|
|
|
|
+ * TODO, we should redo the xor here.
|
|
|
|
+ */
|
|
|
|
+ err = -EIO;
|
|
|
|
+ goto cleanup;
|
|
|
|
+ }
|
|
|
|
+ /*
|
|
|
|
+ * a single failure in raid6 is rebuilt
|
|
|
|
+ * in the pstripe code below
|
|
|
|
+ */
|
|
|
|
+ goto pstripe;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* make sure our ps and qs are in order */
|
|
|
|
+ if (faila > failb) {
|
|
|
|
+ int tmp = failb;
|
|
|
|
+ failb = faila;
|
|
|
|
+ faila = tmp;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* if the q stripe is failed, do a pstripe reconstruction
|
|
|
|
+ * from the xors.
|
|
|
|
+ * If both the q stripe and the P stripe are failed, we're
|
|
|
|
+ * here due to a crc mismatch and we can't give them the
|
|
|
|
+ * data they want
|
|
|
|
+ */
|
|
|
|
+ if (rbio->raid_map[failb] == RAID6_Q_STRIPE) {
|
|
|
|
+ if (rbio->raid_map[faila] == RAID5_P_STRIPE) {
|
|
|
|
+ err = -EIO;
|
|
|
|
+ goto cleanup;
|
|
|
|
+ }
|
|
|
|
+ /*
|
|
|
|
+ * otherwise we have one bad data stripe and
|
|
|
|
+ * a good P stripe. raid5!
|
|
|
|
+ */
|
|
|
|
+ goto pstripe;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (rbio->raid_map[failb] == RAID5_P_STRIPE) {
|
|
|
|
+ raid6_datap_recov(rbio->bbio->num_stripes,
|
|
|
|
+ PAGE_SIZE, faila, pointers);
|
|
|
|
+ } else {
|
|
|
|
+ raid6_2data_recov(rbio->bbio->num_stripes,
|
|
|
|
+ PAGE_SIZE, faila, failb,
|
|
|
|
+ pointers);
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ void *p;
|
|
|
|
+
|
|
|
|
+ /* rebuild from P stripe here (raid5 or raid6) */
|
|
|
|
+ BUG_ON(failb != -1);
|
|
|
|
+pstripe:
|
|
|
|
+ /* Copy parity block into failed block to start with */
|
|
|
|
+ memcpy(pointers[faila],
|
|
|
|
+ pointers[rbio->nr_data],
|
|
|
|
+ PAGE_CACHE_SIZE);
|
|
|
|
+
|
|
|
|
+ /* rearrange the pointer array */
|
|
|
|
+ p = pointers[faila];
|
|
|
|
+ for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
|
|
|
|
+ pointers[stripe] = pointers[stripe + 1];
|
|
|
|
+ pointers[rbio->nr_data - 1] = p;
|
|
|
|
+
|
|
|
|
+ /* xor in the rest */
|
|
|
|
+ run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
|
|
|
|
+ }
|
|
|
|
+ /* if we're doing this rebuild as part of an rmw, go through
|
|
|
|
+ * and set all of our private rbio pages in the
|
|
|
|
+ * failed stripes as uptodate. This way finish_rmw will
|
|
|
|
+ * know they can be trusted. If this was a read reconstruction,
|
|
|
|
+ * other endio functions will fiddle the uptodate bits
|
|
|
|
+ */
|
|
|
|
+ if (!rbio->read_rebuild) {
|
|
|
|
+ for (i = 0; i < nr_pages; i++) {
|
|
|
|
+ if (faila != -1) {
|
|
|
|
+ page = rbio_stripe_page(rbio, faila, i);
|
|
|
|
+ SetPageUptodate(page);
|
|
|
|
+ }
|
|
|
|
+ if (failb != -1) {
|
|
|
|
+ page = rbio_stripe_page(rbio, failb, i);
|
|
|
|
+ SetPageUptodate(page);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) {
|
|
|
|
+ /*
|
|
|
|
+ * if we're rebuilding a read, we have to use
|
|
|
|
+ * pages from the bio list
|
|
|
|
+ */
|
|
|
|
+ if (rbio->read_rebuild &&
|
|
|
|
+ (stripe == faila || stripe == failb)) {
|
|
|
|
+ page = page_in_rbio(rbio, stripe, pagenr, 0);
|
|
|
|
+ } else {
|
|
|
|
+ page = rbio_stripe_page(rbio, stripe, pagenr);
|
|
|
|
+ }
|
|
|
|
+ kunmap(page);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ err = 0;
|
|
|
|
+cleanup:
|
|
|
|
+ kfree(pointers);
|
|
|
|
+
|
|
|
|
+cleanup_io:
|
|
|
|
+
|
|
|
|
+ if (rbio->read_rebuild) {
|
|
|
|
+ if (err == 0)
|
|
|
|
+ cache_rbio_pages(rbio);
|
|
|
|
+ else
|
|
|
|
+ clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
|
|
|
|
+
|
|
|
|
+ rbio_orig_end_io(rbio, err, err == 0);
|
|
|
|
+ } else if (err == 0) {
|
|
|
|
+ rbio->faila = -1;
|
|
|
|
+ rbio->failb = -1;
|
|
|
|
+ finish_rmw(rbio);
|
|
|
|
+ } else {
|
|
|
|
+ rbio_orig_end_io(rbio, err, 0);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * This is called only for stripes we've read from disk to
|
|
|
|
+ * reconstruct the parity.
|
|
|
|
+ */
|
|
|
|
+static void raid_recover_end_io(struct bio *bio, int err)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_raid_bio *rbio = bio->bi_private;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * we only read stripe pages off the disk, set them
|
|
|
|
+ * up to date if there were no errors
|
|
|
|
+ */
|
|
|
|
+ if (err)
|
|
|
|
+ fail_bio_stripe(rbio, bio);
|
|
|
|
+ else
|
|
|
|
+ set_bio_pages_uptodate(bio);
|
|
|
|
+ bio_put(bio);
|
|
|
|
+
|
|
|
|
+ if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
|
|
|
|
+ rbio_orig_end_io(rbio, -EIO, 0);
|
|
|
|
+ else
|
|
|
|
+ __raid_recover_end_io(rbio);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * reads everything we need off the disk to reconstruct
|
|
|
|
+ * the parity. endio handlers trigger final reconstruction
|
|
|
|
+ * when the IO is done.
|
|
|
|
+ *
|
|
|
|
+ * This is used both for reads from the higher layers and for
|
|
|
|
+ * parity construction required to finish a rmw cycle.
|
|
|
|
+ */
|
|
|
|
+static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
|
|
|
|
+{
|
|
|
|
+ int bios_to_read = 0;
|
|
|
|
+ struct btrfs_bio *bbio = rbio->bbio;
|
|
|
|
+ struct bio_list bio_list;
|
|
|
|
+ int ret;
|
|
|
|
+ int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
|
|
|
|
+ int pagenr;
|
|
|
|
+ int stripe;
|
|
|
|
+ struct bio *bio;
|
|
|
|
+
|
|
|
|
+ bio_list_init(&bio_list);
|
|
|
|
+
|
|
|
|
+ ret = alloc_rbio_pages(rbio);
|
|
|
|
+ if (ret)
|
|
|
|
+ goto cleanup;
|
|
|
|
+
|
|
|
|
+ atomic_set(&rbio->bbio->error, 0);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * read everything that hasn't failed. Thanks to the
|
|
|
|
+ * stripe cache, it is possible that some or all of these
|
|
|
|
+ * pages are going to be uptodate.
|
|
|
|
+ */
|
|
|
|
+ for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
|
|
|
|
+ if (rbio->faila == stripe ||
|
|
|
|
+ rbio->failb == stripe)
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ for (pagenr = 0; pagenr < nr_pages; pagenr++) {
|
|
|
|
+ struct page *p;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * the rmw code may have already read this
|
|
|
|
+ * page in
|
|
|
|
+ */
|
|
|
|
+ p = rbio_stripe_page(rbio, stripe, pagenr);
|
|
|
|
+ if (PageUptodate(p))
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ ret = rbio_add_io_page(rbio, &bio_list,
|
|
|
|
+ rbio_stripe_page(rbio, stripe, pagenr),
|
|
|
|
+ stripe, pagenr, rbio->stripe_len);
|
|
|
|
+ if (ret < 0)
|
|
|
|
+ goto cleanup;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ bios_to_read = bio_list_size(&bio_list);
|
|
|
|
+ if (!bios_to_read) {
|
|
|
|
+ /*
|
|
|
|
+ * we might have no bios to read just because the pages
|
|
|
|
+ * were up to date, or we might have no bios to read because
|
|
|
|
+ * the devices were gone.
|
|
|
|
+ */
|
|
|
|
+ if (atomic_read(&rbio->bbio->error) <= rbio->bbio->max_errors) {
|
|
|
|
+ __raid_recover_end_io(rbio);
|
|
|
|
+ goto out;
|
|
|
|
+ } else {
|
|
|
|
+ goto cleanup;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * the bbio may be freed once we submit the last bio. Make sure
|
|
|
|
+ * not to touch it after that
|
|
|
|
+ */
|
|
|
|
+ atomic_set(&bbio->stripes_pending, bios_to_read);
|
|
|
|
+ while (1) {
|
|
|
|
+ bio = bio_list_pop(&bio_list);
|
|
|
|
+ if (!bio)
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ bio->bi_private = rbio;
|
|
|
|
+ bio->bi_end_io = raid_recover_end_io;
|
|
|
|
+
|
|
|
|
+ btrfs_bio_wq_end_io(rbio->fs_info, bio,
|
|
|
|
+ BTRFS_WQ_ENDIO_RAID56);
|
|
|
|
+
|
|
|
|
+ BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
|
|
|
|
+ submit_bio(READ, bio);
|
|
|
|
+ }
|
|
|
|
+out:
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+cleanup:
|
|
|
|
+ if (rbio->read_rebuild)
|
|
|
|
+ rbio_orig_end_io(rbio, -EIO, 0);
|
|
|
|
+ return -EIO;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * the main entry point for reads from the higher layers. This
|
|
|
|
+ * is really only called when the normal read path had a failure,
|
|
|
|
+ * so we assume the bio they send down corresponds to a failed part
|
|
|
|
+ * of the drive.
|
|
|
|
+ */
|
|
|
|
+int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
|
|
|
|
+ struct btrfs_bio *bbio, u64 *raid_map,
|
|
|
|
+ u64 stripe_len, int mirror_num)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_raid_bio *rbio;
|
|
|
|
+ int ret;
|
|
|
|
+
|
|
|
|
+ rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
|
|
|
|
+ if (IS_ERR(rbio)) {
|
|
|
|
+ return PTR_ERR(rbio);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ rbio->read_rebuild = 1;
|
|
|
|
+ bio_list_add(&rbio->bio_list, bio);
|
|
|
|
+ rbio->bio_list_bytes = bio->bi_size;
|
|
|
|
+
|
|
|
|
+ rbio->faila = find_logical_bio_stripe(rbio, bio);
|
|
|
|
+ if (rbio->faila == -1) {
|
|
|
|
+ BUG();
|
|
|
|
+ kfree(rbio);
|
|
|
|
+ return -EIO;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * reconstruct from the q stripe if they are
|
|
|
|
+ * asking for mirror 3
|
|
|
|
+ */
|
|
|
|
+ if (mirror_num == 3)
|
|
|
|
+ rbio->failb = bbio->num_stripes - 2;
|
|
|
|
+
|
|
|
|
+ ret = lock_stripe_add(rbio);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * __raid56_parity_recover will end the bio with
|
|
|
|
+ * any errors it hits. We don't want to return
|
|
|
|
+ * its error value up the stack because our caller
|
|
|
|
+ * will end up calling bio_endio with any nonzero
|
|
|
|
+ * return
|
|
|
|
+ */
|
|
|
|
+ if (ret == 0)
|
|
|
|
+ __raid56_parity_recover(rbio);
|
|
|
|
+ /*
|
|
|
|
+ * our rbio has been added to the list of
|
|
|
|
+ * rbios that will be handled after the
|
|
|
|
+ * currently lock owner is done
|
|
|
|
+ */
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void rmw_work(struct btrfs_work *work)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_raid_bio *rbio;
|
|
|
|
+
|
|
|
|
+ rbio = container_of(work, struct btrfs_raid_bio, work);
|
|
|
|
+ raid56_rmw_stripe(rbio);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void read_rebuild_work(struct btrfs_work *work)
|
|
|
|
+{
|
|
|
|
+ struct btrfs_raid_bio *rbio;
|
|
|
|
+
|
|
|
|
+ rbio = container_of(work, struct btrfs_raid_bio, work);
|
|
|
|
+ __raid56_parity_recover(rbio);
|
|
|
|
+}
|