|
@@ -42,11 +42,12 @@
|
|
|
#include <linux/uaccess.h>
|
|
|
#include <asm/pgtable.h>
|
|
|
#include <asm/cpuinfo.h>
|
|
|
+#include <asm/tlbflush.h>
|
|
|
|
|
|
#ifndef CONFIG_MMU
|
|
|
-
|
|
|
/* I have to use dcache values because I can't relate on ram size */
|
|
|
-#define UNCACHED_SHADOW_MASK (cpuinfo.dcache_high - cpuinfo.dcache_base + 1)
|
|
|
+# define UNCACHED_SHADOW_MASK (cpuinfo.dcache_high - cpuinfo.dcache_base + 1)
|
|
|
+#endif
|
|
|
|
|
|
/*
|
|
|
* Consistent memory allocators. Used for DMA devices that want to
|
|
@@ -60,71 +61,16 @@
|
|
|
*/
|
|
|
void *consistent_alloc(int gfp, size_t size, dma_addr_t *dma_handle)
|
|
|
{
|
|
|
- struct page *page, *end, *free;
|
|
|
- unsigned long order;
|
|
|
- void *ret, *virt;
|
|
|
-
|
|
|
- if (in_interrupt())
|
|
|
- BUG();
|
|
|
-
|
|
|
- size = PAGE_ALIGN(size);
|
|
|
- order = get_order(size);
|
|
|
-
|
|
|
- page = alloc_pages(gfp, order);
|
|
|
- if (!page)
|
|
|
- goto no_page;
|
|
|
-
|
|
|
- /* We could do with a page_to_phys and page_to_bus here. */
|
|
|
- virt = page_address(page);
|
|
|
- ret = ioremap(virt_to_phys(virt), size);
|
|
|
- if (!ret)
|
|
|
- goto no_remap;
|
|
|
-
|
|
|
- /*
|
|
|
- * Here's the magic! Note if the uncached shadow is not implemented,
|
|
|
- * it's up to the calling code to also test that condition and make
|
|
|
- * other arranegments, such as manually flushing the cache and so on.
|
|
|
- */
|
|
|
-#ifdef CONFIG_XILINX_UNCACHED_SHADOW
|
|
|
- ret = (void *)((unsigned) ret | UNCACHED_SHADOW_MASK);
|
|
|
-#endif
|
|
|
- /* dma_handle is same as physical (shadowed) address */
|
|
|
- *dma_handle = (dma_addr_t)ret;
|
|
|
-
|
|
|
- /*
|
|
|
- * free wasted pages. We skip the first page since we know
|
|
|
- * that it will have count = 1 and won't require freeing.
|
|
|
- * We also mark the pages in use as reserved so that
|
|
|
- * remap_page_range works.
|
|
|
- */
|
|
|
- page = virt_to_page(virt);
|
|
|
- free = page + (size >> PAGE_SHIFT);
|
|
|
- end = page + (1 << order);
|
|
|
-
|
|
|
- for (; page < end; page++) {
|
|
|
- init_page_count(page);
|
|
|
- if (page >= free)
|
|
|
- __free_page(page);
|
|
|
- else
|
|
|
- SetPageReserved(page);
|
|
|
- }
|
|
|
-
|
|
|
- return ret;
|
|
|
-no_remap:
|
|
|
- __free_pages(page, order);
|
|
|
-no_page:
|
|
|
- return NULL;
|
|
|
-}
|
|
|
-
|
|
|
-#else
|
|
|
+ unsigned long order, vaddr;
|
|
|
+ void *ret;
|
|
|
+ unsigned int i, err = 0;
|
|
|
+ struct page *page, *end;
|
|
|
|
|
|
-void *consistent_alloc(int gfp, size_t size, dma_addr_t *dma_handle)
|
|
|
-{
|
|
|
- int order, err, i;
|
|
|
- unsigned long page, va, flags;
|
|
|
+#ifdef CONFIG_MMU
|
|
|
phys_addr_t pa;
|
|
|
struct vm_struct *area;
|
|
|
- void *ret;
|
|
|
+ unsigned long va;
|
|
|
+#endif
|
|
|
|
|
|
if (in_interrupt())
|
|
|
BUG();
|
|
@@ -133,71 +79,133 @@ void *consistent_alloc(int gfp, size_t size, dma_addr_t *dma_handle)
|
|
|
size = PAGE_ALIGN(size);
|
|
|
order = get_order(size);
|
|
|
|
|
|
- page = __get_free_pages(gfp, order);
|
|
|
- if (!page) {
|
|
|
- BUG();
|
|
|
+ vaddr = __get_free_pages(gfp, order);
|
|
|
+ if (!vaddr)
|
|
|
return NULL;
|
|
|
- }
|
|
|
|
|
|
/*
|
|
|
* we need to ensure that there are no cachelines in use,
|
|
|
* or worse dirty in this area.
|
|
|
*/
|
|
|
- flush_dcache_range(virt_to_phys(page), virt_to_phys(page) + size);
|
|
|
+ flush_dcache_range(virt_to_phys((void *)vaddr),
|
|
|
+ virt_to_phys((void *)vaddr) + size);
|
|
|
|
|
|
+#ifndef CONFIG_MMU
|
|
|
+ ret = (void *)vaddr;
|
|
|
+ /*
|
|
|
+ * Here's the magic! Note if the uncached shadow is not implemented,
|
|
|
+ * it's up to the calling code to also test that condition and make
|
|
|
+ * other arranegments, such as manually flushing the cache and so on.
|
|
|
+ */
|
|
|
+# ifdef CONFIG_XILINX_UNCACHED_SHADOW
|
|
|
+ ret = (void *)((unsigned) ret | UNCACHED_SHADOW_MASK);
|
|
|
+# endif
|
|
|
+ if ((unsigned int)ret > cpuinfo.dcache_base &&
|
|
|
+ (unsigned int)ret < cpuinfo.dcache_high)
|
|
|
+ printk(KERN_WARNING
|
|
|
+ "ERROR: Your cache coherent area is CACHED!!!\n");
|
|
|
+
|
|
|
+ /* dma_handle is same as physical (shadowed) address */
|
|
|
+ *dma_handle = (dma_addr_t)ret;
|
|
|
+#else
|
|
|
/* Allocate some common virtual space to map the new pages. */
|
|
|
area = get_vm_area(size, VM_ALLOC);
|
|
|
- if (area == NULL) {
|
|
|
- free_pages(page, order);
|
|
|
+ if (!area) {
|
|
|
+ free_pages(vaddr, order);
|
|
|
return NULL;
|
|
|
}
|
|
|
va = (unsigned long) area->addr;
|
|
|
ret = (void *)va;
|
|
|
|
|
|
/* This gives us the real physical address of the first page. */
|
|
|
- *dma_handle = pa = virt_to_bus((void *)page);
|
|
|
-
|
|
|
- /* MS: This is the whole magic - use cache inhibit pages */
|
|
|
- flags = _PAGE_KERNEL | _PAGE_NO_CACHE;
|
|
|
+ *dma_handle = pa = virt_to_bus((void *)vaddr);
|
|
|
+#endif
|
|
|
|
|
|
/*
|
|
|
- * Set refcount=1 on all pages in an order>0
|
|
|
- * allocation so that vfree() will actually
|
|
|
- * free all pages that were allocated.
|
|
|
+ * free wasted pages. We skip the first page since we know
|
|
|
+ * that it will have count = 1 and won't require freeing.
|
|
|
+ * We also mark the pages in use as reserved so that
|
|
|
+ * remap_page_range works.
|
|
|
*/
|
|
|
- if (order > 0) {
|
|
|
- struct page *rpage = virt_to_page(page);
|
|
|
- for (i = 1; i < (1 << order); i++)
|
|
|
- init_page_count(rpage+i);
|
|
|
+ page = virt_to_page(vaddr);
|
|
|
+ end = page + (1 << order);
|
|
|
+
|
|
|
+ split_page(page, order);
|
|
|
+
|
|
|
+ for (i = 0; i < size && err == 0; i += PAGE_SIZE) {
|
|
|
+#ifdef CONFIG_MMU
|
|
|
+ /* MS: This is the whole magic - use cache inhibit pages */
|
|
|
+ err = map_page(va + i, pa + i, _PAGE_KERNEL | _PAGE_NO_CACHE);
|
|
|
+#endif
|
|
|
+
|
|
|
+ SetPageReserved(page);
|
|
|
+ page++;
|
|
|
}
|
|
|
|
|
|
- err = 0;
|
|
|
- for (i = 0; i < size && err == 0; i += PAGE_SIZE)
|
|
|
- err = map_page(va+i, pa+i, flags);
|
|
|
+ /* Free the otherwise unused pages. */
|
|
|
+ while (page < end) {
|
|
|
+ __free_page(page);
|
|
|
+ page++;
|
|
|
+ }
|
|
|
|
|
|
if (err) {
|
|
|
- vfree((void *)va);
|
|
|
+ free_pages(vaddr, order);
|
|
|
return NULL;
|
|
|
}
|
|
|
|
|
|
return ret;
|
|
|
}
|
|
|
-#endif /* CONFIG_MMU */
|
|
|
EXPORT_SYMBOL(consistent_alloc);
|
|
|
|
|
|
/*
|
|
|
* free page(s) as defined by the above mapping.
|
|
|
*/
|
|
|
-void consistent_free(void *vaddr)
|
|
|
+void consistent_free(size_t size, void *vaddr)
|
|
|
{
|
|
|
+ struct page *page;
|
|
|
+
|
|
|
if (in_interrupt())
|
|
|
BUG();
|
|
|
|
|
|
+ size = PAGE_ALIGN(size);
|
|
|
+
|
|
|
+#ifndef CONFIG_MMU
|
|
|
/* Clear SHADOW_MASK bit in address, and free as per usual */
|
|
|
-#ifdef CONFIG_XILINX_UNCACHED_SHADOW
|
|
|
+# ifdef CONFIG_XILINX_UNCACHED_SHADOW
|
|
|
vaddr = (void *)((unsigned)vaddr & ~UNCACHED_SHADOW_MASK);
|
|
|
+# endif
|
|
|
+ page = virt_to_page(vaddr);
|
|
|
+
|
|
|
+ do {
|
|
|
+ ClearPageReserved(page);
|
|
|
+ __free_page(page);
|
|
|
+ page++;
|
|
|
+ } while (size -= PAGE_SIZE);
|
|
|
+#else
|
|
|
+ do {
|
|
|
+ pte_t *ptep;
|
|
|
+ unsigned long pfn;
|
|
|
+
|
|
|
+ ptep = pte_offset_kernel(pmd_offset(pgd_offset_k(
|
|
|
+ (unsigned int)vaddr),
|
|
|
+ (unsigned int)vaddr),
|
|
|
+ (unsigned int)vaddr);
|
|
|
+ if (!pte_none(*ptep) && pte_present(*ptep)) {
|
|
|
+ pfn = pte_pfn(*ptep);
|
|
|
+ pte_clear(&init_mm, (unsigned int)vaddr, ptep);
|
|
|
+ if (pfn_valid(pfn)) {
|
|
|
+ page = pfn_to_page(pfn);
|
|
|
+
|
|
|
+ ClearPageReserved(page);
|
|
|
+ __free_page(page);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ vaddr += PAGE_SIZE;
|
|
|
+ } while (size -= PAGE_SIZE);
|
|
|
+
|
|
|
+ /* flush tlb */
|
|
|
+ flush_tlb_all();
|
|
|
#endif
|
|
|
- vfree(vaddr);
|
|
|
}
|
|
|
EXPORT_SYMBOL(consistent_free);
|
|
|
|
|
@@ -221,7 +229,7 @@ void consistent_sync(void *vaddr, size_t size, int direction)
|
|
|
case PCI_DMA_NONE:
|
|
|
BUG();
|
|
|
case PCI_DMA_FROMDEVICE: /* invalidate only */
|
|
|
- flush_dcache_range(start, end);
|
|
|
+ invalidate_dcache_range(start, end);
|
|
|
break;
|
|
|
case PCI_DMA_TODEVICE: /* writeback only */
|
|
|
flush_dcache_range(start, end);
|