|
@@ -108,7 +108,7 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
|
|
|
if (rt_rq->rt_nr_running) {
|
|
|
if (rt_se && !on_rt_rq(rt_se))
|
|
|
enqueue_rt_entity(rt_se);
|
|
|
- if (rt_rq->highest_prio < curr->prio)
|
|
|
+ if (rt_rq->highest_prio.curr < curr->prio)
|
|
|
resched_task(curr);
|
|
|
}
|
|
|
}
|
|
@@ -473,7 +473,7 @@ static inline int rt_se_prio(struct sched_rt_entity *rt_se)
|
|
|
struct rt_rq *rt_rq = group_rt_rq(rt_se);
|
|
|
|
|
|
if (rt_rq)
|
|
|
- return rt_rq->highest_prio;
|
|
|
+ return rt_rq->highest_prio.curr;
|
|
|
#endif
|
|
|
|
|
|
return rt_task_of(rt_se)->prio;
|
|
@@ -547,6 +547,21 @@ static void update_curr_rt(struct rq *rq)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
|
|
|
+
|
|
|
+static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
|
|
|
+
|
|
|
+static inline int next_prio(struct rq *rq)
|
|
|
+{
|
|
|
+ struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
|
|
|
+
|
|
|
+ if (next && rt_prio(next->prio))
|
|
|
+ return next->prio;
|
|
|
+ else
|
|
|
+ return MAX_RT_PRIO;
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
static inline
|
|
|
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
|
{
|
|
@@ -558,14 +573,32 @@ void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
|
WARN_ON(!rt_prio(prio));
|
|
|
rt_rq->rt_nr_running++;
|
|
|
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
|
|
|
- if (prio < rt_rq->highest_prio) {
|
|
|
+ if (prio < rt_rq->highest_prio.curr) {
|
|
|
|
|
|
- rt_rq->highest_prio = prio;
|
|
|
+ /*
|
|
|
+ * If the new task is higher in priority than anything on the
|
|
|
+ * run-queue, we have a new high that must be published to
|
|
|
+ * the world. We also know that the previous high becomes
|
|
|
+ * our next-highest.
|
|
|
+ */
|
|
|
+ rt_rq->highest_prio.next = rt_rq->highest_prio.curr;
|
|
|
+ rt_rq->highest_prio.curr = prio;
|
|
|
#ifdef CONFIG_SMP
|
|
|
if (rq->online)
|
|
|
cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
|
|
|
#endif
|
|
|
- }
|
|
|
+ } else if (prio == rt_rq->highest_prio.curr)
|
|
|
+ /*
|
|
|
+ * If the next task is equal in priority to the highest on
|
|
|
+ * the run-queue, then we implicitly know that the next highest
|
|
|
+ * task cannot be any lower than current
|
|
|
+ */
|
|
|
+ rt_rq->highest_prio.next = prio;
|
|
|
+ else if (prio < rt_rq->highest_prio.next)
|
|
|
+ /*
|
|
|
+ * Otherwise, we need to recompute next-highest
|
|
|
+ */
|
|
|
+ rt_rq->highest_prio.next = next_prio(rq);
|
|
|
#endif
|
|
|
#ifdef CONFIG_SMP
|
|
|
if (rt_se->nr_cpus_allowed > 1)
|
|
@@ -589,7 +622,7 @@ void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
|
{
|
|
|
#ifdef CONFIG_SMP
|
|
|
struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
- int highest_prio = rt_rq->highest_prio;
|
|
|
+ int highest_prio = rt_rq->highest_prio.curr;
|
|
|
#endif
|
|
|
|
|
|
WARN_ON(!rt_prio(rt_se_prio(rt_se)));
|
|
@@ -597,24 +630,32 @@ void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
|
rt_rq->rt_nr_running--;
|
|
|
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
|
|
|
if (rt_rq->rt_nr_running) {
|
|
|
- struct rt_prio_array *array;
|
|
|
+ int prio = rt_se_prio(rt_se);
|
|
|
+
|
|
|
+ WARN_ON(prio < rt_rq->highest_prio.curr);
|
|
|
|
|
|
- WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
|
|
|
- if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
|
|
|
- /* recalculate */
|
|
|
- array = &rt_rq->active;
|
|
|
- rt_rq->highest_prio =
|
|
|
+ /*
|
|
|
+ * This may have been our highest or next-highest priority
|
|
|
+ * task and therefore we may have some recomputation to do
|
|
|
+ */
|
|
|
+ if (prio == rt_rq->highest_prio.curr) {
|
|
|
+ struct rt_prio_array *array = &rt_rq->active;
|
|
|
+
|
|
|
+ rt_rq->highest_prio.curr =
|
|
|
sched_find_first_bit(array->bitmap);
|
|
|
- } /* otherwise leave rq->highest prio alone */
|
|
|
+ }
|
|
|
+
|
|
|
+ if (prio <= rt_rq->highest_prio.next)
|
|
|
+ rt_rq->highest_prio.next = next_prio(rq);
|
|
|
} else
|
|
|
- rt_rq->highest_prio = MAX_RT_PRIO;
|
|
|
+ rt_rq->highest_prio.curr = MAX_RT_PRIO;
|
|
|
#endif
|
|
|
#ifdef CONFIG_SMP
|
|
|
if (rt_se->nr_cpus_allowed > 1)
|
|
|
rq->rt.rt_nr_migratory--;
|
|
|
|
|
|
- if (rq->online && rt_rq->highest_prio != highest_prio)
|
|
|
- cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio);
|
|
|
+ if (rq->online && rt_rq->highest_prio.curr != highest_prio)
|
|
|
+ cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
|
|
|
|
|
|
update_rt_migration(rq);
|
|
|
#endif /* CONFIG_SMP */
|
|
@@ -1064,7 +1105,7 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
|
|
|
}
|
|
|
|
|
|
/* If this rq is still suitable use it. */
|
|
|
- if (lowest_rq->rt.highest_prio > task->prio)
|
|
|
+ if (lowest_rq->rt.highest_prio.curr > task->prio)
|
|
|
break;
|
|
|
|
|
|
/* try again */
|
|
@@ -1252,7 +1293,7 @@ static int pull_rt_task(struct rq *this_rq)
|
|
|
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
|
|
|
{
|
|
|
/* Try to pull RT tasks here if we lower this rq's prio */
|
|
|
- if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
|
|
|
+ if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
|
|
|
pull_rt_task(rq);
|
|
|
}
|
|
|
|
|
@@ -1338,7 +1379,7 @@ static void rq_online_rt(struct rq *rq)
|
|
|
|
|
|
__enable_runtime(rq);
|
|
|
|
|
|
- cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
|
|
|
+ cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
|
|
|
}
|
|
|
|
|
|
/* Assumes rq->lock is held */
|
|
@@ -1429,7 +1470,7 @@ static void prio_changed_rt(struct rq *rq, struct task_struct *p,
|
|
|
* can release the rq lock and p could migrate.
|
|
|
* Only reschedule if p is still on the same runqueue.
|
|
|
*/
|
|
|
- if (p->prio > rq->rt.highest_prio && rq->curr == p)
|
|
|
+ if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
|
|
|
resched_task(p);
|
|
|
#else
|
|
|
/* For UP simply resched on drop of prio */
|