|
@@ -1,724 +0,0 @@
|
|
|
-/* $Id: sparc-stub.c,v 1.28 2001/10/30 04:54:21 davem Exp $
|
|
|
- * sparc-stub.c: KGDB support for the Linux kernel.
|
|
|
- *
|
|
|
- * Modifications to run under Linux
|
|
|
- * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
|
|
|
- *
|
|
|
- * This file originally came from the gdb sources, and the
|
|
|
- * copyright notices have been retained below.
|
|
|
- */
|
|
|
-
|
|
|
-/****************************************************************************
|
|
|
-
|
|
|
- THIS SOFTWARE IS NOT COPYRIGHTED
|
|
|
-
|
|
|
- HP offers the following for use in the public domain. HP makes no
|
|
|
- warranty with regard to the software or its performance and the
|
|
|
- user accepts the software "AS IS" with all faults.
|
|
|
-
|
|
|
- HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
|
|
|
- TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
|
- OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
-
|
|
|
-****************************************************************************/
|
|
|
-
|
|
|
-/****************************************************************************
|
|
|
- * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
|
|
|
- *
|
|
|
- * Module name: remcom.c $
|
|
|
- * Revision: 1.34 $
|
|
|
- * Date: 91/03/09 12:29:49 $
|
|
|
- * Contributor: Lake Stevens Instrument Division$
|
|
|
- *
|
|
|
- * Description: low level support for gdb debugger. $
|
|
|
- *
|
|
|
- * Considerations: only works on target hardware $
|
|
|
- *
|
|
|
- * Written by: Glenn Engel $
|
|
|
- * ModuleState: Experimental $
|
|
|
- *
|
|
|
- * NOTES: See Below $
|
|
|
- *
|
|
|
- * Modified for SPARC by Stu Grossman, Cygnus Support.
|
|
|
- *
|
|
|
- * This code has been extensively tested on the Fujitsu SPARClite demo board.
|
|
|
- *
|
|
|
- * To enable debugger support, two things need to happen. One, a
|
|
|
- * call to set_debug_traps() is necessary in order to allow any breakpoints
|
|
|
- * or error conditions to be properly intercepted and reported to gdb.
|
|
|
- * Two, a breakpoint needs to be generated to begin communication. This
|
|
|
- * is most easily accomplished by a call to breakpoint(). Breakpoint()
|
|
|
- * simulates a breakpoint by executing a trap #1.
|
|
|
- *
|
|
|
- *************
|
|
|
- *
|
|
|
- * The following gdb commands are supported:
|
|
|
- *
|
|
|
- * command function Return value
|
|
|
- *
|
|
|
- * g return the value of the CPU registers hex data or ENN
|
|
|
- * G set the value of the CPU registers OK or ENN
|
|
|
- *
|
|
|
- * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
|
|
|
- * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
|
|
|
- *
|
|
|
- * c Resume at current address SNN ( signal NN)
|
|
|
- * cAA..AA Continue at address AA..AA SNN
|
|
|
- *
|
|
|
- * s Step one instruction SNN
|
|
|
- * sAA..AA Step one instruction from AA..AA SNN
|
|
|
- *
|
|
|
- * k kill
|
|
|
- *
|
|
|
- * ? What was the last sigval ? SNN (signal NN)
|
|
|
- *
|
|
|
- * bBB..BB Set baud rate to BB..BB OK or BNN, then sets
|
|
|
- * baud rate
|
|
|
- *
|
|
|
- * All commands and responses are sent with a packet which includes a
|
|
|
- * checksum. A packet consists of
|
|
|
- *
|
|
|
- * $<packet info>#<checksum>.
|
|
|
- *
|
|
|
- * where
|
|
|
- * <packet info> :: <characters representing the command or response>
|
|
|
- * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
|
|
|
- *
|
|
|
- * When a packet is received, it is first acknowledged with either '+' or '-'.
|
|
|
- * '+' indicates a successful transfer. '-' indicates a failed transfer.
|
|
|
- *
|
|
|
- * Example:
|
|
|
- *
|
|
|
- * Host: Reply:
|
|
|
- * $m0,10#2a +$00010203040506070809101112131415#42
|
|
|
- *
|
|
|
- ****************************************************************************/
|
|
|
-
|
|
|
-#include <linux/kernel.h>
|
|
|
-#include <linux/string.h>
|
|
|
-#include <linux/mm.h>
|
|
|
-#include <linux/smp.h>
|
|
|
-#include <linux/smp_lock.h>
|
|
|
-
|
|
|
-#include <asm/system.h>
|
|
|
-#include <asm/signal.h>
|
|
|
-#include <asm/oplib.h>
|
|
|
-#include <asm/head.h>
|
|
|
-#include <asm/traps.h>
|
|
|
-#include <asm/vac-ops.h>
|
|
|
-#include <asm/kgdb.h>
|
|
|
-#include <asm/pgalloc.h>
|
|
|
-#include <asm/pgtable.h>
|
|
|
-#include <asm/cacheflush.h>
|
|
|
-
|
|
|
-/*
|
|
|
- *
|
|
|
- * external low-level support routines
|
|
|
- */
|
|
|
-
|
|
|
-extern void putDebugChar(char); /* write a single character */
|
|
|
-extern char getDebugChar(void); /* read and return a single char */
|
|
|
-
|
|
|
-/*
|
|
|
- * BUFMAX defines the maximum number of characters in inbound/outbound buffers
|
|
|
- * at least NUMREGBYTES*2 are needed for register packets
|
|
|
- */
|
|
|
-#define BUFMAX 2048
|
|
|
-
|
|
|
-static int initialized; /* !0 means we've been initialized */
|
|
|
-
|
|
|
-static const char hexchars[]="0123456789abcdef";
|
|
|
-
|
|
|
-#define NUMREGS 72
|
|
|
-
|
|
|
-/* Number of bytes of registers. */
|
|
|
-#define NUMREGBYTES (NUMREGS * 4)
|
|
|
-enum regnames {G0, G1, G2, G3, G4, G5, G6, G7,
|
|
|
- O0, O1, O2, O3, O4, O5, SP, O7,
|
|
|
- L0, L1, L2, L3, L4, L5, L6, L7,
|
|
|
- I0, I1, I2, I3, I4, I5, FP, I7,
|
|
|
-
|
|
|
- F0, F1, F2, F3, F4, F5, F6, F7,
|
|
|
- F8, F9, F10, F11, F12, F13, F14, F15,
|
|
|
- F16, F17, F18, F19, F20, F21, F22, F23,
|
|
|
- F24, F25, F26, F27, F28, F29, F30, F31,
|
|
|
- Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR };
|
|
|
-
|
|
|
-
|
|
|
-extern void trap_low(void); /* In arch/sparc/kernel/entry.S */
|
|
|
-
|
|
|
-unsigned long get_sun4cpte(unsigned long addr)
|
|
|
-{
|
|
|
- unsigned long entry;
|
|
|
-
|
|
|
- __asm__ __volatile__("\n\tlda [%1] %2, %0\n\t" :
|
|
|
- "=r" (entry) :
|
|
|
- "r" (addr), "i" (ASI_PTE));
|
|
|
- return entry;
|
|
|
-}
|
|
|
-
|
|
|
-unsigned long get_sun4csegmap(unsigned long addr)
|
|
|
-{
|
|
|
- unsigned long entry;
|
|
|
-
|
|
|
- __asm__ __volatile__("\n\tlduba [%1] %2, %0\n\t" :
|
|
|
- "=r" (entry) :
|
|
|
- "r" (addr), "i" (ASI_SEGMAP));
|
|
|
- return entry;
|
|
|
-}
|
|
|
-
|
|
|
-#if 0
|
|
|
-/* Have to sort this out. This cannot be done after initialization. */
|
|
|
-static void flush_cache_all_nop(void) {}
|
|
|
-#endif
|
|
|
-
|
|
|
-/* Place where we save old trap entries for restoration */
|
|
|
-struct tt_entry kgdb_savettable[256];
|
|
|
-typedef void (*trapfunc_t)(void);
|
|
|
-
|
|
|
-/* Helper routine for manipulation of kgdb_savettable */
|
|
|
-static inline void copy_ttentry(struct tt_entry *src, struct tt_entry *dest)
|
|
|
-{
|
|
|
- dest->inst_one = src->inst_one;
|
|
|
- dest->inst_two = src->inst_two;
|
|
|
- dest->inst_three = src->inst_three;
|
|
|
- dest->inst_four = src->inst_four;
|
|
|
-}
|
|
|
-
|
|
|
-/* Initialize the kgdb_savettable so that debugging can commence */
|
|
|
-static void eh_init(void)
|
|
|
-{
|
|
|
- int i;
|
|
|
-
|
|
|
- for(i=0; i < 256; i++)
|
|
|
- copy_ttentry(&sparc_ttable[i], &kgdb_savettable[i]);
|
|
|
-}
|
|
|
-
|
|
|
-/* Install an exception handler for kgdb */
|
|
|
-static void exceptionHandler(int tnum, trapfunc_t trap_entry)
|
|
|
-{
|
|
|
- unsigned long te_addr = (unsigned long) trap_entry;
|
|
|
-
|
|
|
- /* Make new vector */
|
|
|
- sparc_ttable[tnum].inst_one =
|
|
|
- SPARC_BRANCH((unsigned long) te_addr,
|
|
|
- (unsigned long) &sparc_ttable[tnum].inst_one);
|
|
|
- sparc_ttable[tnum].inst_two = SPARC_RD_PSR_L0;
|
|
|
- sparc_ttable[tnum].inst_three = SPARC_NOP;
|
|
|
- sparc_ttable[tnum].inst_four = SPARC_NOP;
|
|
|
-}
|
|
|
-
|
|
|
-/* Convert ch from a hex digit to an int */
|
|
|
-static int
|
|
|
-hex(unsigned char ch)
|
|
|
-{
|
|
|
- if (ch >= 'a' && ch <= 'f')
|
|
|
- return ch-'a'+10;
|
|
|
- if (ch >= '0' && ch <= '9')
|
|
|
- return ch-'0';
|
|
|
- if (ch >= 'A' && ch <= 'F')
|
|
|
- return ch-'A'+10;
|
|
|
- return -1;
|
|
|
-}
|
|
|
-
|
|
|
-/* scan for the sequence $<data>#<checksum> */
|
|
|
-static void
|
|
|
-getpacket(char *buffer)
|
|
|
-{
|
|
|
- unsigned char checksum;
|
|
|
- unsigned char xmitcsum;
|
|
|
- int i;
|
|
|
- int count;
|
|
|
- unsigned char ch;
|
|
|
-
|
|
|
- do {
|
|
|
- /* wait around for the start character, ignore all other characters */
|
|
|
- while ((ch = (getDebugChar() & 0x7f)) != '$') ;
|
|
|
-
|
|
|
- checksum = 0;
|
|
|
- xmitcsum = -1;
|
|
|
-
|
|
|
- count = 0;
|
|
|
-
|
|
|
- /* now, read until a # or end of buffer is found */
|
|
|
- while (count < BUFMAX) {
|
|
|
- ch = getDebugChar() & 0x7f;
|
|
|
- if (ch == '#')
|
|
|
- break;
|
|
|
- checksum = checksum + ch;
|
|
|
- buffer[count] = ch;
|
|
|
- count = count + 1;
|
|
|
- }
|
|
|
-
|
|
|
- if (count >= BUFMAX)
|
|
|
- continue;
|
|
|
-
|
|
|
- buffer[count] = 0;
|
|
|
-
|
|
|
- if (ch == '#') {
|
|
|
- xmitcsum = hex(getDebugChar() & 0x7f) << 4;
|
|
|
- xmitcsum |= hex(getDebugChar() & 0x7f);
|
|
|
- if (checksum != xmitcsum)
|
|
|
- putDebugChar('-'); /* failed checksum */
|
|
|
- else {
|
|
|
- putDebugChar('+'); /* successful transfer */
|
|
|
- /* if a sequence char is present, reply the ID */
|
|
|
- if (buffer[2] == ':') {
|
|
|
- putDebugChar(buffer[0]);
|
|
|
- putDebugChar(buffer[1]);
|
|
|
- /* remove sequence chars from buffer */
|
|
|
- count = strlen(buffer);
|
|
|
- for (i=3; i <= count; i++)
|
|
|
- buffer[i-3] = buffer[i];
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- } while (checksum != xmitcsum);
|
|
|
-}
|
|
|
-
|
|
|
-/* send the packet in buffer. */
|
|
|
-
|
|
|
-static void
|
|
|
-putpacket(unsigned char *buffer)
|
|
|
-{
|
|
|
- unsigned char checksum;
|
|
|
- int count;
|
|
|
- unsigned char ch, recv;
|
|
|
-
|
|
|
- /* $<packet info>#<checksum>. */
|
|
|
- do {
|
|
|
- putDebugChar('$');
|
|
|
- checksum = 0;
|
|
|
- count = 0;
|
|
|
-
|
|
|
- while ((ch = buffer[count])) {
|
|
|
- putDebugChar(ch);
|
|
|
- checksum += ch;
|
|
|
- count += 1;
|
|
|
- }
|
|
|
-
|
|
|
- putDebugChar('#');
|
|
|
- putDebugChar(hexchars[checksum >> 4]);
|
|
|
- putDebugChar(hexchars[checksum & 0xf]);
|
|
|
- recv = getDebugChar();
|
|
|
- } while ((recv & 0x7f) != '+');
|
|
|
-}
|
|
|
-
|
|
|
-static char remcomInBuffer[BUFMAX];
|
|
|
-static char remcomOutBuffer[BUFMAX];
|
|
|
-
|
|
|
-/* Convert the memory pointed to by mem into hex, placing result in buf.
|
|
|
- * Return a pointer to the last char put in buf (null), in case of mem fault,
|
|
|
- * return 0.
|
|
|
- */
|
|
|
-
|
|
|
-static unsigned char *
|
|
|
-mem2hex(char *mem, char *buf, int count)
|
|
|
-{
|
|
|
- unsigned char ch;
|
|
|
-
|
|
|
- while (count-- > 0) {
|
|
|
- /* This assembler code is basically: ch = *mem++;
|
|
|
- * except that we use the SPARC/Linux exception table
|
|
|
- * mechanism (see how "fixup" works in kernel_mna_trap_fault)
|
|
|
- * to arrange for a "return 0" upon a memory fault
|
|
|
- */
|
|
|
- __asm__(
|
|
|
- "\n1:\n\t"
|
|
|
- "ldub [%0], %1\n\t"
|
|
|
- "inc %0\n\t"
|
|
|
- ".section .fixup,#alloc,#execinstr\n\t"
|
|
|
- ".align 4\n"
|
|
|
- "2:\n\t"
|
|
|
- "retl\n\t"
|
|
|
- " mov 0, %%o0\n\t"
|
|
|
- ".section __ex_table, #alloc\n\t"
|
|
|
- ".align 4\n\t"
|
|
|
- ".word 1b, 2b\n\t"
|
|
|
- ".text\n"
|
|
|
- : "=r" (mem), "=r" (ch) : "0" (mem));
|
|
|
- *buf++ = hexchars[ch >> 4];
|
|
|
- *buf++ = hexchars[ch & 0xf];
|
|
|
- }
|
|
|
-
|
|
|
- *buf = 0;
|
|
|
- return buf;
|
|
|
-}
|
|
|
-
|
|
|
-/* convert the hex array pointed to by buf into binary to be placed in mem
|
|
|
- * return a pointer to the character AFTER the last byte written.
|
|
|
-*/
|
|
|
-static char *
|
|
|
-hex2mem(char *buf, char *mem, int count)
|
|
|
-{
|
|
|
- int i;
|
|
|
- unsigned char ch;
|
|
|
-
|
|
|
- for (i=0; i<count; i++) {
|
|
|
-
|
|
|
- ch = hex(*buf++) << 4;
|
|
|
- ch |= hex(*buf++);
|
|
|
- /* Assembler code is *mem++ = ch; with return 0 on fault */
|
|
|
- __asm__(
|
|
|
- "\n1:\n\t"
|
|
|
- "stb %1, [%0]\n\t"
|
|
|
- "inc %0\n\t"
|
|
|
- ".section .fixup,#alloc,#execinstr\n\t"
|
|
|
- ".align 4\n"
|
|
|
- "2:\n\t"
|
|
|
- "retl\n\t"
|
|
|
- " mov 0, %%o0\n\t"
|
|
|
- ".section __ex_table, #alloc\n\t"
|
|
|
- ".align 4\n\t"
|
|
|
- ".word 1b, 2b\n\t"
|
|
|
- ".text\n"
|
|
|
- : "=r" (mem) : "r" (ch) , "0" (mem));
|
|
|
- }
|
|
|
- return mem;
|
|
|
-}
|
|
|
-
|
|
|
-/* This table contains the mapping between SPARC hardware trap types, and
|
|
|
- signals, which are primarily what GDB understands. It also indicates
|
|
|
- which hardware traps we need to commandeer when initializing the stub. */
|
|
|
-
|
|
|
-static struct hard_trap_info
|
|
|
-{
|
|
|
- unsigned char tt; /* Trap type code for SPARC */
|
|
|
- unsigned char signo; /* Signal that we map this trap into */
|
|
|
-} hard_trap_info[] = {
|
|
|
- {SP_TRAP_SBPT, SIGTRAP}, /* ta 1 - Linux/KGDB software breakpoint */
|
|
|
- {0, 0} /* Must be last */
|
|
|
-};
|
|
|
-
|
|
|
-/* Set up exception handlers for tracing and breakpoints */
|
|
|
-
|
|
|
-void
|
|
|
-set_debug_traps(void)
|
|
|
-{
|
|
|
- struct hard_trap_info *ht;
|
|
|
- unsigned long flags;
|
|
|
-
|
|
|
- local_irq_save(flags);
|
|
|
-#if 0
|
|
|
-/* Have to sort this out. This cannot be done after initialization. */
|
|
|
- BTFIXUPSET_CALL(flush_cache_all, flush_cache_all_nop, BTFIXUPCALL_NOP);
|
|
|
-#endif
|
|
|
-
|
|
|
- /* Initialize our copy of the Linux Sparc trap table */
|
|
|
- eh_init();
|
|
|
-
|
|
|
- for (ht = hard_trap_info; ht->tt && ht->signo; ht++) {
|
|
|
- /* Only if it doesn't destroy our fault handlers */
|
|
|
- if((ht->tt != SP_TRAP_TFLT) &&
|
|
|
- (ht->tt != SP_TRAP_DFLT))
|
|
|
- exceptionHandler(ht->tt, trap_low);
|
|
|
- }
|
|
|
-
|
|
|
- /* In case GDB is started before us, ack any packets (presumably
|
|
|
- * "$?#xx") sitting there.
|
|
|
- *
|
|
|
- * I've found this code causes more problems than it solves,
|
|
|
- * so that's why it's commented out. GDB seems to work fine
|
|
|
- * now starting either before or after the kernel -bwb
|
|
|
- */
|
|
|
-#if 0
|
|
|
- while((c = getDebugChar()) != '$');
|
|
|
- while((c = getDebugChar()) != '#');
|
|
|
- c = getDebugChar(); /* eat first csum byte */
|
|
|
- c = getDebugChar(); /* eat second csum byte */
|
|
|
- putDebugChar('+'); /* ack it */
|
|
|
-#endif
|
|
|
-
|
|
|
- initialized = 1; /* connect! */
|
|
|
- local_irq_restore(flags);
|
|
|
-}
|
|
|
-
|
|
|
-/* Convert the SPARC hardware trap type code to a unix signal number. */
|
|
|
-
|
|
|
-static int
|
|
|
-computeSignal(int tt)
|
|
|
-{
|
|
|
- struct hard_trap_info *ht;
|
|
|
-
|
|
|
- for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
|
|
|
- if (ht->tt == tt)
|
|
|
- return ht->signo;
|
|
|
-
|
|
|
- return SIGHUP; /* default for things we don't know about */
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * While we find nice hex chars, build an int.
|
|
|
- * Return number of chars processed.
|
|
|
- */
|
|
|
-
|
|
|
-static int
|
|
|
-hexToInt(char **ptr, int *intValue)
|
|
|
-{
|
|
|
- int numChars = 0;
|
|
|
- int hexValue;
|
|
|
-
|
|
|
- *intValue = 0;
|
|
|
-
|
|
|
- while (**ptr) {
|
|
|
- hexValue = hex(**ptr);
|
|
|
- if (hexValue < 0)
|
|
|
- break;
|
|
|
-
|
|
|
- *intValue = (*intValue << 4) | hexValue;
|
|
|
- numChars ++;
|
|
|
-
|
|
|
- (*ptr)++;
|
|
|
- }
|
|
|
-
|
|
|
- return (numChars);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * This function does all command processing for interfacing to gdb. It
|
|
|
- * returns 1 if you should skip the instruction at the trap address, 0
|
|
|
- * otherwise.
|
|
|
- */
|
|
|
-
|
|
|
-extern void breakinst(void);
|
|
|
-
|
|
|
-void
|
|
|
-handle_exception (unsigned long *registers)
|
|
|
-{
|
|
|
- int tt; /* Trap type */
|
|
|
- int sigval;
|
|
|
- int addr;
|
|
|
- int length;
|
|
|
- char *ptr;
|
|
|
- unsigned long *sp;
|
|
|
-
|
|
|
- /* First, we must force all of the windows to be spilled out */
|
|
|
-
|
|
|
- asm("save %sp, -64, %sp\n\t"
|
|
|
- "save %sp, -64, %sp\n\t"
|
|
|
- "save %sp, -64, %sp\n\t"
|
|
|
- "save %sp, -64, %sp\n\t"
|
|
|
- "save %sp, -64, %sp\n\t"
|
|
|
- "save %sp, -64, %sp\n\t"
|
|
|
- "save %sp, -64, %sp\n\t"
|
|
|
- "save %sp, -64, %sp\n\t"
|
|
|
- "restore\n\t"
|
|
|
- "restore\n\t"
|
|
|
- "restore\n\t"
|
|
|
- "restore\n\t"
|
|
|
- "restore\n\t"
|
|
|
- "restore\n\t"
|
|
|
- "restore\n\t"
|
|
|
- "restore\n\t");
|
|
|
-
|
|
|
- lock_kernel();
|
|
|
- if (registers[PC] == (unsigned long)breakinst) {
|
|
|
- /* Skip over breakpoint trap insn */
|
|
|
- registers[PC] = registers[NPC];
|
|
|
- registers[NPC] += 4;
|
|
|
- }
|
|
|
-
|
|
|
- sp = (unsigned long *)registers[SP];
|
|
|
-
|
|
|
- tt = (registers[TBR] >> 4) & 0xff;
|
|
|
-
|
|
|
- /* reply to host that an exception has occurred */
|
|
|
- sigval = computeSignal(tt);
|
|
|
- ptr = remcomOutBuffer;
|
|
|
-
|
|
|
- *ptr++ = 'T';
|
|
|
- *ptr++ = hexchars[sigval >> 4];
|
|
|
- *ptr++ = hexchars[sigval & 0xf];
|
|
|
-
|
|
|
- *ptr++ = hexchars[PC >> 4];
|
|
|
- *ptr++ = hexchars[PC & 0xf];
|
|
|
- *ptr++ = ':';
|
|
|
- ptr = mem2hex((char *)®isters[PC], ptr, 4);
|
|
|
- *ptr++ = ';';
|
|
|
-
|
|
|
- *ptr++ = hexchars[FP >> 4];
|
|
|
- *ptr++ = hexchars[FP & 0xf];
|
|
|
- *ptr++ = ':';
|
|
|
- ptr = mem2hex((char *) (sp + 8 + 6), ptr, 4); /* FP */
|
|
|
- *ptr++ = ';';
|
|
|
-
|
|
|
- *ptr++ = hexchars[SP >> 4];
|
|
|
- *ptr++ = hexchars[SP & 0xf];
|
|
|
- *ptr++ = ':';
|
|
|
- ptr = mem2hex((char *)&sp, ptr, 4);
|
|
|
- *ptr++ = ';';
|
|
|
-
|
|
|
- *ptr++ = hexchars[NPC >> 4];
|
|
|
- *ptr++ = hexchars[NPC & 0xf];
|
|
|
- *ptr++ = ':';
|
|
|
- ptr = mem2hex((char *)®isters[NPC], ptr, 4);
|
|
|
- *ptr++ = ';';
|
|
|
-
|
|
|
- *ptr++ = hexchars[O7 >> 4];
|
|
|
- *ptr++ = hexchars[O7 & 0xf];
|
|
|
- *ptr++ = ':';
|
|
|
- ptr = mem2hex((char *)®isters[O7], ptr, 4);
|
|
|
- *ptr++ = ';';
|
|
|
-
|
|
|
- *ptr++ = 0;
|
|
|
-
|
|
|
- putpacket(remcomOutBuffer);
|
|
|
-
|
|
|
- /* XXX We may want to add some features dealing with poking the
|
|
|
- * XXX page tables, the real ones on the srmmu, and what is currently
|
|
|
- * XXX loaded in the sun4/sun4c tlb at this point in time. But this
|
|
|
- * XXX also required hacking to the gdb sources directly...
|
|
|
- */
|
|
|
-
|
|
|
- while (1) {
|
|
|
- remcomOutBuffer[0] = 0;
|
|
|
-
|
|
|
- getpacket(remcomInBuffer);
|
|
|
- switch (remcomInBuffer[0]) {
|
|
|
- case '?':
|
|
|
- remcomOutBuffer[0] = 'S';
|
|
|
- remcomOutBuffer[1] = hexchars[sigval >> 4];
|
|
|
- remcomOutBuffer[2] = hexchars[sigval & 0xf];
|
|
|
- remcomOutBuffer[3] = 0;
|
|
|
- break;
|
|
|
-
|
|
|
- case 'd':
|
|
|
- /* toggle debug flag */
|
|
|
- break;
|
|
|
-
|
|
|
- case 'g': /* return the value of the CPU registers */
|
|
|
- {
|
|
|
- ptr = remcomOutBuffer;
|
|
|
- /* G & O regs */
|
|
|
- ptr = mem2hex((char *)registers, ptr, 16 * 4);
|
|
|
- /* L & I regs */
|
|
|
- ptr = mem2hex((char *) (sp + 0), ptr, 16 * 4);
|
|
|
- /* Floating point */
|
|
|
- memset(ptr, '0', 32 * 8);
|
|
|
- /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
|
|
|
- mem2hex((char *)®isters[Y], (ptr + 32 * 4 * 2), (8 * 4));
|
|
|
- }
|
|
|
- break;
|
|
|
-
|
|
|
- case 'G': /* set the value of the CPU registers - return OK */
|
|
|
- {
|
|
|
- unsigned long *newsp, psr;
|
|
|
-
|
|
|
- psr = registers[PSR];
|
|
|
-
|
|
|
- ptr = &remcomInBuffer[1];
|
|
|
- /* G & O regs */
|
|
|
- hex2mem(ptr, (char *)registers, 16 * 4);
|
|
|
- /* L & I regs */
|
|
|
- hex2mem(ptr + 16 * 4 * 2, (char *) (sp + 0), 16 * 4);
|
|
|
- /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
|
|
|
- hex2mem(ptr + 64 * 4 * 2, (char *)®isters[Y], 8 * 4);
|
|
|
-
|
|
|
- /* See if the stack pointer has moved. If so,
|
|
|
- * then copy the saved locals and ins to the
|
|
|
- * new location. This keeps the window
|
|
|
- * overflow and underflow routines happy.
|
|
|
- */
|
|
|
-
|
|
|
- newsp = (unsigned long *)registers[SP];
|
|
|
- if (sp != newsp)
|
|
|
- sp = memcpy(newsp, sp, 16 * 4);
|
|
|
-
|
|
|
- /* Don't allow CWP to be modified. */
|
|
|
-
|
|
|
- if (psr != registers[PSR])
|
|
|
- registers[PSR] = (psr & 0x1f) | (registers[PSR] & ~0x1f);
|
|
|
-
|
|
|
- strcpy(remcomOutBuffer,"OK");
|
|
|
- }
|
|
|
- break;
|
|
|
-
|
|
|
- case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
|
|
|
- /* Try to read %x,%x. */
|
|
|
-
|
|
|
- ptr = &remcomInBuffer[1];
|
|
|
-
|
|
|
- if (hexToInt(&ptr, &addr)
|
|
|
- && *ptr++ == ','
|
|
|
- && hexToInt(&ptr, &length)) {
|
|
|
- if (mem2hex((char *)addr, remcomOutBuffer, length))
|
|
|
- break;
|
|
|
-
|
|
|
- strcpy (remcomOutBuffer, "E03");
|
|
|
- } else {
|
|
|
- strcpy(remcomOutBuffer,"E01");
|
|
|
- }
|
|
|
- break;
|
|
|
-
|
|
|
- case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
|
|
|
- /* Try to read '%x,%x:'. */
|
|
|
-
|
|
|
- ptr = &remcomInBuffer[1];
|
|
|
-
|
|
|
- if (hexToInt(&ptr, &addr)
|
|
|
- && *ptr++ == ','
|
|
|
- && hexToInt(&ptr, &length)
|
|
|
- && *ptr++ == ':') {
|
|
|
- if (hex2mem(ptr, (char *)addr, length)) {
|
|
|
- strcpy(remcomOutBuffer, "OK");
|
|
|
- } else {
|
|
|
- strcpy(remcomOutBuffer, "E03");
|
|
|
- }
|
|
|
- } else {
|
|
|
- strcpy(remcomOutBuffer, "E02");
|
|
|
- }
|
|
|
- break;
|
|
|
-
|
|
|
- case 'c': /* cAA..AA Continue at address AA..AA(optional) */
|
|
|
- /* try to read optional parameter, pc unchanged if no parm */
|
|
|
-
|
|
|
- ptr = &remcomInBuffer[1];
|
|
|
- if (hexToInt(&ptr, &addr)) {
|
|
|
- registers[PC] = addr;
|
|
|
- registers[NPC] = addr + 4;
|
|
|
- }
|
|
|
-
|
|
|
-/* Need to flush the instruction cache here, as we may have deposited a
|
|
|
- * breakpoint, and the icache probably has no way of knowing that a data ref to
|
|
|
- * some location may have changed something that is in the instruction cache.
|
|
|
- */
|
|
|
- flush_cache_all();
|
|
|
- unlock_kernel();
|
|
|
- return;
|
|
|
-
|
|
|
- /* kill the program */
|
|
|
- case 'k' : /* do nothing */
|
|
|
- break;
|
|
|
- case 'r': /* Reset */
|
|
|
- asm ("call 0\n\t"
|
|
|
- "nop\n\t");
|
|
|
- break;
|
|
|
- } /* switch */
|
|
|
-
|
|
|
- /* reply to the request */
|
|
|
- putpacket(remcomOutBuffer);
|
|
|
- } /* while(1) */
|
|
|
-}
|
|
|
-
|
|
|
-/* This function will generate a breakpoint exception. It is used at the
|
|
|
- beginning of a program to sync up with a debugger and can be used
|
|
|
- otherwise as a quick means to stop program execution and "break" into
|
|
|
- the debugger. */
|
|
|
-
|
|
|
-void
|
|
|
-breakpoint(void)
|
|
|
-{
|
|
|
- if (!initialized)
|
|
|
- return;
|
|
|
-
|
|
|
- /* Again, watch those c-prefixes for ELF kernels */
|
|
|
-#if defined(__svr4__) || defined(__ELF__)
|
|
|
- asm(".globl breakinst\n"
|
|
|
- "breakinst:\n\t"
|
|
|
- "ta 1\n");
|
|
|
-#else
|
|
|
- asm(".globl _breakinst\n"
|
|
|
- "_breakinst:\n\t"
|
|
|
- "ta 1\n");
|
|
|
-#endif
|
|
|
-}
|