Browse Source

Merge branch 'master' of git+ssh://git.samba.org/data/git/sfrench/cifs-2.6

Steve French 13 years ago
parent
commit
dcd169b761
100 changed files with 3718 additions and 203 deletions
  1. 75 0
      Documentation/ABI/stable/sysfs-bus-xen-backend
  2. 77 0
      Documentation/ABI/stable/sysfs-devices-system-xen_memory
  3. 18 0
      Documentation/ABI/testing/sysfs-bus-pci
  4. 0 7
      Documentation/ABI/testing/sysfs-bus-rbd
  5. 25 0
      Documentation/ABI/testing/sysfs-bus-usb
  6. 12 0
      Documentation/ABI/testing/sysfs-class-rtc-rtc0-device-rtc_calibration
  7. 34 0
      Documentation/ABI/testing/sysfs-devices-platform-docg3
  8. 1 1
      Documentation/ABI/testing/sysfs-driver-hid-logitech-lg4ff
  9. 9 0
      Documentation/ABI/testing/sysfs-driver-hid-multitouch
  10. 135 0
      Documentation/ABI/testing/sysfs-driver-hid-roccat-isku
  11. 12 0
      Documentation/ABI/testing/sysfs-driver-hid-wiimote
  12. 9 8
      Documentation/ABI/testing/sysfs-driver-wacom
  13. 50 0
      Documentation/DocBook/debugobjects.tmpl
  14. 1 1
      Documentation/DocBook/writing-an-alsa-driver.tmpl
  15. 2 2
      Documentation/HOWTO
  16. 6 0
      Documentation/RCU/checklist.txt
  17. 5 5
      Documentation/RCU/rcu.txt
  18. 10 6
      Documentation/RCU/stallwarn.txt
  19. 13 0
      Documentation/RCU/torture.txt
  20. 0 4
      Documentation/RCU/trace.txt
  21. 14 5
      Documentation/RCU/whatisRCU.txt
  22. 5 6
      Documentation/arm/memory.txt
  23. 87 0
      Documentation/atomic_ops.txt
  24. 21 30
      Documentation/cgroups/cgroups.txt
  25. 26 2
      Documentation/cgroups/memory.txt
  26. 53 0
      Documentation/cgroups/net_prio.txt
  27. 1 3
      Documentation/cpu-freq/governors.txt
  28. 4 4
      Documentation/development-process/5.Posting
  29. 1 1
      Documentation/devices.txt
  30. 6 2
      Documentation/devicetree/bindings/arm/fsl.txt
  31. 4 0
      Documentation/devicetree/bindings/arm/gic.txt
  32. 8 0
      Documentation/devicetree/bindings/arm/insignal-boards.txt
  33. 8 0
      Documentation/devicetree/bindings/arm/samsung-boards.txt
  34. 14 0
      Documentation/devicetree/bindings/arm/tegra.txt
  35. 29 0
      Documentation/devicetree/bindings/arm/vic.txt
  36. 40 0
      Documentation/devicetree/bindings/c6x/clocks.txt
  37. 127 0
      Documentation/devicetree/bindings/c6x/dscr.txt
  38. 62 0
      Documentation/devicetree/bindings/c6x/emifa.txt
  39. 104 0
      Documentation/devicetree/bindings/c6x/interrupt.txt
  40. 28 0
      Documentation/devicetree/bindings/c6x/soc.txt
  41. 26 0
      Documentation/devicetree/bindings/c6x/timer64.txt
  42. 30 0
      Documentation/devicetree/bindings/dma/arm-pl330.txt
  43. 40 0
      Documentation/devicetree/bindings/gpio/gpio-samsung.txt
  44. 22 0
      Documentation/devicetree/bindings/i2c/i2c-designware.txt
  45. 58 0
      Documentation/devicetree/bindings/i2c/trivial-devices.txt
  46. 88 0
      Documentation/devicetree/bindings/input/samsung-keypad.txt
  47. 18 0
      Documentation/devicetree/bindings/input/tegra-kbc.txt
  48. 44 0
      Documentation/devicetree/bindings/mtd/gpio-control-nand.txt
  49. 15 0
      Documentation/devicetree/bindings/net/calxeda-xgmac.txt
  50. 53 0
      Documentation/devicetree/bindings/net/can/cc770.txt
  51. 25 0
      Documentation/devicetree/bindings/net/macb.txt
  52. 9 0
      Documentation/devicetree/bindings/nvec/nvec_nvidia.txt
  53. 5 0
      Documentation/devicetree/bindings/power_supply/olpc_battery.txt
  54. 23 0
      Documentation/devicetree/bindings/power_supply/sbs_sbs-battery.txt
  55. 163 0
      Documentation/devicetree/bindings/powerpc/fsl/srio-rmu.txt
  56. 103 0
      Documentation/devicetree/bindings/powerpc/fsl/srio.txt
  57. 29 0
      Documentation/devicetree/bindings/regulator/fixed-regulator.txt
  58. 54 0
      Documentation/devicetree/bindings/regulator/regulator.txt
  59. 20 0
      Documentation/devicetree/bindings/rtc/s3c-rtc.txt
  60. 12 0
      Documentation/devicetree/bindings/rtc/twl-rtc.txt
  61. 10 0
      Documentation/devicetree/bindings/serial/omap_serial.txt
  62. 14 0
      Documentation/devicetree/bindings/serial/samsung_uart.txt
  63. 71 0
      Documentation/devicetree/bindings/sound/tegra-audio-wm8903.txt
  64. 12 0
      Documentation/devicetree/bindings/sound/tegra20-das.txt
  65. 17 0
      Documentation/devicetree/bindings/sound/tegra20-i2s.txt
  66. 50 0
      Documentation/devicetree/bindings/sound/wm8903.txt
  67. 18 0
      Documentation/devicetree/bindings/sound/wm8994.txt
  68. 13 0
      Documentation/devicetree/bindings/usb/tegra-usb.txt
  69. 5 0
      Documentation/devicetree/bindings/vendor-prefixes.txt
  70. 96 0
      Documentation/digsig.txt
  71. 224 0
      Documentation/dma-buf-sharing.txt
  72. 0 1
      Documentation/dontdiff
  73. 1 0
      Documentation/driver-model/devres.txt
  74. 27 22
      Documentation/feature-removal-schedule.txt
  75. 4 4
      Documentation/filesystems/Locking
  76. 1 1
      Documentation/filesystems/configfs/configfs.txt
  77. 43 13
      Documentation/filesystems/debugfs.txt
  78. 7 0
      Documentation/filesystems/ext4.txt
  79. 39 0
      Documentation/filesystems/proc.txt
  80. 1 1
      Documentation/filesystems/sysfs.txt
  81. 4 4
      Documentation/filesystems/vfs.txt
  82. 2 3
      Documentation/hwmon/pmbus
  83. 15 0
      Documentation/hwmon/zl6100
  84. 188 0
      Documentation/input/alps.txt
  85. 103 0
      Documentation/input/gpio-tilt.txt
  86. 333 31
      Documentation/input/sentelic.txt
  87. 32 3
      Documentation/kdump/kdump.txt
  88. 60 14
      Documentation/kernel-parameters.txt
  89. 63 0
      Documentation/lockdep-design.txt
  90. 18 4
      Documentation/md.txt
  91. 2 0
      Documentation/networking/00-INDEX
  92. 4 3
      Documentation/networking/batman-adv.txt
  93. 17 0
      Documentation/networking/bonding.txt
  94. 27 0
      Documentation/networking/ieee802154.txt
  95. 2 0
      Documentation/networking/ifenslave.c
  96. 13 0
      Documentation/networking/ip-sysctl.txt
  97. 195 0
      Documentation/networking/openvswitch.txt
  98. 1 1
      Documentation/networking/packet_mmap.txt
  99. 4 4
      Documentation/networking/scaling.txt
  100. 9 7
      Documentation/networking/stmmac.txt

+ 75 - 0
Documentation/ABI/stable/sysfs-bus-xen-backend

@@ -0,0 +1,75 @@
+What:		/sys/bus/xen-backend/devices/*/devtype
+Date:		Feb 2009
+KernelVersion:	2.6.38
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+                The type of the device.  e.g., one of: 'vbd' (block),
+                'vif' (network), or 'vfb' (framebuffer).
+
+What:		/sys/bus/xen-backend/devices/*/nodename
+Date:		Feb 2009
+KernelVersion:	2.6.38
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+                XenStore node (under /local/domain/NNN/) for this
+                backend device.
+
+What:		/sys/bus/xen-backend/devices/vbd-*/physical_device
+Date:		April 2011
+KernelVersion:	3.0
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+                The major:minor number (in hexidecimal) of the
+                physical device providing the storage for this backend
+                block device.
+
+What:		/sys/bus/xen-backend/devices/vbd-*/mode
+Date:		April 2011
+KernelVersion:	3.0
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+                Whether the block device is read-only ('r') or
+                read-write ('w').
+
+What:		/sys/bus/xen-backend/devices/vbd-*/statistics/f_req
+Date:		April 2011
+KernelVersion:	3.0
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+                Number of flush requests from the frontend.
+
+What:		/sys/bus/xen-backend/devices/vbd-*/statistics/oo_req
+Date:		April 2011
+KernelVersion:	3.0
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+                Number of requests delayed because the backend was too
+                busy processing previous requests.
+
+What:		/sys/bus/xen-backend/devices/vbd-*/statistics/rd_req
+Date:		April 2011
+KernelVersion:	3.0
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+                Number of read requests from the frontend.
+
+What:		/sys/bus/xen-backend/devices/vbd-*/statistics/rd_sect
+Date:		April 2011
+KernelVersion:	3.0
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+                Number of sectors read by the frontend.
+
+What:		/sys/bus/xen-backend/devices/vbd-*/statistics/wr_req
+Date:		April 2011
+KernelVersion:	3.0
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+                Number of write requests from the frontend.
+
+What:		/sys/bus/xen-backend/devices/vbd-*/statistics/wr_sect
+Date:		April 2011
+KernelVersion:	3.0
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+                Number of sectors written by the frontend.

+ 77 - 0
Documentation/ABI/stable/sysfs-devices-system-xen_memory

@@ -0,0 +1,77 @@
+What:		/sys/devices/system/xen_memory/xen_memory0/max_retry_count
+Date:		May 2011
+KernelVersion:	2.6.39
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+		The maximum number of times the balloon driver will
+		attempt to increase the balloon before giving up.  See
+		also 'retry_count' below.
+		A value of zero means retry forever and is the default one.
+
+What:		/sys/devices/system/xen_memory/xen_memory0/max_schedule_delay
+Date:		May 2011
+KernelVersion:	2.6.39
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+		The limit that 'schedule_delay' (see below) will be
+		increased to. The default value is 32 seconds.
+
+What:		/sys/devices/system/xen_memory/xen_memory0/retry_count
+Date:		May 2011
+KernelVersion:	2.6.39
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+		The current number of times that the balloon driver
+		has attempted to increase the size of the balloon.
+		The default value is one. With max_retry_count being
+		zero (unlimited), this means that the driver will attempt
+		to retry with a 'schedule_delay' delay.
+
+What:		/sys/devices/system/xen_memory/xen_memory0/schedule_delay
+Date:		May 2011
+KernelVersion:	2.6.39
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+		The time (in seconds) to wait between attempts to
+		increase the balloon.  Each time the balloon cannot be
+		increased, 'schedule_delay' is increased (until
+		'max_schedule_delay' is reached at which point it
+		will use the max value).
+
+What:		/sys/devices/system/xen_memory/xen_memory0/target
+Date:		April 2008
+KernelVersion:	2.6.26
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+		The target number of pages to adjust this domain's
+		memory reservation to.
+
+What:		/sys/devices/system/xen_memory/xen_memory0/target_kb
+Date:		April 2008
+KernelVersion:	2.6.26
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+		As target above, except the value is in KiB.
+
+What:		/sys/devices/system/xen_memory/xen_memory0/info/current_kb
+Date:		April 2008
+KernelVersion:	2.6.26
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+		Current size (in KiB) of this domain's memory
+		reservation.
+
+What:		/sys/devices/system/xen_memory/xen_memory0/info/high_kb
+Date:		April 2008
+KernelVersion:	2.6.26
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+		Amount (in KiB) of high memory in the balloon.
+
+What:		/sys/devices/system/xen_memory/xen_memory0/info/low_kb
+Date:		April 2008
+KernelVersion:	2.6.26
+Contact:	Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
+Description:
+		Amount (in KiB) of low (or normal) memory in the
+		balloon.

+ 18 - 0
Documentation/ABI/testing/sysfs-bus-pci

@@ -66,6 +66,24 @@ Description:
 		re-discover previously removed devices.
 		Depends on CONFIG_HOTPLUG.
 
+What:		/sys/bus/pci/devices/.../msi_irqs/
+Date:		September, 2011
+Contact:	Neil Horman <nhorman@tuxdriver.com>
+Description:
+		The /sys/devices/.../msi_irqs directory contains a variable set
+		of sub-directories, with each sub-directory being named after a
+		corresponding msi irq vector allocated to that device.  Each
+		numbered sub-directory N contains attributes of that irq.
+		Note that this directory is not created for device drivers which
+		do not support msi irqs
+
+What:		/sys/bus/pci/devices/.../msi_irqs/<N>/mode
+Date:		September 2011
+Contact:	Neil Horman <nhorman@tuxdriver.com>
+Description:
+		This attribute indicates the mode that the irq vector named by
+		the parent directory is in (msi vs. msix)
+
 What:		/sys/bus/pci/devices/.../remove
 Date:		January 2009
 Contact:	Linux PCI developers <linux-pci@vger.kernel.org>

+ 0 - 7
Documentation/ABI/testing/sysfs-bus-rbd

@@ -57,13 +57,6 @@ create_snap
 
 	 $ echo <snap-name> > /sys/bus/rbd/devices/<dev-id>/snap_create
 
-rollback_snap
-
-	Rolls back data to the specified snapshot. This goes over the entire
-	list of rados blocks and sends a rollback command to each.
-
-	 $ echo <snap-name> > /sys/bus/rbd/devices/<dev-id>/snap_rollback
-
 snap_*
 
 	A directory per each snapshot

+ 25 - 0
Documentation/ABI/testing/sysfs-bus-usb

@@ -119,6 +119,31 @@ Description:
 		Write a 1 to force the device to disconnect
 		(equivalent to unplugging a wired USB device).
 
+What:		/sys/bus/usb/drivers/.../new_id
+Date:		October 2011
+Contact:	linux-usb@vger.kernel.org
+Description:
+		Writing a device ID to this file will attempt to
+		dynamically add a new device ID to a USB device driver.
+		This may allow the driver to support more hardware than
+		was included in the driver's static device ID support
+		table at compile time. The format for the device ID is:
+		idVendor idProduct bInterfaceClass.
+		The vendor ID and device ID fields are required, the
+		interface class is optional.
+		Upon successfully adding an ID, the driver will probe
+		for the device and attempt to bind to it.  For example:
+		# echo "8086 10f5" > /sys/bus/usb/drivers/foo/new_id
+
+What:		/sys/bus/usb-serial/drivers/.../new_id
+Date:		October 2011
+Contact:	linux-usb@vger.kernel.org
+Description:
+		For serial USB drivers, this attribute appears under the
+		extra bus folder "usb-serial" in sysfs; apart from that
+		difference, all descriptions from the entry
+		"/sys/bus/usb/drivers/.../new_id" apply.
+
 What:		/sys/bus/usb/drivers/.../remove_id
 Date:		November 2009
 Contact:	CHENG Renquan <rqcheng@smu.edu.sg>

+ 12 - 0
Documentation/ABI/testing/sysfs-class-rtc-rtc0-device-rtc_calibration

@@ -0,0 +1,12 @@
+What:           Attribute for calibrating ST-Ericsson AB8500 Real Time Clock
+Date:           Oct 2011
+KernelVersion:  3.0
+Contact:        Mark Godfrey <mark.godfrey@stericsson.com>
+Description:    The rtc_calibration attribute allows the userspace to
+                calibrate the AB8500.s 32KHz Real Time Clock.
+                Every 60 seconds the AB8500 will correct the RTC's value
+                by adding to it the value of this attribute.
+                The range of the attribute is -127 to +127 in units of
+                30.5 micro-seconds (half-parts-per-million of the 32KHz clock)
+Users:          The /vendor/st-ericsson/base_utilities/core/rtc_calibration
+                daemon uses this interface.

+ 34 - 0
Documentation/ABI/testing/sysfs-devices-platform-docg3

@@ -0,0 +1,34 @@
+What:		/sys/devices/platform/docg3/f[0-3]_dps[01]_is_keylocked
+Date:		November 2011
+KernelVersion:	3.3
+Contact:	Robert Jarzmik <robert.jarzmik@free.fr>
+Description:
+		Show whether the floor (0 to 4), protection area (0 or 1) is
+		keylocked. Each docg3 chip (or floor) has 2 protection areas,
+		which can cover any part of it, block aligned, called DPS.
+		The protection has information embedded whether it blocks reads,
+		writes or both.
+		The result is:
+		0 -> the DPS is not keylocked
+		1 -> the DPS is keylocked
+Users:		None identified so far.
+
+What:		/sys/devices/platform/docg3/f[0-3]_dps[01]_protection_key
+Date:		November 2011
+KernelVersion:	3.3
+Contact:	Robert Jarzmik <robert.jarzmik@free.fr>
+Description:
+		Enter the protection key for the floor (0 to 4), protection area
+		(0 or 1). Each docg3 chip (or floor) has 2 protection areas,
+		which can cover any part of it, block aligned, called DPS.
+		The protection has information embedded whether it blocks reads,
+		writes or both.
+		The protection key is a string of 8 bytes (value 0-255).
+		Entering the correct value toggle the lock, and can be observed
+		through f[0-3]_dps[01]_is_keylocked.
+		Possible values are:
+			- 8 bytes
+		Typical values are:
+			- "00000000"
+			- "12345678"
+Users:		None identified so far.

+ 1 - 1
Documentation/ABI/testing/sysfs-driver-hid-logitech-lg4ff

@@ -1,7 +1,7 @@
 What:		/sys/module/hid_logitech/drivers/hid:logitech/<dev>/range.
 Date:		July 2011
 KernelVersion:	3.2
-Contact:	Michal Malý <madcatxster@gmail.com>
+Contact:	Michal Malý <madcatxster@gmail.com>
 Description:	Display minimum, maximum and current range of the steering
 		wheel. Writing a value within min and max boundaries sets the
 		range of the wheel.

+ 9 - 0
Documentation/ABI/testing/sysfs-driver-hid-multitouch

@@ -0,0 +1,9 @@
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/quirks
+Date:		November 2011
+Contact:	Benjamin Tissoires <benjamin.tissoires@gmail.com>
+Description:	The integer value of this attribute corresponds to the
+		quirks actually in place to handle the device's protocol.
+		When read, this attribute returns the current settings (see
+		MT_QUIRKS_* in hid-multitouch.c).
+		When written this attribute change on the fly the quirks, then
+		the protocol to handle the device.

+ 135 - 0
Documentation/ABI/testing/sysfs-driver-hid-roccat-isku

@@ -0,0 +1,135 @@
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/isku/roccatisku<minor>/actual_profile
+Date:		June 2011
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The integer value of this attribute ranges from 0-4.
+		When read, this attribute returns the number of the actual
+		profile. This value is persistent, so its equivalent to the
+		profile that's active when the device is powered on next time.
+		When written, this file sets the number of the startup profile
+		and the device activates this profile immediately.
+Users:		http://roccat.sourceforge.net
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/isku/roccatisku<minor>/info
+Date:		June 2011
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When read, this file returns general data like firmware version.
+		The data is 6 bytes long.
+		This file is readonly.
+Users:		http://roccat.sourceforge.net
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/isku/roccatisku<minor>/key_mask
+Date:		June 2011
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When written, this file lets one deactivate certain keys like
+		windows and application keys, to prevent accidental presses.
+		Profile number for which this settings occur is included in
+		written data. The data has to be 6 bytes long.
+		Before reading this file, control has to be written to select
+		which profile to read.
+Users:		http://roccat.sourceforge.net
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/isku/roccatisku<minor>/keys_capslock
+Date:		June 2011
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When written, this file lets one set the function of the
+		capslock key for a specific profile. Profile number is included
+		in written data. The data has to be 6 bytes long.
+		Before reading this file, control has to be written to select
+		which profile to read.
+Users:		http://roccat.sourceforge.net
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/isku/roccatisku<minor>/keys_easyzone
+Date:		June 2011
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When written, this file lets one set the function of the
+		easyzone keys for a specific profile. Profile number is included
+		in written data. The data has to be 65 bytes long.
+		Before reading this file, control has to be written to select
+		which profile to read.
+Users:		http://roccat.sourceforge.net
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/isku/roccatisku<minor>/keys_function
+Date:		June 2011
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When written, this file lets one set the function of the
+		function keys for a specific profile. Profile number is included
+		in written data. The data has to be 41 bytes long.
+		Before reading this file, control has to be written to select
+		which profile to read.
+Users:		http://roccat.sourceforge.net
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/isku/roccatisku<minor>/keys_macro
+Date:		June 2011
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When written, this file lets one set the function of the macro
+		keys for a specific profile. Profile number is included in
+		written data. The data has to be 35 bytes long.
+		Before reading this file, control has to be written to select
+		which profile to read.
+Users:		http://roccat.sourceforge.net
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/isku/roccatisku<minor>/keys_media
+Date:		June 2011
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When written, this file lets one set the function of the media
+		keys for a specific profile. Profile number is included in
+		written data. The data has to be 29 bytes long.
+		Before reading this file, control has to be written to select
+		which profile to read.
+Users:		http://roccat.sourceforge.net
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/isku/roccatisku<minor>/keys_thumbster
+Date:		June 2011
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When written, this file lets one set the function of the
+		thumbster keys for a specific profile. Profile number is included
+		in written data. The data has to be 23 bytes long.
+		Before reading this file, control has to be written to select
+		which profile to read.
+Users:		http://roccat.sourceforge.net
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/isku/roccatisku<minor>/last_set
+Date:		June 2011
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When written, this file lets one set the time in secs since
+		epoch in which the last configuration took place.
+		The data has to be 20 bytes long.
+Users:		http://roccat.sourceforge.net
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/isku/roccatisku<minor>/light
+Date:		June 2011
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When written, this file lets one set the backlight intensity for
+		a specific profile. Profile number is included in written data.
+		The data has to be 10 bytes long.
+		Before reading this file, control has to be written to select
+		which profile to read.
+Users:		http://roccat.sourceforge.net
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/isku/roccatisku<minor>/macro
+Date:		June 2011
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When written, this file lets one store macros with max 500
+		keystrokes for a specific button for a specific profile.
+		Button and profile numbers are included in written data.
+		The data has to be 2083 bytes long.
+		Before reading this file, control has to be written to select
+		which profile and key to read.
+Users:		http://roccat.sourceforge.net
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/isku/roccatisku<minor>/control
+Date:		June 2011
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When written, this file lets one select which data from which
+		profile will be	read next. The data has to be 3 bytes long.
+		This file is writeonly.
+Users:		http://roccat.sourceforge.net
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/isku/roccatisku<minor>/talk
+Date:		June 2011
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When written, this file lets one trigger easyshift functionality
+		from the host.
+		The data has to be 16 bytes long.
+		This file is writeonly.
+Users:		http://roccat.sourceforge.net

+ 12 - 0
Documentation/ABI/testing/sysfs-driver-hid-wiimote

@@ -8,3 +8,15 @@ Contact:	David Herrmann <dh.herrmann@googlemail.com>
 Description:	Make it possible to set/get current led state. Reading from it
 		returns 0 if led is off and 1 if it is on. Writing 0 to it
 		disables the led, writing 1 enables it.
+
+What:		/sys/bus/hid/drivers/wiimote/<dev>/extension
+Date:		August 2011
+KernelVersion:	3.2
+Contact:	David Herrmann <dh.herrmann@googlemail.com>
+Description:	This file contains the currently connected and initialized
+		extensions. It can be one of: none, motionp, nunchuck, classic,
+		motionp+nunchuck, motionp+classic
+		motionp is the official Nintendo Motion+ extension, nunchuck is
+		the official Nintendo Nunchuck extension and classic is the
+		Nintendo Classic Controller extension. The motionp extension can
+		be combined with the other two.

+ 9 - 8
Documentation/ABI/testing/sysfs-driver-wacom

@@ -15,9 +15,9 @@ Contact:	linux-input@vger.kernel.org
 Description:
 		Attribute group for control of the status LEDs and the OLEDs.
 		This attribute group is only available for Intuos 4 M, L,
-		and XL (with LEDs and OLEDs) and Cintiq 21UX2 (LEDs only).
-		Therefore its presence implicitly signifies the presence of
-		said LEDs and OLEDs on the tablet device.
+		and XL (with LEDs and OLEDs) and Cintiq 21UX2 and Cintiq 24HD
+		(LEDs only). Therefore its presence implicitly signifies the
+		presence of said LEDs and OLEDs on the tablet device.
 
 What:		/sys/bus/usb/devices/<busnum>-<devnum>:<cfg>.<intf>/wacom_led/status0_luminance
 Date:		August 2011
@@ -41,16 +41,17 @@ Date:		August 2011
 Contact:	linux-input@vger.kernel.org
 Description:
 		Writing to this file sets which one of the four (for Intuos 4)
-		or of the right four (for Cintiq 21UX2) status LEDs is active (0..3).
-		The other three LEDs on the same side are always inactive.
+		or of the right four (for Cintiq 21UX2 and Cintiq 24HD) status
+		LEDs is active (0..3). The other three LEDs on the same side are
+		always inactive.
 
 What:		/sys/bus/usb/devices/<busnum>-<devnum>:<cfg>.<intf>/wacom_led/status_led1_select
 Date:		September 2011
 Contact:	linux-input@vger.kernel.org
 Description:
-		Writing to this file sets which one of the left four (for Cintiq 21UX2)
-		status LEDs is active (0..3). The other three LEDs on the left are always
-		inactive.
+		Writing to this file sets which one of the left four (for Cintiq 21UX2
+		and Cintiq 24HD) status LEDs is active (0..3). The other three LEDs on
+		the left are always inactive.
 
 What:		/sys/bus/usb/devices/<busnum>-<devnum>:<cfg>.<intf>/wacom_led/buttons_luminance
 Date:		August 2011

+ 50 - 0
Documentation/DocBook/debugobjects.tmpl

@@ -96,6 +96,7 @@
 	<listitem><para>debug_object_deactivate</para></listitem>
 	<listitem><para>debug_object_destroy</para></listitem>
 	<listitem><para>debug_object_free</para></listitem>
+	<listitem><para>debug_object_assert_init</para></listitem>
       </itemizedlist>
       Each of these functions takes the address of the real object and
       a pointer to the object type specific debug description
@@ -273,6 +274,26 @@
 	debug checks.
       </para>
     </sect1>
+
+    <sect1 id="debug_object_assert_init">
+      <title>debug_object_assert_init</title>
+      <para>
+	This function is called to assert that an object has been
+	initialized.
+      </para>
+      <para>
+	When the real object is not tracked by debugobjects, it calls
+	fixup_assert_init of the object type description structure
+	provided by the caller, with the hardcoded object state
+	ODEBUG_NOT_AVAILABLE. The fixup function can correct the problem
+	by calling debug_object_init and other specific initializing
+	functions.
+      </para>
+      <para>
+	When the real object is already tracked by debugobjects it is
+	ignored.
+      </para>
+    </sect1>
   </chapter>
   <chapter id="fixupfunctions">
     <title>Fixup functions</title>
@@ -381,6 +402,35 @@
 	statistics.
       </para>
     </sect1>
+    <sect1 id="fixup_assert_init">
+      <title>fixup_assert_init</title>
+      <para>
+	This function is called from the debug code whenever a problem
+	in debug_object_assert_init is detected.
+      </para>
+      <para>
+	Called from debug_object_assert_init() with a hardcoded state
+	ODEBUG_STATE_NOTAVAILABLE when the object is not found in the
+	debug bucket.
+      </para>
+      <para>
+	The function returns 1 when the fixup was successful,
+	otherwise 0. The return value is used to update the
+	statistics.
+      </para>
+      <para>
+	Note, this function should make sure debug_object_init() is
+	called before returning.
+      </para>
+      <para>
+	The handling of statically initialized objects is a special
+	case. The fixup function should check if this is a legitimate
+	case of a statically initialized object or not. In this case only
+	debug_object_init() should be called to make the object known to
+	the tracker. Then the function should return 0 because this is not
+	a real fixup.
+      </para>
+    </sect1>
   </chapter>
   <chapter id="bugs">
     <title>Known Bugs And Assumptions</title>

+ 1 - 1
Documentation/DocBook/writing-an-alsa-driver.tmpl

@@ -404,7 +404,7 @@
   /* SNDRV_CARDS: maximum number of cards supported by this module */
   static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
   static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
-  static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
+  static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
 
   /* definition of the chip-specific record */
   struct mychip {

+ 2 - 2
Documentation/HOWTO

@@ -275,8 +275,8 @@ versions.
 If no 2.6.x.y kernel is available, then the highest numbered 2.6.x
 kernel is the current stable kernel.
 
-2.6.x.y are maintained by the "stable" team <stable@kernel.org>, and are
-released as needs dictate.  The normal release period is approximately 
+2.6.x.y are maintained by the "stable" team <stable@vger.kernel.org>, and
+are released as needs dictate.  The normal release period is approximately
 two weeks, but it can be longer if there are no pressing problems.  A
 security-related problem, instead, can cause a release to happen almost
 instantly.

+ 6 - 0
Documentation/RCU/checklist.txt

@@ -328,6 +328,12 @@ over a rather long period of time, but improvements are always welcome!
 	RCU rather than SRCU, because RCU is almost always faster and
 	easier to use than is SRCU.
 
+	If you need to enter your read-side critical section in a
+	hardirq or exception handler, and then exit that same read-side
+	critical section in the task that was interrupted, then you need
+	to srcu_read_lock_raw() and srcu_read_unlock_raw(), which avoid
+	the lockdep checking that would otherwise this practice illegal.
+
 	Also unlike other forms of RCU, explicit initialization
 	and cleanup is required via init_srcu_struct() and
 	cleanup_srcu_struct().	These are passed a "struct srcu_struct"

+ 5 - 5
Documentation/RCU/rcu.txt

@@ -38,11 +38,11 @@ o	How can the updater tell when a grace period has completed
 
 	Preemptible variants of RCU (CONFIG_TREE_PREEMPT_RCU) get the
 	same effect, but require that the readers manipulate CPU-local
-	counters.  These counters allow limited types of blocking
-	within RCU read-side critical sections.  SRCU also uses
-	CPU-local counters, and permits general blocking within
-	RCU read-side critical sections.  These two variants of
-	RCU detect grace periods by sampling these counters.
+	counters.  These counters allow limited types of blocking within
+	RCU read-side critical sections.  SRCU also uses CPU-local
+	counters, and permits general blocking within RCU read-side
+	critical sections.  These variants of RCU detect grace periods
+	by sampling these counters.
 
 o	If I am running on a uniprocessor kernel, which can only do one
 	thing at a time, why should I wait for a grace period?

+ 10 - 6
Documentation/RCU/stallwarn.txt

@@ -101,6 +101,11 @@ o	A CPU-bound real-time task in a CONFIG_PREEMPT_RT kernel that
 	CONFIG_TREE_PREEMPT_RCU case, you might see stall-warning
 	messages.
 
+o	A hardware or software issue shuts off the scheduler-clock
+	interrupt on a CPU that is not in dyntick-idle mode.  This
+	problem really has happened, and seems to be most likely to
+	result in RCU CPU stall warnings for CONFIG_NO_HZ=n kernels.
+
 o	A bug in the RCU implementation.
 
 o	A hardware failure.  This is quite unlikely, but has occurred
@@ -109,12 +114,11 @@ o	A hardware failure.  This is quite unlikely, but has occurred
 	This resulted in a series of RCU CPU stall warnings, eventually
 	leading the realization that the CPU had failed.
 
-The RCU, RCU-sched, and RCU-bh implementations have CPU stall
-warning.  SRCU does not have its own CPU stall warnings, but its
-calls to synchronize_sched() will result in RCU-sched detecting
-RCU-sched-related CPU stalls.  Please note that RCU only detects
-CPU stalls when there is a grace period in progress.  No grace period,
-no CPU stall warnings.
+The RCU, RCU-sched, and RCU-bh implementations have CPU stall warning.
+SRCU does not have its own CPU stall warnings, but its calls to
+synchronize_sched() will result in RCU-sched detecting RCU-sched-related
+CPU stalls.  Please note that RCU only detects CPU stalls when there is
+a grace period in progress.  No grace period, no CPU stall warnings.
 
 To diagnose the cause of the stall, inspect the stack traces.
 The offending function will usually be near the top of the stack.

+ 13 - 0
Documentation/RCU/torture.txt

@@ -61,11 +61,24 @@ nreaders	This is the number of RCU reading threads supported.
 		To properly exercise RCU implementations with preemptible
 		read-side critical sections.
 
+onoff_interval
+		The number of seconds between each attempt to execute a
+		randomly selected CPU-hotplug operation.  Defaults to
+		zero, which disables CPU hotplugging.  In HOTPLUG_CPU=n
+		kernels, rcutorture will silently refuse to do any
+		CPU-hotplug operations regardless of what value is
+		specified for onoff_interval.
+
 shuffle_interval
 		The number of seconds to keep the test threads affinitied
 		to a particular subset of the CPUs, defaults to 3 seconds.
 		Used in conjunction with test_no_idle_hz.
 
+shutdown_secs	The number of seconds to run the test before terminating
+		the test and powering off the system.  The default is
+		zero, which disables test termination and system shutdown.
+		This capability is useful for automated testing.
+
 stat_interval	The number of seconds between output of torture
 		statistics (via printk()).  Regardless of the interval,
 		statistics are printed when the module is unloaded.

+ 0 - 4
Documentation/RCU/trace.txt

@@ -105,14 +105,10 @@ o	"dt" is the current value of the dyntick counter that is incremented
 	or one greater than the interrupt-nesting depth otherwise.
 	The number after the second "/" is the NMI nesting depth.
 
-	This field is displayed only for CONFIG_NO_HZ kernels.
-
 o	"df" is the number of times that some other CPU has forced a
 	quiescent state on behalf of this CPU due to this CPU being in
 	dynticks-idle state.
 
-	This field is displayed only for CONFIG_NO_HZ kernels.
-
 o	"of" is the number of times that some other CPU has forced a
 	quiescent state on behalf of this CPU due to this CPU being
 	offline.  In a perfect world, this might never happen, but it

+ 14 - 5
Documentation/RCU/whatisRCU.txt

@@ -4,6 +4,7 @@ to start learning about RCU:
 1.	What is RCU, Fundamentally?  http://lwn.net/Articles/262464/
 2.	What is RCU? Part 2: Usage   http://lwn.net/Articles/263130/
 3.	RCU part 3: the RCU API      http://lwn.net/Articles/264090/
+4.	The RCU API, 2010 Edition    http://lwn.net/Articles/418853/
 
 
 What is RCU?
@@ -834,6 +835,8 @@ SRCU:	Critical sections	Grace period		Barrier
 
 	srcu_read_lock		synchronize_srcu	N/A
 	srcu_read_unlock	synchronize_srcu_expedited
+	srcu_read_lock_raw
+	srcu_read_unlock_raw
 	srcu_dereference
 
 SRCU:	Initialization/cleanup
@@ -855,27 +858,33 @@ list can be helpful:
 
 a.	Will readers need to block?  If so, you need SRCU.
 
-b.	What about the -rt patchset?  If readers would need to block
+b.	Is it necessary to start a read-side critical section in a
+	hardirq handler or exception handler, and then to complete
+	this read-side critical section in the task that was
+	interrupted?  If so, you need SRCU's srcu_read_lock_raw() and
+	srcu_read_unlock_raw() primitives.
+
+c.	What about the -rt patchset?  If readers would need to block
 	in an non-rt kernel, you need SRCU.  If readers would block
 	in a -rt kernel, but not in a non-rt kernel, SRCU is not
 	necessary.
 
-c.	Do you need to treat NMI handlers, hardirq handlers,
+d.	Do you need to treat NMI handlers, hardirq handlers,
 	and code segments with preemption disabled (whether
 	via preempt_disable(), local_irq_save(), local_bh_disable(),
 	or some other mechanism) as if they were explicit RCU readers?
 	If so, you need RCU-sched.
 
-d.	Do you need RCU grace periods to complete even in the face
+e.	Do you need RCU grace periods to complete even in the face
 	of softirq monopolization of one or more of the CPUs?  For
 	example, is your code subject to network-based denial-of-service
 	attacks?  If so, you need RCU-bh.
 
-e.	Is your workload too update-intensive for normal use of
+f.	Is your workload too update-intensive for normal use of
 	RCU, but inappropriate for other synchronization mechanisms?
 	If so, consider SLAB_DESTROY_BY_RCU.  But please be careful!
 
-f.	Otherwise, use RCU.
+g.	Otherwise, use RCU.
 
 Of course, this all assumes that you have determined that RCU is in fact
 the right tool for your job.

+ 5 - 6
Documentation/arm/memory.txt

@@ -51,15 +51,14 @@ ffc00000	ffefffff	DMA memory mapping region.  Memory returned
 ff000000	ffbfffff	Reserved for future expansion of DMA
 				mapping region.
 
-VMALLOC_END	feffffff	Free for platform use, recommended.
-				VMALLOC_END must be aligned to a 2MB
-				boundary.
-
 VMALLOC_START	VMALLOC_END-1	vmalloc() / ioremap() space.
 				Memory returned by vmalloc/ioremap will
 				be dynamically placed in this region.
-				VMALLOC_START may be based upon the value
-				of the high_memory variable.
+				Machine specific static mappings are also
+				located here through iotable_init().
+				VMALLOC_START is based upon the value
+				of the high_memory variable, and VMALLOC_END
+				is equal to 0xff000000.
 
 PAGE_OFFSET	high_memory-1	Kernel direct-mapped RAM region.
 				This maps the platforms RAM, and typically

+ 87 - 0
Documentation/atomic_ops.txt

@@ -84,6 +84,93 @@ compiler optimizes the section accessing atomic_t variables.
 
 *** YOU HAVE BEEN WARNED! ***
 
+Properly aligned pointers, longs, ints, and chars (and unsigned
+equivalents) may be atomically loaded from and stored to in the same
+sense as described for atomic_read() and atomic_set().  The ACCESS_ONCE()
+macro should be used to prevent the compiler from using optimizations
+that might otherwise optimize accesses out of existence on the one hand,
+or that might create unsolicited accesses on the other.
+
+For example consider the following code:
+
+	while (a > 0)
+		do_something();
+
+If the compiler can prove that do_something() does not store to the
+variable a, then the compiler is within its rights transforming this to
+the following:
+
+	tmp = a;
+	if (a > 0)
+		for (;;)
+			do_something();
+
+If you don't want the compiler to do this (and you probably don't), then
+you should use something like the following:
+
+	while (ACCESS_ONCE(a) < 0)
+		do_something();
+
+Alternatively, you could place a barrier() call in the loop.
+
+For another example, consider the following code:
+
+	tmp_a = a;
+	do_something_with(tmp_a);
+	do_something_else_with(tmp_a);
+
+If the compiler can prove that do_something_with() does not store to the
+variable a, then the compiler is within its rights to manufacture an
+additional load as follows:
+
+	tmp_a = a;
+	do_something_with(tmp_a);
+	tmp_a = a;
+	do_something_else_with(tmp_a);
+
+This could fatally confuse your code if it expected the same value
+to be passed to do_something_with() and do_something_else_with().
+
+The compiler would be likely to manufacture this additional load if
+do_something_with() was an inline function that made very heavy use
+of registers: reloading from variable a could save a flush to the
+stack and later reload.  To prevent the compiler from attacking your
+code in this manner, write the following:
+
+	tmp_a = ACCESS_ONCE(a);
+	do_something_with(tmp_a);
+	do_something_else_with(tmp_a);
+
+For a final example, consider the following code, assuming that the
+variable a is set at boot time before the second CPU is brought online
+and never changed later, so that memory barriers are not needed:
+
+	if (a)
+		b = 9;
+	else
+		b = 42;
+
+The compiler is within its rights to manufacture an additional store
+by transforming the above code into the following:
+
+	b = 42;
+	if (a)
+		b = 9;
+
+This could come as a fatal surprise to other code running concurrently
+that expected b to never have the value 42 if a was zero.  To prevent
+the compiler from doing this, write something like:
+
+	if (a)
+		ACCESS_ONCE(b) = 9;
+	else
+		ACCESS_ONCE(b) = 42;
+
+Don't even -think- about doing this without proper use of memory barriers,
+locks, or atomic operations if variable a can change at runtime!
+
+*** WARNING: ACCESS_ONCE() DOES NOT IMPLY A BARRIER! ***
+
 Now, we move onto the atomic operation interfaces typically implemented with
 the help of assembly code.
 

+ 21 - 30
Documentation/cgroups/cgroups.txt

@@ -594,53 +594,44 @@ rmdir() will fail with it. From this behavior, pre_destroy() can be
 called multiple times against a cgroup.
 
 int can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
-	       struct task_struct *task)
+	       struct cgroup_taskset *tset)
 (cgroup_mutex held by caller)
 
-Called prior to moving a task into a cgroup; if the subsystem
-returns an error, this will abort the attach operation.  If a NULL
-task is passed, then a successful result indicates that *any*
-unspecified task can be moved into the cgroup. Note that this isn't
-called on a fork. If this method returns 0 (success) then this should
-remain valid while the caller holds cgroup_mutex and it is ensured that either
+Called prior to moving one or more tasks into a cgroup; if the
+subsystem returns an error, this will abort the attach operation.
+@tset contains the tasks to be attached and is guaranteed to have at
+least one task in it.
+
+If there are multiple tasks in the taskset, then:
+  - it's guaranteed that all are from the same thread group
+  - @tset contains all tasks from the thread group whether or not
+    they're switching cgroups
+  - the first task is the leader
+
+Each @tset entry also contains the task's old cgroup and tasks which
+aren't switching cgroup can be skipped easily using the
+cgroup_taskset_for_each() iterator. Note that this isn't called on a
+fork. If this method returns 0 (success) then this should remain valid
+while the caller holds cgroup_mutex and it is ensured that either
 attach() or cancel_attach() will be called in future.
 
-int can_attach_task(struct cgroup *cgrp, struct task_struct *tsk);
-(cgroup_mutex held by caller)
-
-As can_attach, but for operations that must be run once per task to be
-attached (possibly many when using cgroup_attach_proc). Called after
-can_attach.
-
 void cancel_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
-	       struct task_struct *task, bool threadgroup)
+		   struct cgroup_taskset *tset)
 (cgroup_mutex held by caller)
 
 Called when a task attach operation has failed after can_attach() has succeeded.
 A subsystem whose can_attach() has some side-effects should provide this
 function, so that the subsystem can implement a rollback. If not, not necessary.
 This will be called only about subsystems whose can_attach() operation have
-succeeded.
-
-void pre_attach(struct cgroup *cgrp);
-(cgroup_mutex held by caller)
-
-For any non-per-thread attachment work that needs to happen before
-attach_task. Needed by cpuset.
+succeeded. The parameters are identical to can_attach().
 
 void attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
-	    struct cgroup *old_cgrp, struct task_struct *task)
+	    struct cgroup_taskset *tset)
 (cgroup_mutex held by caller)
 
 Called after the task has been attached to the cgroup, to allow any
 post-attachment activity that requires memory allocations or blocking.
-
-void attach_task(struct cgroup *cgrp, struct task_struct *tsk);
-(cgroup_mutex held by caller)
-
-As attach, but for operations that must be run once per task to be attached,
-like can_attach_task. Called before attach. Currently does not support any
-subsystem that might need the old_cgrp for every thread in the group.
+The parameters are identical to can_attach().
 
 void fork(struct cgroup_subsy *ss, struct task_struct *task)
 

+ 26 - 2
Documentation/cgroups/memory.txt

@@ -44,8 +44,8 @@ Features:
  - oom-killer disable knob and oom-notifier
  - Root cgroup has no limit controls.
 
- Kernel memory and Hugepages are not under control yet. We just manage
- pages on LRU. To add more controls, we have to take care of performance.
+ Kernel memory support is work in progress, and the current version provides
+ basically functionality. (See Section 2.7)
 
 Brief summary of control files.
 
@@ -72,6 +72,9 @@ Brief summary of control files.
  memory.oom_control		 # set/show oom controls.
  memory.numa_stat		 # show the number of memory usage per numa node
 
+ memory.kmem.tcp.limit_in_bytes  # set/show hard limit for tcp buf memory
+ memory.kmem.tcp.usage_in_bytes  # show current tcp buf memory allocation
+
 1. History
 
 The memory controller has a long history. A request for comments for the memory
@@ -255,6 +258,27 @@ When oom event notifier is registered, event will be delivered.
   per-zone-per-cgroup LRU (cgroup's private LRU) is just guarded by
   zone->lru_lock, it has no lock of its own.
 
+2.7 Kernel Memory Extension (CONFIG_CGROUP_MEM_RES_CTLR_KMEM)
+
+With the Kernel memory extension, the Memory Controller is able to limit
+the amount of kernel memory used by the system. Kernel memory is fundamentally
+different than user memory, since it can't be swapped out, which makes it
+possible to DoS the system by consuming too much of this precious resource.
+
+Kernel memory limits are not imposed for the root cgroup. Usage for the root
+cgroup may or may not be accounted.
+
+Currently no soft limit is implemented for kernel memory. It is future work
+to trigger slab reclaim when those limits are reached.
+
+2.7.1 Current Kernel Memory resources accounted
+
+* sockets memory pressure: some sockets protocols have memory pressure
+thresholds. The Memory Controller allows them to be controlled individually
+per cgroup, instead of globally.
+
+* tcp memory pressure: sockets memory pressure for the tcp protocol.
+
 3. User Interface
 
 0. Configuration

+ 53 - 0
Documentation/cgroups/net_prio.txt

@@ -0,0 +1,53 @@
+Network priority cgroup
+-------------------------
+
+The Network priority cgroup provides an interface to allow an administrator to
+dynamically set the priority of network traffic generated by various
+applications
+
+Nominally, an application would set the priority of its traffic via the
+SO_PRIORITY socket option.  This however, is not always possible because:
+
+1) The application may not have been coded to set this value
+2) The priority of application traffic is often a site-specific administrative
+   decision rather than an application defined one.
+
+This cgroup allows an administrator to assign a process to a group which defines
+the priority of egress traffic on a given interface. Network priority groups can
+be created by first mounting the cgroup filesystem.
+
+# mount -t cgroup -onet_prio none /sys/fs/cgroup/net_prio
+
+With the above step, the initial group acting as the parent accounting group
+becomes visible at '/sys/fs/cgroup/net_prio'.  This group includes all tasks in
+the system. '/sys/fs/cgroup/net_prio/tasks' lists the tasks in this cgroup.
+
+Each net_prio cgroup contains two files that are subsystem specific
+
+net_prio.prioidx
+This file is read-only, and is simply informative.  It contains a unique integer
+value that the kernel uses as an internal representation of this cgroup.
+
+net_prio.ifpriomap
+This file contains a map of the priorities assigned to traffic originating from
+processes in this group and egressing the system on various interfaces. It
+contains a list of tuples in the form <ifname priority>.  Contents of this file
+can be modified by echoing a string into the file using the same tuple format.
+for example:
+
+echo "eth0 5" > /sys/fs/cgroups/net_prio/iscsi/net_prio.ifpriomap
+
+This command would force any traffic originating from processes belonging to the
+iscsi net_prio cgroup and egressing on interface eth0 to have the priority of
+said traffic set to the value 5. The parent accounting group also has a
+writeable 'net_prio.ifpriomap' file that can be used to set a system default
+priority.
+
+Priorities are set immediately prior to queueing a frame to the device
+queueing discipline (qdisc) so priorities will be assigned prior to the hardware
+queue selection being made.
+
+One usage for the net_prio cgroup is with mqprio qdisc allowing application
+traffic to be steered to hardware/driver based traffic classes. These mappings
+can then be managed by administrators or other networking protocols such as
+DCBX.

+ 1 - 3
Documentation/cpu-freq/governors.txt

@@ -127,7 +127,7 @@ in the bash (as said, 1000 is default), do:
 echo `$(($(cat cpuinfo_transition_latency) * 750 / 1000)) \
     >ondemand/sampling_rate
 
-show_sampling_rate_min:
+sampling_rate_min:
 The sampling rate is limited by the HW transition latency:
 transition_latency * 100
 Or by kernel restrictions:
@@ -140,8 +140,6 @@ HZ=100:  min=200000us (200ms)
 The highest value of kernel and HW latency restrictions is shown and
 used as the minimum sampling rate.
 
-show_sampling_rate_max: THIS INTERFACE IS DEPRECATED, DON'T USE IT.
-
 up_threshold: defines what the average CPU usage between the samplings
 of 'sampling_rate' needs to be for the kernel to make a decision on
 whether it should increase the frequency.  For example when it is set

+ 4 - 4
Documentation/development-process/5.Posting

@@ -271,10 +271,10 @@ copies should go to:
    the linux-kernel list.
 
  - If you are fixing a bug, think about whether the fix should go into the
-   next stable update.  If so, stable@kernel.org should get a copy of the
-   patch.  Also add a "Cc: stable@kernel.org" to the tags within the patch
-   itself; that will cause the stable team to get a notification when your
-   fix goes into the mainline.
+   next stable update.  If so, stable@vger.kernel.org should get a copy of
+   the patch.  Also add a "Cc: stable@vger.kernel.org" to the tags within
+   the patch itself; that will cause the stable team to get a notification
+   when your fix goes into the mainline.
 
 When selecting recipients for a patch, it is good to have an idea of who
 you think will eventually accept the patch and get it merged.  While it

+ 1 - 1
Documentation/devices.txt

@@ -379,7 +379,7 @@ Your cooperation is appreciated.
 		162 = /dev/smbus	System Management Bus
 		163 = /dev/lik		Logitech Internet Keyboard
 		164 = /dev/ipmo		Intel Intelligent Platform Management
-		165 = /dev/vmmon	VMWare virtual machine monitor
+		165 = /dev/vmmon	VMware virtual machine monitor
 		166 = /dev/i2o/ctl	I2O configuration manager
 		167 = /dev/specialix_sxctl Specialix serial control
 		168 = /dev/tcldrv	Technology Concepts serial control

+ 6 - 2
Documentation/devicetree/bindings/arm/fsl.txt

@@ -21,6 +21,10 @@ i.MX53 Smart Mobile Reference Design Board
 Required root node properties:
     - compatible = "fsl,imx53-smd", "fsl,imx53";
 
-i.MX6 Quad SABRE Automotive Board
+i.MX6 Quad Armadillo2 Board
 Required root node properties:
-    - compatible = "fsl,imx6q-sabreauto", "fsl,imx6q";
+    - compatible = "fsl,imx6q-arm2", "fsl,imx6q";
+
+i.MX6 Quad SABRE Lite Board
+Required root node properties:
+    - compatible = "fsl,imx6q-sabrelite", "fsl,imx6q";

+ 4 - 0
Documentation/devicetree/bindings/arm/gic.txt

@@ -42,6 +42,10 @@ Optional
 - interrupts	: Interrupt source of the parent interrupt controller. Only
   present on secondary GICs.
 
+- cpu-offset	: per-cpu offset within the distributor and cpu interface
+  regions, used when the GIC doesn't have banked registers. The offset is
+  cpu-offset * cpu-nr.
+
 Example:
 
 	intc: interrupt-controller@fff11000 {

+ 8 - 0
Documentation/devicetree/bindings/arm/insignal-boards.txt

@@ -0,0 +1,8 @@
+* Insignal's Exynos4210 based Origen evaluation board
+
+Origen low-cost evaluation board is based on Samsung's Exynos4210 SoC.
+
+Required root node properties:
+    - compatible = should be one or more of the following.
+        (a) "samsung,smdkv310" - for Samsung's SMDKV310 eval board.
+        (b) "samsung,exynos4210"  - for boards based on Exynos4210 SoC.

+ 8 - 0
Documentation/devicetree/bindings/arm/samsung-boards.txt

@@ -0,0 +1,8 @@
+* Samsung's Exynos4210 based SMDKV310 evaluation board
+
+SMDKV310 evaluation board is based on Samsung's Exynos4210 SoC.
+
+Required root node properties:
+    - compatible = should be one or more of the following.
+        (a) "samsung,smdkv310" - for Samsung's SMDKV310 eval board.
+        (b) "samsung,exynos4210"  - for boards based on Exynos4210 SoC.

+ 14 - 0
Documentation/devicetree/bindings/arm/tegra.txt

@@ -0,0 +1,14 @@
+NVIDIA Tegra device tree bindings
+-------------------------------------------
+
+Boards with the tegra20 SoC shall have the following properties:
+
+Required root node property:
+
+compatible = "nvidia,tegra20";
+
+Boards with the tegra30 SoC shall have the following properties:
+
+Required root node property:
+
+compatible = "nvidia,tegra30";

+ 29 - 0
Documentation/devicetree/bindings/arm/vic.txt

@@ -0,0 +1,29 @@
+* ARM Vectored Interrupt Controller
+
+One or more Vectored Interrupt Controllers (VIC's) can be connected in an ARM
+system for interrupt routing.  For multiple controllers they can either be
+nested or have the outputs wire-OR'd together.
+
+Required properties:
+
+- compatible : should be one of
+	"arm,pl190-vic"
+	"arm,pl192-vic"
+- interrupt-controller : Identifies the node as an interrupt controller
+- #interrupt-cells : The number of cells to define the interrupts.  Must be 1 as
+  the VIC has no configuration options for interrupt sources.  The cell is a u32
+  and defines the interrupt number.
+- reg : The register bank for the VIC.
+
+Optional properties:
+
+- interrupts : Interrupt source for parent controllers if the VIC is nested.
+
+Example:
+
+	vic0: interrupt-controller@60000 {
+		compatible = "arm,pl192-vic";
+		interrupt-controller;
+		#interrupt-cells = <1>;
+		reg = <0x60000 0x1000>;
+	};

+ 40 - 0
Documentation/devicetree/bindings/c6x/clocks.txt

@@ -0,0 +1,40 @@
+C6X PLL Clock Controllers
+-------------------------
+
+This is a first-cut support for the SoC clock controllers. This is still
+under development and will probably change as the common device tree
+clock support is added to the kernel.
+
+Required properties:
+
+- compatible: "ti,c64x+pll"
+    May also have SoC-specific value to support SoC-specific initialization
+    in the driver. One of:
+        "ti,c6455-pll"
+        "ti,c6457-pll"
+        "ti,c6472-pll"
+        "ti,c6474-pll"
+
+- reg: base address and size of register area
+- clock-frequency: input clock frequency in hz
+
+
+Optional properties:
+
+- ti,c64x+pll-bypass-delay: CPU cycles to delay when entering bypass mode
+
+- ti,c64x+pll-reset-delay:  CPU cycles to delay after PLL reset
+
+- ti,c64x+pll-lock-delay:   CPU cycles to delay after PLL frequency change
+
+Example:
+
+	clock-controller@29a0000 {
+		compatible = "ti,c6472-pll", "ti,c64x+pll";
+		reg = <0x029a0000 0x200>;
+		clock-frequency = <25000000>;
+
+		ti,c64x+pll-bypass-delay = <200>;
+		ti,c64x+pll-reset-delay = <12000>;
+		ti,c64x+pll-lock-delay = <80000>;
+	};

+ 127 - 0
Documentation/devicetree/bindings/c6x/dscr.txt

@@ -0,0 +1,127 @@
+Device State Configuration Registers
+------------------------------------
+
+TI C6X SoCs contain a region of miscellaneous registers which provide various
+function for SoC control or status. Details vary considerably among from SoC
+to SoC with no two being alike.
+
+In general, the Device State Configuraion Registers (DSCR) will provide one or
+more configuration registers often protected by a lock register where one or
+more key values must be written to a lock register in order to unlock the
+configuration register for writes. These configuration register may be used to
+enable (and disable in some cases) SoC pin drivers, select peripheral clock
+sources (internal or pin), etc. In some cases, a configuration register is
+write once or the individual bits are write once. In addition to device config,
+the DSCR block may provide registers which which are used to reset peripherals,
+provide device ID information, provide ethernet MAC addresses, as well as other
+miscellaneous functions.
+
+For device state control (enable/disable), each device control is assigned an
+id which is used by individual device drivers to control the state as needed.
+
+Required properties:
+
+- compatible: must be "ti,c64x+dscr"
+- reg: register area base and size
+
+Optional properties:
+
+  NOTE: These are optional in that not all SoCs will have all properties. For
+        SoCs which do support a given property, leaving the property out of the
+        device tree will result in reduced functionality or possibly driver
+        failure.
+
+- ti,dscr-devstat
+    offset of the devstat register
+
+- ti,dscr-silicon-rev
+    offset, start bit, and bitsize of silicon revision field
+
+- ti,dscr-rmii-resets
+    offset and bitmask of RMII reset field. May have multiple tuples if more
+    than one ethernet port is available.
+
+- ti,dscr-locked-regs
+    possibly multiple tuples describing registers which are write protected by
+    a lock register. Each tuple consists of the register offset, lock register
+    offsset, and the key value used to unlock the register.
+
+- ti,dscr-kick-regs
+    offset and key values of two "kick" registers used to write protect other
+    registers in DSCR. On SoCs using kick registers, the first key must be
+    written to the first kick register and the second key must be written to
+    the second register before other registers in the area are write-enabled.
+
+- ti,dscr-mac-fuse-regs
+    MAC addresses are contained in two registers. Each element of a MAC address
+    is contained in a single byte. This property has two tuples. Each tuple has
+    a register offset and four cells representing bytes in the register from
+    most significant to least. The value of these four cells is the MAC byte
+    index (1-6) of the byte within the register. A value of 0 means the byte
+    is unused in the MAC address.
+
+- ti,dscr-devstate-ctl-regs
+    This property describes the bitfields used to control the state of devices.
+    Each tuple describes a range of identical bitfields used to control one or
+    more devices (one bitfield per device). The layout of each tuple is:
+
+        start_id num_ids reg enable disable start_bit nbits
+
+    Where:
+        start_id is device id for the first device control in the range
+        num_ids is the number of device controls in the range
+        reg is the offset of the register holding the control bits
+        enable is the value to enable a device
+        disable is the value to disable a device (0xffffffff if cannot disable)
+        start_bit is the bit number of the first bit in the range
+        nbits is the number of bits per device control
+
+- ti,dscr-devstate-stat-regs
+    This property describes the bitfields used to provide device state status
+    for device states controlled by the DSCR. Each tuple describes a range of
+    identical bitfields used to provide status for one or more devices (one
+    bitfield per device). The layout of each tuple is:
+
+        start_id num_ids reg enable disable start_bit nbits
+
+    Where:
+        start_id is device id for the first device status in the range
+        num_ids is the number of devices covered by the range
+        reg is the offset of the register holding the status bits
+        enable is the value indicating device is enabled
+        disable is the value indicating device is disabled
+        start_bit is the bit number of the first bit in the range
+        nbits is the number of bits per device status
+
+- ti,dscr-privperm
+    Offset and default value for register used to set access privilege for
+    some SoC devices.
+
+
+Example:
+
+	device-state-config-regs@2a80000 {
+		compatible = "ti,c64x+dscr";
+		reg = <0x02a80000 0x41000>;
+
+		ti,dscr-devstat = <0>;
+		ti,dscr-silicon-rev = <8 28 0xf>;
+		ti,dscr-rmii-resets = <0x40020 0x00040000>;
+
+		ti,dscr-locked-regs = <0x40008 0x40004 0x0f0a0b00>;
+		ti,dscr-devstate-ctl-regs =
+			 <0 12 0x40008 1 0  0  2
+			  12 1 0x40008 3 0 30  2
+			  13 2 0x4002c 1 0xffffffff 0 1>;
+		ti,dscr-devstate-stat-regs =
+			<0 10 0x40014 1 0  0  3
+			 10 2 0x40018 1 0  0  3>;
+
+		ti,dscr-mac-fuse-regs = <0x700 1 2 3 4
+					 0x704 5 6 0 0>;
+
+		ti,dscr-privperm = <0x41c 0xaaaaaaaa>;
+
+		ti,dscr-kick-regs = <0x38 0x83E70B13
+				     0x3c 0x95A4F1E0>;
+	};

+ 62 - 0
Documentation/devicetree/bindings/c6x/emifa.txt

@@ -0,0 +1,62 @@
+External Memory Interface
+-------------------------
+
+The emifa node describes a simple external bus controller found on some C6X
+SoCs. This interface provides external busses with a number of chip selects.
+
+Required properties:
+
+- compatible: must be "ti,c64x+emifa", "simple-bus"
+- reg: register area base and size
+- #address-cells: must be 2 (chip-select + offset)
+- #size-cells: must be 1
+- ranges: mapping from EMIFA space to parent space
+
+
+Optional properties:
+
+- ti,dscr-dev-enable: Device ID if EMIF is enabled/disabled from DSCR
+
+- ti,emifa-burst-priority:
+      Number of memory transfers after which the EMIF will elevate the priority
+      of the oldest command in the command FIFO. Setting this field to 255
+      disables this feature, thereby allowing old commands to stay in the FIFO
+      indefinitely.
+
+- ti,emifa-ce-config:
+      Configuration values for each of the supported chip selects.
+
+Example:
+
+	emifa@70000000 {
+		compatible = "ti,c64x+emifa", "simple-bus";
+		#address-cells = <2>;
+		#size-cells = <1>;
+		reg = <0x70000000 0x100>;
+		ranges = <0x2 0x0 0xa0000000 0x00000008
+		          0x3 0x0 0xb0000000 0x00400000
+			  0x4 0x0 0xc0000000 0x10000000
+			  0x5 0x0 0xD0000000 0x10000000>;
+
+		ti,dscr-dev-enable = <13>;
+		ti,emifa-burst-priority = <255>;
+		ti,emifa-ce-config = <0x00240120
+				      0x00240120
+				      0x00240122
+				      0x00240122>;
+
+		flash@3,0 {
+			#address-cells = <1>;
+			#size-cells = <1>;
+			compatible = "cfi-flash";
+			reg = <0x3 0x0 0x400000>;
+			bank-width = <1>;
+			device-width = <1>;
+			partition@0 {
+				reg = <0x0 0x400000>;
+				label = "NOR";
+			};
+		};
+	};
+
+This shows a flash chip attached to chip select 3.

+ 104 - 0
Documentation/devicetree/bindings/c6x/interrupt.txt

@@ -0,0 +1,104 @@
+C6X Interrupt Chips
+-------------------
+
+* C64X+ Core Interrupt Controller
+
+  The core interrupt controller provides 16 prioritized interrupts to the
+  C64X+ core. Priority 0 and 1 are used for reset and NMI respectively.
+  Priority 2 and 3 are reserved. Priority 4-15 are used for interrupt
+  sources coming from outside the core.
+
+  Required properties:
+  --------------------
+  - compatible: Should be "ti,c64x+core-pic";
+  - #interrupt-cells: <1>
+
+  Interrupt Specifier Definition
+  ------------------------------
+  Single cell specifying the core interrupt priority level (4-15) where
+  4 is highest priority and 15 is lowest priority.
+
+  Example
+  -------
+  core_pic: interrupt-controller@0 {
+	interrupt-controller;
+	#interrupt-cells = <1>;
+	compatible = "ti,c64x+core-pic";
+  };
+
+
+
+* C64x+ Megamodule Interrupt Controller
+
+  The megamodule PIC consists of four interrupt mupliplexers each of which
+  combine up to 32 interrupt inputs into a single interrupt output which
+  may be cascaded into the core interrupt controller. The megamodule PIC
+  has a total of 12 outputs cascading into the core interrupt controller.
+  One for each core interrupt priority level. In addition to the combined
+  interrupt sources, individual megamodule interrupts may be cascaded to
+  the core interrupt controller. When an individual interrupt is cascaded,
+  it is no longer handled through a megamodule interrupt combiner and is
+  considered to have the core interrupt controller as the parent.
+
+  Required properties:
+  --------------------
+  - compatible: "ti,c64x+megamod-pic"
+  - interrupt-controller
+  - #interrupt-cells: <1>
+  - reg: base address and size of register area
+  - interrupt-parent: must be core interrupt controller
+  - interrupts: This should have four cells; one for each interrupt combiner.
+                The cells contain the core priority interrupt to which the
+                corresponding combiner output is wired.
+
+  Optional properties:
+  --------------------
+  - ti,c64x+megamod-pic-mux: Array of 12 cells correspnding to the 12 core
+                             priority interrupts. The first cell corresponds to
+                             core priority 4 and the last cell corresponds to
+                             core priority 15. The value of each cell is the
+                             megamodule interrupt source which is MUXed to
+                             the core interrupt corresponding to the cell
+                             position. Allowed values are 4 - 127. Mapping for
+                             interrupts 0 - 3 (combined interrupt sources) are
+                             ignored.
+
+  Interrupt Specifier Definition
+  ------------------------------
+  Single cell specifying the megamodule interrupt source (4-127). Note that
+  interrupts mapped directly to the core with "ti,c64x+megamod-pic-mux" will
+  use the core interrupt controller as their parent and the specifier will
+  be the core priority level, not the megamodule interrupt number.
+
+  Examples
+  --------
+  megamod_pic: interrupt-controller@1800000 {
+	compatible = "ti,c64x+megamod-pic";
+	interrupt-controller;
+	#interrupt-cells = <1>;
+	reg = <0x1800000 0x1000>;
+	interrupt-parent = <&core_pic>;
+	interrupts = < 12 13 14 15 >;
+  };
+
+  This is a minimal example where all individual interrupts go through a
+  combiner. Combiner-0 is mapped to core interrupt 12, combiner-1 is mapped
+  to interrupt 13, etc.
+
+
+  megamod_pic: interrupt-controller@1800000 {
+	compatible = "ti,c64x+megamod-pic";
+	interrupt-controller;
+	#interrupt-cells = <1>;
+	reg = <0x1800000 0x1000>;
+	interrupt-parent = <&core_pic>;
+	interrupts = < 12 13 14 15 >;
+	ti,c64x+megamod-pic-mux = <  0  0  0  0
+                                    32  0  0  0
+                                     0  0  0  0 >;
+  };
+
+  This the same as the first example except that megamodule interrupt 32 is
+  mapped directly to core priority interrupt 8. The node using this interrupt
+  must set the core controller as its interrupt parent and use 8 in the
+  interrupt specifier value.

+ 28 - 0
Documentation/devicetree/bindings/c6x/soc.txt

@@ -0,0 +1,28 @@
+C6X System-on-Chip
+------------------
+
+Required properties:
+
+- compatible: "simple-bus"
+- #address-cells: must be 1
+- #size-cells: must be 1
+- ranges
+
+Optional properties:
+
+- model: specific SoC model
+
+- nodes for IP blocks within SoC
+
+
+Example:
+
+	soc {
+		compatible = "simple-bus";
+		model = "tms320c6455";
+		#address-cells = <1>;
+		#size-cells = <1>;
+		ranges;
+
+		...
+	};

+ 26 - 0
Documentation/devicetree/bindings/c6x/timer64.txt

@@ -0,0 +1,26 @@
+Timer64
+-------
+
+The timer64 node describes C6X event timers.
+
+Required properties:
+
+- compatible: must be "ti,c64x+timer64"
+- reg: base address and size of register region
+- interrupt-parent: interrupt controller
+- interrupts: interrupt id
+
+Optional properties:
+
+- ti,dscr-dev-enable: Device ID used to enable timer IP through DSCR interface.
+
+- ti,core-mask: on multi-core SoCs, bitmask of cores allowed to use this timer.
+
+Example:
+	timer0: timer@25e0000 {
+		compatible = "ti,c64x+timer64";
+		ti,core-mask = < 0x01 >;
+		reg = <0x25e0000 0x40>;
+		interrupt-parent = <&megamod_pic>;
+		interrupts = < 16 >;
+	};

+ 30 - 0
Documentation/devicetree/bindings/dma/arm-pl330.txt

@@ -0,0 +1,30 @@
+* ARM PrimeCell PL330 DMA Controller
+
+The ARM PrimeCell PL330 DMA controller can move blocks of memory contents
+between memory and peripherals or memory to memory.
+
+Required properties:
+  - compatible: should include both "arm,pl330" and "arm,primecell".
+  - reg: physical base address of the controller and length of memory mapped
+    region.
+  - interrupts: interrupt number to the cpu.
+
+Example:
+
+	pdma0: pdma@12680000 {
+		compatible = "arm,pl330", "arm,primecell";
+		reg = <0x12680000 0x1000>;
+		interrupts = <99>;
+	};
+
+Client drivers (device nodes requiring dma transfers from dev-to-mem or
+mem-to-dev) should specify the DMA channel numbers using a two-value pair
+as shown below.
+
+  [property name]  = <[phandle of the dma controller] [dma request id]>;
+
+      where 'dma request id' is the dma request number which is connected
+      to the client controller. The 'property name' is recommended to be
+      of the form <name>-dma-channel.
+
+  Example:  tx-dma-channel = <&pdma0 12>;

+ 40 - 0
Documentation/devicetree/bindings/gpio/gpio-samsung.txt

@@ -0,0 +1,40 @@
+Samsung Exynos4 GPIO Controller
+
+Required properties:
+- compatible: Compatible property value should be "samsung,exynos4-gpio>".
+
+- reg: Physical base address of the controller and length of memory mapped
+  region.
+
+- #gpio-cells: Should be 4. The syntax of the gpio specifier used by client nodes
+  should be the following with values derived from the SoC user manual.
+     <[phandle of the gpio controller node]
+      [pin number within the gpio controller]
+      [mux function]
+      [pull up/down]
+      [drive strength]>
+
+  Values for gpio specifier:
+  - Pin number: is a value between 0 to 7.
+  - Pull Up/Down: 0 - Pull Up/Down Disabled.
+                  1 - Pull Down Enabled.
+                  3 - Pull Up Enabled.
+  - Drive Strength: 0 - 1x,
+                    1 - 3x,
+                    2 - 2x,
+                    3 - 4x
+
+- gpio-controller: Specifies that the node is a gpio controller.
+- #address-cells: should be 1.
+- #size-cells: should be 1.
+
+Example:
+
+	gpa0: gpio-controller@11400000 {
+		#address-cells = <1>;
+		#size-cells = <1>;
+		compatible = "samsung,exynos4-gpio";
+		reg = <0x11400000 0x20>;
+		#gpio-cells = <4>;
+		gpio-controller;
+	};

+ 22 - 0
Documentation/devicetree/bindings/i2c/i2c-designware.txt

@@ -0,0 +1,22 @@
+* Synopsys DesignWare I2C
+
+Required properties :
+
+ - compatible : should be "snps,designware-i2c"
+ - reg : Offset and length of the register set for the device
+ - interrupts : <IRQ> where IRQ is the interrupt number.
+
+Recommended properties :
+
+ - clock-frequency : desired I2C bus clock frequency in Hz.
+
+Example :
+
+	i2c@f0000 {
+		#address-cells = <1>;
+		#size-cells = <0>;
+		compatible = "snps,designware-i2c";
+		reg = <0xf0000 0x1000>;
+		interrupts = <11>;
+		clock-frequency = <400000>;
+	};

+ 58 - 0
Documentation/devicetree/bindings/i2c/trivial-devices.txt

@@ -0,0 +1,58 @@
+This is a list of trivial i2c devices that have simple device tree
+bindings, consisting only of a compatible field, an address and
+possibly an interrupt line.
+
+If a device needs more specific bindings, such as properties to
+describe some aspect of it, there needs to be a specific binding
+document for it just like any other devices.
+
+
+Compatible		Vendor / Chip
+==========		=============
+ad,ad7414		SMBus/I2C Digital Temperature Sensor in 6-Pin SOT with SMBus Alert and Over Temperature Pin
+ad,adm9240		ADM9240:  Complete System Hardware Monitor for uProcessor-Based Systems
+adi,adt7461		+/-1C TDM Extended Temp Range I.C
+adt7461			+/-1C TDM Extended Temp Range I.C
+at,24c08		i2c serial eeprom  (24cxx)
+atmel,24c02		i2c serial eeprom  (24cxx)
+catalyst,24c32		i2c serial eeprom
+dallas,ds1307		64 x 8, Serial, I2C Real-Time Clock
+dallas,ds1338		I2C RTC with 56-Byte NV RAM
+dallas,ds1339		I2C Serial Real-Time Clock
+dallas,ds1340		I2C RTC with Trickle Charger
+dallas,ds1374		I2C, 32-Bit Binary Counter Watchdog RTC with Trickle Charger and Reset Input/Output
+dallas,ds1631		High-Precision Digital Thermometer
+dallas,ds1682		Total-Elapsed-Time Recorder with Alarm
+dallas,ds1775		Tiny Digital Thermometer and Thermostat
+dallas,ds3232		Extremely Accurate I²C RTC with Integrated Crystal and SRAM
+dallas,ds4510		CPU Supervisor with Nonvolatile Memory and Programmable I/O
+dallas,ds75		Digital Thermometer and Thermostat
+dialog,da9053		DA9053: flexible system level PMIC with multicore support
+epson,rx8025		High-Stability. I2C-Bus INTERFACE REAL TIME CLOCK MODULE
+epson,rx8581		I2C-BUS INTERFACE REAL TIME CLOCK MODULE
+fsl,mag3110		MAG3110: Xtrinsic High Accuracy, 3D Magnetometer
+fsl,mc13892		MC13892: Power Management Integrated Circuit (PMIC) for i.MX35/51
+fsl,mma8450		MMA8450Q: Xtrinsic Low-power, 3-axis Xtrinsic Accelerometer
+fsl,mpr121		MPR121: Proximity Capacitive Touch Sensor Controller
+fsl,sgtl5000		SGTL5000: Ultra Low-Power Audio Codec
+maxim,ds1050		5 Bit Programmable, Pulse-Width Modulator
+maxim,max1237		Low-Power, 4-/12-Channel, 2-Wire Serial, 12-Bit ADCs
+maxim,max6625		9-Bit/12-Bit Temperature Sensors with I²C-Compatible Serial Interface
+mc,rv3029c2		Real Time Clock Module with I2C-Bus
+national,lm75		I2C TEMP SENSOR
+national,lm80		Serial Interface ACPI-Compatible Microprocessor System Hardware Monitor
+national,lm92		±0.33°C Accurate, 12-Bit + Sign Temperature Sensor and Thermal Window Comparator with Two-Wire Interface
+nxp,pca9556		Octal SMBus and I2C registered interface
+nxp,pca9557		8-bit I2C-bus and SMBus I/O port with reset
+nxp,pcf8563		Real-time clock/calendar
+ovti,ov5642		OV5642: Color CMOS QSXGA (5-megapixel) Image Sensor with OmniBSI and Embedded TrueFocus
+pericom,pt7c4338	Real-time Clock Module
+plx,pex8648		48-Lane, 12-Port PCI Express Gen 2 (5.0 GT/s) Switch
+ramtron,24c64		i2c serial eeprom  (24cxx)
+ricoh,rs5c372a		I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
+samsung,24ad0xd1	S524AD0XF1 (128K/256K-bit Serial EEPROM for Low Power)
+st-micro,24c256		i2c serial eeprom  (24cxx)
+stm,m41t00		Serial Access TIMEKEEPER
+stm,m41t62		Serial real-time clock (RTC) with alarm
+stm,m41t80		M41T80 - SERIAL ACCESS RTC WITH ALARMS
+ti,tsc2003		I2C Touch-Screen Controller

+ 88 - 0
Documentation/devicetree/bindings/input/samsung-keypad.txt

@@ -0,0 +1,88 @@
+* Samsung's Keypad Controller device tree bindings
+
+Samsung's Keypad controller is used to interface a SoC with a matrix-type
+keypad device. The keypad controller supports multiple row and column lines.
+A key can be placed at each intersection of a unique row and a unique column.
+The keypad controller can sense a key-press and key-release and report the
+event using a interrupt to the cpu.
+
+Required SoC Specific Properties:
+- compatible: should be one of the following
+  - "samsung,s3c6410-keypad": For controllers compatible with s3c6410 keypad
+    controller.
+  - "samsung,s5pv210-keypad": For controllers compatible with s5pv210 keypad
+    controller.
+
+- reg: physical base address of the controller and length of memory mapped
+  region.
+
+- interrupts: The interrupt number to the cpu.
+
+Required Board Specific Properties:
+- samsung,keypad-num-rows: Number of row lines connected to the keypad
+  controller.
+
+- samsung,keypad-num-columns: Number of column lines connected to the
+  keypad controller.
+
+- row-gpios: List of gpios used as row lines. The gpio specifier for
+  this property depends on the gpio controller to which these row lines
+  are connected.
+
+- col-gpios: List of gpios used as column lines. The gpio specifier for
+  this property depends on the gpio controller to which these column
+  lines are connected.
+
+- Keys represented as child nodes: Each key connected to the keypad
+  controller is represented as a child node to the keypad controller
+  device node and should include the following properties.
+  - keypad,row: the row number to which the key is connected.
+  - keypad,column: the column number to which the key is connected.
+  - linux,code: the key-code to be reported when the key is pressed
+    and released.
+
+Optional Properties specific to linux:
+- linux,keypad-no-autorepeat: do no enable autorepeat feature.
+- linux,keypad-wakeup: use any event on keypad as wakeup event.
+
+
+Example:
+	keypad@100A0000 {
+		compatible = "samsung,s5pv210-keypad";
+		reg = <0x100A0000 0x100>;
+		interrupts = <173>;
+		samsung,keypad-num-rows = <2>;
+		samsung,keypad-num-columns = <8>;
+		linux,input-no-autorepeat;
+		linux,input-wakeup;
+
+		row-gpios = <&gpx2 0 3 3 0
+			     &gpx2 1 3 3 0>;
+
+		col-gpios = <&gpx1 0 3 0 0
+			     &gpx1 1 3 0 0
+			     &gpx1 2 3 0 0
+			     &gpx1 3 3 0 0
+			     &gpx1 4 3 0 0
+			     &gpx1 5 3 0 0
+			     &gpx1 6 3 0 0
+			     &gpx1 7 3 0 0>;
+
+		key_1 {
+			keypad,row = <0>;
+			keypad,column = <3>;
+			linux,code = <2>;
+		};
+
+		key_2 {
+			keypad,row = <0>;
+			keypad,column = <4>;
+			linux,code = <3>;
+		};
+
+		key_3 {
+			keypad,row = <0>;
+			keypad,column = <5>;
+			linux,code = <4>;
+		};
+	};

+ 18 - 0
Documentation/devicetree/bindings/input/tegra-kbc.txt

@@ -0,0 +1,18 @@
+* Tegra keyboard controller
+
+Required properties:
+- compatible: "nvidia,tegra20-kbc"
+
+Optional properties:
+- debounce-delay: delay in milliseconds per row scan for debouncing
+- repeat-delay: delay in milliseconds before repeat starts
+- ghost-filter: enable ghost filtering for this device
+- wakeup-source: configure keyboard as a wakeup source for suspend/resume
+
+Example:
+
+keyboard: keyboard {
+	compatible = "nvidia,tegra20-kbc";
+	reg = <0x7000e200 0x100>;
+	ghost-filter;
+};

+ 44 - 0
Documentation/devicetree/bindings/mtd/gpio-control-nand.txt

@@ -0,0 +1,44 @@
+GPIO assisted NAND flash
+
+The GPIO assisted NAND flash uses a memory mapped interface to
+read/write the NAND commands and data and GPIO pins for the control
+signals.
+
+Required properties:
+- compatible : "gpio-control-nand"
+- reg : should specify localbus chip select and size used for the chip.  The
+  resource describes the data bus connected to the NAND flash and all accesses
+  are made in native endianness.
+- #address-cells, #size-cells : Must be present if the device has sub-nodes
+  representing partitions.
+- gpios : specifies the gpio pins to control the NAND device.  nwp is an
+  optional gpio and may be set to 0 if not present.
+
+Optional properties:
+- bank-width : Width (in bytes) of the device.  If not present, the width
+  defaults to 1 byte.
+- chip-delay : chip dependent delay for transferring data from array to
+  read registers (tR).  If not present then a default of 20us is used.
+- gpio-control-nand,io-sync-reg : A 64-bit physical address for a read
+  location used to guard against bus reordering with regards to accesses to
+  the GPIO's and the NAND flash data bus.  If present, then after changing
+  GPIO state and before and after command byte writes, this register will be
+  read to ensure that the GPIO accesses have completed.
+
+Examples:
+
+gpio-nand@1,0 {
+	compatible = "gpio-control-nand";
+	reg = <1 0x0000 0x2>;
+	#address-cells = <1>;
+	#size-cells = <1>;
+	gpios = <&banka 1 0	/* rdy */
+		 &banka 2 0 	/* nce */
+		 &banka 3 0 	/* ale */
+		 &banka 4 0 	/* cle */
+		 0		/* nwp */>;
+
+	partition@0 {
+	...
+	};
+};

+ 15 - 0
Documentation/devicetree/bindings/net/calxeda-xgmac.txt

@@ -0,0 +1,15 @@
+* Calxeda Highbank 10Gb XGMAC Ethernet
+
+Required properties:
+- compatible : Should be "calxeda,hb-xgmac"
+- reg : Address and length of the register set for the device
+- interrupts : Should contain 3 xgmac interrupts. The 1st is main interrupt.
+  The 2nd is pwr mgt interrupt. The 3rd is low power state interrupt.
+
+Example:
+
+ethernet@fff50000 {
+        compatible = "calxeda,hb-xgmac";
+        reg = <0xfff50000 0x1000>;
+        interrupts = <0 77 4  0 78 4  0 79 4>;
+};

+ 53 - 0
Documentation/devicetree/bindings/net/can/cc770.txt

@@ -0,0 +1,53 @@
+Memory mapped Bosch CC770 and Intel AN82527 CAN controller
+
+Note: The CC770 is a CAN controller from Bosch, which is 100%
+compatible with the old AN82527 from Intel, but with "bugs" being fixed.
+
+Required properties:
+
+- compatible : should be "bosch,cc770" for the CC770 and "intc,82527"
+	for the AN82527.
+
+- reg : should specify the chip select, address offset and size required
+	to map the registers of the controller. The size is usually 0x80.
+
+- interrupts : property with a value describing the interrupt source
+	(number and sensitivity) required for the controller.
+
+Optional properties:
+
+- bosch,external-clock-frequency : frequency of the external oscillator
+	clock in Hz. Note that the internal clock frequency used by the
+	controller is half of that value. If not specified, a default
+	value of 16000000 (16 MHz) is used.
+
+- bosch,clock-out-frequency : slock frequency in Hz on the CLKOUT pin.
+	If not specified or if the specified value is 0, the CLKOUT pin
+	will be disabled.
+
+- bosch,slew-rate : slew rate of the CLKOUT signal. If not specified,
+	a resonable value will be calculated.
+
+- bosch,disconnect-rx0-input : see data sheet.
+
+- bosch,disconnect-rx1-input : see data sheet.
+
+- bosch,disconnect-tx1-output : see data sheet.
+
+- bosch,polarity-dominant : see data sheet.
+
+- bosch,divide-memory-clock : see data sheet.
+
+- bosch,iso-low-speed-mux : see data sheet.
+
+For further information, please have a look to the CC770 or AN82527.
+
+Examples:
+
+can@3,100 {
+	compatible = "bosch,cc770";
+	reg = <3 0x100 0x80>;
+	interrupts = <2 0>;
+	interrupt-parent = <&mpic>;
+	bosch,external-clock-frequency = <16000000>;
+};

+ 25 - 0
Documentation/devicetree/bindings/net/macb.txt

@@ -0,0 +1,25 @@
+* Cadence MACB/GEM Ethernet controller
+
+Required properties:
+- compatible: Should be "cdns,[<chip>-]{macb|gem}"
+  Use "cdns,at91sam9260-macb" Atmel at91sam9260 and at91sam9263 SoCs.
+  Use "cdns,at32ap7000-macb" for other 10/100 usage or use the generic form: "cdns,macb".
+  Use "cnds,pc302-gem" for Picochip picoXcell pc302 and later devices based on
+  the Cadence GEM, or the generic form: "cdns,gem".
+- reg: Address and length of the register set for the device
+- interrupts: Should contain macb interrupt
+- phy-mode: String, operation mode of the PHY interface.
+  Supported values are: "mii", "rmii", "gmii", "rgmii".
+
+Optional properties:
+- local-mac-address: 6 bytes, mac address
+
+Examples:
+
+	macb0: ethernet@fffc4000 {
+		compatible = "cdns,at32ap7000-macb";
+		reg = <0xfffc4000 0x4000>;
+		interrupts = <21>;
+		phy-mode = "rmii";
+		local-mac-address = [3a 0e 03 04 05 06];
+	};

+ 9 - 0
Documentation/devicetree/bindings/nvec/nvec_nvidia.txt

@@ -0,0 +1,9 @@
+NVIDIA compliant embedded controller
+
+Required properties:
+- compatible : should be "nvidia,nvec".
+- reg : the iomem of the i2c slave controller
+- interrupts : the interrupt line of the i2c slave controller
+- clock-frequency : the frequency of the i2c bus
+- gpios : the gpio used for ec request
+- slave-addr: the i2c address of the slave controller

+ 5 - 0
Documentation/devicetree/bindings/power_supply/olpc_battery.txt

@@ -0,0 +1,5 @@
+OLPC battery
+~~~~~~~~~~~~
+
+Required properties:
+  - compatible : "olpc,xo1-battery"

+ 23 - 0
Documentation/devicetree/bindings/power_supply/sbs_sbs-battery.txt

@@ -0,0 +1,23 @@
+SBS sbs-battery
+~~~~~~~~~~
+
+Required properties :
+ - compatible : "sbs,sbs-battery"
+
+Optional properties :
+ - sbs,i2c-retry-count : The number of times to retry i2c transactions on i2c
+   IO failure.
+ - sbs,poll-retry-count : The number of times to try looking for new status
+   after an external change notification.
+ - sbs,battery-detect-gpios : The gpio which signals battery detection and
+   a flag specifying its polarity.
+
+Example:
+
+	bq20z75@b {
+		compatible = "sbs,sbs-battery";
+		reg = < 0xb >;
+		sbs,i2c-retry-count = <2>;
+		sbs,poll-retry-count = <10>;
+		sbs,battery-detect-gpios = <&gpio-controller 122 1>;
+	}

+ 163 - 0
Documentation/devicetree/bindings/powerpc/fsl/srio-rmu.txt

@@ -0,0 +1,163 @@
+Message unit node:
+
+For SRIO controllers that implement the message unit as part of the controller
+this node is required.  For devices with RMAN this node should NOT exist.  The
+node is composed of three types of sub-nodes ("fsl-srio-msg-unit",
+"fsl-srio-dbell-unit" and "fsl-srio-port-write-unit").
+
+See srio.txt for more details about generic SRIO controller details.
+
+   - compatible
+	Usage: required
+	Value type: <string>
+	Definition: Must include "fsl,srio-rmu-vX.Y", "fsl,srio-rmu".
+
+	The version X.Y should match the general SRIO controller's IP Block
+	revision register's Major(X) and Minor (Y) value.
+
+   - reg
+	Usage: required
+	Value type: <prop-encoded-array>
+	Definition: A standard property.  Specifies the physical address and
+		length of the SRIO configuration registers for message units
+		and doorbell units.
+
+   - fsl,liodn
+	Usage: optional-but-recommended (for devices with PAMU)
+	Value type: <prop-encoded-array>
+	Definition: The logical I/O device number for the PAMU (IOMMU) to be
+		correctly configured for SRIO accesses.  The property should
+		not exist on devices that do not support PAMU.
+
+		The LIODN value is associated with all RMU transactions
+		(msg-unit, doorbell, port-write).
+
+Sub-Nodes for RMU:  The RMU node is composed of multiple sub-nodes that
+correspond to the actual sub-controllers in the RMU.  The manual for a given
+SoC will detail which and how many of these sub-controllers are implemented.
+
+Message Unit:
+
+   - compatible
+	Usage: required
+	Value type: <string>
+	Definition: Must include "fsl,srio-msg-unit-vX.Y", "fsl,srio-msg-unit".
+
+	The version X.Y should match the general SRIO controller's IP Block
+	revision register's Major(X) and Minor (Y) value.
+
+   - reg
+	Usage: required
+	Value type: <prop-encoded-array>
+	Definition: A standard property.  Specifies the physical address and
+		length of the SRIO configuration registers for message units
+		and doorbell units.
+
+   - interrupts
+	Usage: required
+	Value type: <prop_encoded-array>
+	Definition:  Specifies the interrupts generated by this device.  The
+		value of the interrupts property consists of one interrupt
+		specifier. The format of the specifier is defined by the
+		binding document describing the node's interrupt parent.
+
+		A pair of IRQs are specified in this property.  The first
+		element is associated with the transmit (TX) interrupt and the
+		second element is associated with the receive (RX) interrupt.
+
+Doorbell Unit:
+
+   - compatible
+	Usage: required
+	Value type: <string>
+	Definition: Must include:
+		"fsl,srio-dbell-unit-vX.Y", "fsl,srio-dbell-unit"
+
+	The version X.Y should match the general SRIO controller's IP Block
+	revision register's Major(X) and Minor (Y) value.
+
+   - reg
+	Usage: required
+	Value type: <prop-encoded-array>
+	Definition: A standard property.  Specifies the physical address and
+		length of the SRIO configuration registers for message units
+		and doorbell units.
+
+   - interrupts
+	Usage: required
+	Value type: <prop_encoded-array>
+	Definition:  Specifies the interrupts generated by this device.  The
+		value of the interrupts property consists of one interrupt
+		specifier. The format of the specifier is defined by the
+		binding document describing the node's interrupt parent.
+
+		A pair of IRQs are specified in this property.  The first
+		element is associated with the transmit (TX) interrupt and the
+		second element is associated with the receive (RX) interrupt.
+
+Port-Write Unit:
+
+   - compatible
+	Usage: required
+	Value type: <string>
+	Definition: Must include:
+		 "fsl,srio-port-write-unit-vX.Y", "fsl,srio-port-write-unit"
+
+	The version X.Y should match the general SRIO controller's IP Block
+	revision register's Major(X) and Minor (Y) value.
+
+   - reg
+	Usage: required
+	Value type: <prop-encoded-array>
+	Definition: A standard property.  Specifies the physical address and
+		length of the SRIO configuration registers for message units
+		and doorbell units.
+
+   - interrupts
+	Usage: required
+	Value type: <prop_encoded-array>
+	Definition:  Specifies the interrupts generated by this device.  The
+		value of the interrupts property consists of one interrupt
+		specifier. The format of the specifier is defined by the
+		binding document describing the node's interrupt parent.
+
+		A single IRQ that handles port-write conditions is
+		specified by this property.  (Typically shared with error).
+
+   Note: All other standard properties (see the ePAPR) are allowed
+   but are optional.
+
+Example:
+	rmu: rmu@d3000 {
+		compatible = "fsl,srio-rmu";
+		reg = <0xd3000 0x400>;
+		ranges = <0x0 0xd3000 0x400>;
+		fsl,liodn = <0xc8>;
+
+		message-unit@0 {
+			compatible = "fsl,srio-msg-unit";
+			reg = <0x0 0x100>;
+			interrupts = <
+				60 2 0 0  /* msg1_tx_irq */
+				61 2 0 0>;/* msg1_rx_irq */
+		};
+		message-unit@100 {
+			compatible = "fsl,srio-msg-unit";
+			reg = <0x100 0x100>;
+			interrupts = <
+				62 2 0 0  /* msg2_tx_irq */
+				63 2 0 0>;/* msg2_rx_irq */
+		};
+		doorbell-unit@400 {
+			compatible = "fsl,srio-dbell-unit";
+			reg = <0x400 0x80>;
+			interrupts = <
+				56 2 0 0  /* bell_outb_irq */
+				57 2 0 0>;/* bell_inb_irq */
+		};
+		port-write-unit@4e0 {
+			compatible = "fsl,srio-port-write-unit";
+			reg = <0x4e0 0x20>;
+			interrupts = <16 2 1 11>;
+		};
+	};

+ 103 - 0
Documentation/devicetree/bindings/powerpc/fsl/srio.txt

@@ -0,0 +1,103 @@
+* Freescale Serial RapidIO (SRIO) Controller
+
+RapidIO port node:
+Properties:
+   - compatible
+	Usage: required
+	Value type: <string>
+	Definition: Must include "fsl,srio" for IP blocks with IP Block
+	Revision Register (SRIO IPBRR1) Major ID equal to 0x01c0.
+
+	Optionally, a compatiable string of "fsl,srio-vX.Y" where X is Major
+	version in IP Block Revision Register and Y is Minor version.  If this
+	compatiable is provided it should be ordered before "fsl,srio".
+
+   - reg
+	Usage: required
+	Value type: <prop-encoded-array>
+	Definition: A standard property.  Specifies the physical address and
+		length of the SRIO configuration registers.  The size should
+		be set to 0x11000.
+
+   - interrupts
+	Usage: required
+	Value type: <prop_encoded-array>
+	Definition:  Specifies the interrupts generated by this device.  The
+		value of the interrupts property consists of one interrupt
+		specifier. The format of the specifier is defined by the
+		binding document describing the node's interrupt parent.
+
+		A single IRQ that handles error conditions is specified by this
+		property.  (Typically shared with port-write).
+
+   - fsl,srio-rmu-handle:
+	Usage: required if rmu node is defined
+	Value type: <phandle>
+	Definition: A single <phandle> value that points to the RMU.
+	(See srio-rmu.txt for more details on RMU node binding)
+
+Port Child Nodes:  There should a port child node for each port that exists in
+the controller.  The ports are numbered starting at one (1) and should have
+the following properties:
+
+   - cell-index
+	Usage: required
+	Value type: <u32>
+	Definition: A standard property.  Matches the port id.
+
+   - ranges
+	Usage: required if local access windows preset
+	Value type: <prop-encoded-array>
+	Definition: A standard property. Utilized to describe the memory mapped
+		IO space utilized by the controller.  This corresponds to the
+		setting of the local access windows that are targeted to this
+		SRIO port.
+
+   - fsl,liodn
+	Usage: optional-but-recommended (for devices with PAMU)
+	Value type: <prop-encoded-array>
+	Definition: The logical I/O device number for the PAMU (IOMMU) to be
+		correctly configured for SRIO accesses.  The property should
+		not exist on devices that do not support PAMU.
+
+		For HW (ie, the P4080) that only supports a LIODN for both
+		memory and maintenance transactions then a single LIODN is
+		represented in the property for both transactions.
+
+		For HW (ie, the P304x/P5020, etc) that supports an LIODN for
+		memory transactions and a unique LIODN for maintenance
+		transactions then a pair of LIODNs are represented in the
+		property.  Within the pair, the first element represents the
+		LIODN associated with memory transactions and the second element
+		represents the LIODN associated with maintenance transactions
+		for the port.
+
+Note: All other standard properties (see ePAPR) are allowed but are optional.
+
+Example:
+
+	rapidio: rapidio@ffe0c0000 {
+		#address-cells = <2>;
+		#size-cells = <2>;
+		reg = <0xf 0xfe0c0000 0 0x11000>;
+		compatible = "fsl,srio";
+		interrupts = <16 2 1 11>; /* err_irq */
+		fsl,srio-rmu-handle = <&rmu>;
+		ranges;
+
+		port1 {
+			cell-index = <1>;
+			#address-cells = <2>;
+			#size-cells = <2>;
+			fsl,liodn = <34>;
+			ranges = <0 0 0xc 0x20000000 0 0x10000000>;
+		};
+
+		port2 {
+			cell-index = <2>;
+			#address-cells = <2>;
+			#size-cells = <2>;
+			fsl,liodn = <48>;
+			ranges = <0 0 0xc 0x30000000 0 0x10000000>;
+		};
+	};

+ 29 - 0
Documentation/devicetree/bindings/regulator/fixed-regulator.txt

@@ -0,0 +1,29 @@
+Fixed Voltage regulators
+
+Required properties:
+- compatible: Must be "regulator-fixed";
+
+Optional properties:
+- gpio: gpio to use for enable control
+- startup-delay-us: startup time in microseconds
+- enable-active-high: Polarity of GPIO is Active high
+If this property is missing, the default assumed is Active low.
+
+Any property defined as part of the core regulator
+binding, defined in regulator.txt, can also be used.
+However a fixed voltage regulator is expected to have the
+regulator-min-microvolt and regulator-max-microvolt
+to be the same.
+
+Example:
+
+	abc: fixedregulator@0 {
+		compatible = "regulator-fixed";
+		regulator-name = "fixed-supply";
+		regulator-min-microvolt = <1800000>;
+		regulator-max-microvolt = <1800000>;
+		gpio = <&gpio1 16 0>;
+		startup-delay-us = <70000>;
+		enable-active-high;
+		regulator-boot-on
+	};

+ 54 - 0
Documentation/devicetree/bindings/regulator/regulator.txt

@@ -0,0 +1,54 @@
+Voltage/Current Regulators
+
+Optional properties:
+- regulator-name: A string used as a descriptive name for regulator outputs
+- regulator-min-microvolt: smallest voltage consumers may set
+- regulator-max-microvolt: largest voltage consumers may set
+- regulator-microvolt-offset: Offset applied to voltages to compensate for voltage drops
+- regulator-min-microamp: smallest current consumers may set
+- regulator-max-microamp: largest current consumers may set
+- regulator-always-on: boolean, regulator should never be disabled
+- regulator-boot-on: bootloader/firmware enabled regulator
+- <name>-supply: phandle to the parent supply/regulator node
+
+Example:
+
+	xyzreg: regulator@0 {
+		regulator-min-microvolt = <1000000>;
+		regulator-max-microvolt = <2500000>;
+		regulator-always-on;
+		vin-supply = <&vin>;
+	};
+
+Regulator Consumers:
+Consumer nodes can reference one or more of its supplies/
+regulators using the below bindings.
+
+- <name>-supply: phandle to the regulator node
+
+These are the same bindings that a regulator in the above
+example used to reference its own supply, in which case
+its just seen as a special case of a regulator being a
+consumer itself.
+
+Example of a consumer device node (mmc) referencing two
+regulators (twl_reg1 and twl_reg2),
+
+	twl_reg1: regulator@0 {
+		...
+		...
+		...
+	};
+
+	twl_reg2: regulator@1 {
+		...
+		...
+		...
+	};
+
+	mmc: mmc@0x0 {
+		...
+		...
+		vmmc-supply = <&twl_reg1>;
+		vmmcaux-supply = <&twl_reg2>;
+	};

+ 20 - 0
Documentation/devicetree/bindings/rtc/s3c-rtc.txt

@@ -0,0 +1,20 @@
+* Samsung's S3C Real Time Clock controller
+
+Required properties:
+- compatible: should be one of the following.
+    * "samsung,s3c2410-rtc" - for controllers compatible with s3c2410 rtc.
+    * "samsung,s3c6410-rtc" - for controllers compatible with s3c6410 rtc.
+- reg: physical base address of the controller and length of memory mapped
+  region.
+- interrupts: Two interrupt numbers to the cpu should be specified. First
+  interrupt number is the rtc alarm interupt and second interrupt number
+  is the rtc tick interrupt. The number of cells representing a interrupt
+  depends on the parent interrupt controller.
+
+Example:
+
+	rtc@10070000 {
+		compatible = "samsung,s3c6410-rtc";
+		reg = <0x10070000 0x100>;
+		interrupts = <44 0 45 0>;
+	};

+ 12 - 0
Documentation/devicetree/bindings/rtc/twl-rtc.txt

@@ -0,0 +1,12 @@
+* TI twl RTC
+
+The TWL family (twl4030/6030) contains a RTC.
+
+Required properties:
+- compatible : Should be twl4030-rtc
+
+Examples:
+
+rtc@0 {
+    compatible = "ti,twl4030-rtc";
+};

+ 10 - 0
Documentation/devicetree/bindings/serial/omap_serial.txt

@@ -0,0 +1,10 @@
+OMAP UART controller
+
+Required properties:
+- compatible : should be "ti,omap2-uart" for OMAP2 controllers
+- compatible : should be "ti,omap3-uart" for OMAP3 controllers
+- compatible : should be "ti,omap4-uart" for OMAP4 controllers
+- ti,hwmods : Must be "uart<n>", n being the instance number (1-based)
+
+Optional properties:
+- clock-frequency : frequency of the clock input to the UART

+ 14 - 0
Documentation/devicetree/bindings/serial/samsung_uart.txt

@@ -0,0 +1,14 @@
+* Samsung's UART Controller
+
+The Samsung's UART controller is used for interfacing SoC with serial communicaion
+devices.
+
+Required properties:
+- compatible: should be
+  - "samsung,exynos4210-uart", for UART's compatible with Exynos4210 uart ports.
+
+- reg: base physical address of the controller and length of memory mapped
+  region.
+
+- interrupts: interrupt number to the cpu. The interrupt specifier format depends
+  on the interrupt controller parent.

+ 71 - 0
Documentation/devicetree/bindings/sound/tegra-audio-wm8903.txt

@@ -0,0 +1,71 @@
+NVIDIA Tegra audio complex
+
+Required properties:
+- compatible : "nvidia,tegra-audio-wm8903"
+- nvidia,model : The user-visible name of this sound complex.
+- nvidia,audio-routing : A list of the connections between audio components.
+  Each entry is a pair of strings, the first being the connection's sink,
+  the second being the connection's source. Valid names for sources and
+  sinks are the WM8903's pins, and the jacks on the board:
+
+  WM8903 pins:
+
+  * IN1L
+  * IN1R
+  * IN2L
+  * IN2R
+  * IN3L
+  * IN3R
+  * DMICDAT
+  * HPOUTL
+  * HPOUTR
+  * LINEOUTL
+  * LINEOUTR
+  * LOP
+  * LON
+  * ROP
+  * RON
+  * MICBIAS
+
+  Board connectors:
+
+  * Headphone Jack
+  * Int Spk
+  * Mic Jack
+
+- nvidia,i2s-controller : The phandle of the Tegra I2S1 controller
+- nvidia,audio-codec : The phandle of the WM8903 audio codec
+
+Optional properties:
+- nvidia,spkr-en-gpios : The GPIO that enables the speakers
+- nvidia,hp-mute-gpios : The GPIO that mutes the headphones
+- nvidia,hp-det-gpios : The GPIO that detect headphones are plugged in
+- nvidia,int-mic-en-gpios : The GPIO that enables the internal microphone
+- nvidia,ext-mic-en-gpios : The GPIO that enables the external microphone
+
+Example:
+
+sound {
+	compatible = "nvidia,tegra-audio-wm8903-harmony",
+		     "nvidia,tegra-audio-wm8903"
+	nvidia,model = "tegra-wm8903-harmony";
+
+	nvidia,audio-routing =
+		"Headphone Jack", "HPOUTR",
+		"Headphone Jack", "HPOUTL",
+		"Int Spk", "ROP",
+		"Int Spk", "RON",
+		"Int Spk", "LOP",
+		"Int Spk", "LON",
+		"Mic Jack", "MICBIAS",
+		"IN1L", "Mic Jack";
+
+	nvidia,i2s-controller = <&i2s1>;
+	nvidia,audio-codec = <&wm8903>;
+
+	nvidia,spkr-en-gpios = <&codec 2 0>;
+	nvidia,hp-det-gpios = <&gpio 178 0>; /* gpio PW2 */
+	nvidia,int-mic-en-gpios = <&gpio 184 0>; /*gpio PX0 */
+	nvidia,ext-mic-en-gpios = <&gpio 185 0>; /* gpio PX1 */
+};
+

+ 12 - 0
Documentation/devicetree/bindings/sound/tegra20-das.txt

@@ -0,0 +1,12 @@
+NVIDIA Tegra 20 DAS (Digital Audio Switch) controller
+
+Required properties:
+- compatible : "nvidia,tegra20-das"
+- reg : Should contain DAS registers location and length
+
+Example:
+
+das@70000c00 {
+	compatible = "nvidia,tegra20-das";
+	reg = <0x70000c00 0x80>;
+};

+ 17 - 0
Documentation/devicetree/bindings/sound/tegra20-i2s.txt

@@ -0,0 +1,17 @@
+NVIDIA Tegra 20 I2S controller
+
+Required properties:
+- compatible : "nvidia,tegra20-i2s"
+- reg : Should contain I2S registers location and length
+- interrupts : Should contain I2S interrupt
+- nvidia,dma-request-selector : The Tegra DMA controller's phandle and
+  request selector for this I2S controller
+
+Example:
+
+i2s@70002800 {
+	compatible = "nvidia,tegra20-i2s";
+	reg = <0x70002800 0x200>;
+	interrupts = < 45 >;
+	nvidia,dma-request-selector = < &apbdma 2 >;
+};

+ 50 - 0
Documentation/devicetree/bindings/sound/wm8903.txt

@@ -0,0 +1,50 @@
+WM8903 audio CODEC
+
+This device supports I2C only.
+
+Required properties:
+
+  - compatible : "wlf,wm8903"
+
+  - reg : the I2C address of the device.
+
+  - gpio-controller : Indicates this device is a GPIO controller.
+
+  - #gpio-cells : Should be two. The first cell is the pin number and the
+    second cell is used to specify optional parameters (currently unused).
+
+Optional properties:
+
+  - interrupts : The interrupt line the codec is connected to.
+
+  - micdet-cfg : Default register value for R6 (Mic Bias). If absent, the
+    default is 0.
+
+  - micdet-delay : The debounce delay for microphone detection in mS. If
+    absent, the default is 100.
+
+  - gpio-cfg : A list of GPIO configuration register values. The list must
+    be 5 entries long. If absent, no configuration of these registers is
+    performed. If any entry has the value 0xffffffff, that GPIO's
+    configuration will not be modified.
+
+Example:
+
+codec: wm8903@1a {
+	compatible = "wlf,wm8903";
+	reg = <0x1a>;
+	interrupts = < 347 >;
+
+	gpio-controller;
+	#gpio-cells = <2>;
+
+	micdet-cfg = <0>;
+	micdet-delay = <100>;
+	gpio-cfg = <
+		0x0600 /* DMIC_LR, output */
+		0x0680 /* DMIC_DAT, input */
+		0x0000 /* GPIO, output, low */
+		0x0200 /* Interrupt, output */
+		0x01a0 /* BCLK, input, active high */
+	>;
+};

+ 18 - 0
Documentation/devicetree/bindings/sound/wm8994.txt

@@ -0,0 +1,18 @@
+WM1811/WM8994/WM8958 audio CODEC
+
+These devices support both I2C and SPI (configured with pin strapping
+on the board).
+
+Required properties:
+
+  - compatible : "wlf,wm1811", "wlf,wm8994", "wlf,wm8958"
+
+  - reg : the I2C address of the device for I2C, the chip select
+          number for SPI.
+
+Example:
+
+codec: wm8994@1a {
+	compatible = "wlf,wm8994";
+	reg = <0x1a>;
+};

+ 13 - 0
Documentation/devicetree/bindings/usb/tegra-usb.txt

@@ -0,0 +1,13 @@
+Tegra SOC USB controllers
+
+The device node for a USB controller that is part of a Tegra
+SOC is as described in the document "Open Firmware Recommended
+Practice : Universal Serial Bus" with the following modifications
+and additions :
+
+Required properties :
+ - compatible : Should be "nvidia,tegra20-ehci" for USB controllers
+   used in host mode.
+ - phy_type : Should be one of "ulpi" or "utmi".
+ - nvidia,vbus-gpio : If present, specifies a gpio that needs to be
+   activated for the bus to be powered.

+ 5 - 0
Documentation/devicetree/bindings/vendor-prefixes.txt

@@ -8,7 +8,9 @@ amcc	Applied Micro Circuits Corporation (APM, formally AMCC)
 apm	Applied Micro Circuits Corporation (APM)
 arm	ARM Ltd.
 atmel	Atmel Corporation
+cavium	Cavium, Inc.
 chrp	Common Hardware Reference Platform
+cortina	Cortina Systems, Inc.
 dallas	Maxim Integrated Products (formerly Dallas Semiconductor)
 denx	Denx Software Engineering
 epson	Seiko Epson Corp.
@@ -32,10 +34,13 @@ powervr	Imagination Technologies
 qcom	Qualcomm, Inc.
 ramtron	Ramtron International
 samsung	Samsung Semiconductor
+sbs	Smart Battery System
 schindler	Schindler
 sil	Silicon Image
 simtek
 sirf	SiRF Technology, Inc.
+st	STMicroelectronics
 stericsson	ST-Ericsson
 ti	Texas Instruments
+wlf	Wolfson Microelectronics
 xlnx	Xilinx

+ 96 - 0
Documentation/digsig.txt

@@ -0,0 +1,96 @@
+Digital Signature Verification API
+
+CONTENTS
+
+1. Introduction
+2. API
+3. User-space utilities
+
+
+1. Introduction
+
+Digital signature verification API provides a method to verify digital signature.
+Currently digital signatures are used by the IMA/EVM integrity protection subsystem.
+
+Digital signature verification is implemented using cut-down kernel port of
+GnuPG multi-precision integers (MPI) library. The kernel port provides
+memory allocation errors handling, has been refactored according to kernel
+coding style, and checkpatch.pl reported errors and warnings have been fixed.
+
+Public key and signature consist of header and MPIs.
+
+struct pubkey_hdr {
+	uint8_t		version;	/* key format version */
+	time_t		timestamp;	/* key made, always 0 for now */
+	uint8_t		algo;
+	uint8_t		nmpi;
+	char		mpi[0];
+} __packed;
+
+struct signature_hdr {
+	uint8_t		version;	/* signature format version */
+	time_t		timestamp;	/* signature made */
+	uint8_t		algo;
+	uint8_t		hash;
+	uint8_t		keyid[8];
+	uint8_t		nmpi;
+	char		mpi[0];
+} __packed;
+
+keyid equals to SHA1[12-19] over the total key content.
+Signature header is used as an input to generate a signature.
+Such approach insures that key or signature header could not be changed.
+It protects timestamp from been changed and can be used for rollback
+protection.
+
+2. API
+
+API currently includes only 1 function:
+
+	digsig_verify() - digital signature verification with public key
+
+
+/**
+ * digsig_verify() - digital signature verification with public key
+ * @keyring:	keyring to search key in
+ * @sig:	digital signature
+ * @sigen:	length of the signature
+ * @data:	data
+ * @datalen:	length of the data
+ * @return:	0 on success, -EINVAL otherwise
+ *
+ * Verifies data integrity against digital signature.
+ * Currently only RSA is supported.
+ * Normally hash of the content is used as a data for this function.
+ *
+ */
+int digsig_verify(struct key *keyring, const char *sig, int siglen,
+						const char *data, int datalen);
+
+3. User-space utilities
+
+The signing and key management utilities evm-utils provide functionality
+to generate signatures, to load keys into the kernel keyring.
+Keys can be in PEM or converted to the kernel format.
+When the key is added to the kernel keyring, the keyid defines the name
+of the key: 5D2B05FC633EE3E8 in the example bellow.
+
+Here is example output of the keyctl utility.
+
+$ keyctl show
+Session Keyring
+       -3 --alswrv      0     0  keyring: _ses
+603976250 --alswrv      0    -1   \_ keyring: _uid.0
+817777377 --alswrv      0     0       \_ user: kmk
+891974900 --alswrv      0     0       \_ encrypted: evm-key
+170323636 --alswrv      0     0       \_ keyring: _module
+548221616 --alswrv      0     0       \_ keyring: _ima
+128198054 --alswrv      0     0       \_ keyring: _evm
+
+$ keyctl list 128198054
+1 key in keyring:
+620789745: --alswrv     0     0 user: 5D2B05FC633EE3E8
+
+
+Dmitry Kasatkin
+06.10.2011

+ 224 - 0
Documentation/dma-buf-sharing.txt

@@ -0,0 +1,224 @@
+                    DMA Buffer Sharing API Guide
+                    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+                            Sumit Semwal
+                <sumit dot semwal at linaro dot org>
+                 <sumit dot semwal at ti dot com>
+
+This document serves as a guide to device-driver writers on what is the dma-buf
+buffer sharing API, how to use it for exporting and using shared buffers.
+
+Any device driver which wishes to be a part of DMA buffer sharing, can do so as
+either the 'exporter' of buffers, or the 'user' of buffers.
+
+Say a driver A wants to use buffers created by driver B, then we call B as the
+exporter, and A as buffer-user.
+
+The exporter
+- implements and manages operations[1] for the buffer
+- allows other users to share the buffer by using dma_buf sharing APIs,
+- manages the details of buffer allocation,
+- decides about the actual backing storage where this allocation happens,
+- takes care of any migration of scatterlist - for all (shared) users of this
+   buffer,
+
+The buffer-user
+- is one of (many) sharing users of the buffer.
+- doesn't need to worry about how the buffer is allocated, or where.
+- needs a mechanism to get access to the scatterlist that makes up this buffer
+   in memory, mapped into its own address space, so it can access the same area
+   of memory.
+
+*IMPORTANT*: [see https://lkml.org/lkml/2011/12/20/211 for more details]
+For this first version, A buffer shared using the dma_buf sharing API:
+- *may* be exported to user space using "mmap" *ONLY* by exporter, outside of
+   this framework.
+- may be used *ONLY* by importers that do not need CPU access to the buffer.
+
+The dma_buf buffer sharing API usage contains the following steps:
+
+1. Exporter announces that it wishes to export a buffer
+2. Userspace gets the file descriptor associated with the exported buffer, and
+   passes it around to potential buffer-users based on use case
+3. Each buffer-user 'connects' itself to the buffer
+4. When needed, buffer-user requests access to the buffer from exporter
+5. When finished with its use, the buffer-user notifies end-of-DMA to exporter
+6. when buffer-user is done using this buffer completely, it 'disconnects'
+   itself from the buffer.
+
+
+1. Exporter's announcement of buffer export
+
+   The buffer exporter announces its wish to export a buffer. In this, it
+   connects its own private buffer data, provides implementation for operations
+   that can be performed on the exported dma_buf, and flags for the file
+   associated with this buffer.
+
+   Interface:
+      struct dma_buf *dma_buf_export(void *priv, struct dma_buf_ops *ops,
+				     size_t size, int flags)
+
+   If this succeeds, dma_buf_export allocates a dma_buf structure, and returns a
+   pointer to the same. It also associates an anonymous file with this buffer,
+   so it can be exported. On failure to allocate the dma_buf object, it returns
+   NULL.
+
+2. Userspace gets a handle to pass around to potential buffer-users
+
+   Userspace entity requests for a file-descriptor (fd) which is a handle to the
+   anonymous file associated with the buffer. It can then share the fd with other
+   drivers and/or processes.
+
+   Interface:
+      int dma_buf_fd(struct dma_buf *dmabuf)
+
+   This API installs an fd for the anonymous file associated with this buffer;
+   returns either 'fd', or error.
+
+3. Each buffer-user 'connects' itself to the buffer
+
+   Each buffer-user now gets a reference to the buffer, using the fd passed to
+   it.
+
+   Interface:
+      struct dma_buf *dma_buf_get(int fd)
+
+   This API will return a reference to the dma_buf, and increment refcount for
+   it.
+
+   After this, the buffer-user needs to attach its device with the buffer, which
+   helps the exporter to know of device buffer constraints.
+
+   Interface:
+      struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
+                                                struct device *dev)
+
+   This API returns reference to an attachment structure, which is then used
+   for scatterlist operations. It will optionally call the 'attach' dma_buf
+   operation, if provided by the exporter.
+
+   The dma-buf sharing framework does the bookkeeping bits related to managing
+   the list of all attachments to a buffer.
+
+Until this stage, the buffer-exporter has the option to choose not to actually
+allocate the backing storage for this buffer, but wait for the first buffer-user
+to request use of buffer for allocation.
+
+
+4. When needed, buffer-user requests access to the buffer
+
+   Whenever a buffer-user wants to use the buffer for any DMA, it asks for
+   access to the buffer using dma_buf_map_attachment API. At least one attach to
+   the buffer must have happened before map_dma_buf can be called.
+
+   Interface:
+      struct sg_table * dma_buf_map_attachment(struct dma_buf_attachment *,
+                                         enum dma_data_direction);
+
+   This is a wrapper to dma_buf->ops->map_dma_buf operation, which hides the
+   "dma_buf->ops->" indirection from the users of this interface.
+
+   In struct dma_buf_ops, map_dma_buf is defined as
+      struct sg_table * (*map_dma_buf)(struct dma_buf_attachment *,
+                                                enum dma_data_direction);
+
+   It is one of the buffer operations that must be implemented by the exporter.
+   It should return the sg_table containing scatterlist for this buffer, mapped
+   into caller's address space.
+
+   If this is being called for the first time, the exporter can now choose to
+   scan through the list of attachments for this buffer, collate the requirements
+   of the attached devices, and choose an appropriate backing storage for the
+   buffer.
+
+   Based on enum dma_data_direction, it might be possible to have multiple users
+   accessing at the same time (for reading, maybe), or any other kind of sharing
+   that the exporter might wish to make available to buffer-users.
+
+   map_dma_buf() operation can return -EINTR if it is interrupted by a signal.
+
+
+5. When finished, the buffer-user notifies end-of-DMA to exporter
+
+   Once the DMA for the current buffer-user is over, it signals 'end-of-DMA' to
+   the exporter using the dma_buf_unmap_attachment API.
+
+   Interface:
+      void dma_buf_unmap_attachment(struct dma_buf_attachment *,
+                                    struct sg_table *);
+
+   This is a wrapper to dma_buf->ops->unmap_dma_buf() operation, which hides the
+   "dma_buf->ops->" indirection from the users of this interface.
+
+   In struct dma_buf_ops, unmap_dma_buf is defined as
+      void (*unmap_dma_buf)(struct dma_buf_attachment *, struct sg_table *);
+
+   unmap_dma_buf signifies the end-of-DMA for the attachment provided. Like
+   map_dma_buf, this API also must be implemented by the exporter.
+
+
+6. when buffer-user is done using this buffer, it 'disconnects' itself from the
+   buffer.
+
+   After the buffer-user has no more interest in using this buffer, it should
+   disconnect itself from the buffer:
+
+   - it first detaches itself from the buffer.
+
+   Interface:
+      void dma_buf_detach(struct dma_buf *dmabuf,
+                          struct dma_buf_attachment *dmabuf_attach);
+
+   This API removes the attachment from the list in dmabuf, and optionally calls
+   dma_buf->ops->detach(), if provided by exporter, for any housekeeping bits.
+
+   - Then, the buffer-user returns the buffer reference to exporter.
+
+   Interface:
+     void dma_buf_put(struct dma_buf *dmabuf);
+
+   This API then reduces the refcount for this buffer.
+
+   If, as a result of this call, the refcount becomes 0, the 'release' file
+   operation related to this fd is called. It calls the dmabuf->ops->release()
+   operation in turn, and frees the memory allocated for dmabuf when exported.
+
+NOTES:
+- Importance of attach-detach and {map,unmap}_dma_buf operation pairs
+   The attach-detach calls allow the exporter to figure out backing-storage
+   constraints for the currently-interested devices. This allows preferential
+   allocation, and/or migration of pages across different types of storage
+   available, if possible.
+
+   Bracketing of DMA access with {map,unmap}_dma_buf operations is essential
+   to allow just-in-time backing of storage, and migration mid-way through a
+   use-case.
+
+- Migration of backing storage if needed
+   If after
+   - at least one map_dma_buf has happened,
+   - and the backing storage has been allocated for this buffer,
+   another new buffer-user intends to attach itself to this buffer, it might
+   be allowed, if possible for the exporter.
+
+   In case it is allowed by the exporter:
+    if the new buffer-user has stricter 'backing-storage constraints', and the
+    exporter can handle these constraints, the exporter can just stall on the
+    map_dma_buf until all outstanding access is completed (as signalled by
+    unmap_dma_buf).
+    Once all users have finished accessing and have unmapped this buffer, the
+    exporter could potentially move the buffer to the stricter backing-storage,
+    and then allow further {map,unmap}_dma_buf operations from any buffer-user
+    from the migrated backing-storage.
+
+   If the exporter cannot fulfil the backing-storage constraints of the new
+   buffer-user device as requested, dma_buf_attach() would return an error to
+   denote non-compatibility of the new buffer-sharing request with the current
+   buffer.
+
+   If the exporter chooses not to allow an attach() operation once a
+   map_dma_buf() API has been called, it simply returns an error.
+
+References:
+[1] struct dma_buf_ops in include/linux/dma-buf.h
+[2] All interfaces mentioned above defined in include/linux/dma-buf.h

+ 0 - 1
Documentation/dontdiff

@@ -66,7 +66,6 @@ GRTAGS
 GSYMS
 GTAGS
 Image
-Kerntypes
 Module.markers
 Module.symvers
 PENDING

+ 1 - 0
Documentation/driver-model/devres.txt

@@ -262,6 +262,7 @@ IOMAP
   devm_ioremap()
   devm_ioremap_nocache()
   devm_iounmap()
+  devm_request_and_ioremap() : checks resource, requests region, ioremaps
   pcim_iomap()
   pcim_iounmap()
   pcim_iomap_table()	: array of mapped addresses indexed by BAR

+ 27 - 22
Documentation/feature-removal-schedule.txt

@@ -85,17 +85,6 @@ Who:	Robin Getz <rgetz@blackfin.uclinux.org> & Matt Mackall <mpm@selenic.com>
 
 ---------------------------
 
-What:	Deprecated snapshot ioctls
-When:	2.6.36
-
-Why:	The ioctls in kernel/power/user.c were marked as deprecated long time
-	ago. Now they notify users about that so that they need to replace
-	their userspace. After some more time, remove them completely.
-
-Who:	Jiri Slaby <jirislaby@gmail.com>
-
----------------------------
-
 What:	The ieee80211_regdom module parameter
 When:	March 2010 / desktop catchup
 
@@ -263,8 +252,7 @@ Who:	Ravikiran Thirumalai <kiran@scalex86.org>
 
 What:	Code that is now under CONFIG_WIRELESS_EXT_SYSFS
 	(in net/core/net-sysfs.c)
-When:	After the only user (hal) has seen a release with the patches
-	for enough time, probably some time in 2010.
+When:	3.5
 Why:	Over 1K .text/.data size reduction, data is available in other
 	ways (ioctls)
 Who:	Johannes Berg <johannes@sipsolutions.net>
@@ -362,15 +350,6 @@ Who: 	anybody or Florian Mickler <florian@mickler.org>
 
 ----------------------------
 
-What:	KVM paravirt mmu host support
-When:	January 2011
-Why:	The paravirt mmu host support is slower than non-paravirt mmu, both
-	on newer and older hardware.  It is already not exposed to the guest,
-	and kept only for live migration purposes.
-Who:	Avi Kivity <avi@redhat.com>
-
-----------------------------
-
 What:	iwlwifi 50XX module parameters
 When:	3.0
 Why:	The "..50" modules parameters were used to configure 5000 series and
@@ -535,6 +514,20 @@ Why:    In 3.0, we can now autodetect internal 3G device and already have
 	information log when acer-wmi initial.
 Who:    Lee, Chun-Yi <jlee@novell.com>
 
+---------------------------
+
+What:	/sys/devices/platform/_UDC_/udc/_UDC_/is_dualspeed file and
+	is_dualspeed line in /sys/devices/platform/ci13xxx_*/udc/device file.
+When:	3.8
+Why:	The is_dualspeed file is superseded by maximum_speed in the same
+	directory and is_dualspeed line in device file is superseded by
+	max_speed line in the same file.
+
+	The maximum_speed/max_speed specifies maximum speed supported by UDC.
+	To check if dualspeeed is supported, check if the value is >= 3.
+	Various possible speeds are defined in <linux/usb/ch9.h>.
+Who:	Michal Nazarewicz <mina86@mina86.com>
+
 ----------------------------
 
 What:	The XFS nodelaylog mount option
@@ -551,3 +544,15 @@ When:	3.5
 Why:	The iwlagn module has been renamed iwlwifi.  The alias will be around
 	for backward compatibility for several cycles and then dropped.
 Who:	Don Fry <donald.h.fry@intel.com>
+
+----------------------------
+
+What:	pci_scan_bus_parented()
+When:	3.5
+Why:	The pci_scan_bus_parented() interface creates a new root bus.  The
+	bus is created with default resources (ioport_resource and
+	iomem_resource) that are always wrong, so we rely on arch code to
+	correct them later.  Callers of pci_scan_bus_parented() should
+	convert to using pci_scan_root_bus() so they can supply a list of
+	bus resources when the bus is created.
+Who:	Bjorn Helgaas <bhelgaas@google.com>

+ 4 - 4
Documentation/filesystems/Locking

@@ -37,15 +37,15 @@ d_manage:	no		no		yes (ref-walk)	maybe
 
 --------------------------- inode_operations --------------------------- 
 prototypes:
-	int (*create) (struct inode *,struct dentry *,int, struct nameidata *);
+	int (*create) (struct inode *,struct dentry *,umode_t, struct nameidata *);
 	struct dentry * (*lookup) (struct inode *,struct dentry *, struct nameid
 ata *);
 	int (*link) (struct dentry *,struct inode *,struct dentry *);
 	int (*unlink) (struct inode *,struct dentry *);
 	int (*symlink) (struct inode *,struct dentry *,const char *);
-	int (*mkdir) (struct inode *,struct dentry *,int);
+	int (*mkdir) (struct inode *,struct dentry *,umode_t);
 	int (*rmdir) (struct inode *,struct dentry *);
-	int (*mknod) (struct inode *,struct dentry *,int,dev_t);
+	int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t);
 	int (*rename) (struct inode *, struct dentry *,
 			struct inode *, struct dentry *);
 	int (*readlink) (struct dentry *, char __user *,int);
@@ -117,7 +117,7 @@ prototypes:
 	int (*statfs) (struct dentry *, struct kstatfs *);
 	int (*remount_fs) (struct super_block *, int *, char *);
 	void (*umount_begin) (struct super_block *);
-	int (*show_options)(struct seq_file *, struct vfsmount *);
+	int (*show_options)(struct seq_file *, struct dentry *);
 	ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
 	ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
 	int (*bdev_try_to_free_page)(struct super_block*, struct page*, gfp_t);

+ 1 - 1
Documentation/filesystems/configfs/configfs.txt

@@ -192,7 +192,7 @@ attribute value uses the store_attribute() method.
 	struct configfs_attribute {
 		char                    *ca_name;
 		struct module           *ca_owner;
-		mode_t                  ca_mode;
+		umode_t                  ca_mode;
 	};
 
 When a config_item wants an attribute to appear as a file in the item's

+ 43 - 13
Documentation/filesystems/debugfs.txt

@@ -35,7 +35,7 @@ described below will work.
 
 The most general way to create a file within a debugfs directory is with:
 
-    struct dentry *debugfs_create_file(const char *name, mode_t mode,
+    struct dentry *debugfs_create_file(const char *name, umode_t mode,
 				       struct dentry *parent, void *data,
 				       const struct file_operations *fops);
 
@@ -53,13 +53,13 @@ actually necessary; the debugfs code provides a number of helper functions
 for simple situations.  Files containing a single integer value can be
 created with any of:
 
-    struct dentry *debugfs_create_u8(const char *name, mode_t mode,
+    struct dentry *debugfs_create_u8(const char *name, umode_t mode,
 				     struct dentry *parent, u8 *value);
-    struct dentry *debugfs_create_u16(const char *name, mode_t mode,
+    struct dentry *debugfs_create_u16(const char *name, umode_t mode,
 				      struct dentry *parent, u16 *value);
-    struct dentry *debugfs_create_u32(const char *name, mode_t mode,
+    struct dentry *debugfs_create_u32(const char *name, umode_t mode,
 				      struct dentry *parent, u32 *value);
-    struct dentry *debugfs_create_u64(const char *name, mode_t mode,
+    struct dentry *debugfs_create_u64(const char *name, umode_t mode,
 				      struct dentry *parent, u64 *value);
 
 These files support both reading and writing the given value; if a specific
@@ -67,13 +67,13 @@ file should not be written to, simply set the mode bits accordingly.  The
 values in these files are in decimal; if hexadecimal is more appropriate,
 the following functions can be used instead:
 
-    struct dentry *debugfs_create_x8(const char *name, mode_t mode,
+    struct dentry *debugfs_create_x8(const char *name, umode_t mode,
 				     struct dentry *parent, u8 *value);
-    struct dentry *debugfs_create_x16(const char *name, mode_t mode,
+    struct dentry *debugfs_create_x16(const char *name, umode_t mode,
 				      struct dentry *parent, u16 *value);
-    struct dentry *debugfs_create_x32(const char *name, mode_t mode,
+    struct dentry *debugfs_create_x32(const char *name, umode_t mode,
 				      struct dentry *parent, u32 *value);
-    struct dentry *debugfs_create_x64(const char *name, mode_t mode,
+    struct dentry *debugfs_create_x64(const char *name, umode_t mode,
 				      struct dentry *parent, u64 *value);
 
 These functions are useful as long as the developer knows the size of the
@@ -81,7 +81,7 @@ value to be exported.  Some types can have different widths on different
 architectures, though, complicating the situation somewhat.  There is a
 function meant to help out in one special case:
 
-    struct dentry *debugfs_create_size_t(const char *name, mode_t mode,
+    struct dentry *debugfs_create_size_t(const char *name, umode_t mode,
 				         struct dentry *parent, 
 					 size_t *value);
 
@@ -90,21 +90,22 @@ a variable of type size_t.
 
 Boolean values can be placed in debugfs with:
 
-    struct dentry *debugfs_create_bool(const char *name, mode_t mode,
+    struct dentry *debugfs_create_bool(const char *name, umode_t mode,
 				       struct dentry *parent, u32 *value);
 
 A read on the resulting file will yield either Y (for non-zero values) or
 N, followed by a newline.  If written to, it will accept either upper- or
 lower-case values, or 1 or 0.  Any other input will be silently ignored.
 
-Finally, a block of arbitrary binary data can be exported with:
+Another option is exporting a block of arbitrary binary data, with
+this structure and function:
 
     struct debugfs_blob_wrapper {
 	void *data;
 	unsigned long size;
     };
 
-    struct dentry *debugfs_create_blob(const char *name, mode_t mode,
+    struct dentry *debugfs_create_blob(const char *name, umode_t mode,
 				       struct dentry *parent,
 				       struct debugfs_blob_wrapper *blob);
 
@@ -115,6 +116,35 @@ can be used to export binary information, but there does not appear to be
 any code which does so in the mainline.  Note that all files created with
 debugfs_create_blob() are read-only.
 
+If you want to dump a block of registers (something that happens quite
+often during development, even if little such code reaches mainline.
+Debugfs offers two functions: one to make a registers-only file, and
+another to insert a register block in the middle of another sequential
+file.
+
+    struct debugfs_reg32 {
+	char *name;
+	unsigned long offset;
+    };
+
+    struct debugfs_regset32 {
+	struct debugfs_reg32 *regs;
+	int nregs;
+	void __iomem *base;
+    };
+
+    struct dentry *debugfs_create_regset32(const char *name, mode_t mode,
+				     struct dentry *parent,
+				     struct debugfs_regset32 *regset);
+
+    int debugfs_print_regs32(struct seq_file *s, struct debugfs_reg32 *regs,
+			 int nregs, void __iomem *base, char *prefix);
+
+The "base" argument may be 0, but you may want to build the reg32 array
+using __stringify, and a number of register names (macros) are actually
+byte offsets over a base for the register block.
+
+
 There are a couple of other directory-oriented helper functions:
 
     struct dentry *debugfs_rename(struct dentry *old_dir, 

+ 7 - 0
Documentation/filesystems/ext4.txt

@@ -581,6 +581,13 @@ Table of Ext4 specific ioctls
 			      behaviour may change in the future as it is
 			      not necessary and has been done this way only
 			      for sake of simplicity.
+
+ EXT4_IOC_RESIZE_FS	      Resize the filesystem to a new size.  The number
+			      of blocks of resized filesystem is passed in via
+			      64 bit integer argument.  The kernel allocates
+			      bitmaps and inode table, the userspace tool thus
+			      just passes the new number of blocks.
+
 ..............................................................................
 
 References

+ 39 - 0
Documentation/filesystems/proc.txt

@@ -41,6 +41,8 @@ Table of Contents
   3.5	/proc/<pid>/mountinfo - Information about mounts
   3.6	/proc/<pid>/comm  & /proc/<pid>/task/<tid>/comm
 
+  4	Configuring procfs
+  4.1	Mount options
 
 ------------------------------------------------------------------------------
 Preface
@@ -1542,3 +1544,40 @@ a task to set its own or one of its thread siblings comm value. The comm value
 is limited in size compared to the cmdline value, so writing anything longer
 then the kernel's TASK_COMM_LEN (currently 16 chars) will result in a truncated
 comm value.
+
+
+------------------------------------------------------------------------------
+Configuring procfs
+------------------------------------------------------------------------------
+
+4.1	Mount options
+---------------------
+
+The following mount options are supported:
+
+	hidepid=	Set /proc/<pid>/ access mode.
+	gid=		Set the group authorized to learn processes information.
+
+hidepid=0 means classic mode - everybody may access all /proc/<pid>/ directories
+(default).
+
+hidepid=1 means users may not access any /proc/<pid>/ directories but their
+own.  Sensitive files like cmdline, sched*, status are now protected against
+other users.  This makes it impossible to learn whether any user runs
+specific program (given the program doesn't reveal itself by its behaviour).
+As an additional bonus, as /proc/<pid>/cmdline is unaccessible for other users,
+poorly written programs passing sensitive information via program arguments are
+now protected against local eavesdroppers.
+
+hidepid=2 means hidepid=1 plus all /proc/<pid>/ will be fully invisible to other
+users.  It doesn't mean that it hides a fact whether a process with a specific
+pid value exists (it can be learned by other means, e.g. by "kill -0 $PID"),
+but it hides process' uid and gid, which may be learned by stat()'ing
+/proc/<pid>/ otherwise.  It greatly complicates an intruder's task of gathering
+information about running processes, whether some daemon runs with elevated
+privileges, whether other user runs some sensitive program, whether other users
+run any program at all, etc.
+
+gid= defines a group authorized to learn processes information otherwise
+prohibited by hidepid=.  If you use some daemon like identd which needs to learn
+information about processes information, just add identd to this group.

+ 1 - 1
Documentation/filesystems/sysfs.txt

@@ -70,7 +70,7 @@ An attribute definition is simply:
 struct attribute {
         char                    * name;
         struct module		*owner;
-        mode_t                  mode;
+        umode_t                 mode;
 };
 
 

+ 4 - 4
Documentation/filesystems/vfs.txt

@@ -225,7 +225,7 @@ struct super_operations {
         void (*clear_inode) (struct inode *);
         void (*umount_begin) (struct super_block *);
 
-        int (*show_options)(struct seq_file *, struct vfsmount *);
+        int (*show_options)(struct seq_file *, struct dentry *);
 
         ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
         ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
@@ -341,14 +341,14 @@ This describes how the VFS can manipulate an inode in your
 filesystem. As of kernel 2.6.22, the following members are defined:
 
 struct inode_operations {
-	int (*create) (struct inode *,struct dentry *,int, struct nameidata *);
+	int (*create) (struct inode *,struct dentry *, umode_t, struct nameidata *);
 	struct dentry * (*lookup) (struct inode *,struct dentry *, struct nameidata *);
 	int (*link) (struct dentry *,struct inode *,struct dentry *);
 	int (*unlink) (struct inode *,struct dentry *);
 	int (*symlink) (struct inode *,struct dentry *,const char *);
-	int (*mkdir) (struct inode *,struct dentry *,int);
+	int (*mkdir) (struct inode *,struct dentry *,umode_t);
 	int (*rmdir) (struct inode *,struct dentry *);
-	int (*mknod) (struct inode *,struct dentry *,int,dev_t);
+	int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t);
 	int (*rename) (struct inode *, struct dentry *,
 			struct inode *, struct dentry *);
 	int (*readlink) (struct dentry *, char __user *,int);

+ 2 - 3
Documentation/hwmon/pmbus

@@ -2,9 +2,8 @@ Kernel driver pmbus
 ====================
 
 Supported chips:
-  * Ericsson BMR45X series
-    DC/DC Converter
-    Prefixes: 'bmr450', 'bmr451', 'bmr453', 'bmr454'
+  * Ericsson BMR453, BMR454
+    Prefixes: 'bmr453', 'bmr454'
     Addresses scanned: -
     Datasheet:
  http://archive.ericsson.net/service/internet/picov/get?DocNo=28701-EN/LZT146395

+ 15 - 0
Documentation/hwmon/zl6100

@@ -6,6 +6,10 @@ Supported chips:
     Prefix: 'zl2004'
     Addresses scanned: -
     Datasheet: http://www.intersil.com/data/fn/fn6847.pdf
+  * Intersil / Zilker Labs ZL2005
+    Prefix: 'zl2005'
+    Addresses scanned: -
+    Datasheet: http://www.intersil.com/data/fn/fn6848.pdf
   * Intersil / Zilker Labs ZL2006
     Prefix: 'zl2006'
     Addresses scanned: -
@@ -30,6 +34,17 @@ Supported chips:
     Prefix: 'zl6105'
     Addresses scanned: -
     Datasheet: http://www.intersil.com/data/fn/fn6906.pdf
+  * Ericsson BMR450, BMR451
+    Prefix: 'bmr450', 'bmr451'
+    Addresses scanned: -
+    Datasheet:
+http://archive.ericsson.net/service/internet/picov/get?DocNo=28701-EN/LZT146401
+  * Ericsson BMR462, BMR463, BMR464
+    Prefixes: 'bmr462', 'bmr463', 'bmr464'
+    Addresses scanned: -
+    Datasheet:
+http://archive.ericsson.net/service/internet/picov/get?DocNo=28701-EN/LZT146256
+
 
 Author: Guenter Roeck <guenter.roeck@ericsson.com>
 

+ 188 - 0
Documentation/input/alps.txt

@@ -0,0 +1,188 @@
+ALPS Touchpad Protocol
+----------------------
+
+Introduction
+------------
+
+Currently the ALPS touchpad driver supports four protocol versions in use by
+ALPS touchpads, called versions 1, 2, 3, and 4. Information about the various
+protocol versions is contained in the following sections.
+
+Detection
+---------
+
+All ALPS touchpads should respond to the "E6 report" command sequence:
+E8-E6-E6-E6-E9. An ALPS touchpad should respond with either 00-00-0A or
+00-00-64.
+
+If the E6 report is successful, the touchpad model is identified using the "E7
+report" sequence: E8-E7-E7-E7-E9. The response is the model signature and is
+matched against known models in the alps_model_data_array.
+
+With protocol versions 3 and 4, the E7 report model signature is always
+73-02-64. To differentiate between these versions, the response from the
+"Enter Command Mode" sequence must be inspected as described below.
+
+Command Mode
+------------
+
+Protocol versions 3 and 4 have a command mode that is used to read and write
+one-byte device registers in a 16-bit address space. The command sequence
+EC-EC-EC-E9 places the device in command mode, and the device will respond
+with 88-07 followed by a third byte. This third byte can be used to determine
+whether the devices uses the version 3 or 4 protocol.
+
+To exit command mode, PSMOUSE_CMD_SETSTREAM (EA) is sent to the touchpad.
+
+While in command mode, register addresses can be set by first sending a
+specific command, either EC for v3 devices or F5 for v4 devices. Then the
+address is sent one nibble at a time, where each nibble is encoded as a
+command with optional data. This enoding differs slightly between the v3 and
+v4 protocols.
+
+Once an address has been set, the addressed register can be read by sending
+PSMOUSE_CMD_GETINFO (E9). The first two bytes of the response contains the
+address of the register being read, and the third contains the value of the
+register. Registers are written by writing the value one nibble at a time
+using the same encoding used for addresses.
+
+Packet Format
+-------------
+
+In the following tables, the following notation is used.
+
+ CAPITALS = stick, miniscules = touchpad
+
+?'s can have different meanings on different models, such as wheel rotation,
+extra buttons, stick buttons on a dualpoint, etc.
+
+PS/2 packet format
+------------------
+
+ byte 0:  0    0 YSGN XSGN    1    M    R    L
+ byte 1: X7   X6   X5   X4   X3   X2   X1   X0
+ byte 2: Y7   Y6   Y5   Y4   Y3   Y2   Y1   Y0
+
+Note that the device never signals overflow condition.
+
+ALPS Absolute Mode - Protocol Verion 1
+--------------------------------------
+
+ byte 0:  1    0    0    0    1   x9   x8   x7
+ byte 1:  0   x6   x5   x4   x3   x2   x1   x0
+ byte 2:  0    ?    ?    l    r    ?  fin  ges
+ byte 3:  0    ?    ?    ?    ?   y9   y8   y7
+ byte 4:  0   y6   y5   y4   y3   y2   y1   y0
+ byte 5:  0   z6   z5   z4   z3   z2   z1   z0
+
+ALPS Absolute Mode - Protocol Version 2
+---------------------------------------
+
+ byte 0:  1    ?    ?    ?    1    ?    ?    ?
+ byte 1:  0   x6   x5   x4   x3   x2   x1   x0
+ byte 2:  0  x10   x9   x8   x7    ?  fin  ges
+ byte 3:  0   y9   y8   y7    1    M    R    L
+ byte 4:  0   y6   y5   y4   y3   y2   y1   y0
+ byte 5:  0   z6   z5   z4   z3   z2   z1   z0
+
+Dualpoint device -- interleaved packet format
+---------------------------------------------
+
+ byte 0:    1    1    0    0    1    1    1    1
+ byte 1:    0   x6   x5   x4   x3   x2   x1   x0
+ byte 2:    0  x10   x9   x8   x7    0  fin  ges
+ byte 3:    0    0 YSGN XSGN    1    1    1    1
+ byte 4:   X7   X6   X5   X4   X3   X2   X1   X0
+ byte 5:   Y7   Y6   Y5   Y4   Y3   Y2   Y1   Y0
+ byte 6:    0   y9   y8   y7    1    m    r    l
+ byte 7:    0   y6   y5   y4   y3   y2   y1   y0
+ byte 8:    0   z6   z5   z4   z3   z2   z1   z0
+
+ALPS Absolute Mode - Protocol Version 3
+---------------------------------------
+
+ALPS protocol version 3 has three different packet formats. The first two are
+associated with touchpad events, and the third is associatd with trackstick
+events.
+
+The first type is the touchpad position packet.
+
+ byte 0:    1    ?   x1   x0    1    1    1    1
+ byte 1:    0  x10   x9   x8   x7   x6   x5   x4
+ byte 2:    0  y10   y9   y8   y7   y6   y5   y4
+ byte 3:    0    M    R    L    1    m    r    l
+ byte 4:    0   mt   x3   x2   y3   y2   y1   y0
+ byte 5:    0   z6   z5   z4   z3   z2   z1   z0
+
+Note that for some devices the trackstick buttons are reported in this packet,
+and on others it is reported in the trackstick packets.
+
+The second packet type contains bitmaps representing the x and y axes. In the
+bitmaps a given bit is set if there is a finger covering that position on the
+given axis. Thus the bitmap packet can be used for low-resolution multi-touch
+data, although finger tracking is not possible.  This packet also encodes the
+number of contacts (f1 and f0 in the table below).
+
+ byte 0:    1    1   x1   x0    1    1    1    1
+ byte 1:    0   x8   x7   x6   x5   x4   x3   x2
+ byte 2:    0   y7   y6   y5   y4   y3   y2   y1
+ byte 3:    0  y10   y9   y8    1    1    1    1
+ byte 4:    0  x14  x13  x12  x11  x10   x9   y0
+ byte 5:    0    1    ?    ?    ?    ?   f1   f0
+
+This packet only appears after a position packet with the mt bit set, and
+ususally only appears when there are two or more contacts (although
+ocassionally it's seen with only a single contact).
+
+The final v3 packet type is the trackstick packet.
+
+ byte 0:    1    1   x7   y7    1    1    1    1
+ byte 1:    0   x6   x5   x4   x3   x2   x1   x0
+ byte 2:    0   y6   y5   y4   y3   y2   y1   y0
+ byte 3:    0    1    0    0    1    0    0    0
+ byte 4:    0   z4   z3   z2   z1   z0    ?    ?
+ byte 5:    0    0    1    1    1    1    1    1
+
+ALPS Absolute Mode - Protocol Version 4
+---------------------------------------
+
+Protocol version 4 has an 8-byte packet format.
+
+ byte 0:    1    ?   x1   x0    1    1    1    1
+ byte 1:    0  x10   x9   x8   x7   x6   x5   x4
+ byte 2:    0  y10   y9   y8   y7   y6   y5   y4
+ byte 3:    0    1   x3   x2   y3   y2   y1   y0
+ byte 4:    0    ?    ?    ?    1    ?    r    l
+ byte 5:    0   z6   z5   z4   z3   z2   z1   z0
+ byte 6:    bitmap data (described below)
+ byte 7:    bitmap data (described below)
+
+The last two bytes represent a partial bitmap packet, with 3 full packets
+required to construct a complete bitmap packet.  Once assembled, the 6-byte
+bitmap packet has the following format:
+
+ byte 0:    0    1   x7   x6   x5   x4   x3   x2
+ byte 1:    0   x1   x0   y4   y3   y2   y1   y0
+ byte 2:    0    0    ?  x14  x13  x12  x11  x10
+ byte 3:    0   x9   x8   y9   y8   y7   y6   y5
+ byte 4:    0    0    0    0    0    0    0    0
+ byte 5:    0    0    0    0    0    0    0  y10
+
+There are several things worth noting here.
+
+ 1) In the bitmap data, bit 6 of byte 0 serves as a sync byte to
+    identify the first fragment of a bitmap packet.
+
+ 2) The bitmaps represent the same data as in the v3 bitmap packets, although
+    the packet layout is different.
+
+ 3) There doesn't seem to be a count of the contact points anywhere in the v4
+    protocol packets. Deriving a count of contact points must be done by
+    analyzing the bitmaps.
+
+ 4) There is a 3 to 1 ratio of position packets to bitmap packets. Therefore
+    MT position can only be updated for every third ST position update, and
+    the count of contact points can only be updated every third packet as
+    well.
+
+So far no v4 devices with tracksticks have been encountered.

+ 103 - 0
Documentation/input/gpio-tilt.txt

@@ -0,0 +1,103 @@
+Driver for tilt-switches connected via GPIOs
+============================================
+
+Generic driver to read data from tilt switches connected via gpios.
+Orientation can be provided by one or more than one tilt switches,
+i.e. each tilt switch providing one axis, and the number of axes
+is also not limited.
+
+
+Data structures:
+----------------
+
+The array of struct gpio in the gpios field is used to list the gpios
+that represent the current tilt state.
+
+The array of struct gpio_tilt_axis describes the axes that are reported
+to the input system. The values set therein are used for the
+input_set_abs_params calls needed to init the axes.
+
+The array of struct gpio_tilt_state maps gpio states to the corresponding
+values to report. The gpio state is represented as a bitfield where the
+bit-index corresponds to the index of the gpio in the struct gpio array.
+In the same manner the values stored in the axes array correspond to
+the elements of the gpio_tilt_axis-array.
+
+
+Example:
+--------
+
+Example configuration for a single TS1003 tilt switch that rotates around
+one axis in 4 steps and emitts the current tilt via two GPIOs.
+
+static int sg060_tilt_enable(struct device *dev) {
+	/* code to enable the sensors */
+};
+
+static void sg060_tilt_disable(struct device *dev) {
+	/* code to disable the sensors */
+};
+
+static struct gpio sg060_tilt_gpios[] = {
+	{ SG060_TILT_GPIO_SENSOR1, GPIOF_IN, "tilt_sensor1" },
+	{ SG060_TILT_GPIO_SENSOR2, GPIOF_IN, "tilt_sensor2" },
+};
+
+static struct gpio_tilt_state sg060_tilt_states[] = {
+	{
+		.gpios = (0 << 1) | (0 << 0),
+		.axes = (int[]) {
+			0,
+		},
+	}, {
+		.gpios = (0 << 1) | (1 << 0),
+		.axes = (int[]) {
+			1, /* 90 degrees */
+		},
+	}, {
+		.gpios = (1 << 1) | (1 << 0),
+		.axes = (int[]) {
+			2, /* 180 degrees */
+		},
+	}, {
+		.gpios = (1 << 1) | (0 << 0),
+		.axes = (int[]) {
+			3, /* 270 degrees */
+		},
+	},
+};
+
+static struct gpio_tilt_axis sg060_tilt_axes[] = {
+	{
+		.axis = ABS_RY,
+		.min = 0,
+		.max = 3,
+		.fuzz = 0,
+		.flat = 0,
+	},
+};
+
+static struct gpio_tilt_platform_data sg060_tilt_pdata= {
+	.gpios = sg060_tilt_gpios,
+	.nr_gpios = ARRAY_SIZE(sg060_tilt_gpios),
+
+	.axes = sg060_tilt_axes,
+	.nr_axes = ARRAY_SIZE(sg060_tilt_axes),
+
+	.states = sg060_tilt_states,
+	.nr_states = ARRAY_SIZE(sg060_tilt_states),
+
+	.debounce_interval = 100,
+
+	.poll_interval = 1000,
+	.enable = sg060_tilt_enable,
+	.disable = sg060_tilt_disable,
+};
+
+static struct platform_device sg060_device_tilt = {
+	.name = "gpio-tilt-polled",
+	.id = -1,
+	.dev = {
+		.platform_data = &sg060_tilt_pdata,
+	},
+};

+ 333 - 31
Documentation/input/sentelic.txt

@@ -1,5 +1,5 @@
-Copyright (C) 2002-2010 Sentelic Corporation.
-Last update: Jan-13-2010
+Copyright (C) 2002-2011 Sentelic Corporation.
+Last update: Dec-07-2011
 
 ==============================================================================
 * Finger Sensing Pad Intellimouse Mode(scrolling wheel, 4th and 5th buttons)
@@ -140,6 +140,7 @@ BYTE  |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------
 Byte 1: Bit7~Bit6 => 00, Normal data packet
                   => 01, Absolute coordination packet
                   => 10, Notify packet
+                  => 11, Normal data packet with on-pad click
         Bit5 => Valid bit, 0 means that the coordinate is invalid or finger up.
                 When both fingers are up, the last two reports have zero valid
                 bit.
@@ -164,6 +165,7 @@ BYTE  |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------
 Byte 1: Bit7~Bit6 => 00, Normal data packet
                   => 01, Absolute coordinates packet
                   => 10, Notify packet
+                  => 11, Normal data packet with on-pad click
         Bit5 => Valid bit, 0 means that the coordinate is invalid or finger up.
                 When both fingers are up, the last two reports have zero valid
                 bit.
@@ -188,6 +190,7 @@ BYTE  |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------
 Byte 1: Bit7~Bit6 => 00, Normal data packet
                   => 01, Absolute coordinates packet
                   => 10, Notify packet
+                  => 11, Normal data packet with on-pad click
         Bit5 => 1
         Bit4 => when in absolute coordinates mode (valid when EN_PKT_GO is 1):
                 0: left button is generated by the on-pad command
@@ -205,7 +208,7 @@ Byte 4: Bit7 => scroll right button
         Bit6 => scroll left button
         Bit5 => scroll down button
         Bit4 => scroll up button
-            * Note that if gesture and additional buttoni (Bit4~Bit7)
+            * Note that if gesture and additional button (Bit4~Bit7)
               happen at the same time, the button information will not
               be sent.
         Bit3~Bit0 => Reserved
@@ -227,6 +230,7 @@ BYTE  |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------
 Byte 1: Bit7~Bit6 => 00, Normal data packet
                   => 01, Absolute coordinates packet
                   => 10, Notify packet
+                  => 11, Normal data packet with on-pad click
         Bit5 => Valid bit, 0 means that the coordinate is invalid or finger up.
                 When both fingers are up, the last two reports have zero valid
                 bit.
@@ -253,6 +257,7 @@ BYTE  |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------
 Byte 1: Bit7~Bit6 => 00, Normal data packet
                   => 01, Absolute coordination packet
                   => 10, Notify packet
+                  => 11, Normal data packet with on-pad click
         Bit5 => Valid bit, 0 means that the coordinate is invalid or finger up.
                 When both fingers are up, the last two reports have zero valid
                 bit.
@@ -279,8 +284,9 @@ BYTE  |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------
 Byte 1: Bit7~Bit6 => 00, Normal data packet
                   => 01, Absolute coordination packet
                   => 10, Notify packet
+                  => 11, Normal data packet with on-pad click
         Bit5 => 1
-        Bit4 => when in absolute coordinate mode (valid when EN_PKT_GO is 1):
+        Bit4 => when in absolute coordinates mode (valid when EN_PKT_GO is 1):
                 0: left button is generated by the on-pad command
                 1: left button is generated by the external button
         Bit3 => 1
@@ -306,6 +312,110 @@ Sample sequence of Multi-finger, Multi-coordinate mode:
 	notify packet (valid bit == 1), abs pkt 1, abs pkt 2, abs pkt 1,
 	abs pkt 2, ..., notify packet (valid bit == 0)
 
+==============================================================================
+* Absolute position for STL3888-Cx and STL3888-Dx.
+==============================================================================
+Single Finger, Absolute Coordinate Mode (SFAC)
+   Bit 7 6 5 4 3 2 1 0       7 6 5 4 3 2 1 0      7 6 5 4 3 2 1 0      7 6 5 4 3 2 1 0
+BYTE  |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------|
+  1   |0|1|0|P|1|M|R|L|  2  |X|X|X|X|X|X|X|X|  3 |Y|Y|Y|Y|Y|Y|Y|Y|  4 |r|l|B|F|X|X|Y|Y|
+      |---------------|     |---------------|    |---------------|    |---------------|
+
+Byte 1: Bit7~Bit6 => 00, Normal data packet
+                  => 01, Absolute coordinates packet
+                  => 10, Notify packet
+	Bit5 => Coordinate mode(always 0 in SFAC mode):
+		0: single-finger absolute coordinates (SFAC) mode
+		1: multi-finger, multiple coordinates (MFMC) mode
+	Bit4 => 0: The LEFT button is generated by on-pad command (OPC)
+		1: The LEFT button is generated by external button
+		Default is 1 even if the LEFT button is not pressed.
+	Bit3 => Always 1, as specified by PS/2 protocol.
+	Bit2 => Middle Button, 1 is pressed, 0 is not pressed.
+	Bit1 => Right Button, 1 is pressed, 0 is not pressed.
+	Bit0 => Left Button, 1 is pressed, 0 is not pressed.
+Byte 2: X coordinate (xpos[9:2])
+Byte 3: Y coordinate (ypos[9:2])
+Byte 4: Bit1~Bit0 => Y coordinate (xpos[1:0])
+	Bit3~Bit2 => X coordinate (ypos[1:0])
+	Bit4 => 4th mouse button(forward one page)
+	Bit5 => 5th mouse button(backward one page)
+	Bit6 => scroll left button
+	Bit7 => scroll right button
+
+Multi Finger, Multiple Coordinates Mode (MFMC):
+   Bit 7 6 5 4 3 2 1 0       7 6 5 4 3 2 1 0      7 6 5 4 3 2 1 0      7 6 5 4 3 2 1 0
+BYTE  |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------|
+  1   |0|1|1|P|1|F|R|L|  2  |X|X|X|X|X|X|X|X|  3 |Y|Y|Y|Y|Y|Y|Y|Y|  4 |r|l|B|F|X|X|Y|Y|
+      |---------------|     |---------------|    |---------------|    |---------------|
+
+Byte 1: Bit7~Bit6 => 00, Normal data packet
+                  => 01, Absolute coordination packet
+                  => 10, Notify packet
+	Bit5 => Coordinate mode (always 1 in MFMC mode):
+		0: single-finger absolute coordinates (SFAC) mode
+		1: multi-finger, multiple coordinates (MFMC) mode
+	Bit4 => 0: The LEFT button is generated by on-pad command (OPC)
+		1: The LEFT button is generated by external button
+		Default is 1 even if the LEFT button is not pressed.
+	Bit3 => Always 1, as specified by PS/2 protocol.
+	Bit2 => Finger index, 0 is the first finger, 1 is the second finger.
+		If bit 1 and 0 are all 1 and bit 4 is 0, the middle external
+		button is pressed.
+	Bit1 => Right Button, 1 is pressed, 0 is not pressed.
+	Bit0 => Left Button, 1 is pressed, 0 is not pressed.
+Byte 2: X coordinate (xpos[9:2])
+Byte 3: Y coordinate (ypos[9:2])
+Byte 4: Bit1~Bit0 => Y coordinate (xpos[1:0])
+	Bit3~Bit2 => X coordinate (ypos[1:0])
+	Bit4 => 4th mouse button(forward one page)
+	Bit5 => 5th mouse button(backward one page)
+	Bit6 => scroll left button
+	Bit7 => scroll right button
+
+  When one of the two fingers is up, the device will output four consecutive
+MFMC#0 report packets with zero X and Y to represent 1st finger is up or
+four consecutive MFMC#1 report packets with zero X and Y to represent that
+the 2nd finger is up.  On the other hand, if both fingers are up, the device
+will output four consecutive single-finger, absolute coordinate(SFAC) packets
+with zero X and Y.
+
+Notify Packet for STL3888-Cx/Dx
+   Bit 7 6 5 4 3 2 1 0       7 6 5 4 3 2 1 0      7 6 5 4 3 2 1 0      7 6 5 4 3 2 1 0
+BYTE  |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------|
+  1   |1|0|0|P|1|M|R|L|  2  |C|C|C|C|C|C|C|C|  3 |0|0|F|F|0|0|0|i|  4 |r|l|u|d|0|0|0|0|
+      |---------------|     |---------------|    |---------------|    |---------------|
+
+Byte 1: Bit7~Bit6 => 00, Normal data packet
+                  => 01, Absolute coordinates packet
+                  => 10, Notify packet
+	Bit5 => Always 0
+	Bit4 => 0: The LEFT button is generated by on-pad command(OPC)
+		1: The LEFT button is generated by external button
+		Default is 1 even if the LEFT button is not pressed.
+	Bit3 => 1
+	Bit2 => Middle Button, 1 is pressed, 0 is not pressed.
+	Bit1 => Right Button, 1 is pressed, 0 is not pressed.
+	Bit0 => Left Button, 1 is pressed, 0 is not pressed.
+Byte 2: Message type:
+	0xba => gesture information
+	0xc0 => one finger hold-rotating gesture
+Byte 3: The first parameter for the received message:
+	0xba => gesture ID (refer to the 'Gesture ID' section)
+	0xc0 => region ID
+Byte 4: The second parameter for the received message:
+	0xba => N/A
+	0xc0 => finger up/down information
+
+Sample sequence of Multi-finger, Multi-coordinates mode:
+
+	notify packet (valid bit == 1), MFMC packet 1 (byte 1, bit 2 == 0),
+	MFMC packet 2 (byte 1, bit 2 == 1), MFMC packet 1, MFMC packet 2,
+	..., notify packet (valid bit == 0)
+
+	That is, when the device is in MFMC mode, the host will receive
+	interleaved absolute coordinate packets for each finger.
+
 ==============================================================================
 * FSP Enable/Disable packet
 ==============================================================================
@@ -348,9 +458,10 @@ http://www.computer-engineering.org/ps2mouse/
 ==============================================================================
 1. Identify FSP by reading device ID(0x00) and version(0x01) register
 
-2. Determine number of buttons by reading status2 (0x0b) register
+2a. For FSP version < STL3888 Cx, determine number of buttons by reading
+    the 'test mode status' (0x20) register:
 
-	buttons = reg[0x0b] & 0x30
+	buttons = reg[0x20] & 0x30
 
 	if buttons == 0x30 or buttons == 0x20:
 		# two/four buttons
@@ -365,6 +476,10 @@ http://www.computer-engineering.org/ps2mouse/
 		Refer to 'Finger Sensing Pad PS/2 Mouse Intellimouse'
 		section A for packet parsing detail
 
+2b. For FSP version >= STL3888 Cx:
+	Refer to 'Finger Sensing Pad PS/2 Mouse Intellimouse'
+	section A for packet parsing detail (ignore byte 4, bit ~ 7)
+
 ==============================================================================
 * Programming Sequence for Register Reading/Writing
 ==============================================================================
@@ -374,7 +489,7 @@ Register inversion requirement:
   Following values needed to be inverted(the '~' operator in C) before being
 sent to FSP:
 
-	0xe9, 0xee, 0xf2 and 0xff.
+	0xe8, 0xe9, 0xee, 0xf2, 0xf3 and 0xff.
 
 Register swapping requirement:
 
@@ -415,7 +530,18 @@ Register reading sequence:
 
 	8. send 0xe9(status request) PS/2 command to FSP;
 
-	9. the response read from FSP should be the requested register value.
+	9. the 4th byte of the response read from FSP should be the
+	requested register value(?? indicates don't care byte):
+
+		host: 0xe9
+		3888: 0xfa (??) (??) (val)
+
+	* Note that since the Cx release, the hardware will return 1's
+	complement of the register value at the 3rd byte of status request
+	result:
+
+		host: 0xe9
+		3888: 0xfa (??) (~val) (val)
 
 Register writing sequence:
 
@@ -465,71 +591,194 @@ Register writing sequence:
 
 	9. the register writing sequence is completed.
 
+	* Note that since the Cx release, the hardware will return 1's
+	complement of the register value at the 3rd byte of status request
+	result. Host can optionally send another 0xe9 (status request) PS/2
+	command to FSP at the end of register writing to verify that the
+	register writing operation is successful (?? indicates don't care
+	byte):
+
+		host: 0xe9
+		3888: 0xfa (??) (~val) (val)
+
+==============================================================================
+* Programming Sequence for Page Register Reading/Writing
+==============================================================================
+
+  In order to overcome the limitation of maximum number of registers
+supported, the hardware separates register into different groups called
+'pages.' Each page is able to include up to 255 registers.
+
+  The default page after power up is 0x82; therefore, if one has to get
+access to register 0x8301, one has to use following sequence to switch
+to page 0x83, then start reading/writing from/to offset 0x01 by using
+the register read/write sequence described in previous section.
+
+Page register reading sequence:
+
+	1. send 0xf3 PS/2 command to FSP;
+
+	2. send 0x66 PS/2 command to FSP;
+
+	3. send 0x88 PS/2 command to FSP;
+
+	4. send 0xf3 PS/2 command to FSP;
+
+	5. send 0x83 PS/2 command to FSP;
+
+	6. send 0x88 PS/2 command to FSP;
+
+	7. send 0xe9(status request) PS/2 command to FSP;
+
+	8. the response read from FSP should be the requested page value.
+
+Page register writing sequence:
+
+	1. send 0xf3 PS/2 command to FSP;
+
+	2. send 0x38 PS/2 command to FSP;
+
+	3. send 0x88 PS/2 command to FSP;
+
+	4. send 0xf3 PS/2 command to FSP;
+
+	5. if the page address being written is not required to be
+	inverted(refer to the 'Register inversion requirement' section),
+	goto step 6
+
+	5a. send 0x47 PS/2 command to FSP;
+
+	5b. send the inverted page address to FSP and goto step 9;
+
+	6. if the page address being written is not required to be
+	swapped(refer to the 'Register swapping requirement' section),
+	goto step 7
+
+	6a. send 0x44 PS/2 command to FSP;
+
+	6b. send the swapped page address to FSP and goto step 9;
+
+	7. send 0x33 PS/2 command to FSP;
+
+	8. send the page address to FSP;
+
+	9. the page register writing sequence is completed.
+
+==============================================================================
+* Gesture ID
+==============================================================================
+
+  Unlike other devices which sends multiple fingers' coordinates to host,
+FSP processes multiple fingers' coordinates internally and convert them
+into a 8 bits integer, namely 'Gesture ID.'  Following is a list of
+supported gesture IDs:
+
+	ID	Description
+	0x86	2 finger straight up
+	0x82	2 finger straight down
+	0x80	2 finger straight right
+	0x84	2 finger straight left
+	0x8f	2 finger zoom in
+	0x8b	2 finger zoom out
+	0xc0	2 finger curve, counter clockwise
+	0xc4	2 finger curve, clockwise
+	0x2e	3 finger straight up
+	0x2a	3 finger straight down
+	0x28	3 finger straight right
+	0x2c	3 finger straight left
+	0x38	palm
+
 ==============================================================================
 * Register Listing
 ==============================================================================
 
+  Registers are represented in 16 bits values. The higher 8 bits represent
+the page address and the lower 8 bits represent the relative offset within
+that particular page.  Refer to the 'Programming Sequence for Page Register
+Reading/Writing' section for instructions on how to change current page
+address.
+
 offset	width		default	r/w	name
-0x00	bit7~bit0	0x01	RO	device ID
+0x8200	bit7~bit0	0x01	RO	device ID
 
-0x01	bit7~bit0	0xc0	RW	version ID
+0x8201	bit7~bit0		RW	version ID
+					0xc1: STL3888 Ax
+					0xd0 ~ 0xd2: STL3888 Bx
+					0xe0 ~ 0xe1: STL3888 Cx
+					0xe2 ~ 0xe3: STL3888 Dx
 
-0x02	bit7~bit0	0x01	RO	vendor ID
+0x8202	bit7~bit0	0x01	RO	vendor ID
 
-0x03	bit7~bit0	0x01	RO	product ID
+0x8203	bit7~bit0	0x01	RO	product ID
 
-0x04	bit3~bit0	0x01	RW	revision ID
+0x8204	bit3~bit0	0x01	RW	revision ID
 
-0x0b				RO	test mode status 1
-	bit3		1	RO	0: rotate 180 degree, 1: no rotation
+0x820b					test mode status 1
+	bit3		1	RO	0: rotate 180 degree
+					1: no rotation
+					*only supported by H/W prior to Cx
 
-	bit5~bit4		RO	number of buttons
-			11 => 2, lbtn/rbtn
-			10 => 4, lbtn/rbtn/scru/scrd
-			01 => 6, lbtn/rbtn/scru/scrd/scrl/scrr
-			00 => 6, lbtn/rbtn/scru/scrd/fbtn/bbtn
+0x820f					register file page control
+	bit2		0	RW	1: rotate 180 degree
+					0: no rotation
+					*supported since Cx
 
-0x0f				RW	register file page control
 	bit0		0	RW	1 to enable page 1 register files
+					*only supported by H/W prior to Cx
 
-0x10				RW	system control 1
+0x8210				RW	system control 1
 	bit0		1	RW	Reserved, must be 1
 	bit1		0	RW	Reserved, must be 0
-	bit4		1	RW	Reserved, must be 0
-	bit5		0	RW	register clock gating enable
+	bit4		0	RW	Reserved, must be 0
+	bit5		1	RW	register clock gating enable
 					0: read only, 1: read/write enable
 	(Note that following registers does not require clock gating being
 	enabled prior to write: 05 06 07 08 09 0c 0f 10 11 12 16 17 18 23 2e
 	40 41 42 43.  In addition to that, this bit must be 1 when gesture
 	mode is enabled)
 
-0x31				RW	on-pad command detection
+0x8220					test mode status
+	bit5~bit4		RO	number of buttons
+					11 => 2, lbtn/rbtn
+					10 => 4, lbtn/rbtn/scru/scrd
+					01 => 6, lbtn/rbtn/scru/scrd/scrl/scrr
+					00 => 6, lbtn/rbtn/scru/scrd/fbtn/bbtn
+					*only supported by H/W prior to Cx
+
+0x8231				RW	on-pad command detection
 	bit7		0	RW	on-pad command left button down tag
 					enable
 					0: disable, 1: enable
+					*only supported by H/W prior to Cx
 
-0x34				RW	on-pad command control 5
+0x8234				RW	on-pad command control 5
 	bit4~bit0	0x05	RW	XLO in 0s/4/1, so 03h = 0010.1b = 2.5
 	(Note that position unit is in 0.5 scanline)
+					*only supported by H/W prior to Cx
 
 	bit7		0	RW	on-pad tap zone enable
 					0: disable, 1: enable
+					*only supported by H/W prior to Cx
 
-0x35				RW	on-pad command control 6
+0x8235				RW	on-pad command control 6
 	bit4~bit0	0x1d	RW	XHI in 0s/4/1, so 19h = 1100.1b = 12.5
 	(Note that position unit is in 0.5 scanline)
+					*only supported by H/W prior to Cx
 
-0x36				RW	on-pad command control 7
+0x8236				RW	on-pad command control 7
 	bit4~bit0	0x04	RW	YLO in 0s/4/1, so 03h = 0010.1b = 2.5
 	(Note that position unit is in 0.5 scanline)
+					*only supported by H/W prior to Cx
 
-0x37				RW	on-pad command control 8
+0x8237				RW	on-pad command control 8
 	bit4~bit0	0x13	RW	YHI in 0s/4/1, so 11h = 1000.1b = 8.5
 	(Note that position unit is in 0.5 scanline)
+					*only supported by H/W prior to Cx
 
-0x40				RW	system control 5
+0x8240				RW	system control 5
 	bit1		0	RW	FSP Intellimouse mode enable
 					0: disable, 1: enable
+					*only supported by H/W prior to Cx
 
 	bit2		0	RW	movement + abs. coordinate mode enable
 					0: disable, 1: enable
@@ -537,6 +786,7 @@ offset	width		default	r/w	name
 	bit 1 is not set. However, the format is different from that of bit 1.
 	In addition, when bit 1 and bit 2 are set at the same time, bit 2 will
 	override bit 1.)
+					*only supported by H/W prior to Cx
 
 	bit3		0	RW	abs. coordinate only mode enable
 					0: disable, 1: enable
@@ -544,9 +794,11 @@ offset	width		default	r/w	name
 	bit 1 is not set. However, the format is different from that of bit 1.
 	In addition, when bit 1, bit 2 and bit 3 are set at the same time,
 	bit 3 will override bit 1 and 2.)
+					*only supported by H/W prior to Cx
 
 	bit5		0	RW	auto switch enable
 					0: disable, 1: enable
+					*only supported by H/W prior to Cx
 
 	bit6		0	RW	G0 abs. + notify packet format enable
 					0: disable, 1: enable
@@ -554,18 +806,68 @@ offset	width		default	r/w	name
 	bit 2 and 3.  That is, if any of those bit is 1, host will receive
 	absolute coordinates; otherwise, host only receives packets with
 	relative coordinate.)
+					*only supported by H/W prior to Cx
 
 	bit7		0	RW	EN_PS2_F2: PS/2 gesture mode 2nd
 					finger packet enable
 					0: disable, 1: enable
+					*only supported by H/W prior to Cx
 
-0x43				RW	on-pad control
+0x8243				RW	on-pad control
 	bit0		0	RW	on-pad control enable
 					0: disable, 1: enable
 	(Note that if this bit is cleared, bit 3/5 will be ineffective)
+					*only supported by H/W prior to Cx
 
 	bit3		0	RW	on-pad fix vertical scrolling enable
 					0: disable, 1: enable
+					*only supported by H/W prior to Cx
 
 	bit5		0	RW	on-pad fix horizontal scrolling enable
 					0: disable, 1: enable
+					*only supported by H/W prior to Cx
+
+0x8290				RW	software control register 1
+	bit0		0	RW	absolute coordination mode
+					0: disable, 1: enable
+					*supported since Cx
+
+	bit1		0	RW	gesture ID output
+					0: disable, 1: enable
+					*supported since Cx
+
+	bit2		0	RW	two fingers' coordinates output
+					0: disable, 1: enable
+					*supported since Cx
+
+	bit3		0	RW	finger up one packet output
+					0: disable, 1: enable
+					*supported since Cx
+
+	bit4		0	RW	absolute coordination continuous mode
+					0: disable, 1: enable
+					*supported since Cx
+
+	bit6~bit5	00	RW	gesture group selection
+					00: basic
+					01: suite
+					10: suite pro
+					11: advanced
+					*supported since Cx
+
+	bit7		0	RW	Bx packet output compatible mode
+					0: disable, 1: enable					*supported since Cx
+					*supported since Cx
+
+
+0x833d				RW	on-pad command control 1
+	bit7		1	RW	on-pad command detection enable
+					0: disable, 1: enable
+					*supported since Cx
+
+0x833e				RW	on-pad command detection
+	bit7		0	RW	on-pad command left button down tag
+					enable. Works only in H/W based PS/2
+					data packet mode.
+					0: disable, 1: enable
+					*supported since Cx

+ 32 - 3
Documentation/kdump/kdump.txt

@@ -17,8 +17,8 @@ You can use common commands, such as cp and scp, to copy the
 memory image to a dump file on the local disk, or across the network to
 a remote system.
 
-Kdump and kexec are currently supported on the x86, x86_64, ppc64 and ia64
-architectures.
+Kdump and kexec are currently supported on the x86, x86_64, ppc64, ia64,
+and s390x architectures.
 
 When the system kernel boots, it reserves a small section of memory for
 the dump-capture kernel. This ensures that ongoing Direct Memory Access
@@ -34,11 +34,18 @@ Similarly on PPC64 machines first 32KB of physical memory is needed for
 booting regardless of where the kernel is loaded and to support 64K page
 size kexec backs up the first 64KB memory.
 
+For s390x, when kdump is triggered, the crashkernel region is exchanged
+with the region [0, crashkernel region size] and then the kdump kernel
+runs in [0, crashkernel region size]. Therefore no relocatable kernel is
+needed for s390x.
+
 All of the necessary information about the system kernel's core image is
 encoded in the ELF format, and stored in a reserved area of memory
 before a crash. The physical address of the start of the ELF header is
 passed to the dump-capture kernel through the elfcorehdr= boot
-parameter.
+parameter. Optionally the size of the ELF header can also be passed
+when using the elfcorehdr=[size[KMG]@]offset[KMG] syntax.
+
 
 With the dump-capture kernel, you can access the memory image, or "old
 memory," in two ways:
@@ -291,6 +298,10 @@ Boot into System Kernel
    The region may be automatically placed on ia64, see the
    dump-capture kernel config option notes above.
 
+   On s390x, typically use "crashkernel=xxM". The value of xx is dependent
+   on the memory consumption of the kdump system. In general this is not
+   dependent on the memory size of the production system.
+
 Load the Dump-capture Kernel
 ============================
 
@@ -308,6 +319,8 @@ For ppc64:
 	- Use vmlinux
 For ia64:
 	- Use vmlinux or vmlinuz.gz
+For s390x:
+	- Use image or bzImage
 
 
 If you are using a uncompressed vmlinux image then use following command
@@ -337,6 +350,8 @@ For i386, x86_64 and ia64:
 For ppc64:
 	"1 maxcpus=1 noirqdistrib reset_devices"
 
+For s390x:
+	"1 maxcpus=1 cgroup_disable=memory"
 
 Notes on loading the dump-capture kernel:
 
@@ -362,6 +377,20 @@ Notes on loading the dump-capture kernel:
   dump. Hence generally it is useful either to build a UP dump-capture
   kernel or specify maxcpus=1 option while loading dump-capture kernel.
 
+* For s390x there are two kdump modes: If a ELF header is specified with
+  the elfcorehdr= kernel parameter, it is used by the kdump kernel as it
+  is done on all other architectures. If no elfcorehdr= kernel parameter is
+  specified, the s390x kdump kernel dynamically creates the header. The
+  second mode has the advantage that for CPU and memory hotplug, kdump has
+  not to be reloaded with kexec_load().
+
+* For s390x systems with many attached devices the "cio_ignore" kernel
+  parameter should be used for the kdump kernel in order to prevent allocation
+  of kernel memory for devices that are not relevant for kdump. The same
+  applies to systems that use SCSI/FCP devices. In that case the
+  "allow_lun_scan" zfcp module parameter should be set to zero before
+  setting FCP devices online.
+
 Kernel Panic
 ============
 

+ 60 - 14
Documentation/kernel-parameters.txt

@@ -329,6 +329,11 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 				    is a lot of faster
 			off	  - do not initialize any AMD IOMMU found in
 				    the system
+			force_isolation - Force device isolation for all
+					  devices. The IOMMU driver is not
+					  allowed anymore to lift isolation
+					  requirements as needed. This option
+					  does not override iommu=pt
 
 	amijoy.map=	[HW,JOY] Amiga joystick support
 			Map of devices attached to JOY0DAT and JOY1DAT
@@ -623,6 +628,25 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 	no_debug_objects
 			[KNL] Disable object debugging
 
+	debug_guardpage_minorder=
+			[KNL] When CONFIG_DEBUG_PAGEALLOC is set, this
+			parameter allows control of the order of pages that will
+			be intentionally kept free (and hence protected) by the
+			buddy allocator. Bigger value increase the probability
+			of catching random memory corruption, but reduce the
+			amount of memory for normal system use. The maximum
+			possible value is MAX_ORDER/2.  Setting this parameter
+			to 1 or 2 should be enough to identify most random
+			memory corruption problems caused by bugs in kernel or
+			driver code when a CPU writes to (or reads from) a
+			random memory location. Note that there exists a class
+			of memory corruptions problems caused by buggy H/W or
+			F/W or by drivers badly programing DMA (basically when
+			memory is written at bus level and the CPU MMU is
+			bypassed) which are not detectable by
+			CONFIG_DEBUG_PAGEALLOC, hence this option will not help
+			tracking down these problems.
+
 	debugpat	[X86] Enable PAT debugging
 
 	decnet.addr=	[HW,NET]
@@ -1059,7 +1083,9 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 		nomerge
 		forcesac
 		soft
-		pt	[x86, IA-64]
+		pt		[x86, IA-64]
+		group_mf	[x86, IA-64]
+
 
 	io7=		[HW] IO7 for Marvel based alpha systems
 			See comment before marvel_specify_io7 in
@@ -1178,9 +1204,6 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 	kvm.ignore_msrs=[KVM] Ignore guest accesses to unhandled MSRs.
 			Default is 0 (don't ignore, but inject #GP)
 
-	kvm.oos_shadow=	[KVM] Disable out-of-sync shadow paging.
-			Default is 1 (enabled)
-
 	kvm.mmu_audit=	[KVM] This is a R/W parameter which allows audit
 			KVM MMU at runtime.
 			Default is 0 (off)
@@ -1630,12 +1653,17 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 			The default is to return 64-bit inode numbers.
 
 	nfs.nfs4_disable_idmapping=
-			[NFSv4] When set, this option disables the NFSv4
-			idmapper on the client, but only if the mount
-			is using the 'sec=sys' security flavour. This may
-			make migration from legacy NFSv2/v3 systems easier
-			provided that the server has the appropriate support.
-			The default is to always enable NFSv4 idmapping.
+			[NFSv4] When set to the default of '1', this option
+			ensures that both the RPC level authentication
+			scheme and the NFS level operations agree to use
+			numeric uids/gids if the mount is using the
+			'sec=sys' security flavour. In effect it is
+			disabling idmapping, which can make migration from
+			legacy NFSv2/v3 systems to NFSv4 easier.
+			Servers that do not support this mode of operation
+			will be autodetected by the client, and it will fall
+			back to using the idmapper.
+			To turn off this behaviour, set the value to '0'.
 
 	nmi_debug=	[KNL,AVR32,SH] Specify one or more actions to take
 			when a NMI is triggered.
@@ -1796,6 +1824,10 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 	nomfgpt		[X86-32] Disable Multi-Function General Purpose
 			Timer usage (for AMD Geode machines).
 
+	nonmi_ipi	[X86] Disable using NMI IPIs during panic/reboot to
+			shutdown the other cpus.  Instead use the REBOOT_VECTOR
+			irq.
+
 	nopat		[X86] Disable PAT (page attribute table extension of
 			pagetables) support.
 
@@ -1885,6 +1917,11 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 			arch_perfmon: [X86] Force use of architectural
 				perfmon on Intel CPUs instead of the
 				CPU specific event set.
+			timer: [X86] Force use of architectural NMI
+				timer mode (see also oprofile.timer
+				for generic hr timer mode)
+				[s390] Force legacy basic mode sampling
+                                (report cpu_type "timer")
 
 	oops=panic	Always panic on oopses. Default is to just kill the
 			process, but there is a small probability of
@@ -2362,6 +2399,12 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 
 	slram=		[HW,MTD]
 
+	slab_max_order=	[MM, SLAB]
+			Determines the maximum allowed order for slabs.
+			A high setting may cause OOMs due to memory
+			fragmentation.  Defaults to 1 for systems with
+			more than 32MB of RAM, 0 otherwise.
+
 	slub_debug[=options[,slabs]]	[MM, SLUB]
 			Enabling slub_debug allows one to determine the
 			culprit if slab objects become corrupted. Enabling
@@ -2632,6 +2675,10 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 			[USB] Start with the old device initialization
 			scheme (default 0 = off).
 
+	usbcore.usbfs_memory_mb=
+			[USB] Memory limit (in MB) for buffers allocated by
+			usbfs (default = 16, 0 = max = 2047).
+
 	usbcore.use_both_schemes=
 			[USB] Try the other device initialization scheme
 			if the first one fails (default 1 = enabled).
@@ -2750,11 +2797,10 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 			functions are at fixed addresses, they make nice
 			targets for exploits that can control RIP.
 
-			emulate     Vsyscalls turn into traps and are emulated
-			            reasonably safely.
+			emulate     [default] Vsyscalls turn into traps and are
+			            emulated reasonably safely.
 
-			native      [default] Vsyscalls are native syscall
-			            instructions.
+			native      Vsyscalls are native syscall instructions.
 			            This is a little bit faster than trapping
 			            and makes a few dynamic recompilers work
 			            better than they would in emulation mode.

+ 63 - 0
Documentation/lockdep-design.txt

@@ -221,3 +221,66 @@ when the chain is validated for the first time, is then put into a hash
 table, which hash-table can be checked in a lockfree manner. If the
 locking chain occurs again later on, the hash table tells us that we
 dont have to validate the chain again.
+
+Troubleshooting:
+----------------
+
+The validator tracks a maximum of MAX_LOCKDEP_KEYS number of lock classes.
+Exceeding this number will trigger the following lockdep warning:
+
+	(DEBUG_LOCKS_WARN_ON(id >= MAX_LOCKDEP_KEYS))
+
+By default, MAX_LOCKDEP_KEYS is currently set to 8191, and typical
+desktop systems have less than 1,000 lock classes, so this warning
+normally results from lock-class leakage or failure to properly
+initialize locks.  These two problems are illustrated below:
+
+1.	Repeated module loading and unloading while running the validator
+	will result in lock-class leakage.  The issue here is that each
+	load of the module will create a new set of lock classes for
+	that module's locks, but module unloading does not remove old
+	classes (see below discussion of reuse of lock classes for why).
+	Therefore, if that module is loaded and unloaded repeatedly,
+	the number of lock classes will eventually reach the maximum.
+
+2.	Using structures such as arrays that have large numbers of
+	locks that are not explicitly initialized.  For example,
+	a hash table with 8192 buckets where each bucket has its own
+	spinlock_t will consume 8192 lock classes -unless- each spinlock
+	is explicitly initialized at runtime, for example, using the
+	run-time spin_lock_init() as opposed to compile-time initializers
+	such as __SPIN_LOCK_UNLOCKED().  Failure to properly initialize
+	the per-bucket spinlocks would guarantee lock-class overflow.
+	In contrast, a loop that called spin_lock_init() on each lock
+	would place all 8192 locks into a single lock class.
+
+	The moral of this story is that you should always explicitly
+	initialize your locks.
+
+One might argue that the validator should be modified to allow
+lock classes to be reused.  However, if you are tempted to make this
+argument, first review the code and think through the changes that would
+be required, keeping in mind that the lock classes to be removed are
+likely to be linked into the lock-dependency graph.  This turns out to
+be harder to do than to say.
+
+Of course, if you do run out of lock classes, the next thing to do is
+to find the offending lock classes.  First, the following command gives
+you the number of lock classes currently in use along with the maximum:
+
+	grep "lock-classes" /proc/lockdep_stats
+
+This command produces the following output on a modest system:
+
+	 lock-classes:                          748 [max: 8191]
+
+If the number allocated (748 above) increases continually over time,
+then there is likely a leak.  The following command can be used to
+identify the leaking lock classes:
+
+	grep "BD" /proc/lockdep
+
+Run the command and save the output, then compare against the output from
+a later run of this command to identify the leakers.  This same output
+can also help you find situations where runtime lock initialization has
+been omitted.

+ 18 - 4
Documentation/md.txt

@@ -357,14 +357,14 @@ Each directory contains:
         written to, that device.
 
       state
-        A file recording the current state of the device in the array
+	A file recording the current state of the device in the array
 	which can be a comma separated list of
 	      faulty   - device has been kicked from active use due to
-                         a detected fault or it has unacknowledged bad
-                         blocks
+			 a detected fault, or it has unacknowledged bad
+			 blocks
 	      in_sync  - device is a fully in-sync member of the array
 	      writemostly - device will only be subject to read
-		         requests if there are no other options.
+			 requests if there are no other options.
 			 This applies only to raid1 arrays.
 	      blocked  - device has failed, and the failure hasn't been
 			 acknowledged yet by the metadata handler.
@@ -374,6 +374,13 @@ Each directory contains:
 			 This includes spares that are in the process
 			 of being recovered to
 	      write_error - device has ever seen a write error.
+	      want_replacement - device is (mostly) working but probably
+			 should be replaced, either due to errors or
+			 due to user request.
+	      replacement - device is a replacement for another active
+			 device with same raid_disk.
+
+
 	This list may grow in future.
 	This can be written to.
 	Writing "faulty"  simulates a failure on the device.
@@ -386,6 +393,13 @@ Each directory contains:
 	Writing "in_sync" sets the in_sync flag.
 	Writing "write_error" sets writeerrorseen flag.
 	Writing "-write_error" clears writeerrorseen flag.
+	Writing "want_replacement" is allowed at any time except to a
+		replacement device or a spare.  It sets the flag.
+	Writing "-want_replacement" is allowed at any time.  It clears
+		the flag.
+	Writing "replacement" or "-replacement" is only allowed before
+		starting the array.  It sets or clears the flag.
+
 
 	This file responds to select/poll. Any change to 'faulty'
 	or 'blocked' causes an event.

+ 2 - 0
Documentation/networking/00-INDEX

@@ -144,6 +144,8 @@ nfc.txt
 	- The Linux Near Field Communication (NFS) subsystem.
 olympic.txt
 	- IBM PCI Pit/Pit-Phy/Olympic Token Ring driver info.
+openvswitch.txt
+	- Open vSwitch developer documentation.
 operstates.txt
 	- Overview of network interface operational states.
 packet_mmap.txt

+ 4 - 3
Documentation/networking/batman-adv.txt

@@ -200,15 +200,16 @@ abled  during run time. Following log_levels are defined:
 
 0 - All  debug  output  disabled
 1 - Enable messages related to routing / flooding / broadcasting
-2 - Enable route or tt entry added / changed / deleted
-3 - Enable all messages
+2 - Enable messages related to route added / changed / deleted
+4 - Enable messages related to translation table operations
+7 - Enable all messages
 
 The debug output can be changed at runtime  using  the  file
 /sys/class/net/bat0/mesh/log_level. e.g.
 
 # echo 2 > /sys/class/net/bat0/mesh/log_level
 
-will enable debug messages for when routes or TTs change.
+will enable debug messages for when routes change.
 
 
 BATCTL

+ 17 - 0
Documentation/networking/bonding.txt

@@ -196,6 +196,23 @@ or, for backwards compatibility, the option value.  E.g.,
 
 	The parameters are as follows:
 
+active_slave
+
+	Specifies the new active slave for modes that support it
+	(active-backup, balance-alb and balance-tlb).  Possible values
+	are the name of any currently enslaved interface, or an empty
+	string.  If a name is given, the slave and its link must be up in order
+	to be selected as the new active slave.  If an empty string is
+	specified, the current active slave is cleared, and a new active
+	slave is selected automatically.
+
+	Note that this is only available through the sysfs interface. No module
+	parameter by this name exists.
+
+	The normal value of this option is the name of the currently
+	active slave, or the empty string if there is no active slave or
+	the current mode does not use an active slave.
+
 ad_select
 
 	Specifies the 802.3ad aggregation selection logic to use.  The

+ 27 - 0
Documentation/networking/ieee802154.txt

@@ -78,3 +78,30 @@ in software. This is currently WIP.
 
 See header include/net/mac802154.h and several drivers in drivers/ieee802154/.
 
+6LoWPAN Linux implementation
+============================
+
+The IEEE 802.15.4 standard specifies an MTU of 128 bytes, yielding about 80
+octets of actual MAC payload once security is turned on, on a wireless link
+with a link throughput of 250 kbps or less.  The 6LoWPAN adaptation format
+[RFC4944] was specified to carry IPv6 datagrams over such constrained links,
+taking into account limited bandwidth, memory, or energy resources that are
+expected in applications such as wireless Sensor Networks.  [RFC4944] defines
+a Mesh Addressing header to support sub-IP forwarding, a Fragmentation header
+to support the IPv6 minimum MTU requirement [RFC2460], and stateless header
+compression for IPv6 datagrams (LOWPAN_HC1 and LOWPAN_HC2) to reduce the
+relatively large IPv6 and UDP headers down to (in the best case) several bytes.
+
+In Semptember 2011 the standard update was published - [RFC6282].
+It deprecates HC1 and HC2 compression and defines IPHC encoding format which is
+used in this Linux implementation.
+
+All the code related to 6lowpan you may find in files: net/ieee802154/6lowpan.*
+
+To setup 6lowpan interface you need (busybox release > 1.17.0):
+1. Add IEEE802.15.4 interface and initialize PANid;
+2. Add 6lowpan interface by command like:
+   # ip link add link wpan0 name lowpan0 type lowpan
+3. Set MAC (if needs):
+   # ip link set lowpan0 address de:ad:be:ef:ca:fe:ba:be
+4. Bring up 'lowpan0' interface

+ 2 - 0
Documentation/networking/ifenslave.c

@@ -539,12 +539,14 @@ static int if_getconfig(char *ifname)
 		metric = 0;
 	} else
 		metric = ifr.ifr_metric;
+	printf("The result of SIOCGIFMETRIC is %d\n", metric);
 
 	strcpy(ifr.ifr_name, ifname);
 	if (ioctl(skfd, SIOCGIFMTU, &ifr) < 0)
 		mtu = 0;
 	else
 		mtu = ifr.ifr_mtu;
+	printf("The result of SIOCGIFMTU is %d\n", mtu);
 
 	strcpy(ifr.ifr_name, ifname);
 	if (ioctl(skfd, SIOCGIFDSTADDR, &ifr) < 0) {

+ 13 - 0
Documentation/networking/ip-sysctl.txt

@@ -31,6 +31,16 @@ neigh/default/gc_thresh3 - INTEGER
 	when using large numbers of interfaces and when communicating
 	with large numbers of directly-connected peers.
 
+neigh/default/unres_qlen_bytes - INTEGER
+	The maximum number of bytes which may be used by packets
+	queued for each	unresolved address by other network layers.
+	(added in linux 3.3)
+
+neigh/default/unres_qlen - INTEGER
+	The maximum number of packets which may be queued for each
+	unresolved address by other network layers.
+	(deprecated in linux 3.3) : use unres_qlen_bytes instead.
+
 mtu_expires - INTEGER
 	Time, in seconds, that cached PMTU information is kept.
 
@@ -165,6 +175,9 @@ tcp_congestion_control - STRING
 	connections. The algorithm "reno" is always available, but
 	additional choices may be available based on kernel configuration.
 	Default is set as part of kernel configuration.
+	For passive connections, the listener congestion control choice
+	is inherited.
+	[see setsockopt(listenfd, SOL_TCP, TCP_CONGESTION, "name" ...) ]
 
 tcp_cookie_size - INTEGER
 	Default size of TCP Cookie Transactions (TCPCT) option, that may be

+ 195 - 0
Documentation/networking/openvswitch.txt

@@ -0,0 +1,195 @@
+Open vSwitch datapath developer documentation
+=============================================
+
+The Open vSwitch kernel module allows flexible userspace control over
+flow-level packet processing on selected network devices.  It can be
+used to implement a plain Ethernet switch, network device bonding,
+VLAN processing, network access control, flow-based network control,
+and so on.
+
+The kernel module implements multiple "datapaths" (analogous to
+bridges), each of which can have multiple "vports" (analogous to ports
+within a bridge).  Each datapath also has associated with it a "flow
+table" that userspace populates with "flows" that map from keys based
+on packet headers and metadata to sets of actions.  The most common
+action forwards the packet to another vport; other actions are also
+implemented.
+
+When a packet arrives on a vport, the kernel module processes it by
+extracting its flow key and looking it up in the flow table.  If there
+is a matching flow, it executes the associated actions.  If there is
+no match, it queues the packet to userspace for processing (as part of
+its processing, userspace will likely set up a flow to handle further
+packets of the same type entirely in-kernel).
+
+
+Flow key compatibility
+----------------------
+
+Network protocols evolve over time.  New protocols become important
+and existing protocols lose their prominence.  For the Open vSwitch
+kernel module to remain relevant, it must be possible for newer
+versions to parse additional protocols as part of the flow key.  It
+might even be desirable, someday, to drop support for parsing
+protocols that have become obsolete.  Therefore, the Netlink interface
+to Open vSwitch is designed to allow carefully written userspace
+applications to work with any version of the flow key, past or future.
+
+To support this forward and backward compatibility, whenever the
+kernel module passes a packet to userspace, it also passes along the
+flow key that it parsed from the packet.  Userspace then extracts its
+own notion of a flow key from the packet and compares it against the
+kernel-provided version:
+
+    - If userspace's notion of the flow key for the packet matches the
+      kernel's, then nothing special is necessary.
+
+    - If the kernel's flow key includes more fields than the userspace
+      version of the flow key, for example if the kernel decoded IPv6
+      headers but userspace stopped at the Ethernet type (because it
+      does not understand IPv6), then again nothing special is
+      necessary.  Userspace can still set up a flow in the usual way,
+      as long as it uses the kernel-provided flow key to do it.
+
+    - If the userspace flow key includes more fields than the
+      kernel's, for example if userspace decoded an IPv6 header but
+      the kernel stopped at the Ethernet type, then userspace can
+      forward the packet manually, without setting up a flow in the
+      kernel.  This case is bad for performance because every packet
+      that the kernel considers part of the flow must go to userspace,
+      but the forwarding behavior is correct.  (If userspace can
+      determine that the values of the extra fields would not affect
+      forwarding behavior, then it could set up a flow anyway.)
+
+How flow keys evolve over time is important to making this work, so
+the following sections go into detail.
+
+
+Flow key format
+---------------
+
+A flow key is passed over a Netlink socket as a sequence of Netlink
+attributes.  Some attributes represent packet metadata, defined as any
+information about a packet that cannot be extracted from the packet
+itself, e.g. the vport on which the packet was received.  Most
+attributes, however, are extracted from headers within the packet,
+e.g. source and destination addresses from Ethernet, IP, or TCP
+headers.
+
+The <linux/openvswitch.h> header file defines the exact format of the
+flow key attributes.  For informal explanatory purposes here, we write
+them as comma-separated strings, with parentheses indicating arguments
+and nesting.  For example, the following could represent a flow key
+corresponding to a TCP packet that arrived on vport 1:
+
+    in_port(1), eth(src=e0:91:f5:21:d0:b2, dst=00:02:e3:0f:80:a4),
+    eth_type(0x0800), ipv4(src=172.16.0.20, dst=172.18.0.52, proto=17, tos=0,
+    frag=no), tcp(src=49163, dst=80)
+
+Often we ellipsize arguments not important to the discussion, e.g.:
+
+    in_port(1), eth(...), eth_type(0x0800), ipv4(...), tcp(...)
+
+
+Basic rule for evolving flow keys
+---------------------------------
+
+Some care is needed to really maintain forward and backward
+compatibility for applications that follow the rules listed under
+"Flow key compatibility" above.
+
+The basic rule is obvious:
+
+    ------------------------------------------------------------------
+    New network protocol support must only supplement existing flow
+    key attributes.  It must not change the meaning of already defined
+    flow key attributes.
+    ------------------------------------------------------------------
+
+This rule does have less-obvious consequences so it is worth working
+through a few examples.  Suppose, for example, that the kernel module
+did not already implement VLAN parsing.  Instead, it just interpreted
+the 802.1Q TPID (0x8100) as the Ethertype then stopped parsing the
+packet.  The flow key for any packet with an 802.1Q header would look
+essentially like this, ignoring metadata:
+
+    eth(...), eth_type(0x8100)
+
+Naively, to add VLAN support, it makes sense to add a new "vlan" flow
+key attribute to contain the VLAN tag, then continue to decode the
+encapsulated headers beyond the VLAN tag using the existing field
+definitions.  With this change, an TCP packet in VLAN 10 would have a
+flow key much like this:
+
+    eth(...), vlan(vid=10, pcp=0), eth_type(0x0800), ip(proto=6, ...), tcp(...)
+
+But this change would negatively affect a userspace application that
+has not been updated to understand the new "vlan" flow key attribute.
+The application could, following the flow compatibility rules above,
+ignore the "vlan" attribute that it does not understand and therefore
+assume that the flow contained IP packets.  This is a bad assumption
+(the flow only contains IP packets if one parses and skips over the
+802.1Q header) and it could cause the application's behavior to change
+across kernel versions even though it follows the compatibility rules.
+
+The solution is to use a set of nested attributes.  This is, for
+example, why 802.1Q support uses nested attributes.  A TCP packet in
+VLAN 10 is actually expressed as:
+
+    eth(...), eth_type(0x8100), vlan(vid=10, pcp=0), encap(eth_type(0x0800),
+    ip(proto=6, ...), tcp(...)))
+
+Notice how the "eth_type", "ip", and "tcp" flow key attributes are
+nested inside the "encap" attribute.  Thus, an application that does
+not understand the "vlan" key will not see either of those attributes
+and therefore will not misinterpret them.  (Also, the outer eth_type
+is still 0x8100, not changed to 0x0800.)
+
+Handling malformed packets
+--------------------------
+
+Don't drop packets in the kernel for malformed protocol headers, bad
+checksums, etc.  This would prevent userspace from implementing a
+simple Ethernet switch that forwards every packet.
+
+Instead, in such a case, include an attribute with "empty" content.
+It doesn't matter if the empty content could be valid protocol values,
+as long as those values are rarely seen in practice, because userspace
+can always forward all packets with those values to userspace and
+handle them individually.
+
+For example, consider a packet that contains an IP header that
+indicates protocol 6 for TCP, but which is truncated just after the IP
+header, so that the TCP header is missing.  The flow key for this
+packet would include a tcp attribute with all-zero src and dst, like
+this:
+
+    eth(...), eth_type(0x0800), ip(proto=6, ...), tcp(src=0, dst=0)
+
+As another example, consider a packet with an Ethernet type of 0x8100,
+indicating that a VLAN TCI should follow, but which is truncated just
+after the Ethernet type.  The flow key for this packet would include
+an all-zero-bits vlan and an empty encap attribute, like this:
+
+    eth(...), eth_type(0x8100), vlan(0), encap()
+
+Unlike a TCP packet with source and destination ports 0, an
+all-zero-bits VLAN TCI is not that rare, so the CFI bit (aka
+VLAN_TAG_PRESENT inside the kernel) is ordinarily set in a vlan
+attribute expressly to allow this situation to be distinguished.
+Thus, the flow key in this second example unambiguously indicates a
+missing or malformed VLAN TCI.
+
+Other rules
+-----------
+
+The other rules for flow keys are much less subtle:
+
+    - Duplicate attributes are not allowed at a given nesting level.
+
+    - Ordering of attributes is not significant.
+
+    - When the kernel sends a given flow key to userspace, it always
+      composes it the same way.  This allows userspace to hash and
+      compare entire flow keys that it may not be able to fully
+      interpret.

+ 1 - 1
Documentation/networking/packet_mmap.txt

@@ -155,7 +155,7 @@ As capture, each frame contains two parts:
 
  /* fill sockaddr_ll struct to prepare binding */
  my_addr.sll_family = AF_PACKET;
- my_addr.sll_protocol = ETH_P_ALL;
+ my_addr.sll_protocol = htons(ETH_P_ALL);
  my_addr.sll_ifindex =  s_ifr.ifr_ifindex;
 
  /* bind socket to eth0 */

+ 4 - 4
Documentation/networking/scaling.txt

@@ -208,7 +208,7 @@ The counter in rps_dev_flow_table values records the length of the current
 CPU's backlog when a packet in this flow was last enqueued. Each backlog
 queue has a head counter that is incremented on dequeue. A tail counter
 is computed as head counter + queue length. In other words, the counter
-in rps_dev_flow_table[i] records the last element in flow i that has
+in rps_dev_flow[i] records the last element in flow i that has
 been enqueued onto the currently designated CPU for flow i (of course,
 entry i is actually selected by hash and multiple flows may hash to the
 same entry i).
@@ -224,7 +224,7 @@ following is true:
 
 - The current CPU's queue head counter >= the recorded tail counter
   value in rps_dev_flow[i]
-- The current CPU is unset (equal to NR_CPUS)
+- The current CPU is unset (equal to RPS_NO_CPU)
 - The current CPU is offline
 
 After this check, the packet is sent to the (possibly updated) current
@@ -235,7 +235,7 @@ CPU.
 
 ==== RFS Configuration
 
-RFS is only available if the kconfig symbol CONFIG_RFS is enabled (on
+RFS is only available if the kconfig symbol CONFIG_RPS is enabled (on
 by default for SMP). The functionality remains disabled until explicitly
 configured. The number of entries in the global flow table is set through:
 
@@ -258,7 +258,7 @@ For a single queue device, the rps_flow_cnt value for the single queue
 would normally be configured to the same value as rps_sock_flow_entries.
 For a multi-queue device, the rps_flow_cnt for each queue might be
 configured as rps_sock_flow_entries / N, where N is the number of
-queues. So for instance, if rps_flow_entries is set to 32768 and there
+queues. So for instance, if rps_sock_flow_entries is set to 32768 and there
 are 16 configured receive queues, rps_flow_cnt for each queue might be
 configured as 2048.
 

+ 9 - 7
Documentation/networking/stmmac.txt

@@ -4,14 +4,16 @@ Copyright (C) 2007-2010  STMicroelectronics Ltd
 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
 
 This is the driver for the MAC 10/100/1000 on-chip Ethernet controllers
-(Synopsys IP blocks); it has been fully tested on STLinux platforms.
+(Synopsys IP blocks).
 
 Currently this network device driver is for all STM embedded MAC/GMAC
-(i.e. 7xxx/5xxx SoCs) and it's known working on other platforms i.e. ARM SPEAr.
+(i.e. 7xxx/5xxx SoCs), SPEAr (arm), Loongson1B (mips) and XLINX XC2V3000
+FF1152AMT0221 D1215994A VIRTEX FPGA board.
 
-DWC Ether MAC 10/100/1000 Universal version 3.41a and DWC Ether MAC 10/100
-Universal version 4.0 have been used for developing the first code
-implementation.
+DWC Ether MAC 10/100/1000 Universal version 3.60a (and older) and DWC Ether MAC 10/100
+Universal version 4.0 have been used for developing this driver.
+
+This driver supports both the platform bus and PCI.
 
 Please, for more information also visit: www.stlinux.com
 
@@ -277,5 +279,5 @@ In fact, these can generate an huge amount of debug messages.
 
 6) TODO:
  o XGMAC is not supported.
- o Review the timer optimisation code to use an embedded device that will be
-  available in new chip generations.
+ o Add the EEE - Energy Efficient Ethernet
+ o Add the PTP - precision time protocol

Some files were not shown because too many files changed in this diff