|
@@ -11,103 +11,96 @@
|
|
|
#define _ASM_HAZARDS_H
|
|
|
|
|
|
|
|
|
-#ifdef __ASSEMBLY__
|
|
|
-
|
|
|
- .macro _ssnop
|
|
|
- sll $0, $0, 1
|
|
|
- .endm
|
|
|
-
|
|
|
- .macro _ehb
|
|
|
- sll $0, $0, 3
|
|
|
- .endm
|
|
|
-
|
|
|
-/*
|
|
|
- * RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent
|
|
|
- * use of the JTLB for instructions should not occur for 4 cpu cycles and use
|
|
|
- * for data translations should not occur for 3 cpu cycles.
|
|
|
- */
|
|
|
-#ifdef CONFIG_CPU_RM9000
|
|
|
-
|
|
|
- .macro mtc0_tlbw_hazard
|
|
|
- .set push
|
|
|
- .set mips32
|
|
|
- _ssnop; _ssnop; _ssnop; _ssnop
|
|
|
- .set pop
|
|
|
- .endm
|
|
|
-
|
|
|
- .macro tlbw_eret_hazard
|
|
|
- .set push
|
|
|
- .set mips32
|
|
|
- _ssnop; _ssnop; _ssnop; _ssnop
|
|
|
- .set pop
|
|
|
- .endm
|
|
|
-
|
|
|
+#ifdef __ASSEMBLER__
|
|
|
+#define ASMMACRO(name, code...) .macro name; code; .endm
|
|
|
#else
|
|
|
|
|
|
-/*
|
|
|
- * The taken branch will result in a two cycle penalty for the two killed
|
|
|
- * instructions on R4000 / R4400. Other processors only have a single cycle
|
|
|
- * hazard so this is nice trick to have an optimal code for a range of
|
|
|
- * processors.
|
|
|
- */
|
|
|
- .macro mtc0_tlbw_hazard
|
|
|
- b . + 8
|
|
|
- .endm
|
|
|
+#define ASMMACRO(name, code...) \
|
|
|
+__asm__(".macro " #name "; " #code "; .endm"); \
|
|
|
+ \
|
|
|
+static inline void name(void) \
|
|
|
+{ \
|
|
|
+ __asm__ __volatile__ (#name); \
|
|
|
+}
|
|
|
|
|
|
- .macro tlbw_eret_hazard
|
|
|
- .endm
|
|
|
#endif
|
|
|
|
|
|
+ASMMACRO(_ssnop,
|
|
|
+ sll $0, $0, 1
|
|
|
+ )
|
|
|
+
|
|
|
+ASMMACRO(_ehb,
|
|
|
+ sll $0, $0, 3
|
|
|
+ )
|
|
|
+
|
|
|
/*
|
|
|
- * mtc0->mfc0 hazard
|
|
|
- * The 24K has a 2 cycle mtc0/mfc0 execution hazard.
|
|
|
- * It is a MIPS32R2 processor so ehb will clear the hazard.
|
|
|
+ * TLB hazards
|
|
|
*/
|
|
|
+#if defined(CONFIG_CPU_MIPSR2)
|
|
|
|
|
|
-#ifdef CONFIG_CPU_MIPSR2
|
|
|
/*
|
|
|
- * Use a macro for ehb unless explicit support for MIPSR2 is enabled
|
|
|
+ * MIPSR2 defines ehb for hazard avoidance
|
|
|
*/
|
|
|
|
|
|
-#define irq_enable_hazard \
|
|
|
+ASMMACRO(mtc0_tlbw_hazard,
|
|
|
+ _ehb
|
|
|
+ )
|
|
|
+ASMMACRO(tlbw_use_hazard,
|
|
|
+ _ehb
|
|
|
+ )
|
|
|
+ASMMACRO(tlb_probe_hazard,
|
|
|
+ _ehb
|
|
|
+ )
|
|
|
+ASMMACRO(irq_enable_hazard,
|
|
|
+ )
|
|
|
+ASMMACRO(irq_disable_hazard,
|
|
|
_ehb
|
|
|
-
|
|
|
-#define irq_disable_hazard \
|
|
|
- _ehb
|
|
|
-
|
|
|
-#elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000)
|
|
|
-
|
|
|
+ )
|
|
|
+ASMMACRO(back_to_back_c0_hazard,
|
|
|
+ _ehb
|
|
|
+ )
|
|
|
/*
|
|
|
- * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
|
|
|
+ * gcc has a tradition of misscompiling the previous construct using the
|
|
|
+ * address of a label as argument to inline assembler. Gas otoh has the
|
|
|
+ * annoying difference between la and dla which are only usable for 32-bit
|
|
|
+ * rsp. 64-bit code, so can't be used without conditional compilation.
|
|
|
+ * The alterantive is switching the assembler to 64-bit code which happens
|
|
|
+ * to work right even for 32-bit code ...
|
|
|
*/
|
|
|
+#define instruction_hazard() \
|
|
|
+do { \
|
|
|
+ unsigned long tmp; \
|
|
|
+ \
|
|
|
+ __asm__ __volatile__( \
|
|
|
+ " .set mips64r2 \n" \
|
|
|
+ " dla %0, 1f \n" \
|
|
|
+ " jr.hb %0 \n" \
|
|
|
+ " .set mips0 \n" \
|
|
|
+ "1: \n" \
|
|
|
+ : "=r" (tmp)); \
|
|
|
+} while (0)
|
|
|
|
|
|
-#define irq_enable_hazard
|
|
|
-
|
|
|
-#define irq_disable_hazard
|
|
|
-
|
|
|
-#else
|
|
|
+#elif defined(CONFIG_CPU_R10000)
|
|
|
|
|
|
/*
|
|
|
- * Classic MIPS needs 1 - 3 nops or ssnops
|
|
|
+ * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
|
|
|
*/
|
|
|
-#define irq_enable_hazard
|
|
|
-#define irq_disable_hazard \
|
|
|
- _ssnop; _ssnop; _ssnop
|
|
|
|
|
|
-#endif
|
|
|
-
|
|
|
-#else /* __ASSEMBLY__ */
|
|
|
-
|
|
|
-__asm__(
|
|
|
- " .macro _ssnop \n"
|
|
|
- " sll $0, $0, 1 \n"
|
|
|
- " .endm \n"
|
|
|
- " \n"
|
|
|
- " .macro _ehb \n"
|
|
|
- " sll $0, $0, 3 \n"
|
|
|
- " .endm \n");
|
|
|
+ASMMACRO(mtc0_tlbw_hazard,
|
|
|
+ )
|
|
|
+ASMMACRO(tlbw_use_hazard,
|
|
|
+ )
|
|
|
+ASMMACRO(tlb_probe_hazard,
|
|
|
+ )
|
|
|
+ASMMACRO(irq_enable_hazard,
|
|
|
+ )
|
|
|
+ASMMACRO(irq_disable_hazard,
|
|
|
+ )
|
|
|
+ASMMACRO(back_to_back_c0_hazard,
|
|
|
+ )
|
|
|
+#define instruction_hazard() do { } while (0)
|
|
|
|
|
|
-#ifdef CONFIG_CPU_RM9000
|
|
|
+#elif defined(CONFIG_CPU_RM9000)
|
|
|
|
|
|
/*
|
|
|
* RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent
|
|
@@ -115,176 +108,73 @@ __asm__(
|
|
|
* for data translations should not occur for 3 cpu cycles.
|
|
|
*/
|
|
|
|
|
|
-#define mtc0_tlbw_hazard() \
|
|
|
- __asm__ __volatile__( \
|
|
|
- " .set mips32 \n" \
|
|
|
- " _ssnop \n" \
|
|
|
- " _ssnop \n" \
|
|
|
- " _ssnop \n" \
|
|
|
- " _ssnop \n" \
|
|
|
- " .set mips0 \n")
|
|
|
-
|
|
|
-#define tlbw_use_hazard() \
|
|
|
- __asm__ __volatile__( \
|
|
|
- " .set mips32 \n" \
|
|
|
- " _ssnop \n" \
|
|
|
- " _ssnop \n" \
|
|
|
- " _ssnop \n" \
|
|
|
- " _ssnop \n" \
|
|
|
- " .set mips0 \n")
|
|
|
-
|
|
|
-#else
|
|
|
-
|
|
|
-/*
|
|
|
- * Overkill warning ...
|
|
|
- */
|
|
|
-#define mtc0_tlbw_hazard() \
|
|
|
- __asm__ __volatile__( \
|
|
|
- " .set noreorder \n" \
|
|
|
- " nop \n" \
|
|
|
- " nop \n" \
|
|
|
- " nop \n" \
|
|
|
- " nop \n" \
|
|
|
- " nop \n" \
|
|
|
- " nop \n" \
|
|
|
- " .set reorder \n")
|
|
|
-
|
|
|
-#define tlbw_use_hazard() \
|
|
|
- __asm__ __volatile__( \
|
|
|
- " .set noreorder \n" \
|
|
|
- " nop \n" \
|
|
|
- " nop \n" \
|
|
|
- " nop \n" \
|
|
|
- " nop \n" \
|
|
|
- " nop \n" \
|
|
|
- " nop \n" \
|
|
|
- " .set reorder \n")
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * Interrupt enable/disable hazards
|
|
|
- * Some processors have hazards when modifying
|
|
|
- * the status register to change the interrupt state
|
|
|
- */
|
|
|
-
|
|
|
-#ifdef CONFIG_CPU_MIPSR2
|
|
|
-
|
|
|
-__asm__(" .macro irq_enable_hazard \n"
|
|
|
- " _ehb \n"
|
|
|
- " .endm \n"
|
|
|
- " \n"
|
|
|
- " .macro irq_disable_hazard \n"
|
|
|
- " _ehb \n"
|
|
|
- " .endm \n");
|
|
|
+ASMMACRO(mtc0_tlbw_hazard,
|
|
|
+ _ssnop; _ssnop; _ssnop; _ssnop
|
|
|
+ )
|
|
|
+ASMMACRO(tlbw_use_hazard,
|
|
|
+ _ssnop; _ssnop; _ssnop; _ssnop
|
|
|
+ )
|
|
|
+ASMMACRO(tlb_probe_hazard,
|
|
|
+ _ssnop; _ssnop; _ssnop; _ssnop
|
|
|
+ )
|
|
|
+ASMMACRO(irq_enable_hazard,
|
|
|
+ )
|
|
|
+ASMMACRO(irq_disable_hazard,
|
|
|
+ )
|
|
|
+ASMMACRO(back_to_back_c0_hazard,
|
|
|
+ )
|
|
|
+#define instruction_hazard() do { } while (0)
|
|
|
|
|
|
-#elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000)
|
|
|
+#elif defined(CONFIG_CPU_SB1)
|
|
|
|
|
|
/*
|
|
|
- * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
|
|
|
+ * Mostly like R4000 for historic reasons
|
|
|
*/
|
|
|
-
|
|
|
-__asm__(
|
|
|
- " .macro irq_enable_hazard \n"
|
|
|
- " .endm \n"
|
|
|
- " \n"
|
|
|
- " .macro irq_disable_hazard \n"
|
|
|
- " .endm \n");
|
|
|
+ASMMACRO(mtc0_tlbw_hazard,
|
|
|
+ )
|
|
|
+ASMMACRO(tlbw_use_hazard,
|
|
|
+ )
|
|
|
+ASMMACRO(tlb_probe_hazard,
|
|
|
+ )
|
|
|
+ASMMACRO(irq_enable_hazard,
|
|
|
+ )
|
|
|
+ASMMACRO(irq_disable_hazard,
|
|
|
+ _ssnop; _ssnop; _ssnop
|
|
|
+ )
|
|
|
+ASMMACRO(back_to_back_c0_hazard,
|
|
|
+ )
|
|
|
+#define instruction_hazard() do { } while (0)
|
|
|
|
|
|
#else
|
|
|
|
|
|
/*
|
|
|
- * Default for classic MIPS processors. Assume worst case hazards but don't
|
|
|
- * care about the irq_enable_hazard - sooner or later the hardware will
|
|
|
- * enable it and we don't care when exactly.
|
|
|
- */
|
|
|
-
|
|
|
-__asm__(
|
|
|
- " # \n"
|
|
|
- " # There is a hazard but we do not care \n"
|
|
|
- " # \n"
|
|
|
- " .macro\tirq_enable_hazard \n"
|
|
|
- " .endm \n"
|
|
|
- " \n"
|
|
|
- " .macro\tirq_disable_hazard \n"
|
|
|
- " _ssnop \n"
|
|
|
- " _ssnop \n"
|
|
|
- " _ssnop \n"
|
|
|
- " .endm \n");
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-#define irq_enable_hazard() \
|
|
|
- __asm__ __volatile__("irq_enable_hazard")
|
|
|
-#define irq_disable_hazard() \
|
|
|
- __asm__ __volatile__("irq_disable_hazard")
|
|
|
-
|
|
|
-
|
|
|
-/*
|
|
|
- * Back-to-back hazards -
|
|
|
+ * Finally the catchall case for all other processors including R4000, R4400,
|
|
|
+ * R4600, R4700, R5000, RM7000, NEC VR41xx etc.
|
|
|
*
|
|
|
- * What is needed to separate a move to cp0 from a subsequent read from the
|
|
|
- * same cp0 register?
|
|
|
- */
|
|
|
-#ifdef CONFIG_CPU_MIPSR2
|
|
|
-
|
|
|
-__asm__(" .macro back_to_back_c0_hazard \n"
|
|
|
- " _ehb \n"
|
|
|
- " .endm \n");
|
|
|
-
|
|
|
-#elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000) || \
|
|
|
- defined(CONFIG_CPU_SB1)
|
|
|
-
|
|
|
-__asm__(" .macro back_to_back_c0_hazard \n"
|
|
|
- " .endm \n");
|
|
|
-
|
|
|
-#else
|
|
|
-
|
|
|
-__asm__(" .macro back_to_back_c0_hazard \n"
|
|
|
- " .set noreorder \n"
|
|
|
- " _ssnop \n"
|
|
|
- " _ssnop \n"
|
|
|
- " _ssnop \n"
|
|
|
- " .set reorder \n"
|
|
|
- " .endm");
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-#define back_to_back_c0_hazard() \
|
|
|
- __asm__ __volatile__("back_to_back_c0_hazard")
|
|
|
-
|
|
|
-
|
|
|
-/*
|
|
|
- * Instruction execution hazard
|
|
|
- */
|
|
|
-#ifdef CONFIG_CPU_MIPSR2
|
|
|
-/*
|
|
|
- * gcc has a tradition of misscompiling the previous construct using the
|
|
|
- * address of a label as argument to inline assembler. Gas otoh has the
|
|
|
- * annoying difference between la and dla which are only usable for 32-bit
|
|
|
- * rsp. 64-bit code, so can't be used without conditional compilation.
|
|
|
- * The alterantive is switching the assembler to 64-bit code which happens
|
|
|
- * to work right even for 32-bit code ...
|
|
|
+ * The taken branch will result in a two cycle penalty for the two killed
|
|
|
+ * instructions on R4000 / R4400. Other processors only have a single cycle
|
|
|
+ * hazard so this is nice trick to have an optimal code for a range of
|
|
|
+ * processors.
|
|
|
*/
|
|
|
-#define instruction_hazard() \
|
|
|
-do { \
|
|
|
- unsigned long tmp; \
|
|
|
- \
|
|
|
- __asm__ __volatile__( \
|
|
|
- " .set mips64r2 \n" \
|
|
|
- " dla %0, 1f \n" \
|
|
|
- " jr.hb %0 \n" \
|
|
|
- " .set mips0 \n" \
|
|
|
- "1: \n" \
|
|
|
- : "=r" (tmp)); \
|
|
|
-} while (0)
|
|
|
-
|
|
|
-#else
|
|
|
+ASMMACRO(mtc0_tlbw_hazard,
|
|
|
+ nop
|
|
|
+ )
|
|
|
+ASMMACRO(tlbw_use_hazard,
|
|
|
+ nop; nop; nop
|
|
|
+ )
|
|
|
+ASMMACRO(tlb_probe_hazard,
|
|
|
+ nop; nop; nop
|
|
|
+ )
|
|
|
+ASMMACRO(irq_enable_hazard,
|
|
|
+ )
|
|
|
+ASMMACRO(irq_disable_hazard,
|
|
|
+ nop; nop; nop
|
|
|
+ )
|
|
|
+ASMMACRO(back_to_back_c0_hazard,
|
|
|
+ _ssnop; _ssnop; _ssnop;
|
|
|
+ )
|
|
|
#define instruction_hazard() do { } while (0)
|
|
|
-#endif
|
|
|
-
|
|
|
-extern void mips_ihb(void);
|
|
|
|
|
|
-#endif /* __ASSEMBLY__ */
|
|
|
+#endif
|
|
|
|
|
|
#endif /* _ASM_HAZARDS_H */
|