|
@@ -17,8 +17,12 @@
|
|
|
#include <linux/init.h>
|
|
|
#include <linux/device.h>
|
|
|
#include <linux/dma-mapping.h>
|
|
|
+#include <linux/dma-contiguous.h>
|
|
|
#include <linux/highmem.h>
|
|
|
+#include <linux/memblock.h>
|
|
|
#include <linux/slab.h>
|
|
|
+#include <linux/iommu.h>
|
|
|
+#include <linux/vmalloc.h>
|
|
|
|
|
|
#include <asm/memory.h>
|
|
|
#include <asm/highmem.h>
|
|
@@ -26,9 +30,112 @@
|
|
|
#include <asm/tlbflush.h>
|
|
|
#include <asm/sizes.h>
|
|
|
#include <asm/mach/arch.h>
|
|
|
+#include <asm/dma-iommu.h>
|
|
|
+#include <asm/mach/map.h>
|
|
|
+#include <asm/system_info.h>
|
|
|
+#include <asm/dma-contiguous.h>
|
|
|
|
|
|
#include "mm.h"
|
|
|
|
|
|
+/*
|
|
|
+ * The DMA API is built upon the notion of "buffer ownership". A buffer
|
|
|
+ * is either exclusively owned by the CPU (and therefore may be accessed
|
|
|
+ * by it) or exclusively owned by the DMA device. These helper functions
|
|
|
+ * represent the transitions between these two ownership states.
|
|
|
+ *
|
|
|
+ * Note, however, that on later ARMs, this notion does not work due to
|
|
|
+ * speculative prefetches. We model our approach on the assumption that
|
|
|
+ * the CPU does do speculative prefetches, which means we clean caches
|
|
|
+ * before transfers and delay cache invalidation until transfer completion.
|
|
|
+ *
|
|
|
+ */
|
|
|
+static void __dma_page_cpu_to_dev(struct page *, unsigned long,
|
|
|
+ size_t, enum dma_data_direction);
|
|
|
+static void __dma_page_dev_to_cpu(struct page *, unsigned long,
|
|
|
+ size_t, enum dma_data_direction);
|
|
|
+
|
|
|
+/**
|
|
|
+ * arm_dma_map_page - map a portion of a page for streaming DMA
|
|
|
+ * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
|
+ * @page: page that buffer resides in
|
|
|
+ * @offset: offset into page for start of buffer
|
|
|
+ * @size: size of buffer to map
|
|
|
+ * @dir: DMA transfer direction
|
|
|
+ *
|
|
|
+ * Ensure that any data held in the cache is appropriately discarded
|
|
|
+ * or written back.
|
|
|
+ *
|
|
|
+ * The device owns this memory once this call has completed. The CPU
|
|
|
+ * can regain ownership by calling dma_unmap_page().
|
|
|
+ */
|
|
|
+static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
|
|
|
+ unsigned long offset, size_t size, enum dma_data_direction dir,
|
|
|
+ struct dma_attrs *attrs)
|
|
|
+{
|
|
|
+ if (!arch_is_coherent())
|
|
|
+ __dma_page_cpu_to_dev(page, offset, size, dir);
|
|
|
+ return pfn_to_dma(dev, page_to_pfn(page)) + offset;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
|
|
|
+ * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
|
+ * @handle: DMA address of buffer
|
|
|
+ * @size: size of buffer (same as passed to dma_map_page)
|
|
|
+ * @dir: DMA transfer direction (same as passed to dma_map_page)
|
|
|
+ *
|
|
|
+ * Unmap a page streaming mode DMA translation. The handle and size
|
|
|
+ * must match what was provided in the previous dma_map_page() call.
|
|
|
+ * All other usages are undefined.
|
|
|
+ *
|
|
|
+ * After this call, reads by the CPU to the buffer are guaranteed to see
|
|
|
+ * whatever the device wrote there.
|
|
|
+ */
|
|
|
+static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
|
|
|
+ size_t size, enum dma_data_direction dir,
|
|
|
+ struct dma_attrs *attrs)
|
|
|
+{
|
|
|
+ if (!arch_is_coherent())
|
|
|
+ __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
|
|
|
+ handle & ~PAGE_MASK, size, dir);
|
|
|
+}
|
|
|
+
|
|
|
+static void arm_dma_sync_single_for_cpu(struct device *dev,
|
|
|
+ dma_addr_t handle, size_t size, enum dma_data_direction dir)
|
|
|
+{
|
|
|
+ unsigned int offset = handle & (PAGE_SIZE - 1);
|
|
|
+ struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
|
|
|
+ if (!arch_is_coherent())
|
|
|
+ __dma_page_dev_to_cpu(page, offset, size, dir);
|
|
|
+}
|
|
|
+
|
|
|
+static void arm_dma_sync_single_for_device(struct device *dev,
|
|
|
+ dma_addr_t handle, size_t size, enum dma_data_direction dir)
|
|
|
+{
|
|
|
+ unsigned int offset = handle & (PAGE_SIZE - 1);
|
|
|
+ struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
|
|
|
+ if (!arch_is_coherent())
|
|
|
+ __dma_page_cpu_to_dev(page, offset, size, dir);
|
|
|
+}
|
|
|
+
|
|
|
+static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
|
|
|
+
|
|
|
+struct dma_map_ops arm_dma_ops = {
|
|
|
+ .alloc = arm_dma_alloc,
|
|
|
+ .free = arm_dma_free,
|
|
|
+ .mmap = arm_dma_mmap,
|
|
|
+ .map_page = arm_dma_map_page,
|
|
|
+ .unmap_page = arm_dma_unmap_page,
|
|
|
+ .map_sg = arm_dma_map_sg,
|
|
|
+ .unmap_sg = arm_dma_unmap_sg,
|
|
|
+ .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
|
|
|
+ .sync_single_for_device = arm_dma_sync_single_for_device,
|
|
|
+ .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
|
|
|
+ .sync_sg_for_device = arm_dma_sync_sg_for_device,
|
|
|
+ .set_dma_mask = arm_dma_set_mask,
|
|
|
+};
|
|
|
+EXPORT_SYMBOL(arm_dma_ops);
|
|
|
+
|
|
|
static u64 get_coherent_dma_mask(struct device *dev)
|
|
|
{
|
|
|
u64 mask = (u64)arm_dma_limit;
|
|
@@ -56,6 +163,21 @@ static u64 get_coherent_dma_mask(struct device *dev)
|
|
|
return mask;
|
|
|
}
|
|
|
|
|
|
+static void __dma_clear_buffer(struct page *page, size_t size)
|
|
|
+{
|
|
|
+ void *ptr;
|
|
|
+ /*
|
|
|
+ * Ensure that the allocated pages are zeroed, and that any data
|
|
|
+ * lurking in the kernel direct-mapped region is invalidated.
|
|
|
+ */
|
|
|
+ ptr = page_address(page);
|
|
|
+ if (ptr) {
|
|
|
+ memset(ptr, 0, size);
|
|
|
+ dmac_flush_range(ptr, ptr + size);
|
|
|
+ outer_flush_range(__pa(ptr), __pa(ptr) + size);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
/*
|
|
|
* Allocate a DMA buffer for 'dev' of size 'size' using the
|
|
|
* specified gfp mask. Note that 'size' must be page aligned.
|
|
@@ -64,23 +186,6 @@ static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gf
|
|
|
{
|
|
|
unsigned long order = get_order(size);
|
|
|
struct page *page, *p, *e;
|
|
|
- void *ptr;
|
|
|
- u64 mask = get_coherent_dma_mask(dev);
|
|
|
-
|
|
|
-#ifdef CONFIG_DMA_API_DEBUG
|
|
|
- u64 limit = (mask + 1) & ~mask;
|
|
|
- if (limit && size >= limit) {
|
|
|
- dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
|
|
|
- size, mask);
|
|
|
- return NULL;
|
|
|
- }
|
|
|
-#endif
|
|
|
-
|
|
|
- if (!mask)
|
|
|
- return NULL;
|
|
|
-
|
|
|
- if (mask < 0xffffffffULL)
|
|
|
- gfp |= GFP_DMA;
|
|
|
|
|
|
page = alloc_pages(gfp, order);
|
|
|
if (!page)
|
|
@@ -93,14 +198,7 @@ static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gf
|
|
|
for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
|
|
|
__free_page(p);
|
|
|
|
|
|
- /*
|
|
|
- * Ensure that the allocated pages are zeroed, and that any data
|
|
|
- * lurking in the kernel direct-mapped region is invalidated.
|
|
|
- */
|
|
|
- ptr = page_address(page);
|
|
|
- memset(ptr, 0, size);
|
|
|
- dmac_flush_range(ptr, ptr + size);
|
|
|
- outer_flush_range(__pa(ptr), __pa(ptr) + size);
|
|
|
+ __dma_clear_buffer(page, size);
|
|
|
|
|
|
return page;
|
|
|
}
|
|
@@ -170,6 +268,11 @@ static int __init consistent_init(void)
|
|
|
unsigned long base = consistent_base;
|
|
|
unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
|
|
|
|
|
|
+#ifndef CONFIG_ARM_DMA_USE_IOMMU
|
|
|
+ if (cpu_architecture() >= CPU_ARCH_ARMv6)
|
|
|
+ return 0;
|
|
|
+#endif
|
|
|
+
|
|
|
consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
|
|
|
if (!consistent_pte) {
|
|
|
pr_err("%s: no memory\n", __func__);
|
|
@@ -184,14 +287,14 @@ static int __init consistent_init(void)
|
|
|
|
|
|
pud = pud_alloc(&init_mm, pgd, base);
|
|
|
if (!pud) {
|
|
|
- printk(KERN_ERR "%s: no pud tables\n", __func__);
|
|
|
+ pr_err("%s: no pud tables\n", __func__);
|
|
|
ret = -ENOMEM;
|
|
|
break;
|
|
|
}
|
|
|
|
|
|
pmd = pmd_alloc(&init_mm, pud, base);
|
|
|
if (!pmd) {
|
|
|
- printk(KERN_ERR "%s: no pmd tables\n", __func__);
|
|
|
+ pr_err("%s: no pmd tables\n", __func__);
|
|
|
ret = -ENOMEM;
|
|
|
break;
|
|
|
}
|
|
@@ -199,7 +302,7 @@ static int __init consistent_init(void)
|
|
|
|
|
|
pte = pte_alloc_kernel(pmd, base);
|
|
|
if (!pte) {
|
|
|
- printk(KERN_ERR "%s: no pte tables\n", __func__);
|
|
|
+ pr_err("%s: no pte tables\n", __func__);
|
|
|
ret = -ENOMEM;
|
|
|
break;
|
|
|
}
|
|
@@ -210,9 +313,101 @@ static int __init consistent_init(void)
|
|
|
|
|
|
return ret;
|
|
|
}
|
|
|
-
|
|
|
core_initcall(consistent_init);
|
|
|
|
|
|
+static void *__alloc_from_contiguous(struct device *dev, size_t size,
|
|
|
+ pgprot_t prot, struct page **ret_page);
|
|
|
+
|
|
|
+static struct arm_vmregion_head coherent_head = {
|
|
|
+ .vm_lock = __SPIN_LOCK_UNLOCKED(&coherent_head.vm_lock),
|
|
|
+ .vm_list = LIST_HEAD_INIT(coherent_head.vm_list),
|
|
|
+};
|
|
|
+
|
|
|
+size_t coherent_pool_size = DEFAULT_CONSISTENT_DMA_SIZE / 8;
|
|
|
+
|
|
|
+static int __init early_coherent_pool(char *p)
|
|
|
+{
|
|
|
+ coherent_pool_size = memparse(p, &p);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+early_param("coherent_pool", early_coherent_pool);
|
|
|
+
|
|
|
+/*
|
|
|
+ * Initialise the coherent pool for atomic allocations.
|
|
|
+ */
|
|
|
+static int __init coherent_init(void)
|
|
|
+{
|
|
|
+ pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
|
|
|
+ size_t size = coherent_pool_size;
|
|
|
+ struct page *page;
|
|
|
+ void *ptr;
|
|
|
+
|
|
|
+ if (cpu_architecture() < CPU_ARCH_ARMv6)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ ptr = __alloc_from_contiguous(NULL, size, prot, &page);
|
|
|
+ if (ptr) {
|
|
|
+ coherent_head.vm_start = (unsigned long) ptr;
|
|
|
+ coherent_head.vm_end = (unsigned long) ptr + size;
|
|
|
+ printk(KERN_INFO "DMA: preallocated %u KiB pool for atomic coherent allocations\n",
|
|
|
+ (unsigned)size / 1024);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ printk(KERN_ERR "DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
|
|
|
+ (unsigned)size / 1024);
|
|
|
+ return -ENOMEM;
|
|
|
+}
|
|
|
+/*
|
|
|
+ * CMA is activated by core_initcall, so we must be called after it.
|
|
|
+ */
|
|
|
+postcore_initcall(coherent_init);
|
|
|
+
|
|
|
+struct dma_contig_early_reserve {
|
|
|
+ phys_addr_t base;
|
|
|
+ unsigned long size;
|
|
|
+};
|
|
|
+
|
|
|
+static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
|
|
|
+
|
|
|
+static int dma_mmu_remap_num __initdata;
|
|
|
+
|
|
|
+void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
|
|
|
+{
|
|
|
+ dma_mmu_remap[dma_mmu_remap_num].base = base;
|
|
|
+ dma_mmu_remap[dma_mmu_remap_num].size = size;
|
|
|
+ dma_mmu_remap_num++;
|
|
|
+}
|
|
|
+
|
|
|
+void __init dma_contiguous_remap(void)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+ for (i = 0; i < dma_mmu_remap_num; i++) {
|
|
|
+ phys_addr_t start = dma_mmu_remap[i].base;
|
|
|
+ phys_addr_t end = start + dma_mmu_remap[i].size;
|
|
|
+ struct map_desc map;
|
|
|
+ unsigned long addr;
|
|
|
+
|
|
|
+ if (end > arm_lowmem_limit)
|
|
|
+ end = arm_lowmem_limit;
|
|
|
+ if (start >= end)
|
|
|
+ return;
|
|
|
+
|
|
|
+ map.pfn = __phys_to_pfn(start);
|
|
|
+ map.virtual = __phys_to_virt(start);
|
|
|
+ map.length = end - start;
|
|
|
+ map.type = MT_MEMORY_DMA_READY;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Clear previous low-memory mapping
|
|
|
+ */
|
|
|
+ for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
|
|
|
+ addr += PMD_SIZE)
|
|
|
+ pmd_clear(pmd_off_k(addr));
|
|
|
+
|
|
|
+ iotable_init(&map, 1);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
static void *
|
|
|
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
|
|
|
const void *caller)
|
|
@@ -222,7 +417,7 @@ __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
|
|
|
int bit;
|
|
|
|
|
|
if (!consistent_pte) {
|
|
|
- printk(KERN_ERR "%s: not initialised\n", __func__);
|
|
|
+ pr_err("%s: not initialised\n", __func__);
|
|
|
dump_stack();
|
|
|
return NULL;
|
|
|
}
|
|
@@ -249,7 +444,7 @@ __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
|
|
|
u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
|
|
|
|
|
|
pte = consistent_pte[idx] + off;
|
|
|
- c->vm_pages = page;
|
|
|
+ c->priv = page;
|
|
|
|
|
|
do {
|
|
|
BUG_ON(!pte_none(*pte));
|
|
@@ -281,14 +476,14 @@ static void __dma_free_remap(void *cpu_addr, size_t size)
|
|
|
|
|
|
c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
|
|
|
if (!c) {
|
|
|
- printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
|
|
|
+ pr_err("%s: trying to free invalid coherent area: %p\n",
|
|
|
__func__, cpu_addr);
|
|
|
dump_stack();
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
if ((c->vm_end - c->vm_start) != size) {
|
|
|
- printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
|
|
|
+ pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
|
|
|
__func__, c->vm_end - c->vm_start, size);
|
|
|
dump_stack();
|
|
|
size = c->vm_end - c->vm_start;
|
|
@@ -310,8 +505,8 @@ static void __dma_free_remap(void *cpu_addr, size_t size)
|
|
|
}
|
|
|
|
|
|
if (pte_none(pte) || !pte_present(pte))
|
|
|
- printk(KERN_CRIT "%s: bad page in kernel page table\n",
|
|
|
- __func__);
|
|
|
+ pr_crit("%s: bad page in kernel page table\n",
|
|
|
+ __func__);
|
|
|
} while (size -= PAGE_SIZE);
|
|
|
|
|
|
flush_tlb_kernel_range(c->vm_start, c->vm_end);
|
|
@@ -319,20 +514,182 @@ static void __dma_free_remap(void *cpu_addr, size_t size)
|
|
|
arm_vmregion_free(&consistent_head, c);
|
|
|
}
|
|
|
|
|
|
+static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
|
|
|
+ void *data)
|
|
|
+{
|
|
|
+ struct page *page = virt_to_page(addr);
|
|
|
+ pgprot_t prot = *(pgprot_t *)data;
|
|
|
+
|
|
|
+ set_pte_ext(pte, mk_pte(page, prot), 0);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
|
|
|
+{
|
|
|
+ unsigned long start = (unsigned long) page_address(page);
|
|
|
+ unsigned end = start + size;
|
|
|
+
|
|
|
+ apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
|
|
|
+ dsb();
|
|
|
+ flush_tlb_kernel_range(start, end);
|
|
|
+}
|
|
|
+
|
|
|
+static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
|
|
|
+ pgprot_t prot, struct page **ret_page,
|
|
|
+ const void *caller)
|
|
|
+{
|
|
|
+ struct page *page;
|
|
|
+ void *ptr;
|
|
|
+ page = __dma_alloc_buffer(dev, size, gfp);
|
|
|
+ if (!page)
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
|
|
|
+ if (!ptr) {
|
|
|
+ __dma_free_buffer(page, size);
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ *ret_page = page;
|
|
|
+ return ptr;
|
|
|
+}
|
|
|
+
|
|
|
+static void *__alloc_from_pool(struct device *dev, size_t size,
|
|
|
+ struct page **ret_page, const void *caller)
|
|
|
+{
|
|
|
+ struct arm_vmregion *c;
|
|
|
+ size_t align;
|
|
|
+
|
|
|
+ if (!coherent_head.vm_start) {
|
|
|
+ printk(KERN_ERR "%s: coherent pool not initialised!\n",
|
|
|
+ __func__);
|
|
|
+ dump_stack();
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Align the region allocation - allocations from pool are rather
|
|
|
+ * small, so align them to their order in pages, minimum is a page
|
|
|
+ * size. This helps reduce fragmentation of the DMA space.
|
|
|
+ */
|
|
|
+ align = PAGE_SIZE << get_order(size);
|
|
|
+ c = arm_vmregion_alloc(&coherent_head, align, size, 0, caller);
|
|
|
+ if (c) {
|
|
|
+ void *ptr = (void *)c->vm_start;
|
|
|
+ struct page *page = virt_to_page(ptr);
|
|
|
+ *ret_page = page;
|
|
|
+ return ptr;
|
|
|
+ }
|
|
|
+ return NULL;
|
|
|
+}
|
|
|
+
|
|
|
+static int __free_from_pool(void *cpu_addr, size_t size)
|
|
|
+{
|
|
|
+ unsigned long start = (unsigned long)cpu_addr;
|
|
|
+ unsigned long end = start + size;
|
|
|
+ struct arm_vmregion *c;
|
|
|
+
|
|
|
+ if (start < coherent_head.vm_start || end > coherent_head.vm_end)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ c = arm_vmregion_find_remove(&coherent_head, (unsigned long)start);
|
|
|
+
|
|
|
+ if ((c->vm_end - c->vm_start) != size) {
|
|
|
+ printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
|
|
|
+ __func__, c->vm_end - c->vm_start, size);
|
|
|
+ dump_stack();
|
|
|
+ size = c->vm_end - c->vm_start;
|
|
|
+ }
|
|
|
+
|
|
|
+ arm_vmregion_free(&coherent_head, c);
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+static void *__alloc_from_contiguous(struct device *dev, size_t size,
|
|
|
+ pgprot_t prot, struct page **ret_page)
|
|
|
+{
|
|
|
+ unsigned long order = get_order(size);
|
|
|
+ size_t count = size >> PAGE_SHIFT;
|
|
|
+ struct page *page;
|
|
|
+
|
|
|
+ page = dma_alloc_from_contiguous(dev, count, order);
|
|
|
+ if (!page)
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ __dma_clear_buffer(page, size);
|
|
|
+ __dma_remap(page, size, prot);
|
|
|
+
|
|
|
+ *ret_page = page;
|
|
|
+ return page_address(page);
|
|
|
+}
|
|
|
+
|
|
|
+static void __free_from_contiguous(struct device *dev, struct page *page,
|
|
|
+ size_t size)
|
|
|
+{
|
|
|
+ __dma_remap(page, size, pgprot_kernel);
|
|
|
+ dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
|
|
|
+}
|
|
|
+
|
|
|
+static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
|
|
|
+{
|
|
|
+ prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
|
|
|
+ pgprot_writecombine(prot) :
|
|
|
+ pgprot_dmacoherent(prot);
|
|
|
+ return prot;
|
|
|
+}
|
|
|
+
|
|
|
+#define nommu() 0
|
|
|
+
|
|
|
#else /* !CONFIG_MMU */
|
|
|
|
|
|
-#define __dma_alloc_remap(page, size, gfp, prot, c) page_address(page)
|
|
|
-#define __dma_free_remap(addr, size) do { } while (0)
|
|
|
+#define nommu() 1
|
|
|
+
|
|
|
+#define __get_dma_pgprot(attrs, prot) __pgprot(0)
|
|
|
+#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
|
|
|
+#define __alloc_from_pool(dev, size, ret_page, c) NULL
|
|
|
+#define __alloc_from_contiguous(dev, size, prot, ret) NULL
|
|
|
+#define __free_from_pool(cpu_addr, size) 0
|
|
|
+#define __free_from_contiguous(dev, page, size) do { } while (0)
|
|
|
+#define __dma_free_remap(cpu_addr, size) do { } while (0)
|
|
|
|
|
|
#endif /* CONFIG_MMU */
|
|
|
|
|
|
-static void *
|
|
|
-__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
|
|
|
- pgprot_t prot, const void *caller)
|
|
|
+static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
|
|
|
+ struct page **ret_page)
|
|
|
+{
|
|
|
+ struct page *page;
|
|
|
+ page = __dma_alloc_buffer(dev, size, gfp);
|
|
|
+ if (!page)
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ *ret_page = page;
|
|
|
+ return page_address(page);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
|
|
|
+ gfp_t gfp, pgprot_t prot, const void *caller)
|
|
|
{
|
|
|
+ u64 mask = get_coherent_dma_mask(dev);
|
|
|
struct page *page;
|
|
|
void *addr;
|
|
|
|
|
|
+#ifdef CONFIG_DMA_API_DEBUG
|
|
|
+ u64 limit = (mask + 1) & ~mask;
|
|
|
+ if (limit && size >= limit) {
|
|
|
+ dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
|
|
|
+ size, mask);
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+ if (!mask)
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ if (mask < 0xffffffffULL)
|
|
|
+ gfp |= GFP_DMA;
|
|
|
+
|
|
|
/*
|
|
|
* Following is a work-around (a.k.a. hack) to prevent pages
|
|
|
* with __GFP_COMP being passed to split_page() which cannot
|
|
@@ -342,22 +699,20 @@ __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
|
|
|
*/
|
|
|
gfp &= ~(__GFP_COMP);
|
|
|
|
|
|
- *handle = ~0;
|
|
|
+ *handle = DMA_ERROR_CODE;
|
|
|
size = PAGE_ALIGN(size);
|
|
|
|
|
|
- page = __dma_alloc_buffer(dev, size, gfp);
|
|
|
- if (!page)
|
|
|
- return NULL;
|
|
|
-
|
|
|
- if (!arch_is_coherent())
|
|
|
- addr = __dma_alloc_remap(page, size, gfp, prot, caller);
|
|
|
+ if (arch_is_coherent() || nommu())
|
|
|
+ addr = __alloc_simple_buffer(dev, size, gfp, &page);
|
|
|
+ else if (cpu_architecture() < CPU_ARCH_ARMv6)
|
|
|
+ addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
|
|
|
+ else if (gfp & GFP_ATOMIC)
|
|
|
+ addr = __alloc_from_pool(dev, size, &page, caller);
|
|
|
else
|
|
|
- addr = page_address(page);
|
|
|
+ addr = __alloc_from_contiguous(dev, size, prot, &page);
|
|
|
|
|
|
if (addr)
|
|
|
*handle = pfn_to_dma(dev, page_to_pfn(page));
|
|
|
- else
|
|
|
- __dma_free_buffer(page, size);
|
|
|
|
|
|
return addr;
|
|
|
}
|
|
@@ -366,138 +721,71 @@ __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
|
|
|
* Allocate DMA-coherent memory space and return both the kernel remapped
|
|
|
* virtual and bus address for that space.
|
|
|
*/
|
|
|
-void *
|
|
|
-dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
|
|
|
+void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
|
|
|
+ gfp_t gfp, struct dma_attrs *attrs)
|
|
|
{
|
|
|
+ pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
|
|
|
void *memory;
|
|
|
|
|
|
if (dma_alloc_from_coherent(dev, size, handle, &memory))
|
|
|
return memory;
|
|
|
|
|
|
- return __dma_alloc(dev, size, handle, gfp,
|
|
|
- pgprot_dmacoherent(pgprot_kernel),
|
|
|
+ return __dma_alloc(dev, size, handle, gfp, prot,
|
|
|
__builtin_return_address(0));
|
|
|
}
|
|
|
-EXPORT_SYMBOL(dma_alloc_coherent);
|
|
|
|
|
|
/*
|
|
|
- * Allocate a writecombining region, in much the same way as
|
|
|
- * dma_alloc_coherent above.
|
|
|
+ * Create userspace mapping for the DMA-coherent memory.
|
|
|
*/
|
|
|
-void *
|
|
|
-dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
|
|
|
-{
|
|
|
- return __dma_alloc(dev, size, handle, gfp,
|
|
|
- pgprot_writecombine(pgprot_kernel),
|
|
|
- __builtin_return_address(0));
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(dma_alloc_writecombine);
|
|
|
-
|
|
|
-static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
|
|
|
- void *cpu_addr, dma_addr_t dma_addr, size_t size)
|
|
|
+int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
|
|
|
+ void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
|
+ struct dma_attrs *attrs)
|
|
|
{
|
|
|
int ret = -ENXIO;
|
|
|
#ifdef CONFIG_MMU
|
|
|
- unsigned long user_size, kern_size;
|
|
|
- struct arm_vmregion *c;
|
|
|
-
|
|
|
- user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
|
|
|
+ unsigned long pfn = dma_to_pfn(dev, dma_addr);
|
|
|
+ vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
|
|
|
|
|
|
- c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
|
|
|
- if (c) {
|
|
|
- unsigned long off = vma->vm_pgoff;
|
|
|
+ if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
|
|
|
+ return ret;
|
|
|
|
|
|
- kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
|
|
|
-
|
|
|
- if (off < kern_size &&
|
|
|
- user_size <= (kern_size - off)) {
|
|
|
- ret = remap_pfn_range(vma, vma->vm_start,
|
|
|
- page_to_pfn(c->vm_pages) + off,
|
|
|
- user_size << PAGE_SHIFT,
|
|
|
- vma->vm_page_prot);
|
|
|
- }
|
|
|
- }
|
|
|
+ ret = remap_pfn_range(vma, vma->vm_start,
|
|
|
+ pfn + vma->vm_pgoff,
|
|
|
+ vma->vm_end - vma->vm_start,
|
|
|
+ vma->vm_page_prot);
|
|
|
#endif /* CONFIG_MMU */
|
|
|
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
-int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
|
|
|
- void *cpu_addr, dma_addr_t dma_addr, size_t size)
|
|
|
-{
|
|
|
- vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
|
|
|
- return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(dma_mmap_coherent);
|
|
|
-
|
|
|
-int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
|
|
|
- void *cpu_addr, dma_addr_t dma_addr, size_t size)
|
|
|
-{
|
|
|
- vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
|
|
|
- return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(dma_mmap_writecombine);
|
|
|
-
|
|
|
/*
|
|
|
- * free a page as defined by the above mapping.
|
|
|
- * Must not be called with IRQs disabled.
|
|
|
+ * Free a buffer as defined by the above mapping.
|
|
|
*/
|
|
|
-void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
|
|
|
+void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
|
|
|
+ dma_addr_t handle, struct dma_attrs *attrs)
|
|
|
{
|
|
|
- WARN_ON(irqs_disabled());
|
|
|
+ struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
|
|
|
|
|
|
if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
|
|
|
return;
|
|
|
|
|
|
size = PAGE_ALIGN(size);
|
|
|
|
|
|
- if (!arch_is_coherent())
|
|
|
+ if (arch_is_coherent() || nommu()) {
|
|
|
+ __dma_free_buffer(page, size);
|
|
|
+ } else if (cpu_architecture() < CPU_ARCH_ARMv6) {
|
|
|
__dma_free_remap(cpu_addr, size);
|
|
|
-
|
|
|
- __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(dma_free_coherent);
|
|
|
-
|
|
|
-/*
|
|
|
- * Make an area consistent for devices.
|
|
|
- * Note: Drivers should NOT use this function directly, as it will break
|
|
|
- * platforms with CONFIG_DMABOUNCE.
|
|
|
- * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
|
|
|
- */
|
|
|
-void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
|
|
|
- enum dma_data_direction dir)
|
|
|
-{
|
|
|
- unsigned long paddr;
|
|
|
-
|
|
|
- BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
|
|
|
-
|
|
|
- dmac_map_area(kaddr, size, dir);
|
|
|
-
|
|
|
- paddr = __pa(kaddr);
|
|
|
- if (dir == DMA_FROM_DEVICE) {
|
|
|
- outer_inv_range(paddr, paddr + size);
|
|
|
+ __dma_free_buffer(page, size);
|
|
|
} else {
|
|
|
- outer_clean_range(paddr, paddr + size);
|
|
|
+ if (__free_from_pool(cpu_addr, size))
|
|
|
+ return;
|
|
|
+ /*
|
|
|
+ * Non-atomic allocations cannot be freed with IRQs disabled
|
|
|
+ */
|
|
|
+ WARN_ON(irqs_disabled());
|
|
|
+ __free_from_contiguous(dev, page, size);
|
|
|
}
|
|
|
- /* FIXME: non-speculating: flush on bidirectional mappings? */
|
|
|
}
|
|
|
-EXPORT_SYMBOL(___dma_single_cpu_to_dev);
|
|
|
-
|
|
|
-void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
|
|
|
- enum dma_data_direction dir)
|
|
|
-{
|
|
|
- BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
|
|
|
-
|
|
|
- /* FIXME: non-speculating: not required */
|
|
|
- /* don't bother invalidating if DMA to device */
|
|
|
- if (dir != DMA_TO_DEVICE) {
|
|
|
- unsigned long paddr = __pa(kaddr);
|
|
|
- outer_inv_range(paddr, paddr + size);
|
|
|
- }
|
|
|
-
|
|
|
- dmac_unmap_area(kaddr, size, dir);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(___dma_single_dev_to_cpu);
|
|
|
|
|
|
static void dma_cache_maint_page(struct page *page, unsigned long offset,
|
|
|
size_t size, enum dma_data_direction dir,
|
|
@@ -543,7 +831,13 @@ static void dma_cache_maint_page(struct page *page, unsigned long offset,
|
|
|
} while (left);
|
|
|
}
|
|
|
|
|
|
-void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
|
|
|
+/*
|
|
|
+ * Make an area consistent for devices.
|
|
|
+ * Note: Drivers should NOT use this function directly, as it will break
|
|
|
+ * platforms with CONFIG_DMABOUNCE.
|
|
|
+ * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
|
|
|
+ */
|
|
|
+static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
|
|
|
size_t size, enum dma_data_direction dir)
|
|
|
{
|
|
|
unsigned long paddr;
|
|
@@ -558,9 +852,8 @@ void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
|
|
|
}
|
|
|
/* FIXME: non-speculating: flush on bidirectional mappings? */
|
|
|
}
|
|
|
-EXPORT_SYMBOL(___dma_page_cpu_to_dev);
|
|
|
|
|
|
-void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
|
|
|
+static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
|
|
|
size_t size, enum dma_data_direction dir)
|
|
|
{
|
|
|
unsigned long paddr = page_to_phys(page) + off;
|
|
@@ -578,10 +871,9 @@ void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
|
|
|
if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
|
|
|
set_bit(PG_dcache_clean, &page->flags);
|
|
|
}
|
|
|
-EXPORT_SYMBOL(___dma_page_dev_to_cpu);
|
|
|
|
|
|
/**
|
|
|
- * dma_map_sg - map a set of SG buffers for streaming mode DMA
|
|
|
+ * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
|
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
|
* @sg: list of buffers
|
|
|
* @nents: number of buffers to map
|
|
@@ -596,32 +888,32 @@ EXPORT_SYMBOL(___dma_page_dev_to_cpu);
|
|
|
* Device ownership issues as mentioned for dma_map_single are the same
|
|
|
* here.
|
|
|
*/
|
|
|
-int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
|
- enum dma_data_direction dir)
|
|
|
+int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
|
+ enum dma_data_direction dir, struct dma_attrs *attrs)
|
|
|
{
|
|
|
+ struct dma_map_ops *ops = get_dma_ops(dev);
|
|
|
struct scatterlist *s;
|
|
|
int i, j;
|
|
|
|
|
|
- BUG_ON(!valid_dma_direction(dir));
|
|
|
-
|
|
|
for_each_sg(sg, s, nents, i) {
|
|
|
- s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
|
|
|
- s->length, dir);
|
|
|
+#ifdef CONFIG_NEED_SG_DMA_LENGTH
|
|
|
+ s->dma_length = s->length;
|
|
|
+#endif
|
|
|
+ s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
|
|
|
+ s->length, dir, attrs);
|
|
|
if (dma_mapping_error(dev, s->dma_address))
|
|
|
goto bad_mapping;
|
|
|
}
|
|
|
- debug_dma_map_sg(dev, sg, nents, nents, dir);
|
|
|
return nents;
|
|
|
|
|
|
bad_mapping:
|
|
|
for_each_sg(sg, s, i, j)
|
|
|
- __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
|
|
|
+ ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
|
|
|
return 0;
|
|
|
}
|
|
|
-EXPORT_SYMBOL(dma_map_sg);
|
|
|
|
|
|
/**
|
|
|
- * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
|
|
|
+ * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
|
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
|
* @sg: list of buffers
|
|
|
* @nents: number of buffers to unmap (same as was passed to dma_map_sg)
|
|
@@ -630,70 +922,55 @@ EXPORT_SYMBOL(dma_map_sg);
|
|
|
* Unmap a set of streaming mode DMA translations. Again, CPU access
|
|
|
* rules concerning calls here are the same as for dma_unmap_single().
|
|
|
*/
|
|
|
-void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
|
- enum dma_data_direction dir)
|
|
|
+void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
|
+ enum dma_data_direction dir, struct dma_attrs *attrs)
|
|
|
{
|
|
|
+ struct dma_map_ops *ops = get_dma_ops(dev);
|
|
|
struct scatterlist *s;
|
|
|
- int i;
|
|
|
|
|
|
- debug_dma_unmap_sg(dev, sg, nents, dir);
|
|
|
+ int i;
|
|
|
|
|
|
for_each_sg(sg, s, nents, i)
|
|
|
- __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
|
|
|
+ ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
|
|
|
}
|
|
|
-EXPORT_SYMBOL(dma_unmap_sg);
|
|
|
|
|
|
/**
|
|
|
- * dma_sync_sg_for_cpu
|
|
|
+ * arm_dma_sync_sg_for_cpu
|
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
|
* @sg: list of buffers
|
|
|
* @nents: number of buffers to map (returned from dma_map_sg)
|
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
|
*/
|
|
|
-void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
|
|
|
+void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
|
|
|
int nents, enum dma_data_direction dir)
|
|
|
{
|
|
|
+ struct dma_map_ops *ops = get_dma_ops(dev);
|
|
|
struct scatterlist *s;
|
|
|
int i;
|
|
|
|
|
|
- for_each_sg(sg, s, nents, i) {
|
|
|
- if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
|
|
|
- sg_dma_len(s), dir))
|
|
|
- continue;
|
|
|
-
|
|
|
- __dma_page_dev_to_cpu(sg_page(s), s->offset,
|
|
|
- s->length, dir);
|
|
|
- }
|
|
|
-
|
|
|
- debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
|
|
|
+ for_each_sg(sg, s, nents, i)
|
|
|
+ ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
|
|
|
+ dir);
|
|
|
}
|
|
|
-EXPORT_SYMBOL(dma_sync_sg_for_cpu);
|
|
|
|
|
|
/**
|
|
|
- * dma_sync_sg_for_device
|
|
|
+ * arm_dma_sync_sg_for_device
|
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
|
* @sg: list of buffers
|
|
|
* @nents: number of buffers to map (returned from dma_map_sg)
|
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
|
*/
|
|
|
-void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
|
|
|
+void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
|
|
|
int nents, enum dma_data_direction dir)
|
|
|
{
|
|
|
+ struct dma_map_ops *ops = get_dma_ops(dev);
|
|
|
struct scatterlist *s;
|
|
|
int i;
|
|
|
|
|
|
- for_each_sg(sg, s, nents, i) {
|
|
|
- if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
|
|
|
- sg_dma_len(s), dir))
|
|
|
- continue;
|
|
|
-
|
|
|
- __dma_page_cpu_to_dev(sg_page(s), s->offset,
|
|
|
- s->length, dir);
|
|
|
- }
|
|
|
-
|
|
|
- debug_dma_sync_sg_for_device(dev, sg, nents, dir);
|
|
|
+ for_each_sg(sg, s, nents, i)
|
|
|
+ ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
|
|
|
+ dir);
|
|
|
}
|
|
|
-EXPORT_SYMBOL(dma_sync_sg_for_device);
|
|
|
|
|
|
/*
|
|
|
* Return whether the given device DMA address mask can be supported
|
|
@@ -709,18 +986,15 @@ int dma_supported(struct device *dev, u64 mask)
|
|
|
}
|
|
|
EXPORT_SYMBOL(dma_supported);
|
|
|
|
|
|
-int dma_set_mask(struct device *dev, u64 dma_mask)
|
|
|
+static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
|
|
|
{
|
|
|
if (!dev->dma_mask || !dma_supported(dev, dma_mask))
|
|
|
return -EIO;
|
|
|
|
|
|
-#ifndef CONFIG_DMABOUNCE
|
|
|
*dev->dma_mask = dma_mask;
|
|
|
-#endif
|
|
|
|
|
|
return 0;
|
|
|
}
|
|
|
-EXPORT_SYMBOL(dma_set_mask);
|
|
|
|
|
|
#define PREALLOC_DMA_DEBUG_ENTRIES 4096
|
|
|
|
|
@@ -733,3 +1007,679 @@ static int __init dma_debug_do_init(void)
|
|
|
return 0;
|
|
|
}
|
|
|
fs_initcall(dma_debug_do_init);
|
|
|
+
|
|
|
+#ifdef CONFIG_ARM_DMA_USE_IOMMU
|
|
|
+
|
|
|
+/* IOMMU */
|
|
|
+
|
|
|
+static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
|
|
|
+ size_t size)
|
|
|
+{
|
|
|
+ unsigned int order = get_order(size);
|
|
|
+ unsigned int align = 0;
|
|
|
+ unsigned int count, start;
|
|
|
+ unsigned long flags;
|
|
|
+
|
|
|
+ count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
|
|
|
+ (1 << mapping->order) - 1) >> mapping->order;
|
|
|
+
|
|
|
+ if (order > mapping->order)
|
|
|
+ align = (1 << (order - mapping->order)) - 1;
|
|
|
+
|
|
|
+ spin_lock_irqsave(&mapping->lock, flags);
|
|
|
+ start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
|
|
|
+ count, align);
|
|
|
+ if (start > mapping->bits) {
|
|
|
+ spin_unlock_irqrestore(&mapping->lock, flags);
|
|
|
+ return DMA_ERROR_CODE;
|
|
|
+ }
|
|
|
+
|
|
|
+ bitmap_set(mapping->bitmap, start, count);
|
|
|
+ spin_unlock_irqrestore(&mapping->lock, flags);
|
|
|
+
|
|
|
+ return mapping->base + (start << (mapping->order + PAGE_SHIFT));
|
|
|
+}
|
|
|
+
|
|
|
+static inline void __free_iova(struct dma_iommu_mapping *mapping,
|
|
|
+ dma_addr_t addr, size_t size)
|
|
|
+{
|
|
|
+ unsigned int start = (addr - mapping->base) >>
|
|
|
+ (mapping->order + PAGE_SHIFT);
|
|
|
+ unsigned int count = ((size >> PAGE_SHIFT) +
|
|
|
+ (1 << mapping->order) - 1) >> mapping->order;
|
|
|
+ unsigned long flags;
|
|
|
+
|
|
|
+ spin_lock_irqsave(&mapping->lock, flags);
|
|
|
+ bitmap_clear(mapping->bitmap, start, count);
|
|
|
+ spin_unlock_irqrestore(&mapping->lock, flags);
|
|
|
+}
|
|
|
+
|
|
|
+static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
|
|
|
+{
|
|
|
+ struct page **pages;
|
|
|
+ int count = size >> PAGE_SHIFT;
|
|
|
+ int array_size = count * sizeof(struct page *);
|
|
|
+ int i = 0;
|
|
|
+
|
|
|
+ if (array_size <= PAGE_SIZE)
|
|
|
+ pages = kzalloc(array_size, gfp);
|
|
|
+ else
|
|
|
+ pages = vzalloc(array_size);
|
|
|
+ if (!pages)
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ while (count) {
|
|
|
+ int j, order = __ffs(count);
|
|
|
+
|
|
|
+ pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
|
|
|
+ while (!pages[i] && order)
|
|
|
+ pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
|
|
|
+ if (!pages[i])
|
|
|
+ goto error;
|
|
|
+
|
|
|
+ if (order)
|
|
|
+ split_page(pages[i], order);
|
|
|
+ j = 1 << order;
|
|
|
+ while (--j)
|
|
|
+ pages[i + j] = pages[i] + j;
|
|
|
+
|
|
|
+ __dma_clear_buffer(pages[i], PAGE_SIZE << order);
|
|
|
+ i += 1 << order;
|
|
|
+ count -= 1 << order;
|
|
|
+ }
|
|
|
+
|
|
|
+ return pages;
|
|
|
+error:
|
|
|
+ while (--i)
|
|
|
+ if (pages[i])
|
|
|
+ __free_pages(pages[i], 0);
|
|
|
+ if (array_size < PAGE_SIZE)
|
|
|
+ kfree(pages);
|
|
|
+ else
|
|
|
+ vfree(pages);
|
|
|
+ return NULL;
|
|
|
+}
|
|
|
+
|
|
|
+static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
|
|
|
+{
|
|
|
+ int count = size >> PAGE_SHIFT;
|
|
|
+ int array_size = count * sizeof(struct page *);
|
|
|
+ int i;
|
|
|
+ for (i = 0; i < count; i++)
|
|
|
+ if (pages[i])
|
|
|
+ __free_pages(pages[i], 0);
|
|
|
+ if (array_size < PAGE_SIZE)
|
|
|
+ kfree(pages);
|
|
|
+ else
|
|
|
+ vfree(pages);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Create a CPU mapping for a specified pages
|
|
|
+ */
|
|
|
+static void *
|
|
|
+__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot)
|
|
|
+{
|
|
|
+ struct arm_vmregion *c;
|
|
|
+ size_t align;
|
|
|
+ size_t count = size >> PAGE_SHIFT;
|
|
|
+ int bit;
|
|
|
+
|
|
|
+ if (!consistent_pte[0]) {
|
|
|
+ pr_err("%s: not initialised\n", __func__);
|
|
|
+ dump_stack();
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Align the virtual region allocation - maximum alignment is
|
|
|
+ * a section size, minimum is a page size. This helps reduce
|
|
|
+ * fragmentation of the DMA space, and also prevents allocations
|
|
|
+ * smaller than a section from crossing a section boundary.
|
|
|
+ */
|
|
|
+ bit = fls(size - 1);
|
|
|
+ if (bit > SECTION_SHIFT)
|
|
|
+ bit = SECTION_SHIFT;
|
|
|
+ align = 1 << bit;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Allocate a virtual address in the consistent mapping region.
|
|
|
+ */
|
|
|
+ c = arm_vmregion_alloc(&consistent_head, align, size,
|
|
|
+ gfp & ~(__GFP_DMA | __GFP_HIGHMEM), NULL);
|
|
|
+ if (c) {
|
|
|
+ pte_t *pte;
|
|
|
+ int idx = CONSISTENT_PTE_INDEX(c->vm_start);
|
|
|
+ int i = 0;
|
|
|
+ u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
|
|
|
+
|
|
|
+ pte = consistent_pte[idx] + off;
|
|
|
+ c->priv = pages;
|
|
|
+
|
|
|
+ do {
|
|
|
+ BUG_ON(!pte_none(*pte));
|
|
|
+
|
|
|
+ set_pte_ext(pte, mk_pte(pages[i], prot), 0);
|
|
|
+ pte++;
|
|
|
+ off++;
|
|
|
+ i++;
|
|
|
+ if (off >= PTRS_PER_PTE) {
|
|
|
+ off = 0;
|
|
|
+ pte = consistent_pte[++idx];
|
|
|
+ }
|
|
|
+ } while (i < count);
|
|
|
+
|
|
|
+ dsb();
|
|
|
+
|
|
|
+ return (void *)c->vm_start;
|
|
|
+ }
|
|
|
+ return NULL;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Create a mapping in device IO address space for specified pages
|
|
|
+ */
|
|
|
+static dma_addr_t
|
|
|
+__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
|
|
|
+{
|
|
|
+ struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
|
+ unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
|
+ dma_addr_t dma_addr, iova;
|
|
|
+ int i, ret = DMA_ERROR_CODE;
|
|
|
+
|
|
|
+ dma_addr = __alloc_iova(mapping, size);
|
|
|
+ if (dma_addr == DMA_ERROR_CODE)
|
|
|
+ return dma_addr;
|
|
|
+
|
|
|
+ iova = dma_addr;
|
|
|
+ for (i = 0; i < count; ) {
|
|
|
+ unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
|
|
|
+ phys_addr_t phys = page_to_phys(pages[i]);
|
|
|
+ unsigned int len, j;
|
|
|
+
|
|
|
+ for (j = i + 1; j < count; j++, next_pfn++)
|
|
|
+ if (page_to_pfn(pages[j]) != next_pfn)
|
|
|
+ break;
|
|
|
+
|
|
|
+ len = (j - i) << PAGE_SHIFT;
|
|
|
+ ret = iommu_map(mapping->domain, iova, phys, len, 0);
|
|
|
+ if (ret < 0)
|
|
|
+ goto fail;
|
|
|
+ iova += len;
|
|
|
+ i = j;
|
|
|
+ }
|
|
|
+ return dma_addr;
|
|
|
+fail:
|
|
|
+ iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
|
|
|
+ __free_iova(mapping, dma_addr, size);
|
|
|
+ return DMA_ERROR_CODE;
|
|
|
+}
|
|
|
+
|
|
|
+static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
|
|
|
+{
|
|
|
+ struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * add optional in-page offset from iova to size and align
|
|
|
+ * result to page size
|
|
|
+ */
|
|
|
+ size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
|
|
|
+ iova &= PAGE_MASK;
|
|
|
+
|
|
|
+ iommu_unmap(mapping->domain, iova, size);
|
|
|
+ __free_iova(mapping, iova, size);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
|
|
|
+ dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
|
|
|
+{
|
|
|
+ pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
|
|
|
+ struct page **pages;
|
|
|
+ void *addr = NULL;
|
|
|
+
|
|
|
+ *handle = DMA_ERROR_CODE;
|
|
|
+ size = PAGE_ALIGN(size);
|
|
|
+
|
|
|
+ pages = __iommu_alloc_buffer(dev, size, gfp);
|
|
|
+ if (!pages)
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ *handle = __iommu_create_mapping(dev, pages, size);
|
|
|
+ if (*handle == DMA_ERROR_CODE)
|
|
|
+ goto err_buffer;
|
|
|
+
|
|
|
+ addr = __iommu_alloc_remap(pages, size, gfp, prot);
|
|
|
+ if (!addr)
|
|
|
+ goto err_mapping;
|
|
|
+
|
|
|
+ return addr;
|
|
|
+
|
|
|
+err_mapping:
|
|
|
+ __iommu_remove_mapping(dev, *handle, size);
|
|
|
+err_buffer:
|
|
|
+ __iommu_free_buffer(dev, pages, size);
|
|
|
+ return NULL;
|
|
|
+}
|
|
|
+
|
|
|
+static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
|
|
|
+ void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
|
+ struct dma_attrs *attrs)
|
|
|
+{
|
|
|
+ struct arm_vmregion *c;
|
|
|
+
|
|
|
+ vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
|
|
|
+ c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
|
|
|
+
|
|
|
+ if (c) {
|
|
|
+ struct page **pages = c->priv;
|
|
|
+
|
|
|
+ unsigned long uaddr = vma->vm_start;
|
|
|
+ unsigned long usize = vma->vm_end - vma->vm_start;
|
|
|
+ int i = 0;
|
|
|
+
|
|
|
+ do {
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ ret = vm_insert_page(vma, uaddr, pages[i++]);
|
|
|
+ if (ret) {
|
|
|
+ pr_err("Remapping memory, error: %d\n", ret);
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
+
|
|
|
+ uaddr += PAGE_SIZE;
|
|
|
+ usize -= PAGE_SIZE;
|
|
|
+ } while (usize > 0);
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * free a page as defined by the above mapping.
|
|
|
+ * Must not be called with IRQs disabled.
|
|
|
+ */
|
|
|
+void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
|
|
|
+ dma_addr_t handle, struct dma_attrs *attrs)
|
|
|
+{
|
|
|
+ struct arm_vmregion *c;
|
|
|
+ size = PAGE_ALIGN(size);
|
|
|
+
|
|
|
+ c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
|
|
|
+ if (c) {
|
|
|
+ struct page **pages = c->priv;
|
|
|
+ __dma_free_remap(cpu_addr, size);
|
|
|
+ __iommu_remove_mapping(dev, handle, size);
|
|
|
+ __iommu_free_buffer(dev, pages, size);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Map a part of the scatter-gather list into contiguous io address space
|
|
|
+ */
|
|
|
+static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
|
|
|
+ size_t size, dma_addr_t *handle,
|
|
|
+ enum dma_data_direction dir)
|
|
|
+{
|
|
|
+ struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
|
+ dma_addr_t iova, iova_base;
|
|
|
+ int ret = 0;
|
|
|
+ unsigned int count;
|
|
|
+ struct scatterlist *s;
|
|
|
+
|
|
|
+ size = PAGE_ALIGN(size);
|
|
|
+ *handle = DMA_ERROR_CODE;
|
|
|
+
|
|
|
+ iova_base = iova = __alloc_iova(mapping, size);
|
|
|
+ if (iova == DMA_ERROR_CODE)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
|
|
|
+ phys_addr_t phys = page_to_phys(sg_page(s));
|
|
|
+ unsigned int len = PAGE_ALIGN(s->offset + s->length);
|
|
|
+
|
|
|
+ if (!arch_is_coherent())
|
|
|
+ __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
|
|
|
+
|
|
|
+ ret = iommu_map(mapping->domain, iova, phys, len, 0);
|
|
|
+ if (ret < 0)
|
|
|
+ goto fail;
|
|
|
+ count += len >> PAGE_SHIFT;
|
|
|
+ iova += len;
|
|
|
+ }
|
|
|
+ *handle = iova_base;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+fail:
|
|
|
+ iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
|
|
|
+ __free_iova(mapping, iova_base, size);
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
|
|
|
+ * @dev: valid struct device pointer
|
|
|
+ * @sg: list of buffers
|
|
|
+ * @nents: number of buffers to map
|
|
|
+ * @dir: DMA transfer direction
|
|
|
+ *
|
|
|
+ * Map a set of buffers described by scatterlist in streaming mode for DMA.
|
|
|
+ * The scatter gather list elements are merged together (if possible) and
|
|
|
+ * tagged with the appropriate dma address and length. They are obtained via
|
|
|
+ * sg_dma_{address,length}.
|
|
|
+ */
|
|
|
+int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
|
+ enum dma_data_direction dir, struct dma_attrs *attrs)
|
|
|
+{
|
|
|
+ struct scatterlist *s = sg, *dma = sg, *start = sg;
|
|
|
+ int i, count = 0;
|
|
|
+ unsigned int offset = s->offset;
|
|
|
+ unsigned int size = s->offset + s->length;
|
|
|
+ unsigned int max = dma_get_max_seg_size(dev);
|
|
|
+
|
|
|
+ for (i = 1; i < nents; i++) {
|
|
|
+ s = sg_next(s);
|
|
|
+
|
|
|
+ s->dma_address = DMA_ERROR_CODE;
|
|
|
+ s->dma_length = 0;
|
|
|
+
|
|
|
+ if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
|
|
|
+ if (__map_sg_chunk(dev, start, size, &dma->dma_address,
|
|
|
+ dir) < 0)
|
|
|
+ goto bad_mapping;
|
|
|
+
|
|
|
+ dma->dma_address += offset;
|
|
|
+ dma->dma_length = size - offset;
|
|
|
+
|
|
|
+ size = offset = s->offset;
|
|
|
+ start = s;
|
|
|
+ dma = sg_next(dma);
|
|
|
+ count += 1;
|
|
|
+ }
|
|
|
+ size += s->length;
|
|
|
+ }
|
|
|
+ if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir) < 0)
|
|
|
+ goto bad_mapping;
|
|
|
+
|
|
|
+ dma->dma_address += offset;
|
|
|
+ dma->dma_length = size - offset;
|
|
|
+
|
|
|
+ return count+1;
|
|
|
+
|
|
|
+bad_mapping:
|
|
|
+ for_each_sg(sg, s, count, i)
|
|
|
+ __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
|
|
|
+ * @dev: valid struct device pointer
|
|
|
+ * @sg: list of buffers
|
|
|
+ * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
|
|
|
+ * @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
|
+ *
|
|
|
+ * Unmap a set of streaming mode DMA translations. Again, CPU access
|
|
|
+ * rules concerning calls here are the same as for dma_unmap_single().
|
|
|
+ */
|
|
|
+void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
|
+ enum dma_data_direction dir, struct dma_attrs *attrs)
|
|
|
+{
|
|
|
+ struct scatterlist *s;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ for_each_sg(sg, s, nents, i) {
|
|
|
+ if (sg_dma_len(s))
|
|
|
+ __iommu_remove_mapping(dev, sg_dma_address(s),
|
|
|
+ sg_dma_len(s));
|
|
|
+ if (!arch_is_coherent())
|
|
|
+ __dma_page_dev_to_cpu(sg_page(s), s->offset,
|
|
|
+ s->length, dir);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * arm_iommu_sync_sg_for_cpu
|
|
|
+ * @dev: valid struct device pointer
|
|
|
+ * @sg: list of buffers
|
|
|
+ * @nents: number of buffers to map (returned from dma_map_sg)
|
|
|
+ * @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
|
+ */
|
|
|
+void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
|
|
|
+ int nents, enum dma_data_direction dir)
|
|
|
+{
|
|
|
+ struct scatterlist *s;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ for_each_sg(sg, s, nents, i)
|
|
|
+ if (!arch_is_coherent())
|
|
|
+ __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * arm_iommu_sync_sg_for_device
|
|
|
+ * @dev: valid struct device pointer
|
|
|
+ * @sg: list of buffers
|
|
|
+ * @nents: number of buffers to map (returned from dma_map_sg)
|
|
|
+ * @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
|
+ */
|
|
|
+void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
|
|
|
+ int nents, enum dma_data_direction dir)
|
|
|
+{
|
|
|
+ struct scatterlist *s;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ for_each_sg(sg, s, nents, i)
|
|
|
+ if (!arch_is_coherent())
|
|
|
+ __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/**
|
|
|
+ * arm_iommu_map_page
|
|
|
+ * @dev: valid struct device pointer
|
|
|
+ * @page: page that buffer resides in
|
|
|
+ * @offset: offset into page for start of buffer
|
|
|
+ * @size: size of buffer to map
|
|
|
+ * @dir: DMA transfer direction
|
|
|
+ *
|
|
|
+ * IOMMU aware version of arm_dma_map_page()
|
|
|
+ */
|
|
|
+static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
|
|
|
+ unsigned long offset, size_t size, enum dma_data_direction dir,
|
|
|
+ struct dma_attrs *attrs)
|
|
|
+{
|
|
|
+ struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
|
+ dma_addr_t dma_addr;
|
|
|
+ int ret, len = PAGE_ALIGN(size + offset);
|
|
|
+
|
|
|
+ if (!arch_is_coherent())
|
|
|
+ __dma_page_cpu_to_dev(page, offset, size, dir);
|
|
|
+
|
|
|
+ dma_addr = __alloc_iova(mapping, len);
|
|
|
+ if (dma_addr == DMA_ERROR_CODE)
|
|
|
+ return dma_addr;
|
|
|
+
|
|
|
+ ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
|
|
|
+ if (ret < 0)
|
|
|
+ goto fail;
|
|
|
+
|
|
|
+ return dma_addr + offset;
|
|
|
+fail:
|
|
|
+ __free_iova(mapping, dma_addr, len);
|
|
|
+ return DMA_ERROR_CODE;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * arm_iommu_unmap_page
|
|
|
+ * @dev: valid struct device pointer
|
|
|
+ * @handle: DMA address of buffer
|
|
|
+ * @size: size of buffer (same as passed to dma_map_page)
|
|
|
+ * @dir: DMA transfer direction (same as passed to dma_map_page)
|
|
|
+ *
|
|
|
+ * IOMMU aware version of arm_dma_unmap_page()
|
|
|
+ */
|
|
|
+static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
|
|
|
+ size_t size, enum dma_data_direction dir,
|
|
|
+ struct dma_attrs *attrs)
|
|
|
+{
|
|
|
+ struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
|
+ dma_addr_t iova = handle & PAGE_MASK;
|
|
|
+ struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
|
|
|
+ int offset = handle & ~PAGE_MASK;
|
|
|
+ int len = PAGE_ALIGN(size + offset);
|
|
|
+
|
|
|
+ if (!iova)
|
|
|
+ return;
|
|
|
+
|
|
|
+ if (!arch_is_coherent())
|
|
|
+ __dma_page_dev_to_cpu(page, offset, size, dir);
|
|
|
+
|
|
|
+ iommu_unmap(mapping->domain, iova, len);
|
|
|
+ __free_iova(mapping, iova, len);
|
|
|
+}
|
|
|
+
|
|
|
+static void arm_iommu_sync_single_for_cpu(struct device *dev,
|
|
|
+ dma_addr_t handle, size_t size, enum dma_data_direction dir)
|
|
|
+{
|
|
|
+ struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
|
+ dma_addr_t iova = handle & PAGE_MASK;
|
|
|
+ struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
|
|
|
+ unsigned int offset = handle & ~PAGE_MASK;
|
|
|
+
|
|
|
+ if (!iova)
|
|
|
+ return;
|
|
|
+
|
|
|
+ if (!arch_is_coherent())
|
|
|
+ __dma_page_dev_to_cpu(page, offset, size, dir);
|
|
|
+}
|
|
|
+
|
|
|
+static void arm_iommu_sync_single_for_device(struct device *dev,
|
|
|
+ dma_addr_t handle, size_t size, enum dma_data_direction dir)
|
|
|
+{
|
|
|
+ struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
|
+ dma_addr_t iova = handle & PAGE_MASK;
|
|
|
+ struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
|
|
|
+ unsigned int offset = handle & ~PAGE_MASK;
|
|
|
+
|
|
|
+ if (!iova)
|
|
|
+ return;
|
|
|
+
|
|
|
+ __dma_page_cpu_to_dev(page, offset, size, dir);
|
|
|
+}
|
|
|
+
|
|
|
+struct dma_map_ops iommu_ops = {
|
|
|
+ .alloc = arm_iommu_alloc_attrs,
|
|
|
+ .free = arm_iommu_free_attrs,
|
|
|
+ .mmap = arm_iommu_mmap_attrs,
|
|
|
+
|
|
|
+ .map_page = arm_iommu_map_page,
|
|
|
+ .unmap_page = arm_iommu_unmap_page,
|
|
|
+ .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
|
|
|
+ .sync_single_for_device = arm_iommu_sync_single_for_device,
|
|
|
+
|
|
|
+ .map_sg = arm_iommu_map_sg,
|
|
|
+ .unmap_sg = arm_iommu_unmap_sg,
|
|
|
+ .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
|
|
|
+ .sync_sg_for_device = arm_iommu_sync_sg_for_device,
|
|
|
+};
|
|
|
+
|
|
|
+/**
|
|
|
+ * arm_iommu_create_mapping
|
|
|
+ * @bus: pointer to the bus holding the client device (for IOMMU calls)
|
|
|
+ * @base: start address of the valid IO address space
|
|
|
+ * @size: size of the valid IO address space
|
|
|
+ * @order: accuracy of the IO addresses allocations
|
|
|
+ *
|
|
|
+ * Creates a mapping structure which holds information about used/unused
|
|
|
+ * IO address ranges, which is required to perform memory allocation and
|
|
|
+ * mapping with IOMMU aware functions.
|
|
|
+ *
|
|
|
+ * The client device need to be attached to the mapping with
|
|
|
+ * arm_iommu_attach_device function.
|
|
|
+ */
|
|
|
+struct dma_iommu_mapping *
|
|
|
+arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
|
|
|
+ int order)
|
|
|
+{
|
|
|
+ unsigned int count = size >> (PAGE_SHIFT + order);
|
|
|
+ unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
|
|
|
+ struct dma_iommu_mapping *mapping;
|
|
|
+ int err = -ENOMEM;
|
|
|
+
|
|
|
+ if (!count)
|
|
|
+ return ERR_PTR(-EINVAL);
|
|
|
+
|
|
|
+ mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
|
|
|
+ if (!mapping)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
|
|
|
+ if (!mapping->bitmap)
|
|
|
+ goto err2;
|
|
|
+
|
|
|
+ mapping->base = base;
|
|
|
+ mapping->bits = BITS_PER_BYTE * bitmap_size;
|
|
|
+ mapping->order = order;
|
|
|
+ spin_lock_init(&mapping->lock);
|
|
|
+
|
|
|
+ mapping->domain = iommu_domain_alloc(bus);
|
|
|
+ if (!mapping->domain)
|
|
|
+ goto err3;
|
|
|
+
|
|
|
+ kref_init(&mapping->kref);
|
|
|
+ return mapping;
|
|
|
+err3:
|
|
|
+ kfree(mapping->bitmap);
|
|
|
+err2:
|
|
|
+ kfree(mapping);
|
|
|
+err:
|
|
|
+ return ERR_PTR(err);
|
|
|
+}
|
|
|
+
|
|
|
+static void release_iommu_mapping(struct kref *kref)
|
|
|
+{
|
|
|
+ struct dma_iommu_mapping *mapping =
|
|
|
+ container_of(kref, struct dma_iommu_mapping, kref);
|
|
|
+
|
|
|
+ iommu_domain_free(mapping->domain);
|
|
|
+ kfree(mapping->bitmap);
|
|
|
+ kfree(mapping);
|
|
|
+}
|
|
|
+
|
|
|
+void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
|
|
|
+{
|
|
|
+ if (mapping)
|
|
|
+ kref_put(&mapping->kref, release_iommu_mapping);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * arm_iommu_attach_device
|
|
|
+ * @dev: valid struct device pointer
|
|
|
+ * @mapping: io address space mapping structure (returned from
|
|
|
+ * arm_iommu_create_mapping)
|
|
|
+ *
|
|
|
+ * Attaches specified io address space mapping to the provided device,
|
|
|
+ * this replaces the dma operations (dma_map_ops pointer) with the
|
|
|
+ * IOMMU aware version. More than one client might be attached to
|
|
|
+ * the same io address space mapping.
|
|
|
+ */
|
|
|
+int arm_iommu_attach_device(struct device *dev,
|
|
|
+ struct dma_iommu_mapping *mapping)
|
|
|
+{
|
|
|
+ int err;
|
|
|
+
|
|
|
+ err = iommu_attach_device(mapping->domain, dev);
|
|
|
+ if (err)
|
|
|
+ return err;
|
|
|
+
|
|
|
+ kref_get(&mapping->kref);
|
|
|
+ dev->archdata.mapping = mapping;
|
|
|
+ set_dma_ops(dev, &iommu_ops);
|
|
|
+
|
|
|
+ pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+#endif
|