|
@@ -135,6 +135,7 @@ struct tegra_dma_channel {
|
|
|
|
|
|
static bool tegra_dma_initialized;
|
|
|
static DEFINE_MUTEX(tegra_dma_lock);
|
|
|
+static DEFINE_SPINLOCK(enable_lock);
|
|
|
|
|
|
static DECLARE_BITMAP(channel_usage, NV_DMA_MAX_CHANNELS);
|
|
|
static struct tegra_dma_channel dma_channels[NV_DMA_MAX_CHANNELS];
|
|
@@ -200,18 +201,82 @@ static int tegra_dma_cancel(struct tegra_dma_channel *ch)
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
+static unsigned int get_channel_status(struct tegra_dma_channel *ch,
|
|
|
+ struct tegra_dma_req *req, bool is_stop_dma)
|
|
|
+{
|
|
|
+ void __iomem *addr = IO_ADDRESS(TEGRA_APB_DMA_BASE);
|
|
|
+ unsigned int status;
|
|
|
+
|
|
|
+ if (is_stop_dma) {
|
|
|
+ /*
|
|
|
+ * STOP the DMA and get the transfer count.
|
|
|
+ * Getting the transfer count is tricky.
|
|
|
+ * - Globally disable DMA on all channels
|
|
|
+ * - Read the channel's status register to know the number
|
|
|
+ * of pending bytes to be transfered.
|
|
|
+ * - Stop the dma channel
|
|
|
+ * - Globally re-enable DMA to resume other transfers
|
|
|
+ */
|
|
|
+ spin_lock(&enable_lock);
|
|
|
+ writel(0, addr + APB_DMA_GEN);
|
|
|
+ udelay(20);
|
|
|
+ status = readl(ch->addr + APB_DMA_CHAN_STA);
|
|
|
+ tegra_dma_stop(ch);
|
|
|
+ writel(GEN_ENABLE, addr + APB_DMA_GEN);
|
|
|
+ spin_unlock(&enable_lock);
|
|
|
+ if (status & STA_ISE_EOC) {
|
|
|
+ pr_err("Got Dma Int here clearing");
|
|
|
+ writel(status, ch->addr + APB_DMA_CHAN_STA);
|
|
|
+ }
|
|
|
+ req->status = TEGRA_DMA_REQ_ERROR_ABORTED;
|
|
|
+ } else {
|
|
|
+ status = readl(ch->addr + APB_DMA_CHAN_STA);
|
|
|
+ }
|
|
|
+ return status;
|
|
|
+}
|
|
|
+
|
|
|
+/* should be called with the channel lock held */
|
|
|
+static unsigned int dma_active_count(struct tegra_dma_channel *ch,
|
|
|
+ struct tegra_dma_req *req, unsigned int status)
|
|
|
+{
|
|
|
+ unsigned int to_transfer;
|
|
|
+ unsigned int req_transfer_count;
|
|
|
+ unsigned int bytes_transferred;
|
|
|
+
|
|
|
+ to_transfer = ((status & STA_COUNT_MASK) >> STA_COUNT_SHIFT) + 1;
|
|
|
+ req_transfer_count = ch->req_transfer_count + 1;
|
|
|
+ bytes_transferred = req_transfer_count;
|
|
|
+ if (status & STA_BUSY)
|
|
|
+ bytes_transferred -= to_transfer;
|
|
|
+ /*
|
|
|
+ * In continuous transfer mode, DMA only tracks the count of the
|
|
|
+ * half DMA buffer. So, if the DMA already finished half the DMA
|
|
|
+ * then add the half buffer to the completed count.
|
|
|
+ */
|
|
|
+ if (ch->mode & TEGRA_DMA_MODE_CONTINOUS) {
|
|
|
+ if (req->buffer_status == TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL)
|
|
|
+ bytes_transferred += req_transfer_count;
|
|
|
+ if (status & STA_ISE_EOC)
|
|
|
+ bytes_transferred += req_transfer_count;
|
|
|
+ }
|
|
|
+ bytes_transferred *= 4;
|
|
|
+ return bytes_transferred;
|
|
|
+}
|
|
|
+
|
|
|
int tegra_dma_dequeue_req(struct tegra_dma_channel *ch,
|
|
|
struct tegra_dma_req *_req)
|
|
|
{
|
|
|
- unsigned int csr;
|
|
|
unsigned int status;
|
|
|
struct tegra_dma_req *req = NULL;
|
|
|
int found = 0;
|
|
|
unsigned long irq_flags;
|
|
|
- int to_transfer;
|
|
|
- int req_transfer_count;
|
|
|
+ int stop = 0;
|
|
|
|
|
|
spin_lock_irqsave(&ch->lock, irq_flags);
|
|
|
+
|
|
|
+ if (list_entry(ch->list.next, struct tegra_dma_req, node) == _req)
|
|
|
+ stop = 1;
|
|
|
+
|
|
|
list_for_each_entry(req, &ch->list, node) {
|
|
|
if (req == _req) {
|
|
|
list_del(&req->node);
|
|
@@ -224,47 +289,12 @@ int tegra_dma_dequeue_req(struct tegra_dma_channel *ch,
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
- /* STOP the DMA and get the transfer count.
|
|
|
- * Getting the transfer count is tricky.
|
|
|
- * - Change the source selector to invalid to stop the DMA from
|
|
|
- * FIFO to memory.
|
|
|
- * - Read the status register to know the number of pending
|
|
|
- * bytes to be transferred.
|
|
|
- * - Finally stop or program the DMA to the next buffer in the
|
|
|
- * list.
|
|
|
- */
|
|
|
- csr = readl(ch->addr + APB_DMA_CHAN_CSR);
|
|
|
- csr &= ~CSR_REQ_SEL_MASK;
|
|
|
- csr |= CSR_REQ_SEL_INVALID;
|
|
|
- writel(csr, ch->addr + APB_DMA_CHAN_CSR);
|
|
|
-
|
|
|
- /* Get the transfer count */
|
|
|
- status = readl(ch->addr + APB_DMA_CHAN_STA);
|
|
|
- to_transfer = (status & STA_COUNT_MASK) >> STA_COUNT_SHIFT;
|
|
|
- req_transfer_count = ch->req_transfer_count;
|
|
|
- req_transfer_count += 1;
|
|
|
- to_transfer += 1;
|
|
|
+ if (!stop)
|
|
|
+ goto skip_stop_dma;
|
|
|
|
|
|
- req->bytes_transferred = req_transfer_count;
|
|
|
+ status = get_channel_status(ch, req, true);
|
|
|
+ req->bytes_transferred = dma_active_count(ch, req, status);
|
|
|
|
|
|
- if (status & STA_BUSY)
|
|
|
- req->bytes_transferred -= to_transfer;
|
|
|
-
|
|
|
- /* In continuous transfer mode, DMA only tracks the count of the
|
|
|
- * half DMA buffer. So, if the DMA already finished half the DMA
|
|
|
- * then add the half buffer to the completed count.
|
|
|
- *
|
|
|
- * FIXME: There can be a race here. What if the req to
|
|
|
- * dequue happens at the same time as the DMA just moved to
|
|
|
- * the new buffer and SW didn't yet received the interrupt?
|
|
|
- */
|
|
|
- if (ch->mode & TEGRA_DMA_MODE_CONTINOUS)
|
|
|
- if (req->buffer_status == TEGRA_DMA_REQ_BUF_STATUS_HALF_FULL)
|
|
|
- req->bytes_transferred += req_transfer_count;
|
|
|
-
|
|
|
- req->bytes_transferred *= 4;
|
|
|
-
|
|
|
- tegra_dma_stop(ch);
|
|
|
if (!list_empty(&ch->list)) {
|
|
|
/* if the list is not empty, queue the next request */
|
|
|
struct tegra_dma_req *next_req;
|
|
@@ -272,6 +302,8 @@ int tegra_dma_dequeue_req(struct tegra_dma_channel *ch,
|
|
|
typeof(*next_req), node);
|
|
|
tegra_dma_update_hw(ch, next_req);
|
|
|
}
|
|
|
+
|
|
|
+skip_stop_dma:
|
|
|
req->status = -TEGRA_DMA_REQ_ERROR_ABORTED;
|
|
|
|
|
|
spin_unlock_irqrestore(&ch->lock, irq_flags);
|