瀏覽代碼

Merge branch 'linus' into core/generic-dma-coherent

Conflicts:

	arch/x86/Kconfig

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Ingo Molnar 17 年之前
父節點
當前提交
cb28a1bbdb
共有 100 個文件被更改,包括 3516 次插入1182 次删除
  1. 9 2
      CREDITS
  2. 0 2
      Documentation/00-INDEX
  3. 20 0
      Documentation/ABI/testing/sysfs-dev
  4. 24 0
      Documentation/ABI/testing/sysfs-devices-memory
  5. 6 0
      Documentation/ABI/testing/sysfs-kernel-mm
  6. 15 0
      Documentation/ABI/testing/sysfs-kernel-mm-hugepages
  7. 23 19
      Documentation/CodingStyle
  8. 2 2
      Documentation/DMA-API.txt
  9. 9 0
      Documentation/DMA-attributes.txt
  10. 38 0
      Documentation/DocBook/gadget.tmpl
  11. 24 33
      Documentation/DocBook/kernel-locking.tmpl
  12. 2 2
      Documentation/DocBook/procfs-guide.tmpl
  13. 51 12
      Documentation/DocBook/uio-howto.tmpl
  14. 1 1
      Documentation/HOWTO
  15. 2 2
      Documentation/Intel-IOMMU.txt
  16. 26 0
      Documentation/SubmittingPatches
  17. 8 3
      Documentation/accounting/delay-accounting.txt
  18. 6 2
      Documentation/accounting/getdelays.c
  19. 8 1
      Documentation/accounting/taskstats-struct.txt
  20. 2 8
      Documentation/arm/Interrupts
  21. 67 0
      Documentation/bt8xxgpio.txt
  22. 1 2
      Documentation/controllers/memory.txt
  23. 1 1
      Documentation/cpu-freq/governors.txt
  24. 73 80
      Documentation/edac.txt
  25. 131 0
      Documentation/fb/sh7760fb.txt
  26. 31 15
      Documentation/fb/tridentfb.txt
  27. 53 23
      Documentation/feature-removal-schedule.txt
  28. 7 0
      Documentation/filesystems/Locking
  29. 5 5
      Documentation/filesystems/bfs.txt
  30. 4 6
      Documentation/filesystems/configfs/configfs.txt
  31. 6 8
      Documentation/filesystems/configfs/configfs_example.c
  32. 59 44
      Documentation/filesystems/nfs-rdma.txt
  33. 106 0
      Documentation/filesystems/omfs.txt
  34. 46 2
      Documentation/filesystems/proc.txt
  35. 10 0
      Documentation/filesystems/relay.txt
  36. 6 0
      Documentation/filesystems/sysfs.txt
  37. 8 0
      Documentation/filesystems/vfat.txt
  38. 3 3
      Documentation/filesystems/vfs.txt
  39. 129 6
      Documentation/gpio.txt
  40. 281 0
      Documentation/i2c/upgrading-clients
  41. 4 4
      Documentation/ia64/kvm.txt
  42. 137 0
      Documentation/ia64/paravirt_ops.txt
  43. 1 1
      Documentation/input/cs461x.txt
  44. 0 2
      Documentation/input/gameport-programming.txt
  45. 0 1
      Documentation/input/input.txt
  46. 0 2
      Documentation/input/joystick-api.txt
  47. 0 1
      Documentation/input/joystick-parport.txt
  48. 0 1
      Documentation/input/joystick.txt
  49. 2 2
      Documentation/ioctl/ioctl-decoding.txt
  50. 1 1
      Documentation/iostats.txt
  51. 6 0
      Documentation/isdn/README.mISDN
  52. 50 12
      Documentation/kernel-parameters.txt
  53. 1 1
      Documentation/keys.txt
  54. 18 8
      Documentation/laptops/thinkpad-acpi.txt
  55. 1 1
      Documentation/leds-class.txt
  56. 1 1
      Documentation/local_ops.txt
  57. 29 1
      Documentation/md.txt
  58. 252 140
      Documentation/moxa-smartio
  59. 81 31
      Documentation/networking/bonding.txt
  60. 2 2
      Documentation/networking/can.txt
  61. 167 0
      Documentation/networking/dm9000.txt
  62. 2 12
      Documentation/networking/e1000.txt
  63. 17 4
      Documentation/networking/ip-sysctl.txt
  64. 320 99
      Documentation/networking/ixgb.txt
  65. 67 0
      Documentation/networking/mac80211_hwsim/README
  66. 11 0
      Documentation/networking/mac80211_hwsim/hostapd.conf
  67. 10 0
      Documentation/networking/mac80211_hwsim/wpa_supplicant.conf
  68. 1 89
      Documentation/networking/multiqueue.txt
  69. 1 1
      Documentation/networking/packet_mmap.txt
  70. 2 5
      Documentation/networking/s2io.txt
  71. 8 7
      Documentation/networking/tc-actions-env-rules.txt
  72. 1 1
      Documentation/networking/udplite.txt
  73. 2 2
      Documentation/power/00-INDEX
  74. 32 0
      Documentation/power/apm-acpi.txt
  75. 0 257
      Documentation/power/pm.txt
  76. 246 86
      Documentation/powerpc/booting-without-of.txt
  77. 38 0
      Documentation/powerpc/dts-bindings/fsl/cpm_qe/gpio.txt
  78. 34 19
      Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/usb.txt
  79. 17 0
      Documentation/powerpc/dts-bindings/fsl/mcu-mpc8349emitx.txt
  80. 63 0
      Documentation/powerpc/dts-bindings/fsl/pmc.txt
  81. 12 19
      Documentation/powerpc/dts-bindings/fsl/tsec.txt
  82. 28 0
      Documentation/powerpc/dts-bindings/fsl/upm-nand.txt
  83. 15 0
      Documentation/powerpc/dts-bindings/gpio/led.txt
  84. 1 1
      Documentation/powerpc/qe_firmware.txt
  85. 493 54
      Documentation/rfkill.txt
  86. 1 1
      Documentation/s390/driver-model.txt
  87. 3 3
      Documentation/scsi/ibmmca.txt
  88. 1 1
      Documentation/scsi/lpfc.txt
  89. 3 3
      Documentation/scsi/scsi_fc_transport.txt
  90. 11 0
      Documentation/serial/driver
  91. 1 1
      Documentation/sh/clk.txt
  92. 1 0
      Documentation/sound/alsa/ALSA-Configuration.txt
  93. 5 5
      Documentation/sound/alsa/Audiophile-Usb.txt
  94. 1 1
      Documentation/sound/alsa/DocBook/alsa-driver-api.tmpl
  95. 1 1
      Documentation/sound/alsa/hda_codec.txt
  96. 1 1
      Documentation/sound/alsa/soc/dapm.txt
  97. 4 4
      Documentation/sparse.txt
  98. 3 5
      Documentation/specialix.txt
  99. 1 1
      Documentation/sysctl/vm.txt
  100. 2 3
      Documentation/sysfs-rules.txt

+ 9 - 2
CREDITS

@@ -317,6 +317,14 @@ S: 2322 37th Ave SW
 S: Seattle, Washington 98126-2010
 S: USA
 
+N: Muli Ben-Yehuda
+E: mulix@mulix.org
+E: muli@il.ibm.com
+W: http://www.mulix.org
+D: trident OSS sound driver, x86-64 dma-ops and Calgary IOMMU,
+D: KVM and Xen bits and other misc. hackery.
+S: Haifa, Israel
+
 N: Johannes Berg
 E: johannes@sipsolutions.net
 W: http://johannes.sipsolutions.net/
@@ -3344,8 +3352,7 @@ S: Spain
 N: Linus Torvalds
 E: torvalds@linux-foundation.org
 D: Original kernel hacker
-S: 12725 SW Millikan Way, Suite 400
-S: Beaverton, Oregon 97005
+S: Portland, Oregon 97005
 S: USA
 
 N: Marcelo Tosatti

+ 0 - 2
Documentation/00-INDEX

@@ -361,8 +361,6 @@ telephony/
 	- directory with info on telephony (e.g. voice over IP) support.
 time_interpolators.txt
 	- info on time interpolators.
-tipar.txt
-	- information about Parallel link cable for Texas Instruments handhelds.
 tty.txt
 	- guide to the locking policies of the tty layer.
 uml/

+ 20 - 0
Documentation/ABI/testing/sysfs-dev

@@ -0,0 +1,20 @@
+What:		/sys/dev
+Date:		April 2008
+KernelVersion:	2.6.26
+Contact:	Dan Williams <dan.j.williams@intel.com>
+Description:	The /sys/dev tree provides a method to look up the sysfs
+		path for a device using the information returned from
+		stat(2).  There are two directories, 'block' and 'char',
+		beneath /sys/dev containing symbolic links with names of
+		the form "<major>:<minor>".  These links point to the
+		corresponding sysfs path for the given device.
+
+		Example:
+		$ readlink /sys/dev/block/8:32
+		../../block/sdc
+
+		Entries in /sys/dev/char and /sys/dev/block will be
+		dynamically created and destroyed as devices enter and
+		leave the system.
+
+Users:		mdadm <linux-raid@vger.kernel.org>

+ 24 - 0
Documentation/ABI/testing/sysfs-devices-memory

@@ -0,0 +1,24 @@
+What:		/sys/devices/system/memory
+Date:		June 2008
+Contact:	Badari Pulavarty <pbadari@us.ibm.com>
+Description:
+		The /sys/devices/system/memory contains a snapshot of the
+		internal state of the kernel memory blocks. Files could be
+		added or removed dynamically to represent hot-add/remove
+		operations.
+
+Users:		hotplug memory add/remove tools
+		https://w3.opensource.ibm.com/projects/powerpc-utils/
+
+What:		/sys/devices/system/memory/memoryX/removable
+Date:		June 2008
+Contact:	Badari Pulavarty <pbadari@us.ibm.com>
+Description:
+		The file /sys/devices/system/memory/memoryX/removable
+		indicates whether this memory block is removable or not.
+		This is useful for a user-level agent to determine
+		identify removable sections of the memory before attempting
+		potentially expensive hot-remove memory operation
+
+Users:		hotplug memory remove tools
+		https://w3.opensource.ibm.com/projects/powerpc-utils/

+ 6 - 0
Documentation/ABI/testing/sysfs-kernel-mm

@@ -0,0 +1,6 @@
+What:		/sys/kernel/mm
+Date:		July 2008
+Contact:	Nishanth Aravamudan <nacc@us.ibm.com>, VM maintainers
+Description:
+		/sys/kernel/mm/ should contain any and all VM
+		related information in /sys/kernel/.

+ 15 - 0
Documentation/ABI/testing/sysfs-kernel-mm-hugepages

@@ -0,0 +1,15 @@
+What:		/sys/kernel/mm/hugepages/
+Date:		June 2008
+Contact:	Nishanth Aravamudan <nacc@us.ibm.com>, hugetlb maintainers
+Description:
+		/sys/kernel/mm/hugepages/ contains a number of subdirectories
+		of the form hugepages-<size>kB, where <size> is the page size
+		of the hugepages supported by the kernel/CPU combination.
+
+		Under these directories are a number of files:
+			nr_hugepages
+			nr_overcommit_hugepages
+			free_hugepages
+			surplus_hugepages
+			resv_hugepages
+		See Documentation/vm/hugetlbpage.txt for details.

+ 23 - 19
Documentation/CodingStyle

@@ -474,25 +474,29 @@ make a good program).
 So, you can either get rid of GNU emacs, or change it to use saner
 values.  To do the latter, you can stick the following in your .emacs file:
 
-(defun linux-c-mode ()
-  "C mode with adjusted defaults for use with the Linux kernel."
-  (interactive)
-  (c-mode)
-  (c-set-style "K&R")
-  (setq tab-width 8)
-  (setq indent-tabs-mode t)
-  (setq c-basic-offset 8))
-
-This will define the M-x linux-c-mode command.  When hacking on a
-module, if you put the string -*- linux-c -*- somewhere on the first
-two lines, this mode will be automatically invoked. Also, you may want
-to add
-
-(setq auto-mode-alist (cons '("/usr/src/linux.*/.*\\.[ch]$" . linux-c-mode)
-			auto-mode-alist))
-
-to your .emacs file if you want to have linux-c-mode switched on
-automagically when you edit source files under /usr/src/linux.
+(defun c-lineup-arglist-tabs-only (ignored)
+  "Line up argument lists by tabs, not spaces"
+  (let* ((anchor (c-langelem-pos c-syntactic-element))
+	 (column (c-langelem-2nd-pos c-syntactic-element))
+	 (offset (- (1+ column) anchor))
+	 (steps (floor offset c-basic-offset)))
+    (* (max steps 1)
+       c-basic-offset)))
+
+(add-hook 'c-mode-hook
+          (lambda ()
+            (let ((filename (buffer-file-name)))
+              ;; Enable kernel mode for the appropriate files
+              (when (and filename
+                         (string-match "~/src/linux-trees" filename))
+                (setq indent-tabs-mode t)
+                (c-set-style "linux")
+                (c-set-offset 'arglist-cont-nonempty
+                              '(c-lineup-gcc-asm-reg
+                                c-lineup-arglist-tabs-only))))))
+
+This will make emacs go better with the kernel coding style for C
+files below ~/src/linux-trees.
 
 But even if you fail in getting emacs to do sane formatting, not
 everything is lost: use "indent".

+ 2 - 2
Documentation/DMA-API.txt

@@ -298,10 +298,10 @@ recommended that you never use these unless you really know what the
 cache width is.
 
 int
-dma_mapping_error(dma_addr_t dma_addr)
+dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 
 int
-pci_dma_mapping_error(dma_addr_t dma_addr)
+pci_dma_mapping_error(struct pci_dev *hwdev, dma_addr_t dma_addr)
 
 In some circumstances dma_map_single and dma_map_page will fail to create
 a mapping. A driver can check for these errors by testing the returned

+ 9 - 0
Documentation/DMA-attributes.txt

@@ -22,3 +22,12 @@ ready and available in memory.  The DMA of the "completion indication"
 could race with data DMA.  Mapping the memory used for completion
 indications with DMA_ATTR_WRITE_BARRIER would prevent the race.
 
+DMA_ATTR_WEAK_ORDERING
+----------------------
+
+DMA_ATTR_WEAK_ORDERING specifies that reads and writes to the mapping
+may be weakly ordered, that is that reads and writes may pass each other.
+
+Since it is optional for platforms to implement DMA_ATTR_WEAK_ORDERING,
+those that do not will simply ignore the attribute and exhibit default
+behavior.

+ 38 - 0
Documentation/DocBook/gadget.tmpl

@@ -524,6 +524,44 @@ These utilities include endpoint autoconfiguration.
 <!-- !Edrivers/usb/gadget/epautoconf.c -->
 </sect1>
 
+<sect1 id="composite"><title>Composite Device Framework</title>
+
+<para>The core API is sufficient for writing drivers for composite
+USB devices (with more than one function in a given configuration),
+and also multi-configuration devices (also more than one function,
+but not necessarily sharing a given configuration).
+There is however an optional framework which makes it easier to
+reuse and combine functions.
+</para>
+
+<para>Devices using this framework provide a <emphasis>struct
+usb_composite_driver</emphasis>, which in turn provides one or
+more <emphasis>struct usb_configuration</emphasis> instances.
+Each such configuration includes at least one
+<emphasis>struct usb_function</emphasis>, which packages a user
+visible role such as "network link" or "mass storage device".
+Management functions may also exist, such as "Device Firmware
+Upgrade".
+</para>
+
+!Iinclude/linux/usb/composite.h
+!Edrivers/usb/gadget/composite.c
+
+</sect1>
+
+<sect1 id="functions"><title>Composite Device Functions</title>
+
+<para>At this writing, a few of the current gadget drivers have
+been converted to this framework.
+Near-term plans include converting all of them, except for "gadgetfs".
+</para>
+
+!Edrivers/usb/gadget/f_acm.c
+!Edrivers/usb/gadget/f_serial.c
+
+</sect1>
+
+
 </chapter>
 
 <chapter id="controllers"><title>Peripheral Controller Drivers</title>

+ 24 - 33
Documentation/DocBook/kernel-locking.tmpl

@@ -219,10 +219,10 @@
    </para>
 
    <sect1 id="lock-intro">
-   <title>Three Main Types of Kernel Locks: Spinlocks, Mutexes and Semaphores</title>
+   <title>Two Main Types of Kernel Locks: Spinlocks and Mutexes</title>
 
    <para>
-     There are three main types of kernel locks.  The fundamental type
+     There are two main types of kernel locks.  The fundamental type
      is the spinlock 
      (<filename class="headerfile">include/asm/spinlock.h</filename>),
      which is a very simple single-holder lock: if you can't get the 
@@ -239,14 +239,6 @@
      can't sleep (see <xref linkend="sleeping-things"/>), and so have to
      use a spinlock instead.
    </para>
-   <para>
-     The third type is a semaphore
-     (<filename class="headerfile">include/linux/semaphore.h</filename>): it
-     can have more than one holder at any time (the number decided at
-     initialization time), although it is most commonly used as a
-     single-holder lock (a mutex).  If you can't get a semaphore, your
-     task will be suspended and later on woken up - just like for mutexes.
-   </para>
    <para>
      Neither type of lock is recursive: see
      <xref linkend="deadlock"/>.
@@ -278,7 +270,7 @@
     </para>
 
     <para>
-      Semaphores still exist, because they are required for
+      Mutexes still exist, because they are required for
       synchronization between <firstterm linkend="gloss-usercontext">user 
       contexts</firstterm>, as we will see below.
     </para>
@@ -289,18 +281,17 @@
 
      <para>
        If you have a data structure which is only ever accessed from
-       user context, then you can use a simple semaphore
-       (<filename>linux/linux/semaphore.h</filename>) to protect it.  This
-       is the most trivial case: you initialize the semaphore to the number 
-       of resources available (usually 1), and call
-       <function>down_interruptible()</function> to grab the semaphore, and 
-       <function>up()</function> to release it.  There is also a 
-       <function>down()</function>, which should be avoided, because it 
+       user context, then you can use a simple mutex
+       (<filename>include/linux/mutex.h</filename>) to protect it.  This
+       is the most trivial case: you initialize the mutex.  Then you can
+       call <function>mutex_lock_interruptible()</function> to grab the mutex,
+       and <function>mutex_unlock()</function> to release it.  There is also a 
+       <function>mutex_lock()</function>, which should be avoided, because it 
        will not return if a signal is received.
      </para>
 
      <para>
-       Example: <filename>linux/net/core/netfilter.c</filename> allows 
+       Example: <filename>net/netfilter/nf_sockopt.c</filename> allows 
        registration of new <function>setsockopt()</function> and 
        <function>getsockopt()</function> calls, with
        <function>nf_register_sockopt()</function>.  Registration and 
@@ -515,7 +506,7 @@
       <listitem>
 	<para>
           If you are in a process context (any syscall) and want to
-	lock other process out, use a semaphore.  You can take a semaphore
+	lock other process out, use a mutex.  You can take a mutex
 	and sleep (<function>copy_from_user*(</function> or
 	<function>kmalloc(x,GFP_KERNEL)</function>).
       </para>
@@ -662,7 +653,7 @@
 <entry>SLBH</entry>
 <entry>SLBH</entry>
 <entry>SLBH</entry>
-<entry>DI</entry>
+<entry>MLI</entry>
 <entry>None</entry>
 </row>
 
@@ -692,8 +683,8 @@
 <entry>spin_lock_bh</entry>
 </row>
 <row>
-<entry>DI</entry>
-<entry>down_interruptible</entry>
+<entry>MLI</entry>
+<entry>mutex_lock_interruptible</entry>
 </row>
 
 </tbody>
@@ -1310,7 +1301,7 @@ as Alan Cox says, <quote>Lock data, not code</quote>.
     <para>
       There is a coding bug where a piece of code tries to grab a
       spinlock twice: it will spin forever, waiting for the lock to
-      be released (spinlocks, rwlocks and semaphores are not
+      be released (spinlocks, rwlocks and mutexes are not
       recursive in Linux).  This is trivial to diagnose: not a
       stay-up-five-nights-talk-to-fluffy-code-bunnies kind of
       problem.
@@ -1335,7 +1326,7 @@ as Alan Cox says, <quote>Lock data, not code</quote>.
 
     <para>
       This complete lockup is easy to diagnose: on SMP boxes the
-      watchdog timer or compiling with <symbol>DEBUG_SPINLOCKS</symbol> set
+      watchdog timer or compiling with <symbol>DEBUG_SPINLOCK</symbol> set
       (<filename>include/linux/spinlock.h</filename>) will show this up 
       immediately when it happens.
     </para>
@@ -1558,7 +1549,7 @@ the amount of locking which needs to be done.
    <title>Read/Write Lock Variants</title>
 
    <para>
-      Both spinlocks and semaphores have read/write variants:
+      Both spinlocks and mutexes have read/write variants:
       <type>rwlock_t</type> and <structname>struct rw_semaphore</structname>.
       These divide users into two classes: the readers and the writers.  If
       you are only reading the data, you can get a read lock, but to write to
@@ -1681,7 +1672,7 @@ the amount of locking which needs to be done.
  #include &lt;linux/slab.h&gt;
  #include &lt;linux/string.h&gt;
 +#include &lt;linux/rcupdate.h&gt;
- #include &lt;linux/semaphore.h&gt;
+ #include &lt;linux/mutex.h&gt;
  #include &lt;asm/errno.h&gt;
 
  struct object
@@ -1913,7 +1904,7 @@ machines due to caching.
        </listitem>
        <listitem>
         <para>
-          <function> put_user()</function>
+          <function>put_user()</function>
         </para>
        </listitem>
       </itemizedlist>
@@ -1927,13 +1918,13 @@ machines due to caching.
 
      <listitem>
       <para>
-      <function>down_interruptible()</function> and
-      <function>down()</function>
+      <function>mutex_lock_interruptible()</function> and
+      <function>mutex_lock()</function>
       </para>
       <para>
-       There is a <function>down_trylock()</function> which can be
+       There is a <function>mutex_trylock()</function> which can be
        used inside interrupt context, as it will not sleep.
-       <function>up()</function> will also never sleep.
+       <function>mutex_unlock()</function> will also never sleep.
       </para>
      </listitem>
     </itemizedlist>
@@ -2023,7 +2014,7 @@ machines due to caching.
       <para>
         Prior to 2.5, or when <symbol>CONFIG_PREEMPT</symbol> is
         unset, processes in user context inside the kernel would not
-        preempt each other (ie. you had that CPU until you have it up,
+        preempt each other (ie. you had that CPU until you gave it up,
         except for interrupts).  With the addition of
         <symbol>CONFIG_PREEMPT</symbol> in 2.5.4, this changed: when
         in user context, higher priority tasks can "cut in": spinlocks

+ 2 - 2
Documentation/DocBook/procfs-guide.tmpl

@@ -29,12 +29,12 @@
 
     <revhistory>
       <revision>
-	<revnumber>1.0&nbsp;</revnumber>
+	<revnumber>1.0</revnumber>
 	<date>May 30, 2001</date>
 	<revremark>Initial revision posted to linux-kernel</revremark>
       </revision>
       <revision>
-	<revnumber>1.1&nbsp;</revnumber>
+	<revnumber>1.1</revnumber>
 	<date>June 3, 2001</date>
 	<revremark>Revised after comments from linux-kernel</revremark>
       </revision>

+ 51 - 12
Documentation/DocBook/uio-howto.tmpl

@@ -21,6 +21,18 @@
     </affiliation>
 </author>
 
+<copyright>
+	<year>2006-2008</year>
+	<holder>Hans-Jürgen Koch.</holder>
+</copyright>
+
+<legalnotice>
+<para>
+This documentation is Free Software licensed under the terms of the
+GPL version 2.
+</para>
+</legalnotice>
+
 <pubdate>2006-12-11</pubdate>
 
 <abstract>
@@ -29,6 +41,12 @@
 </abstract>
 
 <revhistory>
+	<revision>
+	<revnumber>0.5</revnumber>
+	<date>2008-05-22</date>
+	<authorinitials>hjk</authorinitials>
+	<revremark>Added description of write() function.</revremark>
+	</revision>
 	<revision>
 	<revnumber>0.4</revnumber>
 	<date>2007-11-26</date>
@@ -57,20 +75,9 @@
 </bookinfo>
 
 <chapter id="aboutthisdoc">
-<?dbhtml filename="about.html"?>
+<?dbhtml filename="aboutthis.html"?>
 <title>About this document</title>
 
-<sect1 id="copyright">
-<?dbhtml filename="copyright.html"?>
-<title>Copyright and License</title>
-<para>
-      Copyright (c) 2006 by Hans-Jürgen Koch.</para>
-<para>
-This documentation is Free Software licensed under the terms of the
-GPL version 2.
-</para>
-</sect1>
-
 <sect1 id="translations">
 <?dbhtml filename="translations.html"?>
 <title>Translations</title>
@@ -189,6 +196,30 @@ interested in translating it, please email me
 	represents the total interrupt count. You can use this number
 	to figure out if you missed some interrupts.
 	</para>
+	<para>
+	For some hardware that has more than one interrupt source internally,
+	but not separate IRQ mask and status registers, there might be
+	situations where userspace cannot determine what the interrupt source
+	was if the kernel handler disables them by writing to the chip's IRQ
+	register. In such a case, the kernel has to disable the IRQ completely
+	to leave the chip's register untouched. Now the userspace part can
+	determine the cause of the interrupt, but it cannot re-enable
+	interrupts. Another cornercase is chips where re-enabling interrupts
+	is a read-modify-write operation to a combined IRQ status/acknowledge
+	register. This would be racy if a new interrupt occurred
+	simultaneously.
+	</para>
+	<para>
+	To address these problems, UIO also implements a write() function. It
+	is normally not used and can be ignored for hardware that has only a
+	single interrupt source or has separate IRQ mask and status registers.
+	If you need it, however, a write to <filename>/dev/uioX</filename>
+	will call the <function>irqcontrol()</function> function implemented
+	by the driver. You have to write a 32-bit value that is usually either
+	0 or 1 to disable or enable interrupts. If a driver does not implement
+	<function>irqcontrol()</function>, <function>write()</function> will
+	return with <varname>-ENOSYS</varname>.
+	</para>
 
 	<para>
 	To handle interrupts properly, your custom kernel module can
@@ -362,6 +393,14 @@ device is actually used.
 <function>open()</function>, you will probably also want a custom
 <function>release()</function> function.
 </para></listitem>
+
+<listitem><para>
+<varname>int (*irqcontrol)(struct uio_info *info, s32 irq_on)
+</varname>: Optional. If you need to be able to enable or disable
+interrupts from userspace by writing to <filename>/dev/uioX</filename>,
+you can implement this function. The parameter <varname>irq_on</varname>
+will be 0 to disable interrupts and 1 to enable them.
+</para></listitem>
 </itemizedlist>
 
 <para>

+ 1 - 1
Documentation/HOWTO

@@ -358,7 +358,7 @@ Here is a list of some of the different kernel trees available:
     - pcmcia, Dominik Brodowski <linux@dominikbrodowski.net>
 	git.kernel.org:/pub/scm/linux/kernel/git/brodo/pcmcia-2.6.git
 
-    - SCSI, James Bottomley <James.Bottomley@SteelEye.com>
+    - SCSI, James Bottomley <James.Bottomley@hansenpartnership.com>
 	git.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6.git
 
     - x86, Ingo Molnar <mingo@elte.hu>

+ 2 - 2
Documentation/Intel-IOMMU.txt

@@ -48,7 +48,7 @@ IOVA generation is pretty generic. We used the same technique as vmalloc()
 but these are not global address spaces, but separate for each domain.
 Different DMA engines may support different number of domains.
 
-We also allocate gaurd pages with each mapping, so we can attempt to catch
+We also allocate guard pages with each mapping, so we can attempt to catch
 any overflow that might happen.
 
 
@@ -112,4 +112,4 @@ TBD
 
 - For compatibility testing, could use unity map domain for all devices, just
   provide a 1-1 for all useful memory under a single domain for all devices.
-- API for paravirt ops for abstracting functionlity for VMM folks.
+- API for paravirt ops for abstracting functionality for VMM folks.

+ 26 - 0
Documentation/SubmittingPatches

@@ -528,7 +528,33 @@ See more details on the proper patch format in the following
 references.
 
 
+16) Sending "git pull" requests  (from Linus emails)
 
+Please write the git repo address and branch name alone on the same line
+so that I can't even by mistake pull from the wrong branch, and so
+that a triple-click just selects the whole thing.
+
+So the proper format is something along the lines of:
+
+	"Please pull from
+
+		git://jdelvare.pck.nerim.net/jdelvare-2.6 i2c-for-linus
+
+	 to get these changes:"
+
+so that I don't have to hunt-and-peck for the address and inevitably
+get it wrong (actually, I've only gotten it wrong a few times, and
+checking against the diffstat tells me when I get it wrong, but I'm
+just a lot more comfortable when I don't have to "look for" the right
+thing to pull, and double-check that I have the right branch-name).
+
+
+Please use "git diff -M --stat --summary" to generate the diffstat:
+the -M enables rename detection, and the summary enables a summary of
+new/deleted or renamed files.
+
+With rename detection, the statistics are rather different [...]
+because git will notice that a fair number of the changes are renames.
 
 -----------------------------------
 SECTION 2 - HINTS, TIPS, AND TRICKS

+ 8 - 3
Documentation/accounting/delay-accounting.txt

@@ -11,6 +11,7 @@ the delays experienced by a task while
 a) waiting for a CPU (while being runnable)
 b) completion of synchronous block I/O initiated by the task
 c) swapping in pages
+d) memory reclaim
 
 and makes these statistics available to userspace through
 the taskstats interface.
@@ -41,7 +42,7 @@ this structure. See
      include/linux/taskstats.h
 for a description of the fields pertaining to delay accounting.
 It will generally be in the form of counters returning the cumulative
-delay seen for cpu, sync block I/O, swapin etc.
+delay seen for cpu, sync block I/O, swapin, memory reclaim etc.
 
 Taking the difference of two successive readings of a given
 counter (say cpu_delay_total) for a task will give the delay
@@ -94,7 +95,9 @@ CPU	count	real total	virtual total	delay total
 	7876	92005750	100000000	24001500
 IO	count	delay total
 	0	0
-MEM	count	delay total
+SWAP	count	delay total
+	0	0
+RECLAIM	count	delay total
 	0	0
 
 Get delays seen in executing a given simple command
@@ -108,5 +111,7 @@ CPU	count	real total	virtual total	delay total
 	6	4000250		4000000		0
 IO	count	delay total
 	0	0
-MEM	count	delay total
+SWAP	count	delay total
+	0	0
+RECLAIM	count	delay total
 	0	0

+ 6 - 2
Documentation/accounting/getdelays.c

@@ -196,14 +196,18 @@ void print_delayacct(struct taskstats *t)
 	       "      %15llu%15llu%15llu%15llu\n"
 	       "IO    %15s%15s\n"
 	       "      %15llu%15llu\n"
-	       "MEM   %15s%15s\n"
+	       "SWAP  %15s%15s\n"
+	       "      %15llu%15llu\n"
+	       "RECLAIM  %12s%15s\n"
 	       "      %15llu%15llu\n",
 	       "count", "real total", "virtual total", "delay total",
 	       t->cpu_count, t->cpu_run_real_total, t->cpu_run_virtual_total,
 	       t->cpu_delay_total,
 	       "count", "delay total",
 	       t->blkio_count, t->blkio_delay_total,
-	       "count", "delay total", t->swapin_count, t->swapin_delay_total);
+	       "count", "delay total", t->swapin_count, t->swapin_delay_total,
+	       "count", "delay total",
+	       t->freepages_count, t->freepages_delay_total);
 }
 
 void task_context_switch_counts(struct taskstats *t)

+ 8 - 1
Documentation/accounting/taskstats-struct.txt

@@ -6,7 +6,7 @@ This document contains an explanation of the struct taskstats fields.
 There are three different groups of fields in the struct taskstats:
 
 1) Common and basic accounting fields
-    If CONFIG_TASKSTATS is set, the taskstats inteface is enabled and
+    If CONFIG_TASKSTATS is set, the taskstats interface is enabled and
     the common fields and basic accounting fields are collected for
     delivery at do_exit() of a task.
 2) Delay accounting fields
@@ -26,6 +26,8 @@ There are three different groups of fields in the struct taskstats:
 
 5) Time accounting for SMT machines
 
+6) Extended delay accounting fields for memory reclaim
+
 Future extension should add fields to the end of the taskstats struct, and
 should not change the relative position of each field within the struct.
 
@@ -170,4 +172,9 @@ struct taskstats {
 	__u64	ac_utimescaled;		/* utime scaled on frequency etc */
 	__u64	ac_stimescaled;		/* stime scaled on frequency etc */
 	__u64	cpu_scaled_run_real_total; /* scaled cpu_run_real_total */
+
+6) Extended delay accounting fields for memory reclaim
+	/* Delay waiting for memory reclaim */
+	__u64	freepages_count;
+	__u64	freepages_delay_total;
 }

+ 2 - 8
Documentation/arm/Interrupts

@@ -138,14 +138,8 @@ So, what's changed?
 
                 Set active the IRQ edge(s)/level.  This replaces the
                 SA1111 INTPOL manipulation, and the set_GPIO_IRQ_edge()
-                function.  Type should be one of the following:
-
-                #define IRQT_NOEDGE     (0)
-                #define IRQT_RISING     (__IRQT_RISEDGE)
-                #define IRQT_FALLING    (__IRQT_FALEDGE)
-                #define IRQT_BOTHEDGE   (__IRQT_RISEDGE|__IRQT_FALEDGE)
-                #define IRQT_LOW        (__IRQT_LOWLVL)
-                #define IRQT_HIGH       (__IRQT_HIGHLVL)
+                function.  Type should be one of IRQ_TYPE_xxx defined in
+		<linux/irq.h>
 
 3. set_GPIO_IRQ_edge() is obsolete, and should be replaced by set_irq_type.
 

+ 67 - 0
Documentation/bt8xxgpio.txt

@@ -0,0 +1,67 @@
+===============================================================
+==  BT8XXGPIO driver                                         ==
+==                                                           ==
+==  A driver for a selfmade cheap BT8xx based PCI GPIO-card  ==
+==                                                           ==
+==  For advanced documentation, see                          ==
+==  http://www.bu3sch.de/btgpio.php                          ==
+===============================================================
+
+
+A generic digital 24-port PCI GPIO card can be built out of an ordinary
+Brooktree bt848, bt849, bt878 or bt879 based analog TV tuner card. The
+Brooktree chip is used in old analog Hauppauge WinTV PCI cards. You can easily
+find them used for low prices on the net.
+
+The bt8xx chip does have 24 digital GPIO ports.
+These ports are accessible via 24 pins on the SMD chip package.
+
+
+==============================================
+==  How to physically access the GPIO pins  ==
+==============================================
+
+The are several ways to access these pins. One might unsolder the whole chip
+and put it on a custom PCI board, or one might only unsolder each individual
+GPIO pin and solder that to some tiny wire. As the chip package really is tiny
+there are some advanced soldering skills needed in any case.
+
+The physical pinouts are drawn in the following ASCII art.
+The GPIO pins are marked with G00-G23
+
+                                           G G G G G G G G G G G G     G G G G G G
+                                           0 0 0 0 0 0 0 0 0 0 1 1     1 1 1 1 1 1
+                                           0 1 2 3 4 5 6 7 8 9 0 1     2 3 4 5 6 7
+           | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
+           ---------------------------------------------------------------------------
+         --|                               ^                                     ^   |--
+         --|                               pin 86                           pin 67   |--
+         --|                                                                         |--
+         --|                                                               pin 61 >  |-- G18
+         --|                                                                         |-- G19
+         --|                                                                         |-- G20
+         --|                                                                         |-- G21
+         --|                                                                         |-- G22
+         --|                                                               pin 56 >  |-- G23
+         --|                                                                         |--
+         --|                           Brooktree 878/879                             |--
+         --|                                                                         |--
+         --|                                                                         |--
+         --|                                                                         |--
+         --|                                                                         |--
+         --|                                                                         |--
+         --|                                                                         |--
+         --|                                                                         |--
+         --|                                                                         |--
+         --|                                                                         |--
+         --|                                                                         |--
+         --|                                                                         |--
+         --|                                                                         |--
+         --|                                                                         |--
+         --|   O                                                                     |--
+         --|                                                                         |--
+           ---------------------------------------------------------------------------
+           | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
+           ^
+           This is pin 1
+

+ 1 - 2
Documentation/controllers/memory.txt

@@ -242,8 +242,7 @@ rmdir() if there are no tasks.
 1. Add support for accounting huge pages (as a separate controller)
 2. Make per-cgroup scanner reclaim not-shared pages first
 3. Teach controller to account for shared-pages
-4. Start reclamation when the limit is lowered
-5. Start reclamation in the background when the limit is
+4. Start reclamation in the background when the limit is
    not yet hit but the usage is getting closer
 
 Summary

+ 1 - 1
Documentation/cpu-freq/governors.txt

@@ -122,7 +122,7 @@ around '10000' or more.
 show_sampling_rate_(min|max): the minimum and maximum sampling rates
 available that you may set 'sampling_rate' to.
 
-up_threshold: defines what the average CPU usaged between the samplings
+up_threshold: defines what the average CPU usage between the samplings
 of 'sampling_rate' needs to be for the kernel to make a decision on
 whether it should increase the frequency.  For example when it is set
 to its default value of '80' it means that between the checking

+ 73 - 80
Documentation/edac.txt

@@ -222,74 +222,9 @@ both csrow2 and csrow3 are populated, this indicates a dual ranked
 set of DIMMs for channels 0 and 1.
 
 
-Within each of the 'mc','mcX' and 'csrowX' directories are several
+Within each of the 'mcX' and 'csrowX' directories are several
 EDAC control and attribute files.
 
-
-============================================================================
-DIRECTORY 'mc'
-
-In directory 'mc' are EDAC system overall control and attribute files:
-
-
-Panic on UE control file:
-
-	'edac_mc_panic_on_ue'
-
-	An uncorrectable error will cause a machine panic.  This is usually
-	desirable.  It is a bad idea to continue when an uncorrectable error
-	occurs - it is indeterminate what was uncorrected and the operating
-	system context might be so mangled that continuing will lead to further
-	corruption. If the kernel has MCE configured, then EDAC will never
-	notice the UE.
-
-	LOAD TIME: module/kernel parameter: panic_on_ue=[0|1]
-
-	RUN TIME:  echo "1" >/sys/devices/system/edac/mc/edac_mc_panic_on_ue
-
-
-Log UE control file:
-
-	'edac_mc_log_ue'
-
-	Generate kernel messages describing uncorrectable errors.  These errors
-	are reported through the system message log system.  UE statistics
-	will be accumulated even when UE logging is disabled.
-
-	LOAD TIME: module/kernel parameter: log_ue=[0|1]
-
-	RUN TIME: echo "1" >/sys/devices/system/edac/mc/edac_mc_log_ue
-
-
-Log CE control file:
-
-	'edac_mc_log_ce'
-
-	Generate kernel messages describing correctable errors.  These
-	errors are reported through the system message log system.
-	CE statistics will be accumulated even when CE logging is disabled.
-
-	LOAD TIME: module/kernel parameter: log_ce=[0|1]
-
-	RUN TIME: echo "1" >/sys/devices/system/edac/mc/edac_mc_log_ce
-
-
-Polling period control file:
-
-	'edac_mc_poll_msec'
-
-	The time period, in milliseconds, for polling for error information.
-	Too small a value wastes resources.  Too large a value might delay
-	necessary handling of errors and might loose valuable information for
-	locating the error.  1000 milliseconds (once each second) is the current
-	default. Systems which require all the bandwidth they can get, may
-	increase this.
-
-	LOAD TIME: module/kernel parameter: poll_msec=[0|1]
-
-	RUN TIME: echo "1000" >/sys/devices/system/edac/mc/edac_mc_poll_msec
-
-
 ============================================================================
 'mcX' DIRECTORIES
 
@@ -392,7 +327,7 @@ Sdram memory scrubbing rate:
 	'sdram_scrub_rate'
 
 	Read/Write attribute file that controls memory scrubbing. The scrubbing
-	rate is set by writing a minimum bandwith in bytes/sec to the attribute
+	rate is set by writing a minimum bandwidth in bytes/sec to the attribute
 	file. The rate will be translated to an internal value that gives at
 	least the specified rate.
 
@@ -537,7 +472,6 @@ Channel 1 DIMM Label control file:
 	motherboard specific and determination of this information
 	must occur in userland at this time.
 
-
 ============================================================================
 SYSTEM LOGGING
 
@@ -570,7 +504,6 @@ error type, a notice of "no info" and then an optional,
 driver-specific error message.
 
 
-
 ============================================================================
 PCI Bus Parity Detection
 
@@ -604,6 +537,74 @@ Enable/Disable PCI Parity checking control file:
 	echo "0" >/sys/devices/system/edac/pci/check_pci_parity
 
 
+Parity Count:
+
+	'pci_parity_count'
+
+	This attribute file will display the number of parity errors that
+	have been detected.
+
+
+============================================================================
+MODULE PARAMETERS
+
+Panic on UE control file:
+
+	'edac_mc_panic_on_ue'
+
+	An uncorrectable error will cause a machine panic.  This is usually
+	desirable.  It is a bad idea to continue when an uncorrectable error
+	occurs - it is indeterminate what was uncorrected and the operating
+	system context might be so mangled that continuing will lead to further
+	corruption. If the kernel has MCE configured, then EDAC will never
+	notice the UE.
+
+	LOAD TIME: module/kernel parameter: edac_mc_panic_on_ue=[0|1]
+
+	RUN TIME:  echo "1" > /sys/module/edac_core/parameters/edac_mc_panic_on_ue
+
+
+Log UE control file:
+
+	'edac_mc_log_ue'
+
+	Generate kernel messages describing uncorrectable errors.  These errors
+	are reported through the system message log system.  UE statistics
+	will be accumulated even when UE logging is disabled.
+
+	LOAD TIME: module/kernel parameter: edac_mc_log_ue=[0|1]
+
+	RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ue
+
+
+Log CE control file:
+
+	'edac_mc_log_ce'
+
+	Generate kernel messages describing correctable errors.  These
+	errors are reported through the system message log system.
+	CE statistics will be accumulated even when CE logging is disabled.
+
+	LOAD TIME: module/kernel parameter: edac_mc_log_ce=[0|1]
+
+	RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ce
+
+
+Polling period control file:
+
+	'edac_mc_poll_msec'
+
+	The time period, in milliseconds, for polling for error information.
+	Too small a value wastes resources.  Too large a value might delay
+	necessary handling of errors and might loose valuable information for
+	locating the error.  1000 milliseconds (once each second) is the current
+	default. Systems which require all the bandwidth they can get, may
+	increase this.
+
+	LOAD TIME: module/kernel parameter: edac_mc_poll_msec=[0|1]
+
+	RUN TIME: echo "1000" > /sys/module/edac_core/parameters/edac_mc_poll_msec
+
 
 Panic on PCI PARITY Error:
 
@@ -614,21 +615,13 @@ Panic on PCI PARITY Error:
 	error has been detected.
 
 
-	module/kernel parameter: panic_on_pci_parity=[0|1]
+	module/kernel parameter: edac_panic_on_pci_pe=[0|1]
 
 	Enable:
-	echo "1" >/sys/devices/system/edac/pci/panic_on_pci_parity
+	echo "1" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
 
 	Disable:
-	echo "0" >/sys/devices/system/edac/pci/panic_on_pci_parity
-
-
-Parity Count:
-
-	'pci_parity_count'
-
-	This attribute file will display the number of parity errors that
-	have been detected.
+	echo "0" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
 
 
 

+ 131 - 0
Documentation/fb/sh7760fb.txt

@@ -0,0 +1,131 @@
+SH7760/SH7763 integrated LCDC Framebuffer driver
+================================================
+
+0. Overwiew
+-----------
+The SH7760/SH7763 have an integrated LCD Display controller (LCDC) which
+supports (in theory) resolutions ranging from 1x1 to 1024x1024,
+with color depths ranging from 1 to 16 bits, on STN, DSTN and TFT Panels.
+
+Caveats:
+* Framebuffer memory must be a large chunk allocated at the top
+  of Area3 (HW requirement). Because of this requirement you should NOT
+  make the driver a module since at runtime it may become impossible to
+  get a large enough contiguous chunk of memory.
+
+* The driver does not support changing resolution while loaded
+  (displays aren't hotpluggable anyway)
+
+* Heavy flickering may be observed
+  a) if you're using 15/16bit color modes at >= 640x480 px resolutions,
+  b) during PCMCIA (or any other slow bus) activity.
+
+* Rotation works only 90degress clockwise, and only if horizontal
+  resolution is <= 320 pixels.
+
+files:   drivers/video/sh7760fb.c
+        include/asm-sh/sh7760fb.h
+        Documentation/fb/sh7760fb.txt
+
+1. Platform setup
+-----------------
+SH7760:
+ Video data is fetched via the DMABRG DMA engine, so you have to
+ configure the SH DMAC for DMABRG mode (write 0x94808080 to the
+ DMARSRA register somewhere at boot).
+
+ PFC registers PCCR and PCDR must be set to peripheral mode.
+ (write zeros to both).
+
+The driver does NOT do the above for you since board setup is, well, job
+of the board setup code.
+
+2. Panel definitions
+--------------------
+The LCDC must explicitly be told about the type of LCD panel
+attached.  Data must be wrapped in a "struct sh7760fb_platdata" and
+passed to the driver as platform_data.
+
+Suggest you take a closer look at the SH7760 Manual, Section 30.
+(http://documentation.renesas.com/eng/products/mpumcu/e602291_sh7760.pdf)
+
+The following code illustrates what needs to be done to
+get the framebuffer working on a 640x480 TFT:
+
+====================== cut here ======================================
+
+#include <linux/fb.h>
+#include <asm/sh7760fb.h>
+
+/*
+ * NEC NL6440bc26-01 640x480 TFT
+ * dotclock 25175 kHz
+ * Xres                640     Yres            480
+ * Htotal      800     Vtotal          525
+ * HsynStart   656     VsynStart       490
+ * HsynLenn    30      VsynLenn        2
+ *
+ * The linux framebuffer layer does not use the syncstart/synclen
+ * values but right/left/upper/lower margin values. The comments
+ * for the x_margin explain how to calculate those from given
+ * panel sync timings.
+ */
+static struct fb_videomode nl6448bc26 = {
+       .name           = "NL6448BC26",
+       .refresh        = 60,
+       .xres           = 640,
+       .yres           = 480,
+       .pixclock       = 39683,        /* in picoseconds! */
+       .hsync_len      = 30,
+       .vsync_len      = 2,
+       .left_margin    = 114,  /* HTOT - (HSYNSLEN + HSYNSTART) */
+       .right_margin   = 16,   /* HSYNSTART - XRES */
+       .upper_margin   = 33,   /* VTOT - (VSYNLEN + VSYNSTART) */
+       .lower_margin   = 10,   /* VSYNSTART - YRES */
+       .sync           = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
+       .vmode          = FB_VMODE_NONINTERLACED,
+       .flag           = 0,
+};
+
+static struct sh7760fb_platdata sh7760fb_nl6448 = {
+       .def_mode       = &nl6448bc26,
+       .ldmtr          = LDMTR_TFT_COLOR_16,   /* 16bit TFT panel */
+       .lddfr          = LDDFR_8BPP,           /* we want 8bit output */
+       .ldpmmr         = 0x0070,
+       .ldpspr         = 0x0500,
+       .ldaclnr        = 0,
+       .ldickr         = LDICKR_CLKSRC(LCDC_CLKSRC_EXTERNAL) |
+                         LDICKR_CLKDIV(1),
+       .rotate         = 0,
+       .novsync        = 1,
+       .blank          = NULL,
+};
+
+/* SH7760:
+ * 0xFE300800: 256 * 4byte xRGB palette ram
+ * 0xFE300C00: 42 bytes ctrl registers
+ */
+static struct resource sh7760_lcdc_res[] = {
+       [0] = {
+               .start  = 0xFE300800,
+               .end    = 0xFE300CFF,
+               .flags  = IORESOURCE_MEM,
+       },
+       [1] = {
+               .start  = 65,
+               .end    = 65,
+               .flags  = IORESOURCE_IRQ,
+       },
+};
+
+static struct platform_device sh7760_lcdc_dev = {
+       .dev    = {
+               .platform_data = &sh7760fb_nl6448,
+       },
+       .name           = "sh7760-lcdc",
+       .id             = -1,
+       .resource       = sh7760_lcdc_res,
+       .num_resources  = ARRAY_SIZE(sh7760_lcdc_res),
+};
+
+====================== cut here ======================================

+ 31 - 15
Documentation/fb/tridentfb.txt

@@ -3,11 +3,25 @@ Tridentfb is a framebuffer driver for some Trident chip based cards.
 The following list of chips is thought to be supported although not all are
 tested:
 
-those from the Image series with Cyber in their names - accelerated
-those with Blade in their names (Blade3D,CyberBlade...) - accelerated
-the newer CyberBladeXP family  - nonaccelerated
-
-Only PCI/AGP based cards are supported, none of the older Tridents.
+those from the TGUI series 9440/96XX and with Cyber in their names
+those from the Image series and with Cyber in their names
+those with Blade in their names (Blade3D,CyberBlade...)
+the newer CyberBladeXP family
+
+All families are accelerated. Only PCI/AGP based cards are supported,
+none of the older Tridents.
+The driver supports 8, 16 and 32 bits per pixel depths.
+The TGUI family requires a line length to be power of 2 if acceleration
+is enabled. This means that range of possible resolutions and bpp is
+limited comparing to the range if acceleration is disabled (see list
+of parameters below).
+
+Known bugs:
+1. The driver randomly locks up on 3DImage975 chip with acceleration
+   enabled. The same happens in X11 (Xorg).
+2. The ramdac speeds require some more fine tuning. It is possible to
+   switch resolution which the chip does not support at some depths for
+   older chips.
 
 How to use it?
 ==============
@@ -17,12 +31,11 @@ video=tridentfb
 
 The parameters for tridentfb are concatenated with a ':' as in this example.
 
-video=tridentfb:800x600,bpp=16,noaccel
+video=tridentfb:800x600-16@75,noaccel
 
 The second level parameters that tridentfb understands are:
 
 noaccel - turns off acceleration (when it doesn't work for your card)
-accel - force text acceleration (for boards which by default are noacceled)
 
 fp	- use flat panel related stuff
 crt 	- assume monitor is present instead of fp
@@ -31,21 +44,24 @@ center 	- for flat panels and resolutions smaller than native size center the
 	  image, otherwise use
 stretch
 
-memsize - integer value in Kb, use if your card's memory size is misdetected.
+memsize - integer value in KB, use if your card's memory size is misdetected.
 	  look at the driver output to see what it says when initializing.
-memdiff - integer value in Kb,should be nonzero if your card reports
-	  more memory than it actually has.For instance mine is 192K less than
+
+memdiff - integer value in KB, should be nonzero if your card reports
+	  more memory than it actually has. For instance mine is 192K less than
 	  detection says in all three BIOS selectable situations 2M, 4M, 8M.
 	  Only use if your video memory is taken from main memory hence of
-	  configurable size.Otherwise use memsize.
-	  If in some modes which barely fit the memory you see garbage at the bottom
-	  this might help by not letting change to that mode anymore.
+	  configurable size. Otherwise use memsize.
+	  If in some modes which barely fit the memory you see garbage
+	  at the bottom this might help by not letting change to that mode
+	  anymore.
 
 nativex - the width in pixels of the flat panel.If you know it (usually 1024
 	  800 or 1280) and it is not what the driver seems to detect use it.
 
-bpp  - bits per pixel (8,16 or 32)
-mode - a mode name like 800x600 (as described in Documentation/fb/modedb.txt)
+bpp	- bits per pixel (8,16 or 32)
+mode	- a mode name like 800x600-8@75 as described in
+	  Documentation/fb/modedb.txt
 
 Using insane values for the above parameters will probably result in driver
 misbehaviour so take care(for instance memsize=12345678 or memdiff=23784 or

+ 53 - 23
Documentation/feature-removal-schedule.txt

@@ -47,6 +47,30 @@ Who:	Mauro Carvalho Chehab <mchehab@infradead.org>
 
 ---------------------------
 
+What:	old tuner-3036 i2c driver
+When:	2.6.28
+Why:	This driver is for VERY old i2c-over-parallel port teletext receiver
+	boxes. Rather then spending effort on converting this driver to V4L2,
+	and since it is extremely unlikely that anyone still uses one of these
+	devices, it was decided to drop it.
+Who:	Hans Verkuil <hverkuil@xs4all.nl>
+	Mauro Carvalho Chehab <mchehab@infradead.org>
+
+ ---------------------------
+
+What:   V4L2 dpc7146 driver
+When:   2.6.28
+Why:    Old driver for the dpc7146 demonstration board that is no longer
+	relevant. The last time this was tested on actual hardware was
+	probably around 2002. Since this is a driver for a demonstration
+	board the decision was made to remove it rather than spending a
+	lot of effort continually updating this driver to stay in sync
+	with the latest internal V4L2 or I2C API.
+Who:    Hans Verkuil <hverkuil@xs4all.nl>
+	Mauro Carvalho Chehab <mchehab@infradead.org>
+
+---------------------------
+
 What:	PCMCIA control ioctl (needed for pcmcia-cs [cardmgr, cardctl])
 When:	November 2005
 Files:	drivers/pcmcia/: pcmcia_ioctl.c
@@ -138,24 +162,6 @@ Who:	Kay Sievers <kay.sievers@suse.de>
 
 ---------------------------
 
-What:	find_task_by_pid
-When:	2.6.26
-Why:	With pid namespaces, calling this funciton will return the
-	wrong task when called from inside a namespace.
-
-	The best way to save a task pid and find a task by this
-	pid later, is to find this task's struct pid pointer (or get
-	it directly from the task) and call pid_task() later.
-
-	If someone really needs to get a task by its pid_t, then
-	he most likely needs the find_task_by_vpid() to get the
-	task from the same namespace as the current task is in, but
-	this may be not so in general.
-
-Who:	Pavel Emelyanov <xemul@openvz.org>
-
----------------------------
-
 What:	ACPI procfs interface
 When:	July 2008
 Why:	ACPI sysfs conversion should be finished by January 2008.
@@ -300,11 +306,15 @@ Who:	ocfs2-devel@oss.oracle.com
 
 ---------------------------
 
-What:	asm/semaphore.h
-When:	2.6.26
-Why:	Implementation became generic; users should now include
-	linux/semaphore.h instead.
-Who:	Matthew Wilcox <willy@linux.intel.com>
+What:	SCTP_GET_PEER_ADDRS_NUM_OLD, SCTP_GET_PEER_ADDRS_OLD,
+	SCTP_GET_LOCAL_ADDRS_NUM_OLD, SCTP_GET_LOCAL_ADDRS_OLD
+When: 	June 2009
+Why:    A newer version of the options have been introduced in 2005 that
+	removes the limitions of the old API.  The sctp library has been
+        converted to use these new options at the same time.  Any user
+	space app that directly uses the old options should convert to using
+	the new options.
+Who:	Vlad Yasevich <vladislav.yasevich@hp.com>
 
 ---------------------------
 
@@ -314,3 +324,23 @@ Why:	This option was introduced just to allow older lm-sensors userspace
 	to keep working over the upgrade to 2.6.26. At the scheduled time of
 	removal fixed lm-sensors (2.x or 3.x) should be readily available.
 Who:	Rene Herman <rene.herman@gmail.com>
+
+---------------------------
+
+What:	Code that is now under CONFIG_WIRELESS_EXT_SYSFS
+	(in net/core/net-sysfs.c)
+When:	After the only user (hal) has seen a release with the patches
+	for enough time, probably some time in 2010.
+Why:	Over 1K .text/.data size reduction, data is available in other
+	ways (ioctls)
+Who:	Johannes Berg <johannes@sipsolutions.net>
+
+---------------------------
+
+What: CONFIG_NF_CT_ACCT
+When: 2.6.29
+Why:  Accounting can now be enabled/disabled without kernel recompilation.
+      Currently used only to set a default value for a feature that is also
+      controlled by a kernel/module/sysfs/sysctl parameter.
+Who:  Krzysztof Piotr Oledzki <ole@ans.pl>
+

+ 7 - 0
Documentation/filesystems/Locking

@@ -510,6 +510,7 @@ prototypes:
 	void (*close)(struct vm_area_struct*);
 	int (*fault)(struct vm_area_struct*, struct vm_fault *);
 	int (*page_mkwrite)(struct vm_area_struct *, struct page *);
+	int (*access)(struct vm_area_struct *, unsigned long, void*, int, int);
 
 locking rules:
 		BKL	mmap_sem	PageLocked(page)
@@ -517,6 +518,7 @@ open:		no	yes
 close:		no	yes
 fault:		no	yes
 page_mkwrite:	no	yes		no
+access:		no	yes
 
 	->page_mkwrite() is called when a previously read-only page is
 about to become writeable. The file system is responsible for
@@ -525,6 +527,11 @@ taking to lock out truncate, the page range should be verified to be
 within i_size. The page mapping should also be checked that it is not
 NULL.
 
+	->access() is called when get_user_pages() fails in
+acces_process_vm(), typically used to debug a process through
+/proc/pid/mem or ptrace.  This function is needed only for
+VM_IO | VM_PFNMAP VMAs.
+
 ================================================================================
 			Dubious stuff
 

+ 5 - 5
Documentation/filesystems/bfs.txt

@@ -26,11 +26,11 @@ You can simplify mounting by just typing:
 
 this will allocate the first available loopback device (and load loop.o 
 kernel module if necessary) automatically. If the loopback driver is not
-loaded automatically, make sure that your kernel is compiled with kmod 
-support (CONFIG_KMOD) enabled. Beware that umount will not
-deallocate /dev/loopN device if /etc/mtab file on your system is a
-symbolic link to /proc/mounts. You will need to do it manually using
-"-d" switch of losetup(8). Read losetup(8) manpage for more info.
+loaded automatically, make sure that you have compiled the module and
+that modprobe is functioning. Beware that umount will not deallocate
+/dev/loopN device if /etc/mtab file on your system is a symbolic link to
+/proc/mounts. You will need to do it manually using "-d" switch of
+losetup(8). Read losetup(8) manpage for more info.
 
 To create the BFS image under UnixWare you need to find out first which
 slice contains it. The command prtvtoc(1M) is your friend:

+ 4 - 6
Documentation/filesystems/configfs/configfs.txt

@@ -233,12 +233,10 @@ accomplished via the group operations specified on the group's
 config_item_type.
 
 	struct configfs_group_operations {
-		int (*make_item)(struct config_group *group,
-				 const char *name,
-				 struct config_item **new_item);
-		int (*make_group)(struct config_group *group,
-				  const char *name,
-				  struct config_group **new_group);
+		struct config_item *(*make_item)(struct config_group *group,
+						 const char *name);
+		struct config_group *(*make_group)(struct config_group *group,
+						   const char *name);
 		int (*commit_item)(struct config_item *item);
 		void (*disconnect_notify)(struct config_group *group,
 					  struct config_item *item);

+ 6 - 8
Documentation/filesystems/configfs/configfs_example.c

@@ -273,13 +273,13 @@ static inline struct simple_children *to_simple_children(struct config_item *ite
 	return item ? container_of(to_config_group(item), struct simple_children, group) : NULL;
 }
 
-static int simple_children_make_item(struct config_group *group, const char *name, struct config_item **new_item)
+static struct config_item *simple_children_make_item(struct config_group *group, const char *name)
 {
 	struct simple_child *simple_child;
 
 	simple_child = kzalloc(sizeof(struct simple_child), GFP_KERNEL);
 	if (!simple_child)
-		return -ENOMEM;
+		return ERR_PTR(-ENOMEM);
 
 
 	config_item_init_type_name(&simple_child->item, name,
@@ -287,8 +287,7 @@ static int simple_children_make_item(struct config_group *group, const char *nam
 
 	simple_child->storeme = 0;
 
-	*new_item = &simple_child->item;
-	return 0;
+	return &simple_child->item;
 }
 
 static struct configfs_attribute simple_children_attr_description = {
@@ -360,21 +359,20 @@ static struct configfs_subsystem simple_children_subsys = {
  * children of its own.
  */
 
-static int group_children_make_group(struct config_group *group, const char *name, struct config_group **new_group)
+static struct config_group *group_children_make_group(struct config_group *group, const char *name)
 {
 	struct simple_children *simple_children;
 
 	simple_children = kzalloc(sizeof(struct simple_children),
 				  GFP_KERNEL);
 	if (!simple_children)
-		return -ENOMEM;
+		return ERR_PTR(-ENOMEM);
 
 
 	config_group_init_type_name(&simple_children->group, name,
 				    &simple_children_type);
 
-	*new_group = &simple_children->group;
-	return 0;
+	return &simple_children->group;
 }
 
 static struct configfs_attribute group_children_attr_description = {

+ 59 - 44
Documentation/filesystems/nfs-rdma.txt

@@ -5,7 +5,7 @@
 ################################################################################
 
  Author: NetApp and Open Grid Computing
- Date: April 15, 2008
+ Date: May 29, 2008
 
 Table of Contents
 ~~~~~~~~~~~~~~~~~
@@ -60,16 +60,18 @@ Installation
     The procedures described in this document have been tested with
     distributions from Red Hat's Fedora Project (http://fedora.redhat.com/).
 
-  - Install nfs-utils-1.1.1 or greater on the client
+  - Install nfs-utils-1.1.2 or greater on the client
 
-    An NFS/RDMA mount point can only be obtained by using the mount.nfs
-    command in nfs-utils-1.1.1 or greater. To see which version of mount.nfs
-    you are using, type:
+    An NFS/RDMA mount point can be obtained by using the mount.nfs command in
+    nfs-utils-1.1.2 or greater (nfs-utils-1.1.1 was the first nfs-utils
+    version with support for NFS/RDMA mounts, but for various reasons we
+    recommend using nfs-utils-1.1.2 or greater). To see which version of
+    mount.nfs you are using, type:
 
-    > /sbin/mount.nfs -V
+    $ /sbin/mount.nfs -V
 
-    If the version is less than 1.1.1 or the command does not exist,
-    then you will need to install the latest version of nfs-utils.
+    If the version is less than 1.1.2 or the command does not exist,
+    you should install the latest version of nfs-utils.
 
     Download the latest package from:
 
@@ -77,22 +79,33 @@ Installation
 
     Uncompress the package and follow the installation instructions.
 
-    If you will not be using GSS and NFSv4, the installation process
-    can be simplified by disabling these features when running configure:
+    If you will not need the idmapper and gssd executables (you do not need
+    these to create an NFS/RDMA enabled mount command), the installation
+    process can be simplified by disabling these features when running
+    configure:
 
-    > ./configure --disable-gss --disable-nfsv4
+    $ ./configure --disable-gss --disable-nfsv4
 
-    For more information on this see the package's README and INSTALL files.
+    To build nfs-utils you will need the tcp_wrappers package installed. For
+    more information on this see the package's README and INSTALL files.
 
     After building the nfs-utils package, there will be a mount.nfs binary in
     the utils/mount directory. This binary can be used to initiate NFS v2, v3,
-    or v4 mounts. To initiate a v4 mount, the binary must be called mount.nfs4.
-    The standard technique is to create a symlink called mount.nfs4 to mount.nfs.
+    or v4 mounts. To initiate a v4 mount, the binary must be called
+    mount.nfs4.  The standard technique is to create a symlink called
+    mount.nfs4 to mount.nfs.
 
-    NOTE: mount.nfs and therefore nfs-utils-1.1.1 or greater is only needed
+    This mount.nfs binary should be installed at /sbin/mount.nfs as follows:
+
+    $ sudo cp utils/mount/mount.nfs /sbin/mount.nfs
+
+    In this location, mount.nfs will be invoked automatically for NFS mounts
+    by the system mount commmand.
+
+    NOTE: mount.nfs and therefore nfs-utils-1.1.2 or greater is only needed
     on the NFS client machine. You do not need this specific version of
     nfs-utils on the server. Furthermore, only the mount.nfs command from
-    nfs-utils-1.1.1 is needed on the client.
+    nfs-utils-1.1.2 is needed on the client.
 
   - Install a Linux kernel with NFS/RDMA
 
@@ -156,8 +169,8 @@ Check RDMA and NFS Setup
     this time. For example, if you are using a Mellanox Tavor/Sinai/Arbel
     card:
 
-    > modprobe ib_mthca
-    > modprobe ib_ipoib
+    $ modprobe ib_mthca
+    $ modprobe ib_ipoib
 
     If you are using InfiniBand, make sure there is a Subnet Manager (SM)
     running on the network. If your IB switch has an embedded SM, you can
@@ -166,7 +179,7 @@ Check RDMA and NFS Setup
 
     If an SM is running on your network, you should see the following:
 
-    > cat /sys/class/infiniband/driverX/ports/1/state
+    $ cat /sys/class/infiniband/driverX/ports/1/state
     4: ACTIVE
 
     where driverX is mthca0, ipath5, ehca3, etc.
@@ -174,10 +187,10 @@ Check RDMA and NFS Setup
     To further test the InfiniBand software stack, use IPoIB (this
     assumes you have two IB hosts named host1 and host2):
 
-    host1> ifconfig ib0 a.b.c.x
-    host2> ifconfig ib0 a.b.c.y
-    host1> ping a.b.c.y
-    host2> ping a.b.c.x
+    host1$ ifconfig ib0 a.b.c.x
+    host2$ ifconfig ib0 a.b.c.y
+    host1$ ping a.b.c.y
+    host2$ ping a.b.c.x
 
     For other device types, follow the appropriate procedures.
 
@@ -202,11 +215,11 @@ NFS/RDMA Setup
     /vol0   192.168.0.47(fsid=0,rw,async,insecure,no_root_squash)
     /vol0   192.168.0.0/255.255.255.0(fsid=0,rw,async,insecure,no_root_squash)
 
-    The IP address(es) is(are) the client's IPoIB address for an InfiniBand HCA or the
-    cleint's iWARP address(es) for an RNIC.
+    The IP address(es) is(are) the client's IPoIB address for an InfiniBand
+    HCA or the cleint's iWARP address(es) for an RNIC.
 
-    NOTE: The "insecure" option must be used because the NFS/RDMA client does not
-    use a reserved port.
+    NOTE: The "insecure" option must be used because the NFS/RDMA client does
+    not use a reserved port.
 
  Each time a machine boots:
 
@@ -214,43 +227,45 @@ NFS/RDMA Setup
 
     For InfiniBand using a Mellanox adapter:
 
-    > modprobe ib_mthca
-    > modprobe ib_ipoib
-    > ifconfig ib0 a.b.c.d
+    $ modprobe ib_mthca
+    $ modprobe ib_ipoib
+    $ ifconfig ib0 a.b.c.d
 
     NOTE: use unique addresses for the client and server
 
   - Start the NFS server
 
-    If the NFS/RDMA server was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in kernel config),
-    load the RDMA transport module:
+    If the NFS/RDMA server was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in
+    kernel config), load the RDMA transport module:
 
-    > modprobe svcrdma
+    $ modprobe svcrdma
 
-    Regardless of how the server was built (module or built-in), start the server:
+    Regardless of how the server was built (module or built-in), start the
+    server:
 
-    > /etc/init.d/nfs start
+    $ /etc/init.d/nfs start
 
     or
 
-    > service nfs start
+    $ service nfs start
 
     Instruct the server to listen on the RDMA transport:
 
-    > echo rdma 2050 > /proc/fs/nfsd/portlist
+    $ echo rdma 2050 > /proc/fs/nfsd/portlist
 
   - On the client system
 
-    If the NFS/RDMA client was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in kernel config),
-    load the RDMA client module:
+    If the NFS/RDMA client was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in
+    kernel config), load the RDMA client module:
 
-    > modprobe xprtrdma.ko
+    $ modprobe xprtrdma.ko
 
-    Regardless of how the client was built (module or built-in), issue the mount.nfs command:
+    Regardless of how the client was built (module or built-in), use this
+    command to mount the NFS/RDMA server:
 
-    > /path/to/your/mount.nfs <IPoIB-server-name-or-address>:/<export> /mnt -i -o rdma,port=2050
+    $ mount -o rdma,port=2050 <IPoIB-server-name-or-address>:/<export> /mnt
 
-    To verify that the mount is using RDMA, run "cat /proc/mounts" and check the
-    "proto" field for the given mount.
+    To verify that the mount is using RDMA, run "cat /proc/mounts" and check
+    the "proto" field for the given mount.
 
   Congratulations! You're using NFS/RDMA!

+ 106 - 0
Documentation/filesystems/omfs.txt

@@ -0,0 +1,106 @@
+Optimized MPEG Filesystem (OMFS)
+
+Overview
+========
+
+OMFS is a filesystem created by SonicBlue for use in the ReplayTV DVR
+and Rio Karma MP3 player.  The filesystem is extent-based, utilizing
+block sizes from 2k to 8k, with hash-based directories.  This
+filesystem driver may be used to read and write disks from these
+devices.
+
+Note, it is not recommended that this FS be used in place of a general
+filesystem for your own streaming media device.  Native Linux filesystems
+will likely perform better.
+
+More information is available at:
+
+    http://linux-karma.sf.net/
+
+Various utilities, including mkomfs and omfsck, are included with
+omfsprogs, available at:
+
+    http://bobcopeland.com/karma/
+
+Instructions are included in its README.
+
+Options
+=======
+
+OMFS supports the following mount-time options:
+
+    uid=n        - make all files owned by specified user
+    gid=n        - make all files owned by specified group
+    umask=xxx    - set permission umask to xxx
+    fmask=xxx    - set umask to xxx for files
+    dmask=xxx    - set umask to xxx for directories
+
+Disk format
+===========
+
+OMFS discriminates between "sysblocks" and normal data blocks.  The sysblock
+group consists of super block information, file metadata, directory structures,
+and extents.  Each sysblock has a header containing CRCs of the entire
+sysblock, and may be mirrored in successive blocks on the disk.  A sysblock may
+have a smaller size than a data block, but since they are both addressed by the
+same 64-bit block number, any remaining space in the smaller sysblock is
+unused.
+
+Sysblock header information:
+
+struct omfs_header {
+        __be64 h_self;                  /* FS block where this is located */
+        __be32 h_body_size;             /* size of useful data after header */
+        __be16 h_crc;                   /* crc-ccitt of body_size bytes */
+        char h_fill1[2];
+        u8 h_version;                   /* version, always 1 */
+        char h_type;                    /* OMFS_INODE_X */
+        u8 h_magic;                     /* OMFS_IMAGIC */
+        u8 h_check_xor;                 /* XOR of header bytes before this */
+        __be32 h_fill2;
+};
+
+Files and directories are both represented by omfs_inode:
+
+struct omfs_inode {
+        struct omfs_header i_head;      /* header */
+        __be64 i_parent;                /* parent containing this inode */
+        __be64 i_sibling;               /* next inode in hash bucket */
+        __be64 i_ctime;                 /* ctime, in milliseconds */
+        char i_fill1[35];
+        char i_type;                    /* OMFS_[DIR,FILE] */
+        __be32 i_fill2;
+        char i_fill3[64];
+        char i_name[OMFS_NAMELEN];      /* filename */
+        __be64 i_size;                  /* size of file, in bytes */
+};
+
+Directories in OMFS are implemented as a large hash table.  Filenames are
+hashed then prepended into the bucket list beginning at OMFS_DIR_START.
+Lookup requires hashing the filename, then seeking across i_sibling pointers
+until a match is found on i_name.  Empty buckets are represented by block
+pointers with all-1s (~0).
+
+A file is an omfs_inode structure followed by an extent table beginning at
+OMFS_EXTENT_START:
+
+struct omfs_extent_entry {
+        __be64 e_cluster;               /* start location of a set of blocks */
+        __be64 e_blocks;                /* number of blocks after e_cluster */
+};
+
+struct omfs_extent {
+        __be64 e_next;                  /* next extent table location */
+        __be32 e_extent_count;          /* total # extents in this table */
+        __be32 e_fill;
+        struct omfs_extent_entry e_entry;       /* start of extent entries */
+};
+
+Each extent holds the block offset followed by number of blocks allocated to
+the extent.  The final extent in each table is a terminator with e_cluster
+being ~0 and e_blocks being ones'-complement of the total number of blocks
+in the table.
+
+If this table overflows, a continuation inode is written and pointed to by
+e_next.  These have a header but lack the rest of the inode structure.
+

+ 46 - 2
Documentation/filesystems/proc.txt

@@ -296,6 +296,7 @@ Table 1-4: Kernel info in /proc
  uptime      System uptime                                     
  version     Kernel version                                    
  video	     bttv info of video resources			(2.4)
+ vmallocinfo Show vmalloced areas
 ..............................................................................
 
 You can,  for  example,  check  which interrupts are currently in use and what
@@ -557,6 +558,49 @@ VmallocTotal: total size of vmalloc memory area
  VmallocUsed: amount of vmalloc area which is used
 VmallocChunk: largest contigious block of vmalloc area which is free
 
+..............................................................................
+
+vmallocinfo:
+
+Provides information about vmalloced/vmaped areas. One line per area,
+containing the virtual address range of the area, size in bytes,
+caller information of the creator, and optional information depending
+on the kind of area :
+
+ pages=nr    number of pages
+ phys=addr   if a physical address was specified
+ ioremap     I/O mapping (ioremap() and friends)
+ vmalloc     vmalloc() area
+ vmap        vmap()ed pages
+ user        VM_USERMAP area
+ vpages      buffer for pages pointers was vmalloced (huge area)
+ N<node>=nr  (Only on NUMA kernels)
+             Number of pages allocated on memory node <node>
+
+> cat /proc/vmallocinfo
+0xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204 ...
+  /0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128
+0xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204 ...
+  /0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64
+0xffffc20000302000-0xffffc20000304000    8192 acpi_tb_verify_table+0x21/0x4f...
+  phys=7fee8000 ioremap
+0xffffc20000304000-0xffffc20000307000   12288 acpi_tb_verify_table+0x21/0x4f...
+  phys=7fee7000 ioremap
+0xffffc2000031d000-0xffffc2000031f000    8192 init_vdso_vars+0x112/0x210
+0xffffc2000031f000-0xffffc2000032b000   49152 cramfs_uncompress_init+0x2e ...
+  /0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3
+0xffffc2000033a000-0xffffc2000033d000   12288 sys_swapon+0x640/0xac0      ...
+  pages=2 vmalloc N1=2
+0xffffc20000347000-0xffffc2000034c000   20480 xt_alloc_table_info+0xfe ...
+  /0x130 [x_tables] pages=4 vmalloc N0=4
+0xffffffffa0000000-0xffffffffa000f000   61440 sys_init_module+0xc27/0x1d00 ...
+   pages=14 vmalloc N2=14
+0xffffffffa000f000-0xffffffffa0014000   20480 sys_init_module+0xc27/0x1d00 ...
+   pages=4 vmalloc N1=4
+0xffffffffa0014000-0xffffffffa0017000   12288 sys_init_module+0xc27/0x1d00 ...
+   pages=2 vmalloc N1=2
+0xffffffffa0017000-0xffffffffa0022000   45056 sys_init_module+0xc27/0x1d00 ...
+   pages=10 vmalloc N0=10
 
 1.3 IDE devices in /proc/ide
 ----------------------------
@@ -887,7 +931,7 @@ group_prealloc  max_to_scan  mb_groups  mb_history  min_to_scan  order2_req
 stats  stream_req
 
 mb_groups:
-This file gives the details of mutiblock allocator buddy cache of free blocks
+This file gives the details of multiblock allocator buddy cache of free blocks
 
 mb_history:
 Multiblock allocation history.
@@ -1430,7 +1474,7 @@ used because pages_free(1355) is smaller than watermark + protection[2]
 normal page requirement. If requirement is DMA zone(index=0), protection[0]
 (=0) is used.
 
-zone[i]'s protection[j] is calculated by following exprssion.
+zone[i]'s protection[j] is calculated by following expression.
 
 (i < j):
   zone[i]->protection[j]

+ 10 - 0
Documentation/filesystems/relay.txt

@@ -294,6 +294,16 @@ user-defined data with a channel, and is immediately available
 (including in create_buf_file()) via chan->private_data or
 buf->chan->private_data.
 
+Buffer-only channels
+--------------------
+
+These channels have no files associated and can be created with
+relay_open(NULL, NULL, ...). Such channels are useful in scenarios such
+as when doing early tracing in the kernel, before the VFS is up. In these
+cases, one may open a buffer-only channel and then call
+relay_late_setup_files() when the kernel is ready to handle files,
+to expose the buffered data to the userspace.
+
 Channel 'modes'
 ---------------
 

+ 6 - 0
Documentation/filesystems/sysfs.txt

@@ -248,6 +248,7 @@ The top level sysfs directory looks like:
 block/
 bus/
 class/
+dev/
 devices/
 firmware/
 net/
@@ -274,6 +275,11 @@ fs/ contains a directory for some filesystems.  Currently each
 filesystem wanting to export attributes must create its own hierarchy
 below fs/ (see ./fuse.txt for an example).
 
+dev/ contains two directories char/ and block/. Inside these two
+directories there are symlinks named <major>:<minor>.  These symlinks
+point to the sysfs directory for the given device.  /sys/dev provides a
+quick way to lookup the sysfs interface for a device from the result of
+a stat(2) operation.
 
 More information can driver-model specific features can be found in
 Documentation/driver-model/. 

+ 8 - 0
Documentation/filesystems/vfat.txt

@@ -96,6 +96,14 @@ shortname=lower|win95|winnt|mixed
 			emulate the Windows 95 rule for create.
 		 Default setting is `lower'.
 
+tz=UTC        -- Interpret timestamps as UTC rather than local time.
+                 This option disables the conversion of timestamps
+                 between local time (as used by Windows on FAT) and UTC
+                 (which Linux uses internally).  This is particuluarly
+                 useful when mounting devices (like digital cameras)
+                 that are set to UTC in order to avoid the pitfalls of
+                 local time.
+
 <bool>: 0,1,yes,no,true,false
 
 TODO

+ 3 - 3
Documentation/filesystems/vfs.txt

@@ -143,7 +143,7 @@ struct file_system_type {
 
 The get_sb() method has the following arguments:
 
-  struct file_system_type *fs_type: decribes the filesystem, partly initialized
+  struct file_system_type *fs_type: describes the filesystem, partly initialized
   	by the specific filesystem code
 
   int flags: mount flags
@@ -895,9 +895,9 @@ struct dentry_operations {
 	iput() yourself
 
   d_dname: called when the pathname of a dentry should be generated.
-	Usefull for some pseudo filesystems (sockfs, pipefs, ...) to delay
+	Useful for some pseudo filesystems (sockfs, pipefs, ...) to delay
 	pathname generation. (Instead of doing it when dentry is created,
-	its done only when the path is needed.). Real filesystems probably
+	it's done only when the path is needed.). Real filesystems probably
 	dont want to use it, because their dentries are present in global
 	dcache hash, so their hash should be an invariant. As no lock is
 	held, d_dname() should not try to modify the dentry itself, unless

+ 129 - 6
Documentation/gpio.txt

@@ -347,15 +347,12 @@ necessarily be nonportable.
 Dynamic definition of GPIOs is not currently standard; for example, as
 a side effect of configuring an add-on board with some GPIO expanders.
 
-These calls are purely for kernel space, but a userspace API could be built
-on top of them.
-
 
 GPIO implementor's framework (OPTIONAL)
 =======================================
 As noted earlier, there is an optional implementation framework making it
 easier for platforms to support different kinds of GPIO controller using
-the same programming interface.
+the same programming interface.  This framework is called "gpiolib".
 
 As a debugging aid, if debugfs is available a /sys/kernel/debug/gpio file
 will be found there.  That will list all the controllers registered through
@@ -392,11 +389,21 @@ either NULL or the label associated with that GPIO when it was requested.
 
 Platform Support
 ----------------
-To support this framework, a platform's Kconfig will "select HAVE_GPIO_LIB"
+To support this framework, a platform's Kconfig will "select" either
+ARCH_REQUIRE_GPIOLIB or ARCH_WANT_OPTIONAL_GPIOLIB
 and arrange that its <asm/gpio.h> includes <asm-generic/gpio.h> and defines
 three functions: gpio_get_value(), gpio_set_value(), and gpio_cansleep().
 They may also want to provide a custom value for ARCH_NR_GPIOS.
 
+ARCH_REQUIRE_GPIOLIB means that the gpio-lib code will always get compiled
+into the kernel on that architecture.
+
+ARCH_WANT_OPTIONAL_GPIOLIB means the gpio-lib code defaults to off and the user
+can enable it and build it into the kernel optionally.
+
+If neither of these options are selected, the platform does not support
+GPIOs through GPIO-lib and the code cannot be enabled by the user.
+
 Trivial implementations of those functions can directly use framework
 code, which always dispatches through the gpio_chip:
 
@@ -439,4 +446,120 @@ becomes available.  That may mean the device should not be registered until
 calls for that GPIO can work.  One way to address such dependencies is for
 such gpio_chip controllers to provide setup() and teardown() callbacks to
 board specific code; those board specific callbacks would register devices
-once all the necessary resources are available.
+once all the necessary resources are available, and remove them later when
+the GPIO controller device becomes unavailable.
+
+
+Sysfs Interface for Userspace (OPTIONAL)
+========================================
+Platforms which use the "gpiolib" implementors framework may choose to
+configure a sysfs user interface to GPIOs.  This is different from the
+debugfs interface, since it provides control over GPIO direction and
+value instead of just showing a gpio state summary.  Plus, it could be
+present on production systems without debugging support.
+
+Given approprate hardware documentation for the system, userspace could
+know for example that GPIO #23 controls the write protect line used to
+protect boot loader segments in flash memory.  System upgrade procedures
+may need to temporarily remove that protection, first importing a GPIO,
+then changing its output state, then updating the code before re-enabling
+the write protection.  In normal use, GPIO #23 would never be touched,
+and the kernel would have no need to know about it.
+
+Again depending on appropriate hardware documentation, on some systems
+userspace GPIO can be used to determine system configuration data that
+standard kernels won't know about.  And for some tasks, simple userspace
+GPIO drivers could be all that the system really needs.
+
+Note that standard kernel drivers exist for common "LEDs and Buttons"
+GPIO tasks:  "leds-gpio" and "gpio_keys", respectively.  Use those
+instead of talking directly to the GPIOs; they integrate with kernel
+frameworks better than your userspace code could.
+
+
+Paths in Sysfs
+--------------
+There are three kinds of entry in /sys/class/gpio:
+
+   -	Control interfaces used to get userspace control over GPIOs;
+
+   -	GPIOs themselves; and
+
+   -	GPIO controllers ("gpio_chip" instances).
+
+That's in addition to standard files including the "device" symlink.
+
+The control interfaces are write-only:
+
+    /sys/class/gpio/
+
+    	"export" ... Userspace may ask the kernel to export control of
+		a GPIO to userspace by writing its number to this file.
+
+		Example:  "echo 19 > export" will create a "gpio19" node
+		for GPIO #19, if that's not requested by kernel code.
+
+    	"unexport" ... Reverses the effect of exporting to userspace.
+
+		Example:  "echo 19 > unexport" will remove a "gpio19"
+		node exported using the "export" file.
+
+GPIO signals have paths like /sys/class/gpio/gpio42/ (for GPIO #42)
+and have the following read/write attributes:
+
+    /sys/class/gpio/gpioN/
+
+	"direction" ... reads as either "in" or "out".  This value may
+		normally be written.  Writing as "out" defaults to
+		initializing the value as low.  To ensure glitch free
+		operation, values "low" and "high" may be written to
+		configure the GPIO as an output with that initial value.
+
+		Note that this attribute *will not exist* if the kernel
+		doesn't support changing the direction of a GPIO, or
+		it was exported by kernel code that didn't explicitly
+		allow userspace to reconfigure this GPIO's direction.
+
+	"value" ... reads as either 0 (low) or 1 (high).  If the GPIO
+		is configured as an output, this value may be written;
+		any nonzero value is treated as high.
+
+GPIO controllers have paths like /sys/class/gpio/chipchip42/ (for the
+controller implementing GPIOs starting at #42) and have the following
+read-only attributes:
+
+    /sys/class/gpio/gpiochipN/
+
+    	"base" ... same as N, the first GPIO managed by this chip
+
+    	"label" ... provided for diagnostics (not always unique)
+
+    	"ngpio" ... how many GPIOs this manges (N to N + ngpio - 1)
+
+Board documentation should in most cases cover what GPIOs are used for
+what purposes.  However, those numbers are not always stable; GPIOs on
+a daughtercard might be different depending on the base board being used,
+or other cards in the stack.  In such cases, you may need to use the
+gpiochip nodes (possibly in conjunction with schematics) to determine
+the correct GPIO number to use for a given signal.
+
+
+Exporting from Kernel code
+--------------------------
+Kernel code can explicitly manage exports of GPIOs which have already been
+requested using gpio_request():
+
+	/* export the GPIO to userspace */
+	int gpio_export(unsigned gpio, bool direction_may_change);
+
+	/* reverse gpio_export() */
+	void gpio_unexport();
+
+After a kernel driver requests a GPIO, it may only be made available in
+the sysfs interface by gpio_export().  The driver can control whether the
+signal direction may change.  This helps drivers prevent userspace code
+from accidentally clobbering important system state.
+
+This explicit exporting can help with debugging (by making some kinds
+of experiments easier), or can provide an always-there interface that's
+suitable for documenting as part of a board support package.

+ 281 - 0
Documentation/i2c/upgrading-clients

@@ -0,0 +1,281 @@
+Upgrading I2C Drivers to the new 2.6 Driver Model
+=================================================
+
+Ben Dooks <ben-linux@fluff.org>
+
+Introduction
+------------
+
+This guide outlines how to alter existing Linux 2.6 client drivers from
+the old to the new new binding methods.
+
+
+Example old-style driver
+------------------------
+
+
+struct example_state {
+	struct i2c_client	client;
+	....
+};
+
+static struct i2c_driver example_driver;
+
+static unsigned short ignore[] = { I2C_CLIENT_END };
+static unsigned short normal_addr[] = { OUR_ADDR, I2C_CLIENT_END };
+
+I2C_CLIENT_INSMOD;
+
+static int example_attach(struct i2c_adapter *adap, int addr, int kind)
+{
+	struct example_state *state;
+	struct device *dev = &adap->dev;  /* to use for dev_ reports */
+	int ret;
+
+	state = kzalloc(sizeof(struct example_state), GFP_KERNEL);
+	if (state == NULL) {
+		dev_err(dev, "failed to create our state\n");
+		return -ENOMEM;
+	}
+
+	example->client.addr    = addr;
+	example->client.flags   = 0;
+	example->client.adapter = adap;
+
+	i2c_set_clientdata(&state->i2c_client, state);
+	strlcpy(client->i2c_client.name, "example", I2C_NAME_SIZE);
+
+	ret = i2c_attach_client(&state->i2c_client);
+	if (ret < 0) {
+		dev_err(dev, "failed to attach client\n");
+		kfree(state);
+		return ret;
+	}
+
+	dev = &state->i2c_client.dev;
+
+	/* rest of the initialisation goes here. */
+
+	dev_info(dev, "example client created\n");
+
+	return 0;
+}
+
+static int __devexit example_detach(struct i2c_client *client)
+{
+	struct example_state *state = i2c_get_clientdata(client);
+
+	i2c_detach_client(client);
+	kfree(state);
+	return 0;
+}
+
+static int example_attach_adapter(struct i2c_adapter *adap)
+{
+	return i2c_probe(adap, &addr_data, example_attach);
+}
+
+static struct i2c_driver example_driver = {
+ 	.driver		= {
+		.owner		= THIS_MODULE,
+		.name		= "example",
+	},
+	.attach_adapter = example_attach_adapter,
+	.detach_client	= __devexit_p(example_detach),
+	.suspend	= example_suspend,
+	.resume		= example_resume,
+};
+
+
+Updating the client
+-------------------
+
+The new style binding model will check against a list of supported
+devices and their associated address supplied by the code registering
+the busses. This means that the driver .attach_adapter and
+.detach_adapter methods can be removed, along with the addr_data,
+as follows:
+
+- static struct i2c_driver example_driver;
+
+- static unsigned short ignore[] = { I2C_CLIENT_END };
+- static unsigned short normal_addr[] = { OUR_ADDR, I2C_CLIENT_END };
+
+- I2C_CLIENT_INSMOD;
+
+- static int example_attach_adapter(struct i2c_adapter *adap)
+- {
+- 	return i2c_probe(adap, &addr_data, example_attach);
+- }
+
+ static struct i2c_driver example_driver = {
+-	.attach_adapter = example_attach_adapter,
+-	.detach_client	= __devexit_p(example_detach),
+ }
+
+Add the probe and remove methods to the i2c_driver, as so:
+
+ static struct i2c_driver example_driver = {
++	.probe		= example_probe,
++	.remove		= __devexit_p(example_remove),
+ }
+
+Change the example_attach method to accept the new parameters
+which include the i2c_client that it will be working with:
+
+- static int example_attach(struct i2c_adapter *adap, int addr, int kind)
++ static int example_probe(struct i2c_client *client,
++			   const struct i2c_device_id *id)
+
+Change the name of example_attach to example_probe to align it with the
+i2c_driver entry names. The rest of the probe routine will now need to be
+changed as the i2c_client has already been setup for use.
+
+The necessary client fields have already been setup before
+the probe function is called, so the following client setup
+can be removed:
+
+-	example->client.addr    = addr;
+-	example->client.flags   = 0;
+-	example->client.adapter = adap;
+-
+-	strlcpy(client->i2c_client.name, "example", I2C_NAME_SIZE);
+
+The i2c_set_clientdata is now:
+
+-	i2c_set_clientdata(&state->client, state);
++	i2c_set_clientdata(client, state);
+
+The call to i2c_attach_client is no longer needed, if the probe
+routine exits successfully, then the driver will be automatically
+attached by the core. Change the probe routine as so:
+
+-	ret = i2c_attach_client(&state->i2c_client);
+-	if (ret < 0) {
+-		dev_err(dev, "failed to attach client\n");
+-		kfree(state);
+-		return ret;
+-	}
+
+
+Remove the storage of 'struct i2c_client' from the 'struct example_state'
+as we are provided with the i2c_client in our example_probe. Instead we
+store a pointer to it for when it is needed.
+
+struct example_state {
+-	struct i2c_client	client;
++	struct i2c_client	*client;
+
+the new i2c client as so:
+
+-	struct device *dev = &adap->dev;  /* to use for dev_ reports */
++ 	struct device *dev = &i2c_client->dev;  /* to use for dev_ reports */
+
+And remove the change after our client is attached, as the driver no
+longer needs to register a new client structure with the core:
+
+-	dev = &state->i2c_client.dev;
+
+In the probe routine, ensure that the new state has the client stored
+in it:
+
+static int example_probe(struct i2c_client *i2c_client,
+			 const struct i2c_device_id *id)
+{
+	struct example_state *state;
+ 	struct device *dev = &i2c_client->dev;
+	int ret;
+
+	state = kzalloc(sizeof(struct example_state), GFP_KERNEL);
+	if (state == NULL) {
+		dev_err(dev, "failed to create our state\n");
+		return -ENOMEM;
+	}
+
++	state->client = i2c_client;
+
+Update the detach method, by changing the name to _remove and
+to delete the i2c_detach_client call. It is possible that you
+can also remove the ret variable as it is not not needed for
+any of the core functions.
+
+- static int __devexit example_detach(struct i2c_client *client)
++ static int __devexit example_remove(struct i2c_client *client)
+{
+	struct example_state *state = i2c_get_clientdata(client);
+
+-	i2c_detach_client(client);
+
+And finally ensure that we have the correct ID table for the i2c-core
+and other utilities:
+
++ struct i2c_device_id example_idtable[] = {
++       { "example", 0 },
++       { }
++};
++
++MODULE_DEVICE_TABLE(i2c, example_idtable);
+
+static struct i2c_driver example_driver = {
+ 	.driver		= {
+		.owner		= THIS_MODULE,
+		.name		= "example",
+	},
++	.id_table	= example_ids,
+
+
+Our driver should now look like this:
+
+struct example_state {
+	struct i2c_client	*client;
+	....
+};
+
+static int example_probe(struct i2c_client *client,
+		     	 const struct i2c_device_id *id)
+{
+	struct example_state *state;
+	struct device *dev = &client->dev;
+
+	state = kzalloc(sizeof(struct example_state), GFP_KERNEL);
+	if (state == NULL) {
+		dev_err(dev, "failed to create our state\n");
+		return -ENOMEM;
+	}
+
+	state->client = client;
+	i2c_set_clientdata(client, state);
+
+	/* rest of the initialisation goes here. */
+
+	dev_info(dev, "example client created\n");
+
+	return 0;
+}
+
+static int __devexit example_remove(struct i2c_client *client)
+{
+	struct example_state *state = i2c_get_clientdata(client);
+
+	kfree(state);
+	return 0;
+}
+
+static struct i2c_device_id example_idtable[] = {
+	{ "example", 0 },
+	{ }
+};
+
+MODULE_DEVICE_TABLE(i2c, example_idtable);
+
+static struct i2c_driver example_driver = {
+ 	.driver		= {
+		.owner		= THIS_MODULE,
+		.name		= "example",
+	},
+	.id_table	= example_idtable,
+	.probe		= example_probe,
+	.remove		= __devexit_p(example_remove),
+	.suspend	= example_suspend,
+	.resume		= example_resume,
+};

+ 4 - 4
Documentation/ia64/kvm.txt

@@ -50,9 +50,9 @@ Note: For step 2, please make sure that host page size == TARGET_PAGE_SIZE of qe
 		/usr/local/bin/qemu-system-ia64 -smp xx -m 512 -hda $your_image
 		(xx is the number of virtual processors for the guest, now the maximum value is 4)
 
-5. Known possibile issue on some platforms with old Firmware.
+5. Known possible issue on some platforms with old Firmware.
 
-If meet strange host crashe issues, try to solve it through either of the following ways:
+In the event of strange host crash issues, try to solve it through either of the following ways:
 
 (1): Upgrade your Firmware to the latest one.
 
@@ -65,8 +65,8 @@ index 0b53344..f02b0f7 100644
 	mov ar.pfs = loc1
 	mov rp = loc0
 	;;
--	srlz.d				// seralize restoration of psr.l
-+	srlz.i			// seralize restoration of psr.l
+-	srlz.d				// serialize restoration of psr.l
++	srlz.i			// serialize restoration of psr.l
 +	;;
 	br.ret.sptk.many b0
  END(ia64_pal_call_static)

+ 137 - 0
Documentation/ia64/paravirt_ops.txt

@@ -0,0 +1,137 @@
+Paravirt_ops on IA64
+====================
+                          21 May 2008, Isaku Yamahata <yamahata@valinux.co.jp>
+
+
+Introduction
+------------
+The aim of this documentation is to help with maintainability and/or to
+encourage people to use paravirt_ops/IA64.
+
+paravirt_ops (pv_ops in short) is a way for virtualization support of
+Linux kernel on x86. Several ways for virtualization support were
+proposed, paravirt_ops is the winner.
+On the other hand, now there are also several IA64 virtualization
+technologies like kvm/IA64, xen/IA64 and many other academic IA64
+hypervisors so that it is good to add generic virtualization
+infrastructure on Linux/IA64.
+
+
+What is paravirt_ops?
+---------------------
+It has been developed on x86 as virtualization support via API, not ABI.
+It allows each hypervisor to override operations which are important for
+hypervisors at API level. And it allows a single kernel binary to run on
+all supported execution environments including native machine.
+Essentially paravirt_ops is a set of function pointers which represent
+operations corresponding to low level sensitive instructions and high
+level functionalities in various area. But one significant difference
+from usual function pointer table is that it allows optimization with
+binary patch. It is because some of these operations are very
+performance sensitive and indirect call overhead is not negligible.
+With binary patch, indirect C function call can be transformed into
+direct C function call or in-place execution to eliminate the overhead.
+
+Thus, operations of paravirt_ops are classified into three categories.
+- simple indirect call
+  These operations correspond to high level functionality so that the
+  overhead of indirect call isn't very important.
+
+- indirect call which allows optimization with binary patch
+  Usually these operations correspond to low level instructions. They
+  are called frequently and performance critical. So the overhead is
+  very important.
+
+- a set of macros for hand written assembly code
+  Hand written assembly codes (.S files) also need paravirtualization
+  because they include sensitive instructions or some of code paths in
+  them are very performance critical.
+
+
+The relation to the IA64 machine vector
+---------------------------------------
+Linux/IA64 has the IA64 machine vector functionality which allows the
+kernel to switch implementations (e.g. initialization, ipi, dma api...)
+depending on executing platform.
+We can replace some implementations very easily defining a new machine
+vector. Thus another approach for virtualization support would be
+enhancing the machine vector functionality.
+But paravirt_ops approach was taken because
+- virtualization support needs wider support than machine vector does.
+  e.g. low level instruction paravirtualization. It must be
+       initialized very early before platform detection.
+
+- virtualization support needs more functionality like binary patch.
+  Probably the calling overhead might not be very large compared to the
+  emulation overhead of virtualization. However in the native case, the
+  overhead should be eliminated completely.
+  A single kernel binary should run on each environment including native,
+  and the overhead of paravirt_ops on native environment should be as
+  small as possible.
+
+- for full virtualization technology, e.g. KVM/IA64 or
+  Xen/IA64 HVM domain, the result would be
+  (the emulated platform machine vector. probably dig) + (pv_ops).
+  This means that the virtualization support layer should be under
+  the machine vector layer.
+
+Possibly it might be better to move some function pointers from
+paravirt_ops to machine vector. In fact, Xen domU case utilizes both
+pv_ops and machine vector.
+
+
+IA64 paravirt_ops
+-----------------
+In this section, the concrete paravirt_ops will be discussed.
+Because of the architecture difference between ia64 and x86, the
+resulting set of functions is very different from x86 pv_ops.
+
+- C function pointer tables
+They are not very performance critical so that simple C indirect
+function call is acceptable. The following structures are defined at
+this moment. For details see linux/include/asm-ia64/paravirt.h
+  - struct pv_info
+    This structure describes the execution environment.
+  - struct pv_init_ops
+    This structure describes the various initialization hooks.
+  - struct pv_iosapic_ops
+    This structure describes hooks to iosapic operations.
+  - struct pv_irq_ops
+    This structure describes hooks to irq related operations
+  - struct pv_time_op
+    This structure describes hooks to steal time accounting.
+
+- a set of indirect calls which need optimization
+Currently this class of functions correspond to a subset of IA64
+intrinsics. At this moment the optimization with binary patch isn't
+implemented yet.
+struct pv_cpu_op is defined. For details see
+linux/include/asm-ia64/paravirt_privop.h
+Mostly they correspond to ia64 intrinsics 1-to-1.
+Caveat: Now they are defined as C indirect function pointers, but in
+order to support binary patch optimization, they will be changed
+using GCC extended inline assembly code.
+
+- a set of macros for hand written assembly code (.S files)
+For maintenance purpose, the taken approach for .S files is single
+source code and compile multiple times with different macros definitions.
+Each pv_ops instance must define those macros to compile.
+The important thing here is that sensitive, but non-privileged
+instructions must be paravirtualized and that some privileged
+instructions also need paravirtualization for reasonable performance.
+Developers who modify .S files must be aware of that. At this moment
+an easy checker is implemented to detect paravirtualization breakage.
+But it doesn't cover all the cases.
+
+Sometimes this set of macros is called pv_cpu_asm_op. But there is no
+corresponding structure in the source code.
+Those macros mostly 1:1 correspond to a subset of privileged
+instructions. See linux/include/asm-ia64/native/inst.h.
+And some functions written in assembly also need to be overrided so
+that each pv_ops instance have to define some macros. Again see
+linux/include/asm-ia64/native/inst.h.
+
+
+Those structures must be initialized very early before start_kernel.
+Probably initialized in head.S using multi entry point or some other trick.
+For native case implementation see linux/arch/ia64/kernel/paravirt.c.

+ 1 - 1
Documentation/input/cs461x.txt

@@ -31,7 +31,7 @@ The driver works with ALSA drivers simultaneously. For example, the xracer
 uses joystick as input device and PCM device as sound output in one time.
 There are no sound or input collisions detected. The source code have
 comments about them; but I've found the joystick can be initialized 
-separately of ALSA modules. So, you canm use only one joystick driver
+separately of ALSA modules. So, you can use only one joystick driver
 without ALSA drivers. The ALSA drivers are not needed to compile or
 run this driver.
 

+ 0 - 2
Documentation/input/gameport-programming.txt

@@ -1,5 +1,3 @@
-$Id: gameport-programming.txt,v 1.3 2001/04/24 13:51:37 vojtech Exp $
-
 Programming gameport drivers
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 

+ 0 - 1
Documentation/input/input.txt

@@ -1,7 +1,6 @@
 			  Linux Input drivers v1.0
 	       (c) 1999-2001 Vojtech Pavlik <vojtech@ucw.cz>
 			     Sponsored by SuSE
-	    $Id: input.txt,v 1.8 2002/05/29 03:15:01 bradleym Exp $
 ----------------------------------------------------------------------------
 
 0. Disclaimer

+ 0 - 2
Documentation/input/joystick-api.txt

@@ -5,8 +5,6 @@
 
 			      7 Aug 1998
 
-	$Id: joystick-api.txt,v 1.2 2001/05/08 21:21:23 vojtech Exp $
-
 1. Initialization
 ~~~~~~~~~~~~~~~~~
 

+ 0 - 1
Documentation/input/joystick-parport.txt

@@ -2,7 +2,6 @@
 	       (c) 1998-2000 Vojtech Pavlik <vojtech@ucw.cz>
 	       (c) 1998 Andree Borrmann <a.borrmann@tu-bs.de>
 			     Sponsored by SuSE
-	$Id: joystick-parport.txt,v 1.6 2001/09/25 09:31:32 vojtech Exp $
 ----------------------------------------------------------------------------
 
 0. Disclaimer

+ 0 - 1
Documentation/input/joystick.txt

@@ -1,7 +1,6 @@
 		       Linux Joystick driver v2.0.0
 	       (c) 1996-2000 Vojtech Pavlik <vojtech@ucw.cz>
 			     Sponsored by SuSE
-	   $Id: joystick.txt,v 1.12 2002/03/03 12:13:07 jdeneux Exp $
 ----------------------------------------------------------------------------
 
 0. Disclaimer

+ 2 - 2
Documentation/ioctl/ioctl-decoding.txt

@@ -1,6 +1,6 @@
 To decode a hex IOCTL code:
 
-Most architecures use this generic format, but check
+Most architectures use this generic format, but check
 include/ARCH/ioctl.h for specifics, e.g. powerpc
 uses 3 bits to encode read/write and 13 bits for size.
 
@@ -18,7 +18,7 @@ uses 3 bits to encode read/write and 13 bits for size.
  7-0	function #
 
 
- So for example 0x82187201 is a read with arg length of 0x218,
+So for example 0x82187201 is a read with arg length of 0x218,
 character 'r' function 1. Grepping the source reveals this is:
 
 #define VFAT_IOCTL_READDIR_BOTH         _IOR('r', 1, struct dirent [2])

+ 1 - 1
Documentation/iostats.txt

@@ -143,7 +143,7 @@ disk and partition statistics are consistent again. Since we still don't
 keep record of the partition-relative address, an operation is attributed to
 the partition which contains the first sector of the request after the
 eventual merges. As requests can be merged across partition, this could lead
-to some (probably insignificant) innacuracy.
+to some (probably insignificant) inaccuracy.
 
 Additional notes
 ----------------

+ 6 - 0
Documentation/isdn/README.mISDN

@@ -0,0 +1,6 @@
+mISDN is a new modular ISDN driver, in the long term it should replace
+the old I4L driver architecture for passiv ISDN cards.
+It was designed to allow a broad range of applications and interfaces
+but only have the basic function in kernel, the interface to the user
+space is based on sockets with a own address family AF_ISDN.
+

+ 50 - 12
Documentation/kernel-parameters.txt

@@ -87,7 +87,8 @@ parameter is applicable:
 	SH	SuperH architecture is enabled.
 	SMP	The kernel is an SMP kernel.
 	SPARC	Sparc architecture is enabled.
-	SWSUSP	Software suspend is enabled.
+	SWSUSP	Software suspend (hibernation) is enabled.
+	SUSPEND	System suspend states are enabled.
 	TS	Appropriate touchscreen support is enabled.
 	USB	USB support is enabled.
 	USBHID	USB Human Interface Device support is enabled.
@@ -147,10 +148,12 @@ and is between 256 and 4096 characters. It is defined in the file
 			default: 0
 
 	acpi_sleep=	[HW,ACPI] Sleep options
-			Format: { s3_bios, s3_mode, s3_beep, old_ordering }
+			Format: { s3_bios, s3_mode, s3_beep, s4_nohwsig, old_ordering }
 			See Documentation/power/video.txt for s3_bios and s3_mode.
 			s3_beep is for debugging; it makes the PC's speaker beep
 			as soon as the kernel's real-mode entry point is called.
+			s4_nohwsig prevents ACPI hardware signature from being
+			used during resume from hibernation.
 			old_ordering causes the ACPI 1.0 ordering of the _PTS
 			control method, wrt putting devices into low power
 			states, to be enforced (the ACPI 2.0 ordering of _PTS is
@@ -774,8 +777,22 @@ and is between 256 and 4096 characters. It is defined in the file
 	hisax=		[HW,ISDN]
 			See Documentation/isdn/README.HiSax.
 
-	hugepages=	[HW,X86-32,IA-64] Maximal number of HugeTLB pages.
-	hugepagesz=	[HW,IA-64,PPC] The size of the HugeTLB pages.
+	hugepages=	[HW,X86-32,IA-64] HugeTLB pages to allocate at boot.
+	hugepagesz=	[HW,IA-64,PPC,X86-64] The size of the HugeTLB pages.
+			On x86-64 and powerpc, this option can be specified
+			multiple times interleaved with hugepages= to reserve
+			huge pages of different sizes. Valid pages sizes on
+			x86-64 are 2M (when the CPU supports "pse") and 1G
+			(when the CPU supports the "pdpe1gb" cpuinfo flag)
+			Note that 1GB pages can only be allocated at boot time
+			using hugepages= and not freed afterwards.
+	default_hugepagesz=
+			[same as hugepagesz=] The size of the default
+			HugeTLB page size. This is the size represented by
+			the legacy /proc/ hugepages APIs, used for SHM, and
+			default size when mounting hugetlbfs filesystems.
+			Defaults to the default architecture's huge page size
+			if not specified.
 
 	i8042.direct	[HW] Put keyboard port into non-translated mode
 	i8042.dumbkbd	[HW] Pretend that controller can only read data from
@@ -1206,7 +1223,7 @@ and is between 256 and 4096 characters. It is defined in the file
 			         or
 			         memmap=0x10000$0x18690000
 
-	memtest=	[KNL,X86_64] Enable memtest
+	memtest=	[KNL,X86] Enable memtest
 			Format: <integer>
 			range: 0,4 : pattern number
 			default : 0 <disable>
@@ -1225,6 +1242,14 @@ and is between 256 and 4096 characters. It is defined in the file
 
 	mga=		[HW,DRM]
 
+	mminit_loglevel=
+			[KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this
+			parameter allows control of the logging verbosity for
+			the additional memory initialisation checks. A value
+			of 0 disables mminit logging and a level of 4 will
+			log everything. Information is printed at KERN_DEBUG
+			so loglevel=8 may also need to be specified.
+
 	mousedev.tap_time=
 			[MOUSE] Maximum time between finger touching and
 			leaving touchpad surface for touch to be considered
@@ -1279,6 +1304,13 @@ and is between 256 and 4096 characters. It is defined in the file
 			This usage is only documented in each driver source
 			file if at all.
 
+	nf_conntrack.acct=
+			[NETFILTER] Enable connection tracking flow accounting
+			0 to disable accounting
+			1 to enable accounting
+			Default value depends on CONFIG_NF_CT_ACCT that is
+			going to be removed in 2.6.29.
+
 	nfsaddrs=	[NFS]
 			See Documentation/filesystems/nfsroot.txt.
 
@@ -2027,6 +2059,9 @@ and is between 256 and 4096 characters. It is defined in the file
 
 	snd-ymfpci=	[HW,ALSA]
 
+	softlockup_panic=
+			[KNL] Should the soft-lockup detector generate panics.
+
 	sonypi.*=	[HW] Sony Programmable I/O Control Device driver
 			See Documentation/sonypi.txt
 
@@ -2091,6 +2126,12 @@ and is between 256 and 4096 characters. It is defined in the file
 
 	tdfx=		[HW,DRM]
 
+	test_suspend=	[SUSPEND]
+			Specify "mem" (for Suspend-to-RAM) or "standby" (for
+			standby suspend) as the system sleep state to briefly
+			enter during system startup.  The system is woken from
+			this state using a wakeup-capable RTC alarm.
+
 	thash_entries=	[KNL,NET]
 			Set number of hash buckets for TCP connection
 
@@ -2118,13 +2159,6 @@ and is between 256 and 4096 characters. It is defined in the file
 			<deci-seconds>: poll all this frequency
 			0: no polling (default)
 
-	tipar.timeout=	[HW,PPT]
-			Set communications timeout in tenths of a second
-			(default 15).
-
-	tipar.delay=	[HW,PPT]
-			Set inter-bit delay in microseconds (default 10).
-
 	tmscsim=	[HW,SCSI]
 			See comment before function dc390_setup() in
 			drivers/scsi/tmscsim.c.
@@ -2158,6 +2192,10 @@ and is between 256 and 4096 characters. It is defined in the file
 			Note that genuine overcurrent events won't be
 			reported either.
 
+	unknown_nmi_panic
+			[X86-32,X86-64]
+			Set unknown_nmi_panic=1 early on boot.
+
 	usbcore.autosuspend=
 			[USB] The autosuspend time delay (in seconds) used
 			for newly-detected USB devices (default 2).  This

+ 1 - 1
Documentation/keys.txt

@@ -864,7 +864,7 @@ payload contents" for more information.
     request_key_with_auxdata() respectively.
 
     These two functions return with the key potentially still under
-    construction.  To wait for contruction completion, the following should be
+    construction.  To wait for construction completion, the following should be
     called:
 
 	int wait_for_key_construction(struct key *key, bool intr);

+ 18 - 8
Documentation/laptops/thinkpad-acpi.txt

@@ -1,7 +1,7 @@
 		     ThinkPad ACPI Extras Driver
 
-                            Version 0.20
-                          April 09th, 2008
+                            Version 0.21
+                           May 29th, 2008
 
                Borislav Deianov <borislav@users.sf.net>
              Henrique de Moraes Holschuh <hmh@hmh.eng.br>
@@ -621,7 +621,8 @@ Bluetooth
 ---------
 
 procfs: /proc/acpi/ibm/bluetooth
-sysfs device attribute: bluetooth_enable
+sysfs device attribute: bluetooth_enable (deprecated)
+sysfs rfkill class: switch "tpacpi_bluetooth_sw"
 
 This feature shows the presence and current state of a ThinkPad
 Bluetooth device in the internal ThinkPad CDC slot.
@@ -643,8 +644,12 @@ Sysfs notes:
 		0: disables Bluetooth / Bluetooth is disabled
 		1: enables Bluetooth / Bluetooth is enabled.
 
-	Note: this interface will be probably be superseded by the
-	generic rfkill class, so it is NOT to be considered stable yet.
+	Note: this interface has been superseded by the	generic rfkill
+	class.  It has been deprecated, and it will be removed in year
+	2010.
+
+	rfkill controller switch "tpacpi_bluetooth_sw": refer to
+	Documentation/rfkill.txt for details.
 
 Video output control -- /proc/acpi/ibm/video
 --------------------------------------------
@@ -1374,7 +1379,8 @@ EXPERIMENTAL: WAN
 -----------------
 
 procfs: /proc/acpi/ibm/wan
-sysfs device attribute: wwan_enable
+sysfs device attribute: wwan_enable (deprecated)
+sysfs rfkill class: switch "tpacpi_wwan_sw"
 
 This feature is marked EXPERIMENTAL because the implementation
 directly accesses hardware registers and may not work as expected. USE
@@ -1404,8 +1410,12 @@ Sysfs notes:
 		0: disables WWAN card / WWAN card is disabled
 		1: enables WWAN card / WWAN card is enabled.
 
-	Note: this interface will be probably be superseded by the
-	generic rfkill class, so it is NOT to be considered stable yet.
+	Note: this interface has been superseded by the	generic rfkill
+	class.  It has been deprecated, and it will be removed in year
+	2010.
+
+	rfkill controller switch "tpacpi_wwan_sw": refer to
+	Documentation/rfkill.txt for details.
 
 Multiple Commands, Module Parameters
 ------------------------------------

+ 1 - 1
Documentation/leds-class.txt

@@ -59,7 +59,7 @@ Hardware accelerated blink of LEDs
 
 Some LEDs can be programmed to blink without any CPU interaction. To
 support this feature, a LED driver can optionally implement the
-blink_set() function (see <linux/leds.h>). If implemeted, triggers can
+blink_set() function (see <linux/leds.h>). If implemented, triggers can
 attempt to use it before falling back to software timers. The blink_set()
 function should return 0 if the blink setting is supported, or -EINVAL
 otherwise, which means that LED blinking will be handled by software.

+ 1 - 1
Documentation/local_ops.txt

@@ -36,7 +36,7 @@ It can be done by slightly modifying the standard atomic operations : only
 their UP variant must be kept. It typically means removing LOCK prefix (on
 i386 and x86_64) and any SMP sychronization barrier. If the architecture does
 not have a different behavior between SMP and UP, including asm-generic/local.h
-in your archtecture's local.h is sufficient.
+in your architecture's local.h is sufficient.
 
 The local_t type is defined as an opaque signed long by embedding an
 atomic_long_t inside a structure. This is made so a cast from this type to a

+ 29 - 1
Documentation/md.txt

@@ -236,6 +236,11 @@ All md devices contain:
      writing the word for the desired state, however some states
      cannot be explicitly set, and some transitions are not allowed.
 
+     Select/poll works on this file.  All changes except between
+     	active_idle and active (which can be frequent and are not
+	very interesting) are notified.  active->active_idle is
+	reported if the metadata is externally managed.
+
      clear
          No devices, no size, no level
          Writing is equivalent to STOP_ARRAY ioctl
@@ -292,6 +297,10 @@ Each directory contains:
 	      writemostly - device will only be subject to read
 		         requests if there are no other options.
 			 This applies only to raid1 arrays.
+	      blocked  - device has failed, metadata is "external",
+	                 and the failure hasn't been acknowledged yet.
+			 Writes that would write to this device if
+			 it were not faulty are blocked.
 	      spare    - device is working, but not a full member.
 			 This includes spares that are in the process
 			 of being recovered to
@@ -301,6 +310,12 @@ Each directory contains:
 	Writing "remove" removes the device from the array.
 	Writing "writemostly" sets the writemostly flag.
 	Writing "-writemostly" clears the writemostly flag.
+	Writing "blocked" sets the "blocked" flag.
+	Writing "-blocked" clear the "blocked" flag and allows writes
+		to complete.
+
+	This file responds to select/poll. Any change to 'faulty'
+	or 'blocked' causes an event.
 
       errors
 	An approximate count of read errors that have been detected on
@@ -332,7 +347,7 @@ Each directory contains:
         for storage of data.  This will normally be the same as the
 	component_size.  This can be written while assembling an
         array.  If a value less than the current component_size is
-        written, component_size will be reduced to this value.
+        written, it will be rejected.
 
 
 An active md device will also contain and entry for each active device
@@ -381,6 +396,19 @@ also have
 	'check' and 'repair' will start the appropriate process
            providing the current state is 'idle'.
 
+      This file responds to select/poll.  Any important change in the value
+      triggers a poll event.  Sometimes the value will briefly be
+      "recover" if a recovery seems to be needed, but cannot be
+      achieved. In that case, the transition to "recover" isn't
+      notified, but the transition away is.
+
+   degraded
+      This contains a count of the number of devices by which the
+      arrays is degraded.  So an optimal array with show '0'.  A
+      single failed/missing drive will show '1', etc.
+      This file responds to select/poll, any increase or decrease
+      in the count of missing devices will trigger an event.
+
    mismatch_count
       When performing 'check' and 'repair', and possibly when
       performing 'resync', md will count the number of errors that are

+ 252 - 140
Documentation/moxa-smartio

@@ -1,14 +1,22 @@
 =============================================================================
-
-	MOXA Smartio Family Device Driver Ver 1.1 Installation Guide
-		    for Linux Kernel 2.2.x and 2.0.3x
-	       Copyright (C) 1999, Moxa Technologies Co, Ltd.
+          MOXA Smartio/Industio Family Device Driver Installation Guide
+		    for Linux Kernel 2.4.x, 2.6.x
+	       Copyright (C) 2008, Moxa Inc.
 =============================================================================
+Date: 01/21/2008
+
 Content
 
 1. Introduction
 2. System Requirement
 3. Installation
+   3.1 Hardware installation
+   3.2 Driver files
+   3.3 Device naming convention
+   3.4 Module driver configuration
+   3.5 Static driver configuration for Linux kernel 2.4.x and 2.6.x.
+   3.6 Custom configuration
+   3.7 Verify driver installation
 4. Utilities
 5. Setserial
 6. Troubleshooting
@@ -16,27 +24,48 @@ Content
 -----------------------------------------------------------------------------
 1. Introduction
 
-   The Smartio family Linux driver, Ver. 1.1, supports following multiport
+   The Smartio/Industio/UPCI family Linux driver supports following multiport
    boards.
 
-    -C104P/H/HS, C104H/PCI, C104HS/PCI, CI-104J 4 port multiport board.
-    -C168P/H/HS, C168H/PCI 8 port multiport board.
-
-   This driver has been modified a little and cleaned up from the Moxa
-   contributed driver code and merged into Linux 2.2.14pre. In particular
-   official major/minor numbers have been assigned which are different to
-   those the original Moxa supplied driver used.
+    - 2 ports multiport board
+	CP-102U, CP-102UL, CP-102UF
+	CP-132U-I, CP-132UL,
+	CP-132, CP-132I, CP132S, CP-132IS,
+	CI-132, CI-132I, CI-132IS,
+	(C102H, C102HI, C102HIS, C102P, CP-102, CP-102S)
+
+    - 4 ports multiport board
+	CP-104EL,
+	CP-104UL, CP-104JU,
+	CP-134U, CP-134U-I,
+	C104H/PCI, C104HS/PCI,
+	CP-114, CP-114I, CP-114S, CP-114IS, CP-114UL,
+	C104H, C104HS,
+	CI-104J, CI-104JS,
+	CI-134, CI-134I, CI-134IS,
+	(C114HI, CT-114I, C104P)
+	POS-104UL,
+	CB-114,
+	CB-134I
+
+    - 8 ports multiport board
+	CP-118EL, CP-168EL,
+	CP-118U, CP-168U,
+	C168H/PCI,
+	C168H, C168HS,
+	(C168P),
+	CB-108
 
    This driver and installation procedure have been developed upon Linux Kernel
-   2.2.5 and backward compatible to 2.0.3x. This driver supports Intel x86 and
-   Alpha hardware platform. In order to maintain compatibility, this version
-   has also been properly tested with RedHat, OpenLinux, TurboLinux and
-   S.u.S.E Linux. However, if compatibility problem occurs, please contact
-   Moxa at support@moxa.com.tw.
+   2.4.x and 2.6.x. This driver supports Intel x86 hardware platform. In order
+   to maintain compatibility, this version has also been properly tested with
+   RedHat, Mandrake, Fedora and S.u.S.E Linux. However, if compatibility problem
+   occurs, please contact Moxa at support@moxa.com.tw.
 
    In addition to device driver, useful utilities are also provided in this
    version. They are
-    - msdiag     Diagnostic program for detecting installed Moxa Smartio boards.
+    - msdiag     Diagnostic program for displaying installed Moxa
+                 Smartio/Industio boards.
     - msmon      Monitor program to observe data count and line status signals.
     - msterm     A simple terminal program which is useful in testing serial
 	         ports.
@@ -47,8 +76,7 @@ Content
    GNU General Public License in this version. Please refer to GNU General
    Public License announcement in each source code file for more detail.
 
-   In Moxa's ftp sites, you may always find latest driver at
-   ftp://ftp.moxa.com  or ftp://ftp.moxa.com.tw.
+   In Moxa's Web sites, you may always find latest driver at http://web.moxa.com.
 
    This version of driver can be installed as Loadable Module (Module driver)
    or built-in into kernel (Static driver). You may refer to following
@@ -61,18 +89,27 @@ Content
 
 -----------------------------------------------------------------------------
 2. System Requirement
-   - Hardware platform: Intel x86 or Alpha machine
-   - Kernel version: 2.0.3x or 2.2.x
+   - Hardware platform: Intel x86 machine
+   - Kernel version: 2.4.x or 2.6.x
    - gcc version 2.72 or later
    - Maximum 4 boards can be installed in combination
 
 -----------------------------------------------------------------------------
 3. Installation
 
+   3.1 Hardware installation
+   3.2 Driver files
+   3.3 Device naming convention
+   3.4 Module driver configuration
+   3.5 Static driver configuration for Linux kernel 2.4.x, 2.6.x.
+   3.6 Custom configuration
+   3.7 Verify driver installation
+
+
    3.1 Hardware installation
 
-       There are two types of buses, ISA and PCI, for Smartio family multiport
-       board.
+       There are two types of buses, ISA and PCI, for Smartio/Industio
+       family multiport board.
 
        ISA board
        ---------
@@ -81,47 +118,57 @@ Content
        installation procedure in User's Manual before proceed any further.
        Please make sure the JP1 is open after the ISA board is set properly.
 
-       PCI board
-       ---------
+       PCI/UPCI board
+       --------------
        You may need to adjust IRQ usage in BIOS to avoid from IRQ conflict
        with other ISA devices. Please refer to hardware installation
        procedure in User's Manual in advance.
 
-       IRQ Sharing
+       PCI IRQ Sharing
        -----------
        Each port within the same multiport board shares the same IRQ. Up to
-       4 Moxa Smartio Family multiport boards can be installed together on
-       one system and they can share the same IRQ.
+       4 Moxa Smartio/Industio PCI Family multiport boards can be installed
+       together on one system and they can share the same IRQ.
+
 
-   3.2 Driver files and device naming convention
+   3.2 Driver files
 
        The driver file may be obtained from ftp, CD-ROM or floppy disk. The
        first step, anyway, is to copy driver file "mxser.tgz" into specified
        directory. e.g. /moxa. The execute commands as below.
 
+       # cd /
+       # mkdir moxa
        # cd /moxa
-       # tar xvf /dev/fd0 
+       # tar xvf /dev/fd0
+
        or
+
+       # cd /
+       # mkdir moxa
        # cd /moxa
        # cp /mnt/cdrom/<driver directory>/mxser.tgz .
        # tar xvfz mxser.tgz
 
+
+   3.3 Device naming convention
+
        You may find all the driver and utilities files in /moxa/mxser.
        Following installation procedure depends on the model you'd like to
-       run the driver. If you prefer module driver, please refer to 3.3.
-       If static driver is required, please refer to 3.4.
+       run the driver. If you prefer module driver, please refer to 3.4.
+       If static driver is required, please refer to 3.5.
 
        Dialin and callout port
        -----------------------
-       This driver remains traditional serial device properties. There're
+       This driver remains traditional serial device properties. There are
        two special file name for each serial port. One is dial-in port
        which is named "ttyMxx". For callout port, the naming convention
        is "cumxx".
 
        Device naming when more than 2 boards installed
        -----------------------------------------------
-       Naming convention for each Smartio multiport board is pre-defined
-       as below.
+       Naming convention for each Smartio/Industio multiport board is
+       pre-defined as below.
 
        Board Num.	 Dial-in Port	      Callout port
        1st board	ttyM0  - ttyM7	      cum0  - cum7
@@ -129,6 +176,12 @@ Content
        3rd board	ttyM16 - ttyM23       cum16 - cum23
        4th board	ttyM24 - ttym31       cum24 - cum31
 
+
+       !!!!!!!!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
+       Under Kernel 2.6 the cum Device is Obsolete. So use ttyM*
+       device instead.
+       !!!!!!!!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
+
        Board sequence
        --------------
        This driver will activate ISA boards according to the parameter set
@@ -138,69 +191,131 @@ Content
        For PCI boards, their sequence will be after ISA boards and C168H/PCI
        has higher priority than C104H/PCI boards.
 
-   3.3 Module driver configuration
+   3.4 Module driver configuration
        Module driver is easiest way to install. If you prefer static driver
        installation, please skip this paragraph.
-       1. Find "Makefile" in /moxa/mxser, then run
 
-	  # make install
+
+       ------------- Prepare to use the MOXA driver--------------------
+       3.4.1 Create tty device with correct major number
+          Before using MOXA driver, your system must have the tty devices
+          which are created with driver's major number. We offer one shell
+          script "msmknod" to simplify the procedure.
+          This step is only needed to be executed once. But you still
+          need to do this procedure when:
+          a. You change the driver's major number. Please refer the "3.7"
+             section.
+          b. Your total installed MOXA boards number is changed. Maybe you
+             add/delete one MOXA board.
+          c. You want to change the tty name. This needs to modify the
+             shell script "msmknod"
+
+          The procedure is:
+	  # cd /moxa/mxser/driver
+	  # ./msmknod
+
+          This shell script will require the major number for dial-in
+          device and callout device to create tty device. You also need
+          to specify the total installed MOXA board number. Default major
+          numbers for dial-in device and callout device are 30, 35. If
+          you need to change to other number, please refer section "3.7"
+          for more detailed procedure.
+          Msmknod will delete any special files occupying the same device
+          naming.
+
+       3.4.2 Build the MOXA driver and utilities
+          Before using the MOXA driver and utilities, you need compile the
+          all the source code. This step is only need to be executed once.
+          But you still re-compile the source code if you modify the source
+          code. For example, if you change the driver's major number (see
+          "3.7" section), then you need to do this step again.
+
+          Find "Makefile" in /moxa/mxser, then run
+
+	  # make clean; make install
+
+          !!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!
+	  For Red Hat 9, Red Hat Enterprise Linux AS3/ES3/WS3 & Fedora Core1:
+	  # make clean; make installsp1
+
+	  For Red Hat Enterprise Linux AS4/ES4/WS4:
+	  # make clean; make installsp2
+          !!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!
 
 	  The driver files "mxser.o" and utilities will be properly compiled
-	  and copied to system directories respectively.Then run
+	  and copied to system directories respectively.
 
-	  # insmod mxser
+       ------------- Load MOXA driver--------------------
+       3.4.3 Load the MOXA driver
 
-	  to activate the modular driver. You may run "lsmod" to check
-	  if "mxser.o" is activated.
+	  # modprobe mxser <argument>
 
-       2. Create special files by executing "msmknod".
-	  # cd /moxa/mxser/driver
-	  # ./msmknod
+	  will activate the module driver. You may run "lsmod" to check
+	  if "mxser" is activated. If the MOXA board is ISA board, the
+          <argument> is needed. Please refer to section "3.4.5" for more
+          information.
+
+
+       ------------- Load MOXA driver on boot --------------------
+       3.4.4 For the above description, you may manually execute
+          "modprobe mxser" to activate this driver and run
+	  "rmmod mxser" to remove it.
+          However, it's better to have a boot time configuration to
+          eliminate manual operation. Boot time configuration can be
+          achieved by rc file. We offer one "rc.mxser" file to simplify
+          the procedure under "moxa/mxser/driver".
 
-	  Default major numbers for dial-in device and callout device are
-	  174, 175. Msmknod will delete any special files occupying the same
-	  device naming.
+          But if you use ISA board, please modify the "modprobe ..." command
+          to add the argument (see "3.4.5" section). After modifying the
+          rc.mxser, please try to execute "/moxa/mxser/driver/rc.mxser"
+          manually to make sure the modification is ok. If any error
+          encountered, please try to modify again. If the modification is
+          completed, follow the below step.
 
-       3. Up to now, you may manually execute "insmod mxser" to activate
-	  this driver and run "rmmod mxser" to remove it. However, it's
-	  better to have a boot time configuration to eliminate manual
-	  operation.
-	  Boot time configuration can be achieved by rc file. Run following
-	  command for setting rc files.
+	  Run following command for setting rc files.
 
 	  # cd /moxa/mxser/driver
 	  # cp ./rc.mxser /etc/rc.d
 	  # cd /etc/rc.d
 
-	  You may have to modify part of the content in rc.mxser to specify
-          parameters for ISA board. Please refer to rc.mxser for more detail.
-          Find "rc.serial". If "rc.serial" doesn't exist, create it by vi.
-	  Add "rc.mxser" in last line. Next, open rc.local by vi
-	  and append following content.
+	  Check "rc.serial" is existed or not. If "rc.serial" doesn't exist,
+	  create it by vi, run "chmod 755 rc.serial" to change the permission.
+	  Add "/etc/rc.d/rc.mxser" in last line,
 
-	  if [ -f /etc/rc.d/rc.serial ]; then
-	     sh /etc/rc.d/rc.serial
-	  fi
+          Reboot and check if moxa.o activated by "lsmod" command.
 
-       4. Reboot and check if mxser.o activated by "lsmod" command.
-       5. If you'd like to drive Smartio ISA boards in the system, you'll
-	  have to add parameter to specify CAP address of given board while
-          activating "mxser.o". The format for parameters are as follows.
+       3.4.5. If you'd like to drive Smartio/Industio ISA boards in the system,
+          you'll have to add parameter to specify CAP address of given
+	  board while activating "mxser.o". The format for parameters are
+	  as follows.
 
-	  insmod mxser ioaddr=0x???,0x???,0x???,0x???
+	  modprobe mxser ioaddr=0x???,0x???,0x???,0x???
 				|      |     |	  |
 				|      |     |	  +- 4th ISA board
 				|      |     +------ 3rd ISA board
 				|      +------------ 2nd ISA board
 				+------------------- 1st ISA board
 
-   3.4 Static driver configuration
+   3.5 Static driver configuration for Linux kernel 2.4.x and 2.6.x
+
+       Note: To use static driver, you must install the linux kernel
+             source package.
+
+       3.5.1 Backup the built-in driver in the kernel.
+          # cd /usr/src/linux/drivers/char
+          # mv mxser.c mxser.c.old
+
+          For Red Hat 7.x user, you need to create link:
+          # cd /usr/src
+          # ln -s linux-2.4 linux
 
-       1. Create link
+       3.5.2 Create link
 	  # cd /usr/src/linux/drivers/char
 	  # ln -s /moxa/mxser/driver/mxser.c mxser.c
 
-       2. Add CAP address list for ISA boards
+       3.5.3 Add CAP address list for ISA boards. For PCI boards user,
+          please skip this step.
+
 	  In module mode, the CAP address for ISA board is given by
 	  parameter. In static driver configuration, you'll have to
 	  assign it within driver's source code. If you will not
@@ -222,73 +337,55 @@ Content
 	     static int mxserBoardCAP[]
 	     = {0x280, 0x180, 0x00, 0x00};
 
-       3. Modify tty_io.c
-	  # cd /usr/src/linux/drivers/char/
-	  # vi tty_io.c
-	    Find pty_init(), insert "mxser_init()" as
+       3.5.4 Setup kernel configuration
 
-	    pty_init();
-	    mxser_init();
+          Configure the kernel:
 
-       4. Modify tty.h
-	  # cd /usr/src/linux/include/linux
-	  # vi tty.h
-	    Find extern int tty_init(void), insert "mxser_init()" as
+            # cd /usr/src/linux
+            # make menuconfig
 
-	    extern int tty_init(void);
-	    extern int mxser_init(void);
-     
-       5. Modify Makefile
-	  # cd /usr/src/linux/drivers/char
-	  # vi Makefile
-	    Find L_OBJS := tty_io.o ...... random.o, add
-	    "mxser.o" at last of this line as
-	    L_OBJS := tty_io.o ....... mxser.o
+          You will go into a menu-driven system. Please select [Character
+          devices][Non-standard serial port support], enable the [Moxa
+          SmartIO support] driver with "[*]" for built-in (not "[M]"), then
+          select [Exit] to exit this program.
 
-       6. Rebuild kernel
-	  The following are for Linux kernel rebuilding,for your reference only.
+       3.5.5 Rebuild kernel
+	  The following are for Linux kernel rebuilding, for your
+          reference only.
 	  For appropriate details, please refer to the Linux document.
 
-	  If 'lilo' utility is installed, please use 'make zlilo' to rebuild
-	  kernel. If 'lilo' is not installed, please follow the following steps.
-
 	   a. cd /usr/src/linux
-	   b. make clean			     /* take a few minutes */
-	   c. make bzImage		   /* take probably 10-20 minutes */
-	   d. Backup original boot kernel.		  /* optional step */
-	   e. cp /usr/src/linux/arch/i386/boot/bzImage /boot/vmlinuz
+	   b. make clean	     /* take a few minutes */
+	   c. make dep		     /* take a few minutes */
+	   d. make bzImage	     /* take probably 10-20 minutes */
+	   e. make install	     /* copy boot image to correct position */
 	   f. Please make sure the boot kernel (vmlinuz) is in the
-	      correct position. If you use 'lilo' utility, you should
-	      check /etc/lilo.conf 'image' item specified the path
-	      which is the 'vmlinuz' path, or you will load wrong
-	      (or old) boot kernel image (vmlinuz).
-	   g. chmod 400 /vmlinuz
-	   h. lilo
-	   i. rdev -R /vmlinuz 1
-	   j. sync
-
-	  Note that if the result of "make zImage" is ERROR, then you have to
-	  go back to Linux configuration Setup. Type "make config" in directory
-	  /usr/src/linux or "setup".
-
-	  Since system include file, /usr/src/linux/include/linux/interrupt.h,
-	  is modified each time the MOXA driver is installed, kernel rebuilding
-	  is inevitable. And it takes about 10 to 20 minutes depends on the
-	  machine.
-
-       7. Make utility
-	  # cd /moxa/mxser/utility
-	  # make install
-       
-       8. Make special file
+	      correct position.
+	   g. If you use 'lilo' utility, you should check /etc/lilo.conf
+	      'image' item specified the path which is the 'vmlinuz' path,
+	      or you will load wrong (or old) boot kernel image (vmlinuz).
+	      After checking /etc/lilo.conf, please run "lilo".
+
+	  Note that if the result of "make bzImage" is ERROR, then you have to
+	  go back to Linux configuration Setup. Type "make menuconfig" in
+          directory /usr/src/linux.
+
+
+       3.5.6 Make tty device and special file
           # cd /moxa/mxser/driver
           # ./msmknod
 
-       9. Reboot
+       3.5.7 Make utility
+	  # cd /moxa/mxser/utility
+	  # make clean; make install
+
+       3.5.8 Reboot
 
-   3.5 Custom configuration
+
+
+   3.6 Custom configuration
        Although this driver already provides you default configuration, you
-       still can change the device name and major number.The instruction to
+       still can change the device name and major number. The instruction to
        change these parameters are shown as below.
 
        Change Device name
@@ -306,33 +403,37 @@ Content
        2 free major numbers for this driver. There are 3 steps to change
        major numbers.
 
-       1. Find free major numbers
+       3.6.1 Find free major numbers
 	  In /proc/devices, you may find all the major numbers occupied
 	  in the system. Please select 2 major numbers that are available.
 	  e.g. 40, 45.
-       2. Create special files
+       3.6.2 Create special files
 	  Run /moxa/mxser/driver/msmknod to create special files with
 	  specified major numbers.
-       3. Modify driver with new major number
+       3.6.3 Modify driver with new major number
 	  Run vi to open /moxa/mxser/driver/mxser.c. Locate the line
 	  contains "MXSERMAJOR". Change the content as below.
 	  #define	  MXSERMAJOR		  40
 	  #define	  MXSERCUMAJOR		  45
-       4. Run # make install in /moxa/mxser/driver.
+       3.6.4 Run "make clean; make install" in /moxa/mxser/driver.
 
-   3.6 Verify driver installation
+   3.7 Verify driver installation
        You may refer to /var/log/messages to check the latest status
        log reported by this driver whenever it's activated.
+
 -----------------------------------------------------------------------------
 4. Utilities
    There are 3 utilities contained in this driver. They are msdiag, msmon and
    msterm. These 3 utilities are released in form of source code. They should
    be compiled into executable file and copied into /usr/bin.
 
+   Before using these utilities, please load driver (refer 3.4 & 3.5) and
+   make sure you had run the "msmknod" utility.
+
    msdiag - Diagnostic
    --------------------
-   This utility provides the function to detect what Moxa Smartio multiport
-   board exists in the system.
+   This utility provides the function to display what Moxa Smartio/Industio
+   board found by driver in the system.
 
    msmon - Port Monitoring
    -----------------------
@@ -353,12 +454,13 @@ Content
    application, for example, sending AT command to a modem connected to the
    port or used as a terminal for login purpose. Note that this is only a
    dumb terminal emulation without handling full screen operation.
+
 -----------------------------------------------------------------------------
 5. Setserial
 
    Supported Setserial parameters are listed as below.
 
-   uart 	  set UART type(16450-->disable FIFO, 16550A-->enable FIFO)
+   uart		  set UART type(16450-->disable FIFO, 16550A-->enable FIFO)
    close_delay	  set the amount of time(in 1/100 of a second) that DTR
 		  should be kept low while being closed.
    closing_wait   set the amount of time(in 1/100 of a second) that the
@@ -366,7 +468,13 @@ Content
 		  being closed, before the receiver is disable.
    spd_hi	  Use  57.6kb  when  the application requests 38.4kb.
    spd_vhi	  Use  115.2kb	when  the application requests 38.4kb.
+   spd_shi	  Use  230.4kb	when  the application requests 38.4kb.
+   spd_warp	  Use  460.8kb	when  the application requests 38.4kb.
    spd_normal	  Use  38.4kb  when  the application requests 38.4kb.
+   spd_cust	  Use  the custom divisor to set the speed when  the
+		  application requests 38.4kb.
+   divisor	  This option set the custom divison.
+   baud_base	  This option set the base baud rate.
 
 -----------------------------------------------------------------------------
 6. Troubleshooting
@@ -375,8 +483,9 @@ Content
    possible. If all the possible solutions fail, please contact our technical
    support team to get more help.
 
-   Error msg: More than 4 Moxa Smartio family boards found. Fifth board and
-	      after are ignored.
+
+   Error msg: More than 4 Moxa Smartio/Industio family boards found. Fifth board
+              and after are ignored.
    Solution:
    To avoid this problem, please unplug fifth and after board, because Moxa
    driver supports up to 4 boards.
@@ -384,7 +493,7 @@ Content
    Error msg: Request_irq fail, IRQ(?) may be conflict with another device.
    Solution:
    Other PCI or ISA devices occupy the assigned IRQ. If you are not sure
-   which device causes the situation,please check /proc/interrupts to find
+   which device causes the situation, please check /proc/interrupts to find
    free IRQ and simply change another free IRQ for Moxa board.
 
    Error msg: Board #: C1xx Series(CAP=xxx) interrupt number invalid.
@@ -397,15 +506,18 @@ Content
    Moxa ISA board needs an interrupt vector.Please refer to user's manual
    "Hardware Installation" chapter to set interrupt vector.
 
-   Error msg: Couldn't install MOXA Smartio family driver!
+   Error msg: Couldn't install MOXA Smartio/Industio family driver!
    Solution:
    Load Moxa driver fail, the major number may conflict with other devices.
-   Please refer to previous section 3.5 to change a free major number for
+   Please refer to previous section 3.7 to change a free major number for
    Moxa driver.
 
-   Error msg: Couldn't install MOXA Smartio family callout driver!
+   Error msg: Couldn't install MOXA Smartio/Industio family callout driver!
    Solution:
    Load Moxa callout driver fail, the callout device major number may
-   conflict with other devices. Please refer to previous section 3.5 to
+   conflict with other devices. Please refer to previous section 3.7 to
    change a free callout device major number for Moxa driver.
+
+
 -----------------------------------------------------------------------------
+

+ 81 - 31
Documentation/networking/bonding.txt

@@ -289,35 +289,73 @@ downdelay
 fail_over_mac
 
 	Specifies whether active-backup mode should set all slaves to
-	the same MAC address (the traditional behavior), or, when
-	enabled, change the bond's MAC address when changing the
-	active interface (i.e., fail over the MAC address itself).
-
-	Fail over MAC is useful for devices that cannot ever alter
-	their MAC address, or for devices that refuse incoming
-	broadcasts with their own source MAC (which interferes with
-	the ARP monitor).
-
-	The down side of fail over MAC is that every device on the
-	network must be updated via gratuitous ARP, vs. just updating
-	a switch or set of switches (which often takes place for any
-	traffic, not just ARP traffic, if the switch snoops incoming
-	traffic to update its tables) for the traditional method.  If
-	the gratuitous ARP is lost, communication may be disrupted.
-
-	When fail over MAC is used in conjuction with the mii monitor,
-	devices which assert link up prior to being able to actually
-	transmit and receive are particularly susecptible to loss of
-	the gratuitous ARP, and an appropriate updelay setting may be
-	required.
-
-	A value of 0 disables fail over MAC, and is the default.  A
-	value of 1 enables fail over MAC.  This option is enabled
-	automatically if the first slave added cannot change its MAC
-	address.  This option may be modified via sysfs only when no
-	slaves are present in the bond.
-
-	This option was added in bonding version 3.2.0.
+	the same MAC address at enslavement (the traditional
+	behavior), or, when enabled, perform special handling of the
+	bond's MAC address in accordance with the selected policy.
+
+	Possible values are:
+
+	none or 0
+
+		This setting disables fail_over_mac, and causes
+		bonding to set all slaves of an active-backup bond to
+		the same MAC address at enslavement time.  This is the
+		default.
+
+	active or 1
+
+		The "active" fail_over_mac policy indicates that the
+		MAC address of the bond should always be the MAC
+		address of the currently active slave.  The MAC
+		address of the slaves is not changed; instead, the MAC
+		address of the bond changes during a failover.
+
+		This policy is useful for devices that cannot ever
+		alter their MAC address, or for devices that refuse
+		incoming broadcasts with their own source MAC (which
+		interferes with the ARP monitor).
+
+		The down side of this policy is that every device on
+		the network must be updated via gratuitous ARP,
+		vs. just updating a switch or set of switches (which
+		often takes place for any traffic, not just ARP
+		traffic, if the switch snoops incoming traffic to
+		update its tables) for the traditional method.  If the
+		gratuitous ARP is lost, communication may be
+		disrupted.
+
+		When this policy is used in conjuction with the mii
+		monitor, devices which assert link up prior to being
+		able to actually transmit and receive are particularly
+		susecptible to loss of the gratuitous ARP, and an
+		appropriate updelay setting may be required.
+
+	follow or 2
+
+		The "follow" fail_over_mac policy causes the MAC
+		address of the bond to be selected normally (normally
+		the MAC address of the first slave added to the bond).
+		However, the second and subsequent slaves are not set
+		to this MAC address while they are in a backup role; a
+		slave is programmed with the bond's MAC address at
+		failover time (and the formerly active slave receives
+		the newly active slave's MAC address).
+
+		This policy is useful for multiport devices that
+		either become confused or incur a performance penalty
+		when multiple ports are programmed with the same MAC
+		address.
+
+
+	The default policy is none, unless the first slave cannot
+	change its MAC address, in which case the active policy is
+	selected by default.
+
+	This option may be modified via sysfs only when no slaves are
+	present in the bond.
+
+	This option was added in bonding version 3.2.0.  The "follow"
+	policy was added in bonding version 3.3.0.
 
 lacp_rate
 
@@ -338,7 +376,8 @@ max_bonds
 	Specifies the number of bonding devices to create for this
 	instance of the bonding driver.  E.g., if max_bonds is 3, and
 	the bonding driver is not already loaded, then bond0, bond1
-	and bond2 will be created.  The default value is 1.
+	and bond2 will be created.  The default value is 1.  Specifying
+	a value of 0 will load bonding, but will not create any devices.
 
 miimon
 
@@ -501,6 +540,17 @@ mode
 		swapped with the new curr_active_slave that was
 		chosen.
 
+num_grat_arp
+
+	Specifies the number of gratuitous ARPs to be issued after a
+	failover event.  One gratuitous ARP is issued immediately after
+	the failover, subsequent ARPs are sent at a rate of one per link
+	monitor interval (arp_interval or miimon, whichever is active).
+
+	The valid range is 0 - 255; the default value is 1.  This option
+	affects only the active-backup mode.  This option was added for
+	bonding version 3.3.0.
+
 primary
 
 	A string (eth0, eth2, etc) specifying which slave is the
@@ -581,7 +631,7 @@ xmit_hash_policy
 		in environments where a layer3 gateway device is
 		required to reach most destinations.
 
-		This algorithm is 802.3ad complient.
+		This algorithm is 802.3ad compliant.
 
 	layer3+4
 

+ 2 - 2
Documentation/networking/can.txt

@@ -186,7 +186,7 @@ solution for a couple of reasons:
 
   The Linux network devices (by default) just can handle the
   transmission and reception of media dependent frames. Due to the
-  arbritration on the CAN bus the transmission of a low prio CAN-ID
+  arbitration on the CAN bus the transmission of a low prio CAN-ID
   may be delayed by the reception of a high prio CAN frame. To
   reflect the correct* traffic on the node the loopback of the sent
   data has to be performed right after a successful transmission. If
@@ -481,7 +481,7 @@ solution for a couple of reasons:
   - stats_timer: To calculate the Socket CAN core statistics
     (e.g. current/maximum frames per second) this 1 second timer is
     invoked at can.ko module start time by default. This timer can be
-    disabled by using stattimer=0 on the module comandline.
+    disabled by using stattimer=0 on the module commandline.
 
   - debug: (removed since SocketCAN SVN r546)
 

+ 167 - 0
Documentation/networking/dm9000.txt

@@ -0,0 +1,167 @@
+DM9000 Network driver
+=====================
+
+Copyright 2008 Simtec Electronics,
+	  Ben Dooks <ben@simtec.co.uk> <ben-linux@fluff.org>
+
+
+Introduction
+------------
+
+This file describes how to use the DM9000 platform-device based network driver
+that is contained in the files drivers/net/dm9000.c and drivers/net/dm9000.h.
+
+The driver supports three DM9000 variants, the DM9000E which is the first chip
+supported as well as the newer DM9000A and DM9000B devices. It is currently
+maintained and tested by Ben Dooks, who should be CC: to any patches for this
+driver.
+
+
+Defining the platform device
+----------------------------
+
+The minimum set of resources attached to the platform device are as follows:
+
+    1) The physical address of the address register
+    2) The physical address of the data register
+    3) The IRQ line the device's interrupt pin is connected to.
+
+These resources should be specified in that order, as the ordering of the
+two address regions is important (the driver expects these to be address
+and then data).
+
+An example from arch/arm/mach-s3c2410/mach-bast.c is:
+
+static struct resource bast_dm9k_resource[] = {
+	[0] = {
+		.start = S3C2410_CS5 + BAST_PA_DM9000,
+		.end   = S3C2410_CS5 + BAST_PA_DM9000 + 3,
+		.flags = IORESOURCE_MEM,
+	},
+	[1] = {
+		.start = S3C2410_CS5 + BAST_PA_DM9000 + 0x40,
+		.end   = S3C2410_CS5 + BAST_PA_DM9000 + 0x40 + 0x3f,
+		.flags = IORESOURCE_MEM,
+	},
+	[2] = {
+		.start = IRQ_DM9000,
+		.end   = IRQ_DM9000,
+		.flags = IORESOURCE_IRQ | IORESOURCE_IRQ_HIGHLEVEL,
+	}
+};
+
+static struct platform_device bast_device_dm9k = {
+	.name		= "dm9000",
+	.id		= 0,
+	.num_resources	= ARRAY_SIZE(bast_dm9k_resource),
+	.resource	= bast_dm9k_resource,
+};
+
+Note the setting of the IRQ trigger flag in bast_dm9k_resource[2].flags,
+as this will generate a warning if it is not present. The trigger from
+the flags field will be passed to request_irq() when registering the IRQ
+handler to ensure that the IRQ is setup correctly.
+
+This shows a typical platform device, without the optional configuration
+platform data supplied. The next example uses the same resources, but adds
+the optional platform data to pass extra configuration data:
+
+static struct dm9000_plat_data bast_dm9k_platdata = {
+	.flags		= DM9000_PLATF_16BITONLY,
+};
+
+static struct platform_device bast_device_dm9k = {
+	.name		= "dm9000",
+	.id		= 0,
+	.num_resources	= ARRAY_SIZE(bast_dm9k_resource),
+	.resource	= bast_dm9k_resource,
+	.dev		= {
+		.platform_data = &bast_dm9k_platdata,
+	}
+};
+
+The platform data is defined in include/linux/dm9000.h and described below.
+
+
+Platform data
+-------------
+
+Extra platform data for the DM9000 can describe the IO bus width to the
+device, whether or not an external PHY is attached to the device and
+the availability of an external configuration EEPROM.
+
+The flags for the platform data .flags field are as follows:
+
+DM9000_PLATF_8BITONLY
+
+	The IO should be done with 8bit operations.
+
+DM9000_PLATF_16BITONLY
+
+	The IO should be done with 16bit operations.
+
+DM9000_PLATF_32BITONLY
+
+	The IO should be done with 32bit operations.
+
+DM9000_PLATF_EXT_PHY
+
+	The chip is connected to an external PHY.
+
+DM9000_PLATF_NO_EEPROM
+
+	This can be used to signify that the board does not have an
+	EEPROM, or that the EEPROM should be hidden from the user.
+
+DM9000_PLATF_SIMPLE_PHY
+
+	Switch to using the simpler PHY polling method which does not
+	try and read the MII PHY state regularly. This is only available
+	when using the internal PHY. See the section on link state polling
+	for more information.
+
+	The config symbol DM9000_FORCE_SIMPLE_PHY_POLL, Kconfig entry
+	"Force simple NSR based PHY polling" allows this flag to be
+	forced on at build time.
+
+
+PHY Link state polling
+----------------------
+
+The driver keeps track of the link state and informs the network core
+about link (carrier) availablilty. This is managed by several methods
+depending on the version of the chip and on which PHY is being used.
+
+For the internal PHY, the original (and currently default) method is
+to read the MII state, either when the status changes if we have the
+necessary interrupt support in the chip or every two seconds via a
+periodic timer.
+
+To reduce the overhead for the internal PHY, there is now the option
+of using the DM9000_FORCE_SIMPLE_PHY_POLL config, or DM9000_PLATF_SIMPLE_PHY
+platform data option to read the summary information without the
+expensive MII accesses. This method is faster, but does not print
+as much information.
+
+When using an external PHY, the driver currently has to poll the MII
+link status as there is no method for getting an interrupt on link change.
+
+
+DM9000A / DM9000B
+-----------------
+
+These chips are functionally similar to the DM9000E and are supported easily
+by the same driver. The features are:
+
+   1) Interrupt on internal PHY state change. This means that the periodic
+      polling of the PHY status may be disabled on these devices when using
+      the internal PHY.
+
+   2) TCP/UDP checksum offloading, which the driver does not currently support.
+
+
+ethtool
+-------
+
+The driver supports the ethtool interface for access to the driver
+state information, the PHY state and the EEPROM.

+ 2 - 12
Documentation/networking/e1000.txt

@@ -513,21 +513,11 @@ Additional Configurations
   Intel(R) PRO/1000 PT Dual Port Server Connection
   Intel(R) PRO/1000 PT Dual Port Server Adapter
   Intel(R) PRO/1000 PF Dual Port Server Adapter
-  Intel(R) PRO/1000 PT Quad Port Server Adapter 
+  Intel(R) PRO/1000 PT Quad Port Server Adapter
 
   NAPI
   ----
-  NAPI (Rx polling mode) is supported in the e1000 driver.  NAPI is enabled
-  or disabled based on the configuration of the kernel.  To override
-  the default, use the following compile-time flags.
-
-  To enable NAPI, compile the driver module, passing in a configuration option:
-
-       make CFLAGS_EXTRA=-DE1000_NAPI install
-
-  To disable NAPI, compile the driver module, passing in a configuration option:
-
-       make CFLAGS_EXTRA=-DE1000_NO_NAPI install
+  NAPI (Rx polling mode) is enabled in the e1000 driver.
 
   See www.cyberus.ca/~hadi/usenix-paper.tgz for more information on NAPI.
 

+ 17 - 4
Documentation/networking/ip-sysctl.txt

@@ -551,8 +551,9 @@ icmp_echo_ignore_broadcasts - BOOLEAN
 icmp_ratelimit - INTEGER
 	Limit the maximal rates for sending ICMP packets whose type matches
 	icmp_ratemask (see below) to specific targets.
-	0 to disable any limiting, otherwise the maximal rate in jiffies(1)
-	Default: 100
+	0 to disable any limiting,
+	otherwise the minimal space between responses in milliseconds.
+	Default: 1000
 
 icmp_ratemask - INTEGER
 	Mask made of ICMP types for which rates are being limited.
@@ -1023,11 +1024,23 @@ max_addresses - INTEGER
 	autoconfigured addresses.
 	Default: 16
 
+disable_ipv6 - BOOLEAN
+	Disable IPv6 operation.
+	Default: FALSE (enable IPv6 operation)
+
+accept_dad - INTEGER
+	Whether to accept DAD (Duplicate Address Detection).
+	0: Disable DAD
+	1: Enable DAD (default)
+	2: Enable DAD, and disable IPv6 operation if MAC-based duplicate
+	   link-local address has been found.
+
 icmp/*:
 ratelimit - INTEGER
 	Limit the maximal rates for sending ICMPv6 packets.
-	0 to disable any limiting, otherwise the maximal rate in jiffies(1)
-	Default: 100
+	0 to disable any limiting,
+	otherwise the minimal space between responses in milliseconds.
+	Default: 1000
 
 
 IPv6 Update by:

+ 320 - 99
Documentation/networking/ixgb.txt

@@ -1,7 +1,7 @@
-Linux* Base Driver for the Intel(R) PRO/10GbE Family of Adapters
-================================================================
+Linux Base Driver for 10 Gigabit Intel(R) Network Connection
+=============================================================
 
-November 17, 2004
+October 9, 2007
 
 
 Contents
@@ -9,94 +9,151 @@ Contents
 
 - In This Release
 - Identifying Your Adapter
+- Building and Installation
 - Command Line Parameters
 - Improving Performance
+- Additional Configurations
+- Known Issues/Troubleshooting
 - Support
 
 
+
 In This Release
 ===============
 
-This file describes the Linux* Base Driver for the Intel(R) PRO/10GbE Family 
-of Adapters, version 1.0.x.  
+This file describes the ixgb Linux Base Driver for the 10 Gigabit Intel(R)
+Network Connection.  This driver includes support for Itanium(R)2-based
+systems.
+
+For questions related to hardware requirements, refer to the documentation
+supplied with your 10 Gigabit adapter.  All hardware requirements listed apply
+to use with Linux.
+
+The following features are available in this kernel:
+ - Native VLANs
+ - Channel Bonding (teaming)
+ - SNMP
+
+Channel Bonding documentation can be found in the Linux kernel source:
+/Documentation/networking/bonding.txt
+
+The driver information previously displayed in the /proc filesystem is not
+supported in this release.  Alternatively, you can use ethtool (version 1.6
+or later), lspci, and ifconfig to obtain the same information.
+
+Instructions on updating ethtool can be found in the section "Additional
+Configurations" later in this document.
 
-For questions related to hardware requirements, refer to the documentation 
-supplied with your Intel PRO/10GbE adapter. All hardware requirements listed 
-apply to use with Linux.
 
 Identifying Your Adapter
 ========================
 
-To verify your Intel adapter is supported, find the board ID number on the 
-adapter. Look for a label that has a barcode and a number in the format  
-A12345-001. 
+The following Intel network adapters are compatible with the drivers in this
+release:
+
+Controller  Adapter Name                 Physical Layer
+----------  ------------                 --------------
+82597EX     Intel(R) PRO/10GbE LR/SR/CX4 10G Base-LR (1310 nm optical fiber)
+            Server Adapters              10G Base-SR (850 nm optical fiber)
+                                         10G Base-CX4(twin-axial copper cabling)
+
+For more information on how to identify your adapter, go to the Adapter &
+Driver ID Guide at:
+
+    http://support.intel.com/support/network/sb/CS-012904.htm
+
+
+Building and Installation
+=========================
+
+select m for "Intel(R) PRO/10GbE support" located at:
+      Location:
+        -> Device Drivers
+          -> Network device support (NETDEVICES [=y])
+            -> Ethernet (10000 Mbit) (NETDEV_10000 [=y])
+1. make modules && make modules_install
+
+2. Load the module:
+
+    modprobe ixgb <parameter>=<value>
+
+   The insmod command can be used if the full
+   path to the driver module is specified.  For example:
+
+     insmod /lib/modules/<KERNEL VERSION>/kernel/drivers/net/ixgb/ixgb.ko
+
+   With 2.6 based kernels also make sure that older ixgb drivers are
+   removed from the kernel, before loading the new module:
 
-Use the above information and the Adapter & Driver ID Guide at:
+     rmmod ixgb; modprobe ixgb
 
-  http://support.intel.com/support/network/adapter/pro100/21397.htm
+3. Assign an IP address to the interface by entering the following, where
+   x is the interface number:
 
-For the latest Intel network drivers for Linux, go to:
+     ifconfig ethx <IP_address>
+
+4. Verify that the interface works. Enter the following, where <IP_address>
+   is the IP address for another machine on the same subnet as the interface
+   that is being tested:
+
+     ping  <IP_address>
 
-    http://downloadfinder.intel.com/scripts-df/support_intel.asp
 
 Command Line Parameters
 =======================
 
-If the driver is built as a module, the  following optional parameters are 
-used by entering them on the command line with the modprobe or insmod command
-using this syntax:
+If the driver is built as a module, the  following optional parameters are
+used by entering them on the command line with the modprobe command using
+this syntax:
 
      modprobe ixgb [<option>=<VAL1>,<VAL2>,...]
 
-     insmod ixgb [<option>=<VAL1>,<VAL2>,...]
+For example, with two 10GbE PCI adapters, entering:
 
-For example, with two PRO/10GbE PCI adapters, entering:
+     modprobe ixgb TxDescriptors=80,128
 
-    insmod ixgb TxDescriptors=80,128
-
-loads the ixgb driver with 80 TX resources for the first adapter and 128 TX 
+loads the ixgb driver with 80 TX resources for the first adapter and 128 TX
 resources for the second adapter.
 
 The default value for each parameter is generally the recommended setting,
-unless otherwise noted. Also, if the driver is statically built into the
-kernel, the driver is loaded with the default values for all the parameters.
-Ethtool can be used to change some of the parameters at runtime.
+unless otherwise noted.
 
 FlowControl
 Valid Range: 0-3 (0=none, 1=Rx only, 2=Tx only, 3=Rx&Tx)
 Default: Read from the EEPROM
-         If EEPROM is not detected, default is 3
-    This parameter controls the automatic generation(Tx) and response(Rx) to 
-    Ethernet PAUSE frames.
+         If EEPROM is not detected, default is 1
+    This parameter controls the automatic generation(Tx) and response(Rx) to
+    Ethernet PAUSE frames.  There are hardware bugs associated with enabling
+    Tx flow control so beware.
 
 RxDescriptors
 Valid Range: 64-512
 Default Value: 512
-    This value is the number of receive descriptors allocated by the driver. 
-    Increasing this value allows the driver to buffer more incoming packets. 
-    Each descriptor is 16 bytes.  A receive buffer is also allocated for 
-    each descriptor and can be either 2048, 4056, 8192, or 16384 bytes, 
-    depending on the MTU setting. When the MTU size is 1500 or less, the 
+    This value is the number of receive descriptors allocated by the driver.
+    Increasing this value allows the driver to buffer more incoming packets.
+    Each descriptor is 16 bytes.  A receive buffer is also allocated for
+    each descriptor and can be either 2048, 4056, 8192, or 16384 bytes,
+    depending on the MTU setting.  When the MTU size is 1500 or less, the
     receive buffer size is 2048 bytes. When the MTU is greater than 1500 the
-    receive buffer size will be either 4056, 8192, or 16384 bytes. The 
+    receive buffer size will be either 4056, 8192, or 16384 bytes.  The
     maximum MTU size is 16114.
 
 RxIntDelay
 Valid Range: 0-65535 (0=off)
-Default Value: 6
-    This value delays the generation of receive interrupts in units of 
-    0.8192 microseconds.  Receive interrupt reduction can improve CPU 
-    efficiency if properly tuned for specific network traffic. Increasing 
-    this value adds extra latency to frame reception and can end up 
-    decreasing the throughput of TCP traffic. If the system is reporting 
-    dropped receives, this value may be set too high, causing the driver to 
+Default Value: 72
+    This value delays the generation of receive interrupts in units of
+    0.8192 microseconds.  Receive interrupt reduction can improve CPU
+    efficiency if properly tuned for specific network traffic.  Increasing
+    this value adds extra latency to frame reception and can end up
+    decreasing the throughput of TCP traffic.  If the system is reporting
+    dropped receives, this value may be set too high, causing the driver to
     run out of available receive descriptors.
 
 TxDescriptors
 Valid Range: 64-4096
 Default Value: 256
     This value is the number of transmit descriptors allocated by the driver.
-    Increasing this value allows the driver to queue more transmits. Each 
+    Increasing this value allows the driver to queue more transmits.  Each
     descriptor is 16 bytes.
 
 XsumRX
@@ -105,51 +162,49 @@ Default Value: 1
     A value of '1' indicates that the driver should enable IP checksum
     offload for received packets (both UDP and TCP) to the adapter hardware.
 
-XsumTX
-Valid Range: 0-1
-Default Value: 1
-    A value of '1' indicates that the driver should enable IP checksum
-    offload for transmitted packets (both UDP and TCP) to the adapter 
-    hardware.
 
 Improving Performance
 =====================
 
-With the Intel PRO/10 GbE adapter, the default Linux configuration will very 
-likely limit the total available throughput artificially.  There is a set of 
-things that when applied together increase the ability of Linux to transmit 
-and receive data.  The following enhancements were originally acquired from
-settings published at http://www.spec.org/web99 for various submitted results 
-using Linux.
+With the 10 Gigabit server adapters, the default Linux configuration will
+very likely limit the total available throughput artificially.  There is a set
+of configuration changes that, when applied together, will increase the ability
+of Linux to transmit and receive data.  The following enhancements were
+originally acquired from settings published at http://www.spec.org/web99/ for
+various submitted results using Linux.
 
-NOTE: These changes are only suggestions, and serve as a starting point for 
-tuning your network performance.
+NOTE: These changes are only suggestions, and serve as a starting point for
+      tuning your network performance.
 
 The changes are made in three major ways, listed in order of greatest effect:
-- Use ifconfig to modify the mtu (maximum transmission unit) and the txqueuelen 
+- Use ifconfig to modify the mtu (maximum transmission unit) and the txqueuelen
   parameter.
 - Use sysctl to modify /proc parameters (essentially kernel tuning)
-- Use setpci to modify the MMRBC field in PCI-X configuration space to increase 
+- Use setpci to modify the MMRBC field in PCI-X configuration space to increase
   transmit burst lengths on the bus.
 
-NOTE: setpci modifies the adapter's configuration registers to allow it to read 
-up to 4k bytes at a time (for transmits).  However, for some systems the 
-behavior after modifying this register may be undefined (possibly errors of some 
-kind). A power-cycle, hard reset or explicitly setting the e6 register back to 
-22 (setpci -d 8086:1048 e6.b=22) may be required to get back to a stable 
-configuration.
+NOTE: setpci modifies the adapter's configuration registers to allow it to read
+up to 4k bytes at a time (for transmits).  However, for some systems the
+behavior after modifying this register may be undefined (possibly errors of
+some kind).  A power-cycle, hard reset or explicitly setting the e6 register
+back to 22 (setpci -d 8086:1a48 e6.b=22) may be required to get back to a
+stable configuration.
 
 - COPY these lines and paste them into ixgb_perf.sh:
 #!/bin/bash
-echo "configuring network performance , edit this file to change the interface"
+echo "configuring network performance , edit this file to change the interface
+or device ID of 10GbE card"
 # set mmrbc to 4k reads, modify only Intel 10GbE device IDs
-setpci -d 8086:1048 e6.b=2e
-# set the MTU (max transmission unit) - it requires your switch and clients to change too!
+# replace 1a48 with appropriate 10GbE device's ID installed on the system,
+# if needed.
+setpci -d 8086:1a48 e6.b=2e
+# set the MTU (max transmission unit) - it requires your switch and clients
+# to change as well.
 # set the txqueuelen
 # your ixgb adapter should be loaded as eth1 for this to work, change if needed
 ifconfig eth1 mtu 9000 txqueuelen 1000 up
-# call the sysctl utility to modify /proc/sys entries 
-sysctl -p ./sysctl_ixgb.conf 
+# call the sysctl utility to modify /proc/sys entries
+sysctl -p ./sysctl_ixgb.conf
 - END ixgb_perf.sh
 
 - COPY these lines and paste them into sysctl_ixgb.conf:
@@ -159,54 +214,220 @@ sysctl -p ./sysctl_ixgb.conf
 # several network benchmark tests, your mileage may vary
 
 ### IPV4 specific settings
-net.ipv4.tcp_timestamps = 0 # turns TCP timestamp support off, default 1, reduces CPU use
-net.ipv4.tcp_sack = 0 # turn SACK support off, default on
-# on systems with a VERY fast bus -> memory interface this is the big gainer 
-net.ipv4.tcp_rmem = 10000000 10000000 10000000 # sets min/default/max TCP read buffer, default 4096 87380 174760
-net.ipv4.tcp_wmem = 10000000 10000000 10000000 # sets min/pressure/max TCP write buffer, default 4096 16384 131072
-net.ipv4.tcp_mem = 10000000 10000000 10000000 # sets min/pressure/max TCP buffer space, default 31744 32256 32768
+# turn TCP timestamp support off, default 1, reduces CPU use
+net.ipv4.tcp_timestamps = 0
+# turn SACK support off, default on
+# on systems with a VERY fast bus -> memory interface this is the big gainer
+net.ipv4.tcp_sack = 0
+# set min/default/max TCP read buffer, default 4096 87380 174760
+net.ipv4.tcp_rmem = 10000000 10000000 10000000
+# set min/pressure/max TCP write buffer, default 4096 16384 131072
+net.ipv4.tcp_wmem = 10000000 10000000 10000000
+# set min/pressure/max TCP buffer space, default 31744 32256 32768
+net.ipv4.tcp_mem = 10000000 10000000 10000000
 
 ### CORE settings (mostly for socket and UDP effect)
-net.core.rmem_max = 524287 # maximum receive socket buffer size, default 131071
-net.core.wmem_max = 524287 # maximum send socket buffer size, default 131071
-net.core.rmem_default = 524287 # default receive socket buffer size, default 65535
-net.core.wmem_default = 524287 # default send socket buffer size, default 65535
-net.core.optmem_max = 524287 # maximum amount of option memory buffers, default 10240
-net.core.netdev_max_backlog = 300000 # number of unprocessed input packets before kernel starts dropping them, default 300
+# set maximum receive socket buffer size, default 131071
+net.core.rmem_max = 524287
+# set maximum send socket buffer size, default 131071
+net.core.wmem_max = 524287
+# set default receive socket buffer size, default 65535
+net.core.rmem_default = 524287
+# set default send socket buffer size, default 65535
+net.core.wmem_default = 524287
+# set maximum amount of option memory buffers, default 10240
+net.core.optmem_max = 524287
+# set number of unprocessed input packets before kernel starts dropping them; default 300
+net.core.netdev_max_backlog = 300000
 - END sysctl_ixgb.conf
 
-Edit the ixgb_perf.sh script if necessary to change eth1 to whatever interface 
-your ixgb driver is using.
+Edit the ixgb_perf.sh script if necessary to change eth1 to whatever interface
+your ixgb driver is using and/or replace '1a48' with appropriate 10GbE device's
+ID installed on the system.
 
-NOTE: Unless these scripts are added to the boot process, these changes will 
-only last only until the next system reboot.
+NOTE: Unless these scripts are added to the boot process, these changes will
+      only last only until the next system reboot.
 
 
 Resolving Slow UDP Traffic
 --------------------------
+If your server does not seem to be able to receive UDP traffic as fast as it
+can receive TCP traffic, it could be because Linux, by default, does not set
+the network stack buffers as large as they need to be to support high UDP
+transfer rates.  One way to alleviate this problem is to allow more memory to
+be used by the IP stack to store incoming data.
 
-If your server does not seem to be able to receive UDP traffic as fast as it 
-can receive TCP traffic, it could be because Linux, by default, does not set 
-the network stack buffers as large as they need to be to support high UDP 
-transfer rates. One way to alleviate this problem is to allow more memory to 
-be used by the IP stack to store incoming data. 
-
-For instance, use the commands: 
+For instance, use the commands:
     sysctl -w net.core.rmem_max=262143
 and
     sysctl -w net.core.rmem_default=262143
-to increase the read buffer memory max and default to 262143 (256k - 1) from 
-defaults of max=131071 (128k - 1) and default=65535 (64k - 1). These variables 
-will increase the amount of memory used by the network stack for receives, and 
+to increase the read buffer memory max and default to 262143 (256k - 1) from
+defaults of max=131071 (128k - 1) and default=65535 (64k - 1).  These variables
+will increase the amount of memory used by the network stack for receives, and
 can be increased significantly more if necessary for your application.
 
+
+Additional Configurations
+=========================
+
+  Configuring the Driver on Different Distributions
+  -------------------------------------------------
+  Configuring a network driver to load properly when the system is started is
+  distribution dependent. Typically, the configuration process involves adding
+  an alias line to /etc/modprobe.conf as well as editing other system startup
+  scripts and/or configuration files.  Many popular Linux distributions ship
+  with tools to make these changes for you.  To learn the proper way to
+  configure a network device for your system, refer to your distribution
+  documentation.  If during this process you are asked for the driver or module
+  name, the name for the Linux Base Driver for the Intel 10GbE Family of
+  Adapters is ixgb.
+
+  Viewing Link Messages
+  ---------------------
+  Link messages will not be displayed to the console if the distribution is
+  restricting system messages. In order to see network driver link messages on
+  your console, set dmesg to eight by entering the following:
+
+       dmesg -n 8
+
+  NOTE: This setting is not saved across reboots.
+
+
+  Jumbo Frames
+  ------------
+  The driver supports Jumbo Frames for all adapters. Jumbo Frames support is
+  enabled by changing the MTU to a value larger than the default of 1500.
+  The maximum value for the MTU is 16114.  Use the ifconfig command to
+  increase the MTU size.  For example:
+
+        ifconfig ethx mtu 9000 up
+
+  The maximum MTU setting for Jumbo Frames is 16114.  This value coincides
+  with the maximum Jumbo Frames size of 16128.
+
+
+  Ethtool
+  -------
+  The driver utilizes the ethtool interface for driver configuration and
+  diagnostics, as well as displaying statistical information.  Ethtool
+  version 1.6 or later is required for this functionality.
+
+  The latest release of ethtool can be found from
+  http://sourceforge.net/projects/gkernel
+
+  NOTE: Ethtool 1.6 only supports a limited set of ethtool options. Support
+        for a more complete ethtool feature set can be enabled by upgrading
+        to the latest version.
+
+
+  NAPI
+  ----
+
+  NAPI (Rx polling mode) is supported in the ixgb driver.  NAPI is enabled
+  or disabled based on the configuration of the kernel.  see CONFIG_IXGB_NAPI
+
+  See www.cyberus.ca/~hadi/usenix-paper.tgz for more information on NAPI.
+
+
+Known Issues/Troubleshooting
+============================
+
+  NOTE: After installing the driver, if your Intel Network Connection is not
+  working, verify in the "In This Release" section of the readme that you have
+  installed the correct driver.
+
+  Intel(R) PRO/10GbE CX4 Server Adapter Cable Interoperability Issue with
+  Fujitsu XENPAK Module in SmartBits Chassis
+  ---------------------------------------------------------------------
+  Excessive CRC errors may be observed if the Intel(R) PRO/10GbE CX4
+  Server adapter is connected to a Fujitsu XENPAK CX4 module in a SmartBits
+  chassis using 15 m/24AWG cable assemblies manufactured by Fujitsu or Leoni.
+  The CRC errors may be received either by the Intel(R) PRO/10GbE CX4
+  Server adapter or the SmartBits. If this situation occurs using a different
+  cable assembly may resolve the issue.
+
+  CX4 Server Adapter Cable Interoperability Issues with HP Procurve 3400cl
+  Switch Port
+  ------------------------------------------------------------------------
+  Excessive CRC errors may be observed if the Intel(R) PRO/10GbE CX4 Server
+  adapter is connected to an HP Procurve 3400cl switch port using short cables
+  (1 m or shorter). If this situation occurs, using a longer cable may resolve
+  the issue.
+
+  Excessive CRC errors may be observed using Fujitsu 24AWG cable assemblies that
+  Are 10 m or longer or where using a Leoni 15 m/24AWG cable assembly. The CRC
+  errors may be received either by the CX4 Server adapter or at the switch. If
+  this situation occurs, using a different cable assembly may resolve the issue.
+
+
+  Jumbo Frames System Requirement
+  -------------------------------
+  Memory allocation failures have been observed on Linux systems with 64 MB
+  of RAM or less that are running Jumbo Frames.  If you are using Jumbo
+  Frames, your system may require more than the advertised minimum
+  requirement of 64 MB of system memory.
+
+
+  Performance Degradation with Jumbo Frames
+  -----------------------------------------
+  Degradation in throughput performance may be observed in some Jumbo frames
+  environments.  If this is observed, increasing the application's socket buffer
+  size and/or increasing the /proc/sys/net/ipv4/tcp_*mem entry values may help.
+  See the specific application manual and /usr/src/linux*/Documentation/
+  networking/ip-sysctl.txt for more details.
+
+
+  Allocating Rx Buffers when Using Jumbo Frames
+  ---------------------------------------------
+  Allocating Rx buffers when using Jumbo Frames on 2.6.x kernels may fail if
+  the available memory is heavily fragmented. This issue may be seen with PCI-X
+  adapters or with packet split disabled. This can be reduced or eliminated
+  by changing the amount of available memory for receive buffer allocation, by
+  increasing /proc/sys/vm/min_free_kbytes.
+
+
+  Multiple Interfaces on Same Ethernet Broadcast Network
+  ------------------------------------------------------
+  Due to the default ARP behavior on Linux, it is not possible to have
+  one system on two IP networks in the same Ethernet broadcast domain
+  (non-partitioned switch) behave as expected.  All Ethernet interfaces
+  will respond to IP traffic for any IP address assigned to the system.
+  This results in unbalanced receive traffic.
+
+  If you have multiple interfaces in a server, do either of the following:
+
+  - Turn on ARP filtering by entering:
+      echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter
+
+  - Install the interfaces in separate broadcast domains - either in
+    different switches or in a switch partitioned to VLANs.
+
+
+  UDP Stress Test Dropped Packet Issue
+  --------------------------------------
+  Under small packets UDP stress test with 10GbE driver, the Linux system
+  may drop UDP packets due to the fullness of socket buffers. You may want
+  to change the driver's Flow Control variables to the minimum value for
+  controlling packet reception.
+
+
+  Tx Hangs Possible Under Stress
+  ------------------------------
+  Under stress conditions, if TX hangs occur, turning off TSO
+  "ethtool -K eth0 tso off" may resolve the problem.
+
+
 Support
 =======
 
-For general information and support, go to the Intel support website at:
+For general information, go to the Intel support website at:
 
     http://support.intel.com
 
+or the Intel Wired Networking project hosted by Sourceforge at:
+
+    http://sourceforge.net/projects/e1000
+
 If an issue is identified with the released source code on the supported
-kernel with a supported adapter, email the specific information related to 
-the issue to linux.nics@intel.com.
+kernel with a supported adapter, email the specific information related
+to the issue to e1000-devel@lists.sf.net

+ 67 - 0
Documentation/networking/mac80211_hwsim/README

@@ -0,0 +1,67 @@
+mac80211_hwsim - software simulator of 802.11 radio(s) for mac80211
+Copyright (c) 2008, Jouni Malinen <j@w1.fi>
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License version 2 as
+published by the Free Software Foundation.
+
+
+Introduction
+
+mac80211_hwsim is a Linux kernel module that can be used to simulate
+arbitrary number of IEEE 802.11 radios for mac80211. It can be used to
+test most of the mac80211 functionality and user space tools (e.g.,
+hostapd and wpa_supplicant) in a way that matches very closely with
+the normal case of using real WLAN hardware. From the mac80211 view
+point, mac80211_hwsim is yet another hardware driver, i.e., no changes
+to mac80211 are needed to use this testing tool.
+
+The main goal for mac80211_hwsim is to make it easier for developers
+to test their code and work with new features to mac80211, hostapd,
+and wpa_supplicant. The simulated radios do not have the limitations
+of real hardware, so it is easy to generate an arbitrary test setup
+and always reproduce the same setup for future tests. In addition,
+since all radio operation is simulated, any channel can be used in
+tests regardless of regulatory rules.
+
+mac80211_hwsim kernel module has a parameter 'radios' that can be used
+to select how many radios are simulated (default 2). This allows
+configuration of both very simply setups (e.g., just a single access
+point and a station) or large scale tests (multiple access points with
+hundreds of stations).
+
+mac80211_hwsim works by tracking the current channel of each virtual
+radio and copying all transmitted frames to all other radios that are
+currently enabled and on the same channel as the transmitting
+radio. Software encryption in mac80211 is used so that the frames are
+actually encrypted over the virtual air interface to allow more
+complete testing of encryption.
+
+A global monitoring netdev, hwsim#, is created independent of
+mac80211. This interface can be used to monitor all transmitted frames
+regardless of channel.
+
+
+Simple example
+
+This example shows how to use mac80211_hwsim to simulate two radios:
+one to act as an access point and the other as a station that
+associates with the AP. hostapd and wpa_supplicant are used to take
+care of WPA2-PSK authentication. In addition, hostapd is also
+processing access point side of association.
+
+Please note that the current Linux kernel does not enable AP mode, so a
+simple patch is needed to enable AP mode selection:
+http://johannes.sipsolutions.net/patches/kernel/all/LATEST/006-allow-ap-vlan-modes.patch
+
+
+# Build mac80211_hwsim as part of kernel configuration
+
+# Load the module
+modprobe mac80211_hwsim
+
+# Run hostapd (AP) for wlan0
+hostapd hostapd.conf
+
+# Run wpa_supplicant (station) for wlan1
+wpa_supplicant -Dwext -iwlan1 -c wpa_supplicant.conf

+ 11 - 0
Documentation/networking/mac80211_hwsim/hostapd.conf

@@ -0,0 +1,11 @@
+interface=wlan0
+driver=nl80211
+
+hw_mode=g
+channel=1
+ssid=mac80211 test
+
+wpa=2
+wpa_key_mgmt=WPA-PSK
+wpa_pairwise=CCMP
+wpa_passphrase=12345678

+ 10 - 0
Documentation/networking/mac80211_hwsim/wpa_supplicant.conf

@@ -0,0 +1,10 @@
+ctrl_interface=/var/run/wpa_supplicant
+
+network={
+	ssid="mac80211 test"
+	psk="12345678"
+	key_mgmt=WPA-PSK
+	proto=WPA2
+	pairwise=CCMP
+	group=CCMP
+}

+ 1 - 89
Documentation/networking/multiqueue.txt

@@ -3,19 +3,11 @@
 		===========================================
 
 Section 1: Base driver requirements for implementing multiqueue support
-Section 2: Qdisc support for multiqueue devices
-Section 3: Brief howto using PRIO or RR for multiqueue devices
-
 
 Intro: Kernel support for multiqueue devices
 ---------------------------------------------------------
 
-Kernel support for multiqueue devices is only an API that is presented to the
-netdevice layer for base drivers to implement.  This feature is part of the
-core networking stack, and all network devices will be running on the
-multiqueue-aware stack.  If a base driver only has one queue, then these
-changes are transparent to that driver.
-
+Kernel support for multiqueue devices is always present.
 
 Section 1: Base driver requirements for implementing multiqueue support
 -----------------------------------------------------------------------
@@ -32,84 +24,4 @@ netif_{start|stop|wake}_subqueue() functions to manage each queue while the
 device is still operational.  netdev->queue_lock is still used when the device
 comes online or when it's completely shut down (unregister_netdev(), etc.).
 
-Finally, the base driver should indicate that it is a multiqueue device.  The
-feature flag NETIF_F_MULTI_QUEUE should be added to the netdev->features
-bitmap on device initialization.  Below is an example from e1000:
-
-#ifdef CONFIG_E1000_MQ
-	if ( (adapter->hw.mac.type == e1000_82571) ||
-	     (adapter->hw.mac.type == e1000_82572) ||
-	     (adapter->hw.mac.type == e1000_80003es2lan))
-		netdev->features |= NETIF_F_MULTI_QUEUE;
-#endif
-
-
-Section 2: Qdisc support for multiqueue devices
------------------------------------------------
-
-Currently two qdiscs support multiqueue devices.  A new round-robin qdisc,
-sch_rr, and sch_prio. The qdisc is responsible for classifying the skb's to
-bands and queues, and will store the queue mapping into skb->queue_mapping.
-Use this field in the base driver to determine which queue to send the skb
-to.
-
-sch_rr has been added for hardware that doesn't want scheduling policies from
-software, so it's a straight round-robin qdisc.  It uses the same syntax and
-classification priomap that sch_prio uses, so it should be intuitive to
-configure for people who've used sch_prio.
-
-In order to utilitize the multiqueue features of the qdiscs, the network
-device layer needs to enable multiple queue support.  This can be done by
-selecting NETDEVICES_MULTIQUEUE under Drivers.
-
-The PRIO qdisc naturally plugs into a multiqueue device.  If
-NETDEVICES_MULTIQUEUE is selected, then on qdisc load, the number of
-bands requested is compared to the number of queues on the hardware.  If they
-are equal, it sets a one-to-one mapping up between the queues and bands.  If
-they're not equal, it will not load the qdisc.  This is the same behavior
-for RR.  Once the association is made, any skb that is classified will have
-skb->queue_mapping set, which will allow the driver to properly queue skb's
-to multiple queues.
-
-
-Section 3: Brief howto using PRIO and RR for multiqueue devices
----------------------------------------------------------------
-
-The userspace command 'tc,' part of the iproute2 package, is used to configure
-qdiscs.  To add the PRIO qdisc to your network device, assuming the device is
-called eth0, run the following command:
-
-# tc qdisc add dev eth0 root handle 1: prio bands 4 multiqueue
-
-This will create 4 bands, 0 being highest priority, and associate those bands
-to the queues on your NIC.  Assuming eth0 has 4 Tx queues, the band mapping
-would look like:
-
-band 0 => queue 0
-band 1 => queue 1
-band 2 => queue 2
-band 3 => queue 3
-
-Traffic will begin flowing through each queue if your TOS values are assigning
-traffic across the various bands.  For example, ssh traffic will always try to
-go out band 0 based on TOS -> Linux priority conversion (realtime traffic),
-so it will be sent out queue 0.  ICMP traffic (pings) fall into the "normal"
-traffic classification, which is band 1.  Therefore pings will be send out
-queue 1 on the NIC.
-
-Note the use of the multiqueue keyword.  This is only in versions of iproute2
-that support multiqueue networking devices; if this is omitted when loading
-a qdisc onto a multiqueue device, the qdisc will load and operate the same
-if it were loaded onto a single-queue device (i.e. - sends all traffic to
-queue 0).
-
-Another alternative to multiqueue band allocation can be done by using the
-multiqueue option and specify 0 bands.  If this is the case, the qdisc will
-allocate the number of bands to equal the number of queues that the device
-reports, and bring the qdisc online.
-
-The behavior of tc filters remains the same, where it will override TOS priority
-classification.
-
-
 Author: Peter P. Waskiewicz Jr. <peter.p.waskiewicz.jr@intel.com>

+ 1 - 1
Documentation/networking/packet_mmap.txt

@@ -326,7 +326,7 @@ just one call to mmap is needed:
     mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 
 If tp_frame_size is a divisor of tp_block_size frames will be 
-contiguosly spaced by tp_frame_size bytes. If not, each 
+contiguously spaced by tp_frame_size bytes. If not, each
 tp_block_size/tp_frame_size frames there will be a gap between 
 the frames. This is because a frame cannot be spawn across two
 blocks. 

+ 2 - 5
Documentation/networking/s2io.txt

@@ -52,13 +52,10 @@ d. MSI/MSI-X. Can be enabled on platforms which support this feature
 (IA64, Xeon) resulting in noticeable performance improvement(upto 7%
 on certain platforms).
 
-e. NAPI. Compile-time option(CONFIG_S2IO_NAPI) for better Rx interrupt 
-moderation.
-
-f. Statistics. Comprehensive MAC-level and software statistics displayed
+e. Statistics. Comprehensive MAC-level and software statistics displayed
 using "ethtool -S" option.
 
-g. Multi-FIFO/Ring. Supports up to 8 transmit queues and receive rings, 
+f. Multi-FIFO/Ring. Supports up to 8 transmit queues and receive rings,
 with multiple steering options.
 
 4.  Command line parameters

+ 8 - 7
Documentation/networking/tc-actions-env-rules.txt

@@ -4,26 +4,27 @@ The "enviromental" rules for authors of any new tc actions are:
 1) If you stealeth or borroweth any packet thou shalt be branching
 from the righteous path and thou shalt cloneth.
 
-For example if your action queues a packet to be processed later
-or intentionaly branches by redirecting a packet then you need to
+For example if your action queues a packet to be processed later,
+or intentionally branches by redirecting a packet, then you need to
 clone the packet.
+
 There are certain fields in the skb tc_verd that need to be reset so we
-avoid loops etc. A few are generic enough so much so that skb_act_clone()
-resets them for you. So invoke skb_act_clone() rather than skb_clone()
+avoid loops, etc.  A few are generic enough that skb_act_clone()
+resets them for you, so invoke skb_act_clone() rather than skb_clone().
 
 2) If you munge any packet thou shalt call pskb_expand_head in the case
 someone else is referencing the skb. After that you "own" the skb.
 You must also tell us if it is ok to munge the packet (TC_OK2MUNGE),
 this way any action downstream can stomp on the packet.
 
-3) dropping packets you dont own is a nono. You simply return
+3) Dropping packets you don't own is a no-no. You simply return
 TC_ACT_SHOT to the caller and they will drop it.
 
 The "enviromental" rules for callers of actions (qdiscs etc) are:
 
-*) thou art responsible for freeing anything returned as being
+*) Thou art responsible for freeing anything returned as being
 TC_ACT_SHOT/STOLEN/QUEUED. If none of TC_ACT_SHOT/STOLEN/QUEUED is
-returned then all is great and you dont need to do anything.
+returned, then all is great and you don't need to do anything.
 
 Post on netdev if something is unclear.
 

+ 1 - 1
Documentation/networking/udplite.txt

@@ -148,7 +148,7 @@
         getsockopt(sockfd, SOL_SOCKET, SO_NO_CHECK, &value, ...);
 
   is meaningless (as in TCP). Packets with a zero checksum field are
-  illegal (cf. RFC 3828, sec. 3.1) will be silently discarded.
+  illegal (cf. RFC 3828, sec. 3.1) and will be silently discarded.
 
   4) Fragmentation
 

+ 2 - 2
Documentation/power/00-INDEX

@@ -1,5 +1,7 @@
 00-INDEX
 	- This file
+apm-acpi.txt
+	- basic info about the APM and ACPI support.
 basic-pm-debugging.txt
 	- Debugging suspend and resume
 devices.txt
@@ -14,8 +16,6 @@ notifiers.txt
 	- Registering suspend notifiers in device drivers
 pci.txt
 	- How the PCI Subsystem Does Power Management
-pm.txt
-	- info on Linux power management support.
 pm_qos_interface.txt
 	- info on Linux PM Quality of Service interface
 power_supply_class.txt

+ 32 - 0
Documentation/power/apm-acpi.txt

@@ -0,0 +1,32 @@
+APM or ACPI?
+------------
+If you have a relatively recent x86 mobile, desktop, or server system,
+odds are it supports either Advanced Power Management (APM) or
+Advanced Configuration and Power Interface (ACPI).  ACPI is the newer
+of the two technologies and puts power management in the hands of the
+operating system, allowing for more intelligent power management than
+is possible with BIOS controlled APM.
+
+The best way to determine which, if either, your system supports is to
+build a kernel with both ACPI and APM enabled (as of 2.3.x ACPI is
+enabled by default).  If a working ACPI implementation is found, the
+ACPI driver will override and disable APM, otherwise the APM driver
+will be used.
+
+No, sorry, you cannot have both ACPI and APM enabled and running at
+once.  Some people with broken ACPI or broken APM implementations
+would like to use both to get a full set of working features, but you
+simply cannot mix and match the two.  Only one power management
+interface can be in control of the machine at once.  Think about it..
+
+User-space Daemons
+------------------
+Both APM and ACPI rely on user-space daemons, apmd and acpid
+respectively, to be completely functional.  Obtain both of these
+daemons from your Linux distribution or from the Internet (see below)
+and be sure that they are started sometime in the system boot process.
+Go ahead and start both.  If ACPI or APM is not available on your
+system the associated daemon will exit gracefully.
+
+  apmd:   http://worldvisions.ca/~apenwarr/apmd/
+  acpid:  http://acpid.sf.net/

+ 0 - 257
Documentation/power/pm.txt

@@ -1,257 +0,0 @@
-               Linux Power Management Support
-
-This document briefly describes how to use power management with your
-Linux system and how to add power management support to Linux drivers.
-
-APM or ACPI?
-------------
-If you have a relatively recent x86 mobile, desktop, or server system,
-odds are it supports either Advanced Power Management (APM) or
-Advanced Configuration and Power Interface (ACPI).  ACPI is the newer
-of the two technologies and puts power management in the hands of the
-operating system, allowing for more intelligent power management than
-is possible with BIOS controlled APM.
-
-The best way to determine which, if either, your system supports is to
-build a kernel with both ACPI and APM enabled (as of 2.3.x ACPI is
-enabled by default).  If a working ACPI implementation is found, the
-ACPI driver will override and disable APM, otherwise the APM driver
-will be used.
-
-No, sorry, you cannot have both ACPI and APM enabled and running at
-once.  Some people with broken ACPI or broken APM implementations
-would like to use both to get a full set of working features, but you
-simply cannot mix and match the two.  Only one power management
-interface can be in control of the machine at once.  Think about it..
-
-User-space Daemons
-------------------
-Both APM and ACPI rely on user-space daemons, apmd and acpid
-respectively, to be completely functional.  Obtain both of these
-daemons from your Linux distribution or from the Internet (see below)
-and be sure that they are started sometime in the system boot process.
-Go ahead and start both.  If ACPI or APM is not available on your
-system the associated daemon will exit gracefully.
-
-  apmd:   http://worldvisions.ca/~apenwarr/apmd/
-  acpid:  http://acpid.sf.net/
-
-Driver Interface -- OBSOLETE, DO NOT USE!
-----------------*************************
-
-Note: pm_register(), pm_access(), pm_dev_idle() and friends are
-obsolete. Please do not use them. Instead you should properly hook
-your driver into the driver model, and use its suspend()/resume()
-callbacks to do this kind of stuff.
-
-If you are writing a new driver or maintaining an old driver, it
-should include power management support.  Without power management
-support, a single driver may prevent a system with power management
-capabilities from ever being able to suspend (safely).
-
-Overview:
-1) Register each instance of a device with "pm_register"
-2) Call "pm_access" before accessing the hardware.
-   (this will ensure that the hardware is awake and ready)
-3) Your "pm_callback" is called before going into a
-   suspend state (ACPI D1-D3) or after resuming (ACPI D0)
-   from a suspend.
-4) Call "pm_dev_idle" when the device is not being used
-   (optional but will improve device idle detection)
-5) When unloaded, unregister the device with "pm_unregister"
-
-/*
- * Description: Register a device with the power-management subsystem
- *
- * Parameters:
- *   type - device type (PCI device, system device, ...)
- *   id - instance number or unique identifier
- *   cback - request handler callback (suspend, resume, ...)
- *
- * Returns: Registered PM device or NULL on error
- *
- * Examples:
- *   dev = pm_register(PM_SYS_DEV, PM_SYS_VGA, vga_callback);
- *
- *   struct pci_dev *pci_dev = pci_find_dev(...);
- *   dev = pm_register(PM_PCI_DEV, PM_PCI_ID(pci_dev), callback);
- */
-struct pm_dev *pm_register(pm_dev_t type, unsigned long id, pm_callback cback);
-
-/*
- * Description: Unregister a device with the power management subsystem
- *
- * Parameters:
- *   dev - PM device previously returned from pm_register
- */
-void pm_unregister(struct pm_dev *dev);
-
-/*
- * Description: Unregister all devices with a matching callback function
- *
- * Parameters:
- *   cback - previously registered request callback
- *
- * Notes: Provided for easier porting from old APM interface
- */
-void pm_unregister_all(pm_callback cback);
-
-/*
- * Power management request callback
- *
- * Parameters:
- *   dev - PM device previously returned from pm_register
- *   rqst - request type
- *   data - data, if any, associated with the request
- *
- * Returns: 0 if the request is successful
- *          EINVAL if the request is not supported
- *          EBUSY if the device is now busy and cannot handle the request
- *          ENOMEM if the device was unable to handle the request due to memory
- *
- * Details: The device request callback will be called before the
- *          device/system enters a suspend state (ACPI D1-D3) or
- *          or after the device/system resumes from suspend (ACPI D0).
- *          For PM_SUSPEND, the ACPI D-state being entered is passed
- *          as the "data" argument to the callback.  The device
- *          driver should save (PM_SUSPEND) or restore (PM_RESUME)
- *          device context when the request callback is called.
- *
- *          Once a driver returns 0 (success) from a suspend
- *          request, it should not process any further requests or
- *          access the device hardware until a call to "pm_access" is made.
- */
-typedef int (*pm_callback)(struct pm_dev *dev, pm_request_t rqst, void *data);
-
-Driver Details
---------------
-This is just a quick Q&A as a stopgap until a real driver writers'
-power management guide is available.
-
-Q: When is a device suspended?
-
-Devices can be suspended based on direct user request (eg. laptop lid
-closes), system power policy (eg.  sleep after 30 minutes of console
-inactivity), or device power policy (eg. power down device after 5
-minutes of inactivity)
-
-Q: Must a driver honor a suspend request?
-
-No, a driver can return -EBUSY from a suspend request and this
-will stop the system from suspending.  When a suspend request
-fails, all suspended devices are resumed and the system continues
-to run.  Suspend can be retried at a later time.
-
-Q: Can the driver block suspend/resume requests?
-
-Yes, a driver can delay its return from a suspend or resume
-request until the device is ready to handle requests.  It
-is advantageous to return as quickly as possible from a
-request as suspend/resume are done serially.
-
-Q: What context is a suspend/resume initiated from?
-
-A suspend or resume is initiated from a kernel thread context.
-It is safe to block, allocate memory, initiate requests
-or anything else you can do within the kernel.
-
-Q: Will requests continue to arrive after a suspend?
-
-Possibly.  It is the driver's responsibility to queue(*),
-fail, or drop any requests that arrive after returning
-success to a suspend request.  It is important that the
-driver not access its device until after it receives
-a resume request as the device's bus may no longer
-be active.
-
-(*) If a driver queues requests for processing after
-    resume be aware that the device, network, etc.
-    might be in a different state than at suspend time.
-    It's probably better to drop requests unless
-    the driver is a storage device.
-
-Q: Do I have to manage bus-specific power management registers
-
-No.  It is the responsibility of the bus driver to manage
-PCI, USB, etc. power management registers.  The bus driver
-or the power management subsystem will also enable any
-wake-on functionality that the device has.
-
-Q: So, really, what do I need to do to support suspend/resume?
-
-You need to save any device context that would
-be lost if the device was powered off and then restore
-it at resume time.  When ACPI is active, there are
-three levels of device suspend states; D1, D2, and D3.
-(The suspend state is passed as the "data" argument
-to the device callback.)  With D3, the device is powered
-off and loses all context, D1 and D2 are shallower power
-states and require less device context to be saved.  To
-play it safe, just save everything at suspend and restore
-everything at resume.
-
-Q: Where do I store device context for suspend?
-
-Anywhere in memory, kmalloc a buffer or store it
-in the device descriptor.  You are guaranteed that the
-contents of memory will be restored and accessible
-before resume, even when the system suspends to disk.
-
-Q: What do I need to do for ACPI vs. APM vs. etc?
-
-Drivers need not be aware of the specific power management
-technology that is active.  They just need to be aware
-of when the overlying power management system requests
-that they suspend or resume.
-
-Q: What about device dependencies?
-
-When a driver registers a device, the power management
-subsystem uses the information provided to build a
-tree of device dependencies (eg. USB device X is on
-USB controller Y which is on PCI bus Z)  When power
-management wants to suspend a device, it first sends
-a suspend request to its driver, then the bus driver,
-and so on up to the system bus.  Device resumes
-proceed in the opposite direction.
-
-Q: Who do I contact for additional information about
-   enabling power management for my specific driver/device?
-
-ACPI Development mailing list: linux-acpi@vger.kernel.org
-
-System Interface -- OBSOLETE, DO NOT USE!
-----------------*************************
-If you are providing new power management support to Linux (ie.
-adding support for something like APM or ACPI), you should
-communicate with drivers through the existing generic power
-management interface.
-
-/*
- * Send a request to all devices
- *
- * Parameters:
- *   rqst - request type
- *   data - data, if any, associated with the request
- *
- * Returns: 0 if the request is successful
- *          See "pm_callback" return for errors
- *
- * Details: Walk list of registered devices and call pm_send
- *          for each until complete or an error is encountered.
- *          If an error is encountered for a suspend request,
- *          return all devices to the state they were in before
- *          the suspend request.
- */
-int pm_send_all(pm_request_t rqst, void *data);
-
-/*
- * Find a matching device
- *
- * Parameters:
- *   type - device type (PCI device, system device, or 0 to match all devices)
- *   from - previous match or NULL to start from the beginning
- *
- * Returns: Matching device or NULL if none found
- */
-struct pm_dev *pm_find(pm_dev_t type, struct pm_dev *from);

+ 246 - 86
Documentation/powerpc/booting-without-of.txt

@@ -41,12 +41,25 @@ Table of Contents
   VI - System-on-a-chip devices and nodes
     1) Defining child nodes of an SOC
     2) Representing devices without a current OF specification
-      a) PHY nodes
-      b) Interrupt controllers
-      c) CFI or JEDEC memory-mapped NOR flash
-      d) 4xx/Axon EMAC ethernet nodes
-      e) Xilinx IP cores
-      f) USB EHCI controllers
+      a) MDIO IO device
+      b) Gianfar-compatible ethernet nodes
+      c) PHY nodes
+      d) Interrupt controllers
+      e) I2C
+      f) Freescale SOC USB controllers
+      g) Freescale SOC SEC Security Engines
+      h) Board Control and Status (BCSR)
+      i) Freescale QUICC Engine module (QE)
+      j) CFI or JEDEC memory-mapped NOR flash
+      k) Global Utilities Block
+      l) Freescale Communications Processor Module
+      m) Chipselect/Local Bus
+      n) 4xx/Axon EMAC ethernet nodes
+      o) Xilinx IP cores
+      p) Freescale Synchronous Serial Interface
+	  q) USB EHCI controllers
+      r) MDIO on GPIOs
+      s) SPI busses
 
   VII - Marvell Discovery mv64[345]6x System Controller chips
     1) The /system-controller node
@@ -77,10 +90,12 @@ Table of Contents
     3) OpenPIC Interrupt Controllers
     4) ISA Interrupt Controllers
 
-  VIII - Specifying GPIO information for devices
+  IX - Specifying GPIO information for devices
     1) gpios property
     2) gpio-controller nodes
 
+  X - Specifying device power management information (sleep property)
+
   Appendix A - Sample SOC node for MPC8540
 
 
@@ -693,7 +708,7 @@ device or bus to be described by the device tree.
 In general, the format of an address for a device is defined by the
 parent bus type, based on the #address-cells and #size-cells
 properties.  Note that the parent's parent definitions of #address-cells
-and #size-cells are not inhereted so every node with children must specify
+and #size-cells are not inherited so every node with children must specify
 them.  The kernel requires the root node to have those properties defining
 addresses format for devices directly mapped on the processor bus.
 
@@ -1762,7 +1777,7 @@ platforms are moved over to use the flattened-device-tree model.
 
       Xilinx uartlite devices are simple fixed speed serial ports.
 
-      Requred properties:
+      Required properties:
        - current-speed : Baud rate of uartlite
 
       v) Xilinx hwicap
@@ -1784,7 +1799,7 @@ platforms are moved over to use the flattened-device-tree model.
       Xilinx UART 16550 devices are very similar to the NS16550 but with
       different register spacing and an offset from the base address.
 
-      Requred properties:
+      Required properties:
        - clock-frequency : Frequency of the clock input
        - reg-offset : A value of 3 is required
        - reg-shift : A value of 2 is required
@@ -1815,6 +1830,116 @@ platforms are moved over to use the flattened-device-tree model.
 		   big-endian;
 	   };
 
+    r) Freescale Display Interface Unit
+
+    The Freescale DIU is a LCD controller, with proper hardware, it can also
+    drive DVI monitors.
+
+    Required properties:
+    - compatible : should be "fsl-diu".
+    - reg : should contain at least address and length of the DIU register
+      set.
+    - Interrupts : one DIU interrupt should be describe here.
+
+    Example (MPC8610HPCD)
+	display@2c000 {
+		compatible = "fsl,diu";
+		reg = <0x2c000 100>;
+		interrupts = <72 2>;
+		interrupt-parent = <&mpic>;
+	};
+
+    s) Freescale on board FPGA
+
+    This is the memory-mapped registers for on board FPGA.
+
+    Required properities:
+    - compatible : should be "fsl,fpga-pixis".
+    - reg : should contain the address and the lenght of the FPPGA register
+      set.
+
+    Example (MPC8610HPCD)
+	board-control@e8000000 {
+		compatible = "fsl,fpga-pixis";
+		reg = <0xe8000000 32>;
+	};
+
+   r) MDIO on GPIOs
+
+   Currently defined compatibles:
+   - virtual,gpio-mdio
+
+   MDC and MDIO lines connected to GPIO controllers are listed in the
+   gpios property as described in section VIII.1 in the following order:
+
+   MDC, MDIO.
+
+   Example:
+
+	mdio {
+		compatible = "virtual,mdio-gpio";
+		#address-cells = <1>;
+		#size-cells = <0>;
+		gpios = <&qe_pio_a 11
+			 &qe_pio_c 6>;
+	};
+
+    s) SPI (Serial Peripheral Interface) busses
+
+    SPI busses can be described with a node for the SPI master device
+    and a set of child nodes for each SPI slave on the bus.  For this
+    discussion, it is assumed that the system's SPI controller is in
+    SPI master mode.  This binding does not describe SPI controllers
+    in slave mode.
+
+    The SPI master node requires the following properties:
+    - #address-cells  - number of cells required to define a chip select
+			address on the SPI bus.
+    - #size-cells     - should be zero.
+    - compatible      - name of SPI bus controller following generic names
+			recommended practice.
+    No other properties are required in the SPI bus node.  It is assumed
+    that a driver for an SPI bus device will understand that it is an SPI bus.
+    However, the binding does not attempt to define the specific method for
+    assigning chip select numbers.  Since SPI chip select configuration is
+    flexible and non-standardized, it is left out of this binding with the
+    assumption that board specific platform code will be used to manage
+    chip selects.  Individual drivers can define additional properties to
+    support describing the chip select layout.
+
+    SPI slave nodes must be children of the SPI master node and can
+    contain the following properties.
+    - reg             - (required) chip select address of device.
+    - compatible      - (required) name of SPI device following generic names
+			recommended practice
+    - spi-max-frequency - (required) Maximum SPI clocking speed of device in Hz
+    - spi-cpol        - (optional) Empty property indicating device requires
+			inverse clock polarity (CPOL) mode
+    - spi-cpha        - (optional) Empty property indicating device requires
+			shifted clock phase (CPHA) mode
+
+    SPI example for an MPC5200 SPI bus:
+		spi@f00 {
+			#address-cells = <1>;
+			#size-cells = <0>;
+			compatible = "fsl,mpc5200b-spi","fsl,mpc5200-spi";
+			reg = <0xf00 0x20>;
+			interrupts = <2 13 0 2 14 0>;
+			interrupt-parent = <&mpc5200_pic>;
+
+			ethernet-switch@0 {
+				compatible = "micrel,ks8995m";
+				spi-max-frequency = <1000000>;
+				reg = <0>;
+			};
+
+			codec@1 {
+				compatible = "ti,tlv320aic26";
+				spi-max-frequency = <100000>;
+				reg = <1>;
+			};
+		};
+
 VII - Marvell Discovery mv64[345]6x System Controller chips
 ===========================================================
 
@@ -1828,7 +1953,7 @@ prefixed with the string "marvell,", for Marvell Technology Group Ltd.
 1) The /system-controller node
 
   This node is used to represent the system-controller and must be
-  present when the system uses a system contller chip. The top-level
+  present when the system uses a system controller chip. The top-level
   system-controller node contains information that is global to all
   devices within the system controller chip. The node name begins
   with "system-controller" followed by the unit address, which is
@@ -2422,8 +2547,8 @@ encodings listed below:
 	2 =  high to low edge sensitive type enabled
 	3 =  low to high edge sensitive type enabled
 
-VIII - Specifying GPIO information for devices
-==============================================
+IX - Specifying GPIO information for devices
+============================================
 
 1) gpios property
 -----------------
@@ -2471,116 +2596,151 @@ Example of two SOC GPIO banks defined as gpio-controller nodes:
 		gpio-controller;
 	};
 
+X - Specifying Device Power Management Information (sleep property)
+===================================================================
+
+Devices on SOCs often have mechanisms for placing devices into low-power
+states that are decoupled from the devices' own register blocks.  Sometimes,
+this information is more complicated than a cell-index property can
+reasonably describe.  Thus, each device controlled in such a manner
+may contain a "sleep" property which describes these connections.
+
+The sleep property consists of one or more sleep resources, each of
+which consists of a phandle to a sleep controller, followed by a
+controller-specific sleep specifier of zero or more cells.
+
+The semantics of what type of low power modes are possible are defined
+by the sleep controller.  Some examples of the types of low power modes
+that may be supported are:
+
+ - Dynamic: The device may be disabled or enabled at any time.
+ - System Suspend: The device may request to be disabled or remain
+   awake during system suspend, but will not be disabled until then.
+ - Permanent: The device is disabled permanently (until the next hard
+   reset).
+
+Some devices may share a clock domain with each other, such that they should
+only be suspended when none of the devices are in use.  Where reasonable,
+such nodes should be placed on a virtual bus, where the bus has the sleep
+property.  If the clock domain is shared among devices that cannot be
+reasonably grouped in this manner, then create a virtual sleep controller
+(similar to an interrupt nexus, except that defining a standardized
+sleep-map should wait until its necessity is demonstrated).
+
 Appendix A - Sample SOC node for MPC8540
 ========================================
 
-Note that the #address-cells and #size-cells for the SoC node
-in this example have been explicitly listed; these are likely
-not necessary as they are usually the same as the root node.
-
-	soc8540@e0000000 {
+	soc@e0000000 {
 		#address-cells = <1>;
 		#size-cells = <1>;
-		#interrupt-cells = <2>;
+		compatible = "fsl,mpc8540-ccsr", "simple-bus";
 		device_type = "soc";
-		ranges = <00000000 e0000000 00100000>
-		reg = <e0000000 00003000>;
+		ranges = <0x00000000 0xe0000000 0x00100000>
 		bus-frequency = <0>;
-
-		mdio@24520 {
-			reg = <24520 20>;
-			device_type = "mdio";
-			compatible = "gianfar";
-
-			ethernet-phy@0 {
-				linux,phandle = <2452000>
-				interrupt-parent = <40000>;
-				interrupts = <35 1>;
-				reg = <0>;
-				device_type = "ethernet-phy";
-			};
-
-			ethernet-phy@1 {
-				linux,phandle = <2452001>
-				interrupt-parent = <40000>;
-				interrupts = <35 1>;
-				reg = <1>;
-				device_type = "ethernet-phy";
-			};
-
-			ethernet-phy@3 {
-				linux,phandle = <2452002>
-				interrupt-parent = <40000>;
-				interrupts = <35 1>;
-				reg = <3>;
-				device_type = "ethernet-phy";
-			};
-
-		};
+		interrupt-parent = <&pic>;
 
 		ethernet@24000 {
-			#size-cells = <0>;
+			#address-cells = <1>;
+			#size-cells = <1>;
 			device_type = "network";
 			model = "TSEC";
-			compatible = "gianfar";
-			reg = <24000 1000>;
-			mac-address = [ 00 E0 0C 00 73 00 ];
-			interrupts = <d 3 e 3 12 3>;
-			interrupt-parent = <40000>;
-			phy-handle = <2452000>;
+			compatible = "gianfar", "simple-bus";
+			reg = <0x24000 0x1000>;
+			local-mac-address = [ 00 E0 0C 00 73 00 ];
+			interrupts = <29 2 30 2 34 2>;
+			phy-handle = <&phy0>;
+			sleep = <&pmc 00000080>;
+			ranges;
+
+			mdio@24520 {
+				reg = <0x24520 0x20>;
+				compatible = "fsl,gianfar-mdio";
+
+				phy0: ethernet-phy@0 {
+					interrupts = <5 1>;
+					reg = <0>;
+					device_type = "ethernet-phy";
+				};
+
+				phy1: ethernet-phy@1 {
+					interrupts = <5 1>;
+					reg = <1>;
+					device_type = "ethernet-phy";
+				};
+
+				phy3: ethernet-phy@3 {
+					interrupts = <7 1>;
+					reg = <3>;
+					device_type = "ethernet-phy";
+				};
+			};
 		};
 
 		ethernet@25000 {
-			#address-cells = <1>;
-			#size-cells = <0>;
 			device_type = "network";
 			model = "TSEC";
 			compatible = "gianfar";
-			reg = <25000 1000>;
-			mac-address = [ 00 E0 0C 00 73 01 ];
-			interrupts = <13 3 14 3 18 3>;
-			interrupt-parent = <40000>;
-			phy-handle = <2452001>;
+			reg = <0x25000 0x1000>;
+			local-mac-address = [ 00 E0 0C 00 73 01 ];
+			interrupts = <13 2 14 2 18 2>;
+			phy-handle = <&phy1>;
+			sleep = <&pmc 00000040>;
 		};
 
 		ethernet@26000 {
-			#address-cells = <1>;
-			#size-cells = <0>;
 			device_type = "network";
 			model = "FEC";
 			compatible = "gianfar";
-			reg = <26000 1000>;
-			mac-address = [ 00 E0 0C 00 73 02 ];
-			interrupts = <19 3>;
-			interrupt-parent = <40000>;
-			phy-handle = <2452002>;
+			reg = <0x26000 0x1000>;
+			local-mac-address = [ 00 E0 0C 00 73 02 ];
+			interrupts = <41 2>;
+			phy-handle = <&phy3>;
+			sleep = <&pmc 00000020>;
 		};
 
 		serial@4500 {
-			device_type = "serial";
-			compatible = "ns16550";
-			reg = <4500 100>;
-			clock-frequency = <0>;
-			interrupts = <1a 3>;
-			interrupt-parent = <40000>;
+			#address-cells = <1>;
+			#size-cells = <1>;
+			compatible = "fsl,mpc8540-duart", "simple-bus";
+			sleep = <&pmc 00000002>;
+			ranges;
+
+			serial@4500 {
+				device_type = "serial";
+				compatible = "ns16550";
+				reg = <0x4500 0x100>;
+				clock-frequency = <0>;
+				interrupts = <42 2>;
+			};
+
+			serial@4600 {
+				device_type = "serial";
+				compatible = "ns16550";
+				reg = <0x4600 0x100>;
+				clock-frequency = <0>;
+				interrupts = <42 2>;
+			};
 		};
 
-		pic@40000 {
-			linux,phandle = <40000>;
+		pic: pic@40000 {
 			interrupt-controller;
 			#address-cells = <0>;
-			reg = <40000 40000>;
+			#interrupt-cells = <2>;
+			reg = <0x40000 0x40000>;
 			compatible = "chrp,open-pic";
 			device_type = "open-pic";
 		};
 
 		i2c@3000 {
-			interrupt-parent = <40000>;
-			interrupts = <1b 3>;
-			reg = <3000 18>;
-			device_type = "i2c";
+			interrupts = <43 2>;
+			reg = <0x3000 0x100>;
 			compatible  = "fsl-i2c";
 			dfsrr;
+			sleep = <&pmc 00000004>;
 		};
 
+		pmc: power@e0070 {
+			compatible = "fsl,mpc8540-pmc", "fsl,mpc8548-pmc";
+			reg = <0xe0070 0x20>;
+		};
 	};

+ 38 - 0
Documentation/powerpc/dts-bindings/fsl/cpm_qe/gpio.txt

@@ -0,0 +1,38 @@
+Every GPIO controller node must have #gpio-cells property defined,
+this information will be used to translate gpio-specifiers.
+
+On CPM1 devices, all ports are using slightly different register layouts.
+Ports A, C and D are 16bit ports and Ports B and E are 32bit ports.
+
+On CPM2 devices, all ports are 32bit ports and use a common register layout.
+
+Required properties:
+- compatible : "fsl,cpm1-pario-bank-a", "fsl,cpm1-pario-bank-b",
+  "fsl,cpm1-pario-bank-c", "fsl,cpm1-pario-bank-d",
+  "fsl,cpm1-pario-bank-e", "fsl,cpm2-pario-bank"
+- #gpio-cells : Should be two. The first cell is the pin number and the
+  second cell is used to specify optional paramters (currently unused).
+- gpio-controller : Marks the port as GPIO controller.
+
+Example of three SOC GPIO banks defined as gpio-controller nodes:
+
+	CPM1_PIO_A: gpio-controller@950 {
+		#gpio-cells = <2>;
+		compatible = "fsl,cpm1-pario-bank-a";
+		reg = <0x950 0x10>;
+		gpio-controller;
+	};
+
+	CPM1_PIO_B: gpio-controller@ab8 {
+		#gpio-cells = <2>;
+		compatible = "fsl,cpm1-pario-bank-b";
+		reg = <0xab8 0x10>;
+		gpio-controller;
+	};
+
+	CPM1_PIO_E: gpio-controller@ac8 {
+		#gpio-cells = <2>;
+		compatible = "fsl,cpm1-pario-bank-e";
+		reg = <0xac8 0x18>;
+		gpio-controller;
+	};

+ 34 - 19
Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/usb.txt

@@ -1,22 +1,37 @@
-* USB (Universal Serial Bus Controller)
+Freescale QUICC Engine USB Controller
 
 Required properties:
-- compatible : could be "qe_udc" or "fhci-hcd".
-- mode : the could be "host" or "slave".
-- reg : Offset and length of the register set for the device
-- interrupts : <a b> where a is the interrupt number and b is a
-  field that represents an encoding of the sense and level
-  information for the interrupt.  This should be encoded based on
-  the information in section 2) depending on the type of interrupt
-  controller you have.
-- interrupt-parent : the phandle for the interrupt controller that
-  services interrupts for this device.
+- compatible : should be "fsl,<chip>-qe-usb", "fsl,mpc8323-qe-usb".
+- reg : the first two cells should contain usb registers location and
+  length, the next two two cells should contain PRAM location and
+  length.
+- interrupts : should contain USB interrupt.
+- interrupt-parent : interrupt source phandle.
+- fsl,fullspeed-clock : specifies the full speed USB clock source:
+  "none": clock source is disabled
+  "brg1" through "brg16": clock source is BRG1-BRG16, respectively
+  "clk1" through "clk24": clock source is CLK1-CLK24, respectively
+- fsl,lowspeed-clock : specifies the low speed USB clock source:
+  "none": clock source is disabled
+  "brg1" through "brg16": clock source is BRG1-BRG16, respectively
+  "clk1" through "clk24": clock source is CLK1-CLK24, respectively
+- hub-power-budget : USB power budget for the root hub, in mA.
+- gpios : should specify GPIOs in this order: USBOE, USBTP, USBTN, USBRP,
+  USBRN, SPEED (optional), and POWER (optional).
 
-Example(slave):
-	usb@6c0 {
-		compatible = "qe_udc";
-		reg = <6c0 40>;
-		interrupts = <8b 0>;
-		interrupt-parent = <700>;
-		mode = "slave";
-	};
+Example:
+
+usb@6c0 {
+	compatible = "fsl,mpc8360-qe-usb", "fsl,mpc8323-qe-usb";
+	reg = <0x6c0 0x40 0x8b00 0x100>;
+	interrupts = <11>;
+	interrupt-parent = <&qeic>;
+	fsl,fullspeed-clock = "clk21";
+	gpios = <&qe_pio_b  2 0 /* USBOE */
+		 &qe_pio_b  3 0 /* USBTP */
+		 &qe_pio_b  8 0 /* USBTN */
+		 &qe_pio_b  9 0 /* USBRP */
+		 &qe_pio_b 11 0 /* USBRN */
+		 &qe_pio_e 20 0 /* SPEED */
+		 &qe_pio_e 21 0 /* POWER */>;
+};

+ 17 - 0
Documentation/powerpc/dts-bindings/fsl/mcu-mpc8349emitx.txt

@@ -0,0 +1,17 @@
+Freescale MPC8349E-mITX-compatible Power Management Micro Controller Unit (MCU)
+
+Required properties:
+- compatible : "fsl,<mcu-chip>-<board>", "fsl,mcu-mpc8349emitx".
+- reg : should specify I2C address (0x0a).
+- #gpio-cells : should be 2.
+- gpio-controller : should be present.
+
+Example:
+
+mcu@0a {
+	#gpio-cells = <2>;
+	compatible = "fsl,mc9s08qg8-mpc8349emitx",
+		     "fsl,mcu-mpc8349emitx";
+	reg = <0x0a>;
+	gpio-controller;
+};

+ 63 - 0
Documentation/powerpc/dts-bindings/fsl/pmc.txt

@@ -0,0 +1,63 @@
+* Power Management Controller
+
+Properties:
+- compatible: "fsl,<chip>-pmc".
+
+  "fsl,mpc8349-pmc" should be listed for any chip whose PMC is
+  compatible.  "fsl,mpc8313-pmc" should also be listed for any chip
+  whose PMC is compatible, and implies deep-sleep capability.
+
+  "fsl,mpc8548-pmc" should be listed for any chip whose PMC is
+  compatible.  "fsl,mpc8536-pmc" should also be listed for any chip
+  whose PMC is compatible, and implies deep-sleep capability.
+
+  "fsl,mpc8641d-pmc" should be listed for any chip whose PMC is
+  compatible; all statements below that apply to "fsl,mpc8548-pmc" also
+  apply to "fsl,mpc8641d-pmc".
+
+  Compatibility does not include bit assigments in SCCR/PMCDR/DEVDISR; these
+  bit assigments are indicated via the sleep specifier in each device's
+  sleep property.
+
+- reg: For devices compatible with "fsl,mpc8349-pmc", the first resource
+  is the PMC block, and the second resource is the Clock Configuration
+  block.
+
+  For devices compatible with "fsl,mpc8548-pmc", the first resource
+  is a 32-byte block beginning with DEVDISR.
+
+- interrupts: For "fsl,mpc8349-pmc"-compatible devices, the first
+  resource is the PMC block interrupt.
+
+- fsl,mpc8313-wakeup-timer: For "fsl,mpc8313-pmc"-compatible devices,
+  this is a phandle to an "fsl,gtm" node on which timer 4 can be used as
+  a wakeup source from deep sleep.
+
+Sleep specifiers:
+
+  fsl,mpc8349-pmc: Sleep specifiers consist of one cell.  For each bit
+  that is set in the cell, the corresponding bit in SCCR will be saved
+  and cleared on suspend, and restored on resume.  This sleep controller
+  supports disabling and resuming devices at any time.
+
+  fsl,mpc8536-pmc: Sleep specifiers consist of three cells, the third of
+  which will be ORed into PMCDR upon suspend, and cleared from PMCDR
+  upon resume.  The first two cells are as described for fsl,mpc8578-pmc.
+  This sleep controller only supports disabling devices during system
+  sleep, or permanently.
+
+  fsl,mpc8548-pmc: Sleep specifiers consist of one or two cells, the
+  first of which will be ORed into DEVDISR (and the second into
+  DEVDISR2, if present -- this cell should be zero or absent if the
+  hardware does not have DEVDISR2) upon a request for permanent device
+  disabling.  This sleep controller does not support configuring devices
+  to disable during system sleep (unless supported by another compatible
+  match), or dynamically.
+
+Example:
+
+	power@b00 {
+		compatible = "fsl,mpc8313-pmc", "fsl,mpc8349-pmc";
+		reg = <0xb00 0x100 0xa00 0x100>;
+		interrupts = <80 8>;
+	};

+ 12 - 19
Documentation/powerpc/dts-bindings/fsl/tsec.txt

@@ -24,46 +24,39 @@ Example:
 
 * Gianfar-compatible ethernet nodes
 
-Required properties:
+Properties:
 
   - device_type : Should be "network"
   - model : Model of the device.  Can be "TSEC", "eTSEC", or "FEC"
   - compatible : Should be "gianfar"
   - reg : Offset and length of the register set for the device
-  - mac-address : List of bytes representing the ethernet address of
+  - local-mac-address : List of bytes representing the ethernet address of
     this controller
-  - interrupts : <a b> where a is the interrupt number and b is a
-    field that represents an encoding of the sense and level
-    information for the interrupt.  This should be encoded based on
-    the information in section 2) depending on the type of interrupt
-    controller you have.
-  - interrupt-parent : the phandle for the interrupt controller that
-    services interrupts for this device.
+  - interrupts : For FEC devices, the first interrupt is the device's
+    interrupt.  For TSEC and eTSEC devices, the first interrupt is
+    transmit, the second is receive, and the third is error.
   - phy-handle : The phandle for the PHY connected to this ethernet
     controller.
   - fixed-link : <a b c d e> where a is emulated phy id - choose any,
     but unique to the all specified fixed-links, b is duplex - 0 half,
     1 full, c is link speed - d#10/d#100/d#1000, d is pause - 0 no
     pause, 1 pause, e is asym_pause - 0 no asym_pause, 1 asym_pause.
-
-Recommended properties:
-
   - phy-connection-type : a string naming the controller/PHY interface type,
     i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id", "sgmii",
     "tbi", or "rtbi".  This property is only really needed if the connection
     is of type "rgmii-id", as all other connection types are detected by
     hardware.
-
+  - fsl,magic-packet : If present, indicates that the hardware supports
+    waking up via magic packet.
 
 Example:
 	ethernet@24000 {
-		#size-cells = <0>;
 		device_type = "network";
 		model = "TSEC";
 		compatible = "gianfar";
-		reg = <24000 1000>;
-		mac-address = [ 00 E0 0C 00 73 00 ];
-		interrupts = <d 3 e 3 12 3>;
-		interrupt-parent = <40000>;
-		phy-handle = <2452000>
+		reg = <0x24000 0x1000>;
+		local-mac-address = [ 00 E0 0C 00 73 00 ];
+		interrupts = <29 2 30 2 34 2>;
+		interrupt-parent = <&mpic>;
+		phy-handle = <&phy0>
 	};

+ 28 - 0
Documentation/powerpc/dts-bindings/fsl/upm-nand.txt

@@ -0,0 +1,28 @@
+Freescale Localbus UPM programmed to work with NAND flash
+
+Required properties:
+- compatible : "fsl,upm-nand".
+- reg : should specify localbus chip select and size used for the chip.
+- fsl,upm-addr-offset : UPM pattern offset for the address latch.
+- fsl,upm-cmd-offset : UPM pattern offset for the command latch.
+- gpios : may specify optional GPIO connected to the Ready-Not-Busy pin.
+
+Example:
+
+upm@1,0 {
+	compatible = "fsl,upm-nand";
+	reg = <1 0 1>;
+	fsl,upm-addr-offset = <16>;
+	fsl,upm-cmd-offset = <8>;
+	gpios = <&qe_pio_e 18 0>;
+
+	flash {
+		#address-cells = <1>;
+		#size-cells = <1>;
+		compatible = "...";
+
+		partition@0 {
+			...
+		};
+	};
+};

+ 15 - 0
Documentation/powerpc/dts-bindings/gpio/led.txt

@@ -0,0 +1,15 @@
+LED connected to GPIO
+
+Required properties:
+- compatible : should be "gpio-led".
+- label : (optional) the label for this LED. If omitted, the label is
+  taken from the node name (excluding the unit address).
+- gpios : should specify LED GPIO.
+
+Example:
+
+led@0 {
+	compatible = "gpio-led";
+	label = "hdd";
+	gpios = <&mcu_pio 0 1>;
+};

+ 1 - 1
Documentation/powerpc/qe_firmware.txt

@@ -217,7 +217,7 @@ Although it is not recommended, you can specify '0' in the soc.model
 field to skip matching SOCs altogether.
 
 The 'model' field is a 16-bit number that matches the actual SOC. The
-'major' and 'minor' fields are the major and minor revision numbrs,
+'major' and 'minor' fields are the major and minor revision numbers,
 respectively, of the SOC.
 
 For example, to match the 8323, revision 1.0:

+ 493 - 54
Documentation/rfkill.txt

@@ -1,89 +1,528 @@
 rfkill - RF switch subsystem support
 ====================================
 
-1 Implementation details
-2 Driver support
-3 Userspace support
+1 Introduction
+2 Implementation details
+3 Kernel driver guidelines
+3.1 wireless device drivers
+3.2 platform/switch drivers
+3.3 input device drivers
+4 Kernel API
+5 Userspace support
 
-===============================================================================
-1: Implementation details
 
-The rfkill switch subsystem offers support for keys often found on laptops
-to enable wireless devices like WiFi and Bluetooth.
+1. Introduction:
+
+The rfkill switch subsystem exists to add a generic interface to circuitry that
+can enable or disable the signal output of a wireless *transmitter* of any
+type.  By far, the most common use is to disable radio-frequency transmitters.
 
-This is done by providing the user 3 possibilities:
- 1 - The rfkill system handles all events; userspace is not aware of events.
- 2 - The rfkill system handles all events; userspace is informed about the events.
- 3 - The rfkill system does not handle events; userspace handles all events.
+Note that disabling the signal output means that the the transmitter is to be
+made to not emit any energy when "blocked".  rfkill is not about blocking data
+transmissions, it is about blocking energy emission.
 
-The buttons to enable and disable the wireless radios are important in
+The rfkill subsystem offers support for keys and switches often found on
+laptops to enable wireless devices like WiFi and Bluetooth, so that these keys
+and switches actually perform an action in all wireless devices of a given type
+attached to the system.
+
+The buttons to enable and disable the wireless transmitters are important in
 situations where the user is for example using his laptop on a location where
-wireless radios _must_ be disabled (e.g. airplanes).
-Because of this requirement, userspace support for the keys should not be
-made mandatory. Because userspace might want to perform some additional smarter
-tasks when the key is pressed, rfkill still provides userspace the possibility
-to take over the task to handle the key events.
+radio-frequency transmitters _must_ be disabled (e.g. airplanes).
+
+Because of this requirement, userspace support for the keys should not be made
+mandatory.  Because userspace might want to perform some additional smarter
+tasks when the key is pressed, rfkill provides userspace the possibility to
+take over the task to handle the key events.
+
+===============================================================================
+2: Implementation details
+
+The rfkill subsystem is composed of various components: the rfkill class, the
+rfkill-input module (an input layer handler), and some specific input layer
+events.
+
+The rfkill class provides kernel drivers with an interface that allows them to
+know when they should enable or disable a wireless network device transmitter.
+This is enabled by the CONFIG_RFKILL Kconfig option.
+
+The rfkill class support makes sure userspace will be notified of all state
+changes on rfkill devices through uevents.  It provides a notification chain
+for interested parties in the kernel to also get notified of rfkill state
+changes in other drivers.  It creates several sysfs entries which can be used
+by userspace.  See section "Userspace support".
+
+The rfkill-input module provides the kernel with the ability to implement a
+basic response when the user presses a key or button (or toggles a switch)
+related to rfkill functionality.  It is an in-kernel implementation of default
+policy of reacting to rfkill-related input events and neither mandatory nor
+required for wireless drivers to operate.  It is enabled by the
+CONFIG_RFKILL_INPUT Kconfig option.
+
+rfkill-input is a rfkill-related events input layer handler.  This handler will
+listen to all rfkill key events and will change the rfkill state of the
+wireless devices accordingly.  With this option enabled userspace could either
+do nothing or simply perform monitoring tasks.
+
+The rfkill-input module also provides EPO (emergency power-off) functionality
+for all wireless transmitters.  This function cannot be overridden, and it is
+always active.  rfkill EPO is related to *_RFKILL_ALL input layer events.
+
+
+Important terms for the rfkill subsystem:
+
+In order to avoid confusion, we avoid the term "switch" in rfkill when it is
+referring to an electronic control circuit that enables or disables a
+transmitter.  We reserve it for the physical device a human manipulates
+(which is an input device, by the way):
+
+rfkill switch:
+
+	A physical device a human manipulates.  Its state can be perceived by
+	the kernel either directly (through a GPIO pin, ACPI GPE) or by its
+	effect on a rfkill line of a wireless device.
+
+rfkill controller:
+
+	A hardware circuit that controls the state of a rfkill line, which a
+	kernel driver can interact with *to modify* that state (i.e. it has
+	either write-only or read/write access).
+
+rfkill line:
+
+	An input channel (hardware or software) of a wireless device, which
+	causes a wireless transmitter to stop emitting energy (BLOCK) when it
+	is active.  Point of view is extremely important here: rfkill lines are
+	always seen from the PoV of a wireless device (and its driver).
+
+soft rfkill line/software rfkill line:
+
+	A rfkill line the wireless device driver can directly change the state
+	of.  Related to rfkill_state RFKILL_STATE_SOFT_BLOCKED.
+
+hard rfkill line/hardware rfkill line:
+
+	A rfkill line that works fully in hardware or firmware, and that cannot
+	be overridden by the kernel driver.  The hardware device or the
+	firmware just exports its status to the driver, but it is read-only.
+	Related to rfkill_state RFKILL_STATE_HARD_BLOCKED.
+
+The enum rfkill_state describes the rfkill state of a transmitter:
+
+When a rfkill line or rfkill controller is in the RFKILL_STATE_UNBLOCKED state,
+the wireless transmitter (radio TX circuit for example) is *enabled*.  When the
+it is in the RFKILL_STATE_SOFT_BLOCKED or RFKILL_STATE_HARD_BLOCKED, the
+wireless transmitter is to be *blocked* from operating.
+
+RFKILL_STATE_SOFT_BLOCKED indicates that a call to toggle_radio() can change
+that state.  RFKILL_STATE_HARD_BLOCKED indicates that a call to toggle_radio()
+will not be able to change the state and will return with a suitable error if
+attempts are made to set the state to RFKILL_STATE_UNBLOCKED.
+
+RFKILL_STATE_HARD_BLOCKED is used by drivers to signal that the device is
+locked in the BLOCKED state by a hardwire rfkill line (typically an input pin
+that, when active, forces the transmitter to be disabled) which the driver
+CANNOT override.
+
+Full rfkill functionality requires two different subsystems to cooperate: the
+input layer and the rfkill class.  The input layer issues *commands* to the
+entire system requesting that devices registered to the rfkill class change
+state.  The way this interaction happens is not complex, but it is not obvious
+either:
+
+Kernel Input layer:
+
+	* Generates KEY_WWAN, KEY_WLAN, KEY_BLUETOOTH, SW_RFKILL_ALL, and
+	  other such events when the user presses certain keys, buttons, or
+	  toggles certain physical switches.
+
+	THE INPUT LAYER IS NEVER USED TO PROPAGATE STATUS, NOTIFICATIONS OR THE
+	KIND OF STUFF AN ON-SCREEN-DISPLAY APPLICATION WOULD REPORT.  It is
+	used to issue *commands* for the system to change behaviour, and these
+	commands may or may not be carried out by some kernel driver or
+	userspace application.  It follows that doing user feedback based only
+	on input events is broken, as there is no guarantee that an input event
+	will be acted upon.
+
+	Most wireless communication device drivers implementing rfkill
+	functionality MUST NOT generate these events, and have no reason to
+	register themselves with the input layer.  Doing otherwise is a common
+	misconception.  There is an API to propagate rfkill status change
+	information, and it is NOT the input layer.
+
+rfkill class:
+
+	* Calls a hook in a driver to effectively change the wireless
+	  transmitter state;
+	* Keeps track of the wireless transmitter state (with help from
+	  the driver);
+	* Generates userspace notifications (uevents) and a call to a
+	  notification chain (kernel) when there is a wireless transmitter
+	  state change;
+	* Connects a wireless communications driver with the common rfkill
+	  control system, which, for example, allows actions such as
+	  "switch all bluetooth devices offline" to be carried out by
+	  userspace or by rfkill-input.
+
+	THE RFKILL CLASS NEVER ISSUES INPUT EVENTS.  THE RFKILL CLASS DOES
+	NOT LISTEN TO INPUT EVENTS.  NO DRIVER USING THE RFKILL CLASS SHALL
+	EVER LISTEN TO, OR ACT ON RFKILL INPUT EVENTS.  Doing otherwise is
+	a layering violation.
+
+	Most wireless data communication drivers in the kernel have just to
+	implement the rfkill class API to work properly.  Interfacing to the
+	input layer is not often required (and is very often a *bug*) on
+	wireless drivers.
+
+	Platform drivers often have to attach to the input layer to *issue*
+	(but never to listen to) rfkill events for rfkill switches, and also to
+	the rfkill class to export a control interface for the platform rfkill
+	controllers to the rfkill subsystem.  This does NOT mean the rfkill
+	switch is attached to a rfkill class (doing so is almost always wrong).
+	It just means the same kernel module is the driver for different
+	devices (rfkill switches and rfkill controllers).
+
+
+Userspace input handlers (uevents) or kernel input handlers (rfkill-input):
+
+	* Implements the policy of what should happen when one of the input
+	  layer events related to rfkill operation is received.
+	* Uses the sysfs interface (userspace) or private rfkill API calls
+	  to tell the devices registered with the rfkill class to change
+	  their state (i.e. translates the input layer event into real
+	  action).
+	* rfkill-input implements EPO by handling EV_SW SW_RFKILL_ALL 0
+	  (power off all transmitters) in a special way: it ignores any
+	  overrides and local state cache and forces all transmitters to the
+	  RFKILL_STATE_SOFT_BLOCKED state (including those which are already
+	  supposed to be BLOCKED).  Note that the opposite event (power on all
+	  transmitters) is handled normally.
+
+Userspace uevent handler or kernel platform-specific drivers hooked to the
+rfkill notifier chain:
+
+	* Taps into the rfkill notifier chain or to KOBJ_CHANGE uevents,
+	  in order to know when a device that is registered with the rfkill
+	  class changes state;
+	* Issues feedback notifications to the user;
+	* In the rare platforms where this is required, synthesizes an input
+	  event to command all *OTHER* rfkill devices to also change their
+	  statues when a specific rfkill device changes state.
+
+
+===============================================================================
+3: Kernel driver guidelines
+
+Remember: point-of-view is everything for a driver that connects to the rfkill
+subsystem.  All the details below must be measured/perceived from the point of
+view of the specific driver being modified.
+
+The first thing one needs to know is whether his driver should be talking to
+the rfkill class or to the input layer.  In rare cases (platform drivers), it
+could happen that you need to do both, as platform drivers often handle a
+variety of devices in the same driver.
+
+Do not mistake input devices for rfkill controllers.  The only type of "rfkill
+switch" device that is to be registered with the rfkill class are those
+directly controlling the circuits that cause a wireless transmitter to stop
+working (or the software equivalent of them), i.e. what we call a rfkill
+controller.  Every other kind of "rfkill switch" is just an input device and
+MUST NOT be registered with the rfkill class.
+
+A driver should register a device with the rfkill class when ALL of the
+following conditions are met (they define a rfkill controller):
+
+1. The device is/controls a data communications wireless transmitter;
+
+2. The kernel can interact with the hardware/firmware to CHANGE the wireless
+   transmitter state (block/unblock TX operation);
+
+3. The transmitter can be made to not emit any energy when "blocked":
+   rfkill is not about blocking data transmissions, it is about blocking
+   energy emission;
+
+A driver should register a device with the input subsystem to issue
+rfkill-related events (KEY_WLAN, KEY_BLUETOOTH, KEY_WWAN, KEY_WIMAX,
+SW_RFKILL_ALL, etc) when ALL of the folowing conditions are met:
+
+1. It is directly related to some physical device the user interacts with, to
+   command the O.S./firmware/hardware to enable/disable a data communications
+   wireless transmitter.
+
+   Examples of the physical device are: buttons, keys and switches the user
+   will press/touch/slide/switch to enable or disable the wireless
+   communication device.
+
+2. It is NOT slaved to another device, i.e. there is no other device that
+   issues rfkill-related input events in preference to this one.
 
-The system inside the kernel has been split into 2 separate sections:
-	1 - RFKILL
-	2 - RFKILL_INPUT
+   Please refer to the corner cases and examples section for more details.
 
-The first option enables rfkill support and will make sure userspace will
-be notified of any events through the input device. It also creates several
-sysfs entries which can be used by userspace. See section "Userspace support".
+When in doubt, do not issue input events.  For drivers that should generate
+input events in some platforms, but not in others (e.g. b43), the best solution
+is to NEVER generate input events in the first place.  That work should be
+deferred to a platform-specific kernel module (which will know when to generate
+events through the rfkill notifier chain) or to userspace.  This avoids the
+usual maintenance problems with DMI whitelisting.
 
-The second option provides an rfkill input handler. This handler will
-listen to all rfkill key events and will toggle the radio accordingly.
-With this option enabled userspace could either do nothing or simply
-perform monitoring tasks.
 
+Corner cases and examples:
 ====================================
-2: Driver support
 
-To build a driver with rfkill subsystem support, the driver should
-depend on the Kconfig symbol RFKILL; it should _not_ depend on
-RKFILL_INPUT.
+1. If the device is an input device that, because of hardware or firmware,
+causes wireless transmitters to be blocked regardless of the kernel's will, it
+is still just an input device, and NOT to be registered with the rfkill class.
 
-Unless key events trigger an interrupt to which the driver listens, polling
-will be required to determine the key state changes. For this the input
-layer providers the input-polldev handler.
+2. If the wireless transmitter switch control is read-only, it is an input
+device and not to be registered with the rfkill class (and maybe not to be made
+an input layer event source either, see below).
 
-A driver should implement a few steps to correctly make use of the
-rfkill subsystem. First for non-polling drivers:
+3. If there is some other device driver *closer* to the actual hardware the
+user interacted with (the button/switch/key) to issue an input event, THAT is
+the device driver that should be issuing input events.
 
-	- rfkill_allocate()
-	- input_allocate_device()
-	- rfkill_register()
-	- input_register_device()
+E.g:
+  [RFKILL slider switch] -- [GPIO hardware] -- [WLAN card rf-kill input]
+                           (platform driver)    (wireless card driver)
+
+The user is closer to the RFKILL slide switch plaform driver, so the driver
+which must issue input events is the platform driver looking at the GPIO
+hardware, and NEVER the wireless card driver (which is just a slave).  It is
+very likely that there are other leaves than just the WLAN card rf-kill input
+(e.g. a bluetooth card, etc)...
+
+On the other hand, some embedded devices do this:
+
+  [RFKILL slider switch] -- [WLAN card rf-kill input]
+                             (wireless card driver)
+
+In this situation, the wireless card driver *could* register itself as an input
+device and issue rf-kill related input events... but in order to AVOID the need
+for DMI whitelisting, the wireless card driver does NOT do it.  Userspace (HAL)
+or a platform driver (that exists only on these embedded devices) will do the
+dirty job of issuing the input events.
+
+
+COMMON MISTAKES in kernel drivers, related to rfkill:
+====================================
+
+1. NEVER confuse input device keys and buttons with input device switches.
+
+  1a. Switches are always set or reset.  They report the current state
+      (on position or off position).
+
+  1b. Keys and buttons are either in the pressed or not-pressed state, and
+      that's it.  A "button" that latches down when you press it, and
+      unlatches when you press it again is in fact a switch as far as input
+      devices go.
+
+Add the SW_* events you need for switches, do NOT try to emulate a button using
+KEY_* events just because there is no such SW_* event yet.  Do NOT try to use,
+for example, KEY_BLUETOOTH when you should be using SW_BLUETOOTH instead.
+
+2. Input device switches (sources of EV_SW events) DO store their current state
+(so you *must* initialize it by issuing a gratuitous input layer event on
+driver start-up and also when resuming from sleep), and that state CAN be
+queried from userspace through IOCTLs.  There is no sysfs interface for this,
+but that doesn't mean you should break things trying to hook it to the rfkill
+class to get a sysfs interface :-)
+
+3. Do not issue *_RFKILL_ALL events by default, unless you are sure it is the
+correct event for your switch/button.  These events are emergency power-off
+events when they are trying to turn the transmitters off.  An example of an
+input device which SHOULD generate *_RFKILL_ALL events is the wireless-kill
+switch in a laptop which is NOT a hotkey, but a real switch that kills radios
+in hardware, even if the O.S. has gone to lunch.  An example of an input device
+which SHOULD NOT generate *_RFKILL_ALL events by default, is any sort of hot
+key that does nothing by itself, as well as any hot key that is type-specific
+(e.g. the one for WLAN).
+
+
+3.1 Guidelines for wireless device drivers
+------------------------------------------
+
+1. Each independent transmitter in a wireless device (usually there is only one
+transmitter per device) should have a SINGLE rfkill class attached to it.
+
+2. If the device does not have any sort of hardware assistance to allow the
+driver to rfkill the device, the driver should emulate it by taking all actions
+required to silence the transmitter.
+
+3. If it is impossible to silence the transmitter (i.e. it still emits energy,
+even if it is just in brief pulses, when there is no data to transmit and there
+is no hardware support to turn it off) do NOT lie to the users.  Do not attach
+it to a rfkill class.  The rfkill subsystem does not deal with data
+transmission, it deals with energy emission.  If the transmitter is emitting
+energy, it is not blocked in rfkill terms.
+
+4. It doesn't matter if the device has multiple rfkill input lines affecting
+the same transmitter, their combined state is to be exported as a single state
+per transmitter (see rule 1).
+
+This rule exists because users of the rfkill subsystem expect to get (and set,
+when possible) the overall transmitter rfkill state, not of a particular rfkill
+line.
+
+Example of a WLAN wireless driver connected to the rfkill subsystem:
+--------------------------------------------------------------------
+
+A certain WLAN card has one input pin that causes it to block the transmitter
+and makes the status of that input pin available (only for reading!) to the
+kernel driver.  This is a hard rfkill input line (it cannot be overridden by
+the kernel driver).
+
+The card also has one PCI register that, if manipulated by the driver, causes
+it to block the transmitter.  This is a soft rfkill input line.
+
+It has also a thermal protection circuitry that shuts down its transmitter if
+the card overheats, and makes the status of that protection available (only for
+reading!) to the kernel driver.  This is also a hard rfkill input line.
+
+If either one of these rfkill lines are active, the transmitter is blocked by
+the hardware and forced offline.
+
+The driver should allocate and attach to its struct device *ONE* instance of
+the rfkill class (there is only one transmitter).
+
+It can implement the get_state() hook, and return RFKILL_STATE_HARD_BLOCKED if
+either one of its two hard rfkill input lines are active.  If the two hard
+rfkill lines are inactive, it must return RFKILL_STATE_SOFT_BLOCKED if its soft
+rfkill input line is active.  Only if none of the rfkill input lines are
+active, will it return RFKILL_STATE_UNBLOCKED.
 
-For polling drivers:
+If it doesn't implement the get_state() hook, it must make sure that its calls
+to rfkill_force_state() are enough to keep the status always up-to-date, and it
+must do a rfkill_force_state() on resume from sleep.
 
+Every time the driver gets a notification from the card that one of its rfkill
+lines changed state (polling might be needed on badly designed cards that don't
+generate interrupts for such events), it recomputes the rfkill state as per
+above, and calls rfkill_force_state() to update it.
+
+The driver should implement the toggle_radio() hook, that:
+
+1. Returns an error if one of the hardware rfkill lines are active, and the
+caller asked for RFKILL_STATE_UNBLOCKED.
+
+2. Activates the soft rfkill line if the caller asked for state
+RFKILL_STATE_SOFT_BLOCKED.  It should do this even if one of the hard rfkill
+lines are active, effectively double-blocking the transmitter.
+
+3. Deactivates the soft rfkill line if none of the hardware rfkill lines are
+active and the caller asked for RFKILL_STATE_UNBLOCKED.
+
+===============================================================================
+4: Kernel API
+
+To build a driver with rfkill subsystem support, the driver should depend on
+(or select) the Kconfig symbol RFKILL; it should _not_ depend on RKFILL_INPUT.
+
+The hardware the driver talks to may be write-only (where the current state
+of the hardware is unknown), or read-write (where the hardware can be queried
+about its current state).
+
+The rfkill class will call the get_state hook of a device every time it needs
+to know the *real* current state of the hardware.  This can happen often.
+
+Some hardware provides events when its status changes.  In these cases, it is
+best for the driver to not provide a get_state hook, and instead register the
+rfkill class *already* with the correct status, and keep it updated using
+rfkill_force_state() when it gets an event from the hardware.
+
+There is no provision for a statically-allocated rfkill struct.  You must
+use rfkill_allocate() to allocate one.
+
+You should:
 	- rfkill_allocate()
-	- input_allocate_polled_device()
+	- modify rfkill fields (flags, name)
+	- modify state to the current hardware state (THIS IS THE ONLY TIME
+	  YOU CAN ACCESS state DIRECTLY)
 	- rfkill_register()
-	- input_register_polled_device()
 
-When a key event has been detected, the correct event should be
-sent over the input device which has been registered by the driver.
+The only way to set a device to the RFKILL_STATE_HARD_BLOCKED state is through
+a suitable return of get_state() or through rfkill_force_state().
 
-====================================
-3: Userspace support
+When a device is in the RFKILL_STATE_HARD_BLOCKED state, the only way to switch
+it to a different state is through a suitable return of get_state() or through
+rfkill_force_state().
+
+If toggle_radio() is called to set a device to state RFKILL_STATE_SOFT_BLOCKED
+when that device is already at the RFKILL_STATE_HARD_BLOCKED state, it should
+not return an error.  Instead, it should try to double-block the transmitter,
+so that its state will change from RFKILL_STATE_HARD_BLOCKED to
+RFKILL_STATE_SOFT_BLOCKED should the hardware blocking cease.
 
-For each key an input device will be created which will send out the correct
-key event when the rfkill key has been pressed.
+Please refer to the source for more documentation.
+
+===============================================================================
+5: Userspace support
+
+rfkill devices issue uevents (with an action of "change"), with the following
+environment variables set:
+
+RFKILL_NAME
+RFKILL_STATE
+RFKILL_TYPE
+
+The ABI for these variables is defined by the sysfs attributes.  It is best
+to take a quick look at the source to make sure of the possible values.
+
+It is expected that HAL will trap those, and bridge them to DBUS, etc.  These
+events CAN and SHOULD be used to give feedback to the user about the rfkill
+status of the system.
+
+Input devices may issue events that are related to rfkill.  These are the
+various KEY_* events and SW_* events supported by rfkill-input.c.
+
+******IMPORTANT******
+When rfkill-input is ACTIVE, userspace is NOT TO CHANGE THE STATE OF AN RFKILL
+SWITCH IN RESPONSE TO AN INPUT EVENT also handled by rfkill-input, unless it
+has set to true the user_claim attribute for that particular switch.  This rule
+is *absolute*; do NOT violate it.
+******IMPORTANT******
+
+Userspace must not assume it is the only source of control for rfkill switches.
+Their state CAN and WILL change due to firmware actions, direct user actions,
+and the rfkill-input EPO override for *_RFKILL_ALL.
+
+When rfkill-input is not active, userspace must initiate a rfkill status
+change by writing to the "state" attribute in order for anything to happen.
+
+Take particular care to implement EV_SW SW_RFKILL_ALL properly.  When that
+switch is set to OFF, *every* rfkill device *MUST* be immediately put into the
+RFKILL_STATE_SOFT_BLOCKED state, no questions asked.
 
 The following sysfs entries will be created:
 
 	name: Name assigned by driver to this key (interface or driver name).
 	type: Name of the key type ("wlan", "bluetooth", etc).
-	state: Current state of the key. 1: On, 0: Off.
+	state: Current state of the transmitter
+		0: RFKILL_STATE_SOFT_BLOCKED
+			transmitter is forced off, but one can override it
+			by a write to the state attribute;
+		1: RFKILL_STATE_UNBLOCKED
+			transmiter is NOT forced off, and may operate if
+			all other conditions for such operation are met
+			(such as interface is up and configured, etc);
+		2: RFKILL_STATE_HARD_BLOCKED
+			transmitter is forced off by something outside of
+			the driver's control.  One cannot set a device to
+			this state through writes to the state attribute;
 	claim: 1: Userspace handles events, 0: Kernel handles events
 
 Both the "state" and "claim" entries are also writable. For the "state" entry
-this means that when 1 or 0 is written all radios, not yet in the requested
-state, will be will be toggled accordingly.
+this means that when 1 or 0 is written, the device rfkill state (if not yet in
+the requested state), will be will be toggled accordingly.
+
 For the "claim" entry writing 1 to it means that the kernel no longer handles
 key events even though RFKILL_INPUT input was enabled. When "claim" has been
 set to 0, userspace should make sure that it listens for the input events or
-check the sysfs "state" entry regularly to correctly perform the required
-tasks when the rkfill key is pressed.
+check the sysfs "state" entry regularly to correctly perform the required tasks
+when the rkfill key is pressed.
+
+A note about input devices and EV_SW events:
+
+In order to know the current state of an input device switch (like
+SW_RFKILL_ALL), you will need to use an IOCTL.  That information is not
+available through sysfs in a generic way at this time, and it is not available
+through the rfkill class AT ALL.

+ 1 - 1
Documentation/s390/driver-model.txt

@@ -25,7 +25,7 @@ device 4711 via subchannel 1 in subchannel set 0, and subchannel 2 is a non-I/O
 subchannel. Device 1234 is accessed via subchannel 0 in subchannel set 1.
 
 The subchannel named 'defunct' does not represent any real subchannel on the
-system; it is a pseudo subchannel where disconnnected ccw devices are moved to
+system; it is a pseudo subchannel where disconnected ccw devices are moved to
 if they are displaced by another ccw device becoming operational on their
 former subchannel. The ccw devices will be moved again to a proper subchannel
 if they become operational again on that subchannel.

+ 3 - 3
Documentation/scsi/ibmmca.txt

@@ -524,7 +524,7 @@
    - Michael Lang
  
    June 25 1997: (v1.8b)
-   1) Some cosmetical changes for the handling of SCSI-device-types.
+   1) Some cosmetic changes for the handling of SCSI-device-types.
       Now, also CD-Burners / WORMs and SCSI-scanners should work. For
       MO-drives I have no experience, therefore not yet supported.
       In logical_devices I changed from different type-variables to one
@@ -914,7 +914,7 @@
       in version 4.0. This was never really necessary, as all troubles were
       based on non-command related reasons up to now, so bypassing commands
       did not help to avoid any bugs. It is kept in 3.2X for debugging reasons.
-   5) Dynamical reassignment of ldns was again verified and analyzed to be
+   5) Dynamic reassignment of ldns was again verified and analyzed to be
       completely inoperational. This is corrected and should work now.
    6) All commands that get sent to the SCSI adapter were verified and
       completed in such a way, that they are now completely conform to the
@@ -1386,7 +1386,7 @@
    concerning the Linux-kernel in special, this SCSI-driver comes without any
    warranty. Its functionality is tested as good as possible on certain 
    machines and combinations of computer hardware, which does not exclude,
-   that dataloss or severe damage of hardware is possible while using this
+   that data loss or severe damage of hardware is possible while using this
    part of software on some arbitrary computer hardware or in combination 
    with other software packages. It is highly recommended to make backup
    copies of your data before using this software. Furthermore, personal

+ 1 - 1
Documentation/scsi/lpfc.txt

@@ -36,7 +36,7 @@ Cable pull and temporary device Loss:
   being removed, a switch rebooting, or a device reboot), the driver could
   hide the disappearance of the device from the midlayer. I/O's issued to
   the LLDD would simply be queued for a short duration, allowing the device
-  to reappear or link come back alive, with no inadvertant side effects
+  to reappear or link come back alive, with no inadvertent side effects
   to the system. If the driver did not hide these conditions, i/o would be
   errored by the driver, the mid-layer would exhaust its retries, and the
   device would be taken offline. Manual intervention would be required to

+ 3 - 3
Documentation/scsi/scsi_fc_transport.txt

@@ -65,7 +65,7 @@ Overview:
     discussion will concentrate on NPIV.
 
   Note: World Wide Name assignment (and uniqueness guarantees) are left
-    up to an administrative entity controling the vport. For example,
+    up to an administrative entity controlling the vport. For example,
     if vports are to be associated with virtual machines, a XEN mgmt
     utility would be responsible for creating wwpn/wwnn's for the vport,
     using it's own naming authority and OUI. (Note: it already does this
@@ -91,7 +91,7 @@ Device Trees and Vport Objects:
   Here's what to expect in the device tree :
    The typical Physical Port's Scsi_Host:
      /sys/devices/.../host17/
-   and it has the typical decendent tree:
+   and it has the typical descendant tree:
      /sys/devices/.../host17/rport-17:0-0/target17:0:0/17:0:0:0:
    and then the vport is created on the Physical Port:
      /sys/devices/.../host17/vport-17:0-0
@@ -192,7 +192,7 @@ Vport States:
       independent of the adapter's link state.
     - Instantiation of the vport on the FC link via ELS traffic, etc.
       This is equivalent to a "link up" and successfull link initialization.
-  Futher information can be found in the interfaces section below for
+  Further information can be found in the interfaces section below for
   Vport Creation.
 
   Once a vport has been instantiated with the kernel/LLDD, a vport state

+ 11 - 0
Documentation/serial/driver

@@ -186,6 +186,17 @@ hardware.
 	Locking: port_sem taken.
 	Interrupts: caller dependent.
 
+  flush_buffer(port)
+	Flush any write buffers, reset any DMA state and stop any
+	ongoing DMA transfers.
+
+	This will be called whenever the port->info->xmit circular
+	buffer is cleared.
+
+	Locking: port->lock taken.
+	Interrupts: locally disabled.
+	This call must not sleep
+
   set_termios(port,termios,oldtermios)
 	Change the port parameters, including word length, parity, stop
 	bits.  Update read_status_mask and ignore_status_mask to indicate

+ 1 - 1
Documentation/sh/clk.txt

@@ -12,7 +12,7 @@ means no changes to adjanced clock
 Internally, the clk_set_rate_ex forwards request to clk->ops->set_rate method,
 if it is present in ops structure. The method should set the clock rate and adjust
 all needed clocks according to the passed algo_id.
-Exact values for algo_id are machine-dependend. For the sh7722, the following
+Exact values for algo_id are machine-dependent. For the sh7722, the following
 values are defined:
 
 	NO_CHANGE	= 0,

+ 1 - 0
Documentation/sound/alsa/ALSA-Configuration.txt

@@ -1024,6 +1024,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
 	  intel-mac-v3	Intel Mac Type 3
 	  intel-mac-v4	Intel Mac Type 4
 	  intel-mac-v5	Intel Mac Type 5
+	  intel-mac-auto Intel Mac (detect type according to subsystem id)
 	  macmini	Intel Mac Mini (equivalent with type 3)
 	  macbook	Intel Mac Book (eq. type 5)
 	  macbook-pro-v1 Intel Mac Book Pro 1st generation (eq. type 3)

+ 5 - 5
Documentation/sound/alsa/Audiophile-Usb.txt

@@ -236,15 +236,15 @@ The parameter can be given:
        alias snd-card-1 snd-usb-audio
        options snd-usb-audio index=1 device_setup=0x09
 
-CAUTION when initializaing the device
+CAUTION when initializing the device
 -------------------------------------
 
  * Correct initialization on the device requires that device_setup is given to
    the module BEFORE the device is turned on. So, if you use the "manual probing"
    method described above, take care to power-on the device AFTER this initialization.
 
- * Failing to respect this will lead in a misconfiguration of the device. In this case
-   turn off the device, unproble the snd-usb-audio module, then probe it again with 
+ * Failing to respect this will lead to a misconfiguration of the device. In this case
+   turn off the device, unprobe the snd-usb-audio module, then probe it again with
    correct device_setup parameter and then (and only then) turn on the device again.
 
  * If you've correctly initialized the device in a valid mode and then want to switch
@@ -388,9 +388,9 @@ There are 2 main potential issues when using Jackd with the device:
 
 Jack supports big endian devices only in recent versions (thanks to
 Andreas Steinmetz for his first big-endian patch). I can't remember 
-extacly when this support was released into jackd, let's just say that 
+exactly when this support was released into jackd, let's just say that
 with jackd version 0.103.0 it's almost ok (just a small bug is affecting 
-16bits Big-Endian devices, but since you've read  carefully the above 
+16bits Big-Endian devices, but since you've read carefully the above
 paragraphs, you're now using kernel >= 2.6.23 and your 16bits devices 
 are now Little Endians ;-) ).
 

+ 1 - 1
Documentation/sound/alsa/DocBook/alsa-driver-api.tmpl

@@ -42,7 +42,7 @@
      <sect1><title>Device Components</title>
 !Esound/core/device.c
      </sect1>
-     <sect1><title>KMOD and Device File Entries</title>
+     <sect1><title>Module requests and Device File Entries</title>
 !Esound/core/sound.c
      </sect1>
      <sect1><title>Memory Management Helpers</title>

+ 1 - 1
Documentation/sound/alsa/hda_codec.txt

@@ -67,7 +67,7 @@ CONFIG_SND_HDA_POWER_SAVE kconfig.  It's called when the codec needs
 to power up or may power down.  The controller should check the all
 belonging codecs on the bus whether they are actually powered off
 (check codec->power_on), and optionally the driver may power down the
-contoller side, too.
+controller side, too.
 
 The bus instance is created via snd_hda_bus_new().  You need to pass
 the card instance, the template, and the pointer to store the

+ 1 - 1
Documentation/sound/alsa/soc/dapm.txt

@@ -68,7 +68,7 @@ Audio DAPM widgets fall into a number of types:-
 (Widgets are defined in include/sound/soc-dapm.h)
 
 Widgets are usually added in the codec driver and the machine driver. There are
-convience macros defined in soc-dapm.h that can be used to quickly build a
+convenience macros defined in soc-dapm.h that can be used to quickly build a
 list of widgets of the codecs and machines DAPM widgets.
 
 Most widgets have a name, register, shift and invert. Some widgets have extra

+ 4 - 4
Documentation/sparse.txt

@@ -73,10 +73,10 @@ recompiled, or use "make C=2" to run sparse on the files whether they need to
 be recompiled or not.  The latter is a fast way to check the whole tree if you
 have already built it.
 
-The optional make variable CHECKFLAGS can be used to pass arguments to sparse.
-The build system passes -Wbitwise to sparse automatically.  To perform
-endianness checks, you may define __CHECK_ENDIAN__:
+The optional make variable CF can be used to pass arguments to sparse.  The
+build system passes -Wbitwise to sparse automatically.  To perform endianness
+checks, you may define __CHECK_ENDIAN__:
 
-        make C=2 CHECKFLAGS="-D__CHECK_ENDIAN__"
+        make C=2 CF="-D__CHECK_ENDIAN__"
 
 These checks are disabled by default as they generate a host of warnings.

+ 3 - 5
Documentation/specialix.txt

@@ -270,8 +270,8 @@ The pinout of the connectors on the IO8+ is:
 Hardware handshaking issues.
 ============================
 
-The driver can be compiled in two different ways. The default
-("Specialix DTR/RTS pin is RTS" is off) the pin behaves as DTR when
+The driver can be told to operate in two different ways. The default
+behaviour is specialix.sx_rtscts = 0 where the pin behaves as DTR when
 hardware handshaking is off. It behaves as the RTS hardware
 handshaking signal when hardware handshaking is selected.
 
@@ -280,7 +280,7 @@ cable will either be compatible with hardware handshaking or with
 software handshaking. So switching on the fly is not really an
 option.
 
-I actually prefer to use the "Specialix DTR/RTS pin is RTS" option.
+I actually prefer to use the "specialix.sx_rtscts=1" option.
 This makes the DTR/RTS pin always an RTS pin, and ioctls to
 change DTR are always ignored. I have a cable that is configured
 for this. 
@@ -379,7 +379,5 @@ it doesn't fit in your computer, bring back the card.
             You have to WRITE to the address register to even 
             read-probe a CD186x register. Disable autodetection?
          -- Specialix: any suggestions?
-       - Arbitrary baud rates are not implemented yet. 
-            If you need this, bug me about it. 
 
 

+ 1 - 1
Documentation/sysctl/vm.txt

@@ -116,7 +116,7 @@ of kilobytes free.  The VM uses this number to compute a pages_min
 value for each lowmem zone in the system.  Each lowmem zone gets 
 a number of reserved free pages based proportionally on its size.
 
-Some minimal ammount of memory is needed to satisfy PF_MEMALLOC
+Some minimal amount of memory is needed to satisfy PF_MEMALLOC
 allocations; if you set this to lower than 1024KB, your system will
 become subtly broken, and prone to deadlock under high loads.
 

+ 2 - 3
Documentation/sysfs-rules.txt

@@ -3,9 +3,8 @@ Rules on how to access information in the Linux kernel sysfs
 The kernel-exported sysfs exports internal kernel implementation details
 and depends on internal kernel structures and layout. It is agreed upon
 by the kernel developers that the Linux kernel does not provide a stable
-internal API. As sysfs is a direct export of kernel internal
-structures, the sysfs interface cannot provide a stable interface either;
-it may always change along with internal kernel changes.
+internal API. Therefore, there are aspects of the sysfs interface that
+may not be stable across kernel releases.
 
 To minimize the risk of breaking users of sysfs, which are in most cases
 low-level userspace applications, with a new kernel release, the users

部分文件因文件數量過多而無法顯示