|
@@ -92,5 +92,28 @@ static inline void __udelay(unsigned long usecs)
|
|
|
#define udelay(n) (__builtin_constant_p(n) ? \
|
|
|
((n) > 20000 ? __bad_udelay() : __const_udelay(n)) : __udelay(n))
|
|
|
|
|
|
+/*
|
|
|
+ * nanosecond delay:
|
|
|
+ *
|
|
|
+ * ((((HZSCALE) >> 11) * (loops_per_jiffy >> 11)) >> 6) is the number of loops
|
|
|
+ * per microsecond
|
|
|
+ *
|
|
|
+ * 1000 / ((((HZSCALE) >> 11) * (loops_per_jiffy >> 11)) >> 6) is the number of
|
|
|
+ * nanoseconds per loop
|
|
|
+ *
|
|
|
+ * So n / ( 1000 / ((((HZSCALE) >> 11) * (loops_per_jiffy >> 11)) >> 6) ) would
|
|
|
+ * be the number of loops for n nanoseconds
|
|
|
+ */
|
|
|
+
|
|
|
+/*
|
|
|
+ * The simpler m68k and ColdFire processors do not have a 32*32->64
|
|
|
+ * multiply instruction. So we need to handle them a little differently.
|
|
|
+ * We use a bit of shifting and a single 32*32->32 multiply to get close.
|
|
|
+ * This is a macro so that the const version can factor out the first
|
|
|
+ * multiply and shift.
|
|
|
+ */
|
|
|
+#define HZSCALE (268435456 / (1000000 / HZ))
|
|
|
+
|
|
|
+#define ndelay(n) __delay(DIV_ROUND_UP((n) * ((((HZSCALE) >> 11) * (loops_per_jiffy >> 11)) >> 6), 1000));
|
|
|
|
|
|
#endif /* defined(_M68K_DELAY_H) */
|