|
@@ -1,949 +0,0 @@
|
|
|
-/*
|
|
|
- * Copyright (C) 1995 Linus Torvalds
|
|
|
- */
|
|
|
-
|
|
|
-#include <linux/signal.h>
|
|
|
-#include <linux/sched.h>
|
|
|
-#include <linux/kernel.h>
|
|
|
-#include <linux/errno.h>
|
|
|
-#include <linux/string.h>
|
|
|
-#include <linux/types.h>
|
|
|
-#include <linux/ptrace.h>
|
|
|
-#include <linux/mman.h>
|
|
|
-#include <linux/mm.h>
|
|
|
-#include <linux/smp.h>
|
|
|
-#include <linux/interrupt.h>
|
|
|
-#include <linux/init.h>
|
|
|
-#include <linux/tty.h>
|
|
|
-#include <linux/vt_kern.h> /* For unblank_screen() */
|
|
|
-#include <linux/highmem.h>
|
|
|
-#include <linux/bootmem.h> /* for max_low_pfn */
|
|
|
-#include <linux/vmalloc.h>
|
|
|
-#include <linux/module.h>
|
|
|
-#include <linux/kprobes.h>
|
|
|
-#include <linux/uaccess.h>
|
|
|
-#include <linux/kdebug.h>
|
|
|
-
|
|
|
-#include <asm/system.h>
|
|
|
-#include <asm/desc.h>
|
|
|
-#include <asm/segment.h>
|
|
|
-
|
|
|
-/*
|
|
|
- * Page fault error code bits
|
|
|
- * bit 0 == 0 means no page found, 1 means protection fault
|
|
|
- * bit 1 == 0 means read, 1 means write
|
|
|
- * bit 2 == 0 means kernel, 1 means user-mode
|
|
|
- * bit 3 == 1 means use of reserved bit detected
|
|
|
- * bit 4 == 1 means fault was an instruction fetch
|
|
|
- */
|
|
|
-#define PF_PROT (1<<0)
|
|
|
-#define PF_WRITE (1<<1)
|
|
|
-#define PF_USER (1<<2)
|
|
|
-#define PF_RSVD (1<<3)
|
|
|
-#define PF_INSTR (1<<4)
|
|
|
-
|
|
|
-static inline int notify_page_fault(struct pt_regs *regs)
|
|
|
-{
|
|
|
-#ifdef CONFIG_KPROBES
|
|
|
- int ret = 0;
|
|
|
-
|
|
|
- /* kprobe_running() needs smp_processor_id() */
|
|
|
-#ifdef CONFIG_X86_32
|
|
|
- if (!user_mode_vm(regs)) {
|
|
|
-#else
|
|
|
- if (!user_mode(regs)) {
|
|
|
-#endif
|
|
|
- preempt_disable();
|
|
|
- if (kprobe_running() && kprobe_fault_handler(regs, 14))
|
|
|
- ret = 1;
|
|
|
- preempt_enable();
|
|
|
- }
|
|
|
-
|
|
|
- return ret;
|
|
|
-#else
|
|
|
- return 0;
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * X86_32
|
|
|
- * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
|
|
|
- * Check that here and ignore it.
|
|
|
- *
|
|
|
- * X86_64
|
|
|
- * Sometimes the CPU reports invalid exceptions on prefetch.
|
|
|
- * Check that here and ignore it.
|
|
|
- *
|
|
|
- * Opcode checker based on code by Richard Brunner
|
|
|
- */
|
|
|
-static int is_prefetch(struct pt_regs *regs, unsigned long addr,
|
|
|
- unsigned long error_code)
|
|
|
-{
|
|
|
- unsigned char *instr;
|
|
|
- int scan_more = 1;
|
|
|
- int prefetch = 0;
|
|
|
- unsigned char *max_instr;
|
|
|
-
|
|
|
-#ifdef CONFIG_X86_32
|
|
|
- if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
|
|
|
- boot_cpu_data.x86 >= 6)) {
|
|
|
- /* Catch an obscure case of prefetch inside an NX page. */
|
|
|
- if (nx_enabled && (error_code & PF_INSTR))
|
|
|
- return 0;
|
|
|
- } else {
|
|
|
- return 0;
|
|
|
- }
|
|
|
-#else
|
|
|
- /* If it was a exec fault ignore */
|
|
|
- if (error_code & PF_INSTR)
|
|
|
- return 0;
|
|
|
-#endif
|
|
|
-
|
|
|
- instr = (unsigned char *)convert_ip_to_linear(current, regs);
|
|
|
- max_instr = instr + 15;
|
|
|
-
|
|
|
- if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
|
|
|
- return 0;
|
|
|
-
|
|
|
- while (scan_more && instr < max_instr) {
|
|
|
- unsigned char opcode;
|
|
|
- unsigned char instr_hi;
|
|
|
- unsigned char instr_lo;
|
|
|
-
|
|
|
- if (probe_kernel_address(instr, opcode))
|
|
|
- break;
|
|
|
-
|
|
|
- instr_hi = opcode & 0xf0;
|
|
|
- instr_lo = opcode & 0x0f;
|
|
|
- instr++;
|
|
|
-
|
|
|
- switch (instr_hi) {
|
|
|
- case 0x20:
|
|
|
- case 0x30:
|
|
|
- /*
|
|
|
- * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
|
|
|
- * In X86_64 long mode, the CPU will signal invalid
|
|
|
- * opcode if some of these prefixes are present so
|
|
|
- * X86_64 will never get here anyway
|
|
|
- */
|
|
|
- scan_more = ((instr_lo & 7) == 0x6);
|
|
|
- break;
|
|
|
-#ifdef CONFIG_X86_64
|
|
|
- case 0x40:
|
|
|
- /*
|
|
|
- * In AMD64 long mode 0x40..0x4F are valid REX prefixes
|
|
|
- * Need to figure out under what instruction mode the
|
|
|
- * instruction was issued. Could check the LDT for lm,
|
|
|
- * but for now it's good enough to assume that long
|
|
|
- * mode only uses well known segments or kernel.
|
|
|
- */
|
|
|
- scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
|
|
|
- break;
|
|
|
-#endif
|
|
|
- case 0x60:
|
|
|
- /* 0x64 thru 0x67 are valid prefixes in all modes. */
|
|
|
- scan_more = (instr_lo & 0xC) == 0x4;
|
|
|
- break;
|
|
|
- case 0xF0:
|
|
|
- /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
|
|
|
- scan_more = !instr_lo || (instr_lo>>1) == 1;
|
|
|
- break;
|
|
|
- case 0x00:
|
|
|
- /* Prefetch instruction is 0x0F0D or 0x0F18 */
|
|
|
- scan_more = 0;
|
|
|
-
|
|
|
- if (probe_kernel_address(instr, opcode))
|
|
|
- break;
|
|
|
- prefetch = (instr_lo == 0xF) &&
|
|
|
- (opcode == 0x0D || opcode == 0x18);
|
|
|
- break;
|
|
|
- default:
|
|
|
- scan_more = 0;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- return prefetch;
|
|
|
-}
|
|
|
-
|
|
|
-static void force_sig_info_fault(int si_signo, int si_code,
|
|
|
- unsigned long address, struct task_struct *tsk)
|
|
|
-{
|
|
|
- siginfo_t info;
|
|
|
-
|
|
|
- info.si_signo = si_signo;
|
|
|
- info.si_errno = 0;
|
|
|
- info.si_code = si_code;
|
|
|
- info.si_addr = (void __user *)address;
|
|
|
- force_sig_info(si_signo, &info, tsk);
|
|
|
-}
|
|
|
-
|
|
|
-#ifdef CONFIG_X86_64
|
|
|
-static int bad_address(void *p)
|
|
|
-{
|
|
|
- unsigned long dummy;
|
|
|
- return probe_kernel_address((unsigned long *)p, dummy);
|
|
|
-}
|
|
|
-#endif
|
|
|
-
|
|
|
-void dump_pagetable(unsigned long address)
|
|
|
-{
|
|
|
-#ifdef CONFIG_X86_32
|
|
|
- __typeof__(pte_val(__pte(0))) page;
|
|
|
-
|
|
|
- page = read_cr3();
|
|
|
- page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
|
|
|
-#ifdef CONFIG_X86_PAE
|
|
|
- printk("*pdpt = %016Lx ", page);
|
|
|
- if ((page >> PAGE_SHIFT) < max_low_pfn
|
|
|
- && page & _PAGE_PRESENT) {
|
|
|
- page &= PAGE_MASK;
|
|
|
- page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
|
|
|
- & (PTRS_PER_PMD - 1)];
|
|
|
- printk(KERN_CONT "*pde = %016Lx ", page);
|
|
|
- page &= ~_PAGE_NX;
|
|
|
- }
|
|
|
-#else
|
|
|
- printk("*pde = %08lx ", page);
|
|
|
-#endif
|
|
|
-
|
|
|
- /*
|
|
|
- * We must not directly access the pte in the highpte
|
|
|
- * case if the page table is located in highmem.
|
|
|
- * And let's rather not kmap-atomic the pte, just in case
|
|
|
- * it's allocated already.
|
|
|
- */
|
|
|
- if ((page >> PAGE_SHIFT) < max_low_pfn
|
|
|
- && (page & _PAGE_PRESENT)
|
|
|
- && !(page & _PAGE_PSE)) {
|
|
|
- page &= PAGE_MASK;
|
|
|
- page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
|
|
|
- & (PTRS_PER_PTE - 1)];
|
|
|
- printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
|
|
|
- }
|
|
|
-
|
|
|
- printk("\n");
|
|
|
-#else /* CONFIG_X86_64 */
|
|
|
- pgd_t *pgd;
|
|
|
- pud_t *pud;
|
|
|
- pmd_t *pmd;
|
|
|
- pte_t *pte;
|
|
|
-
|
|
|
- pgd = (pgd_t *)read_cr3();
|
|
|
-
|
|
|
- pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
|
|
|
- pgd += pgd_index(address);
|
|
|
- if (bad_address(pgd)) goto bad;
|
|
|
- printk("PGD %lx ", pgd_val(*pgd));
|
|
|
- if (!pgd_present(*pgd)) goto ret;
|
|
|
-
|
|
|
- pud = pud_offset(pgd, address);
|
|
|
- if (bad_address(pud)) goto bad;
|
|
|
- printk("PUD %lx ", pud_val(*pud));
|
|
|
- if (!pud_present(*pud)) goto ret;
|
|
|
-
|
|
|
- pmd = pmd_offset(pud, address);
|
|
|
- if (bad_address(pmd)) goto bad;
|
|
|
- printk("PMD %lx ", pmd_val(*pmd));
|
|
|
- if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
|
|
|
-
|
|
|
- pte = pte_offset_kernel(pmd, address);
|
|
|
- if (bad_address(pte)) goto bad;
|
|
|
- printk("PTE %lx", pte_val(*pte));
|
|
|
-ret:
|
|
|
- printk("\n");
|
|
|
- return;
|
|
|
-bad:
|
|
|
- printk("BAD\n");
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
-#ifdef CONFIG_X86_32
|
|
|
-static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
|
|
|
-{
|
|
|
- unsigned index = pgd_index(address);
|
|
|
- pgd_t *pgd_k;
|
|
|
- pud_t *pud, *pud_k;
|
|
|
- pmd_t *pmd, *pmd_k;
|
|
|
-
|
|
|
- pgd += index;
|
|
|
- pgd_k = init_mm.pgd + index;
|
|
|
-
|
|
|
- if (!pgd_present(*pgd_k))
|
|
|
- return NULL;
|
|
|
-
|
|
|
- /*
|
|
|
- * set_pgd(pgd, *pgd_k); here would be useless on PAE
|
|
|
- * and redundant with the set_pmd() on non-PAE. As would
|
|
|
- * set_pud.
|
|
|
- */
|
|
|
-
|
|
|
- pud = pud_offset(pgd, address);
|
|
|
- pud_k = pud_offset(pgd_k, address);
|
|
|
- if (!pud_present(*pud_k))
|
|
|
- return NULL;
|
|
|
-
|
|
|
- pmd = pmd_offset(pud, address);
|
|
|
- pmd_k = pmd_offset(pud_k, address);
|
|
|
- if (!pmd_present(*pmd_k))
|
|
|
- return NULL;
|
|
|
- if (!pmd_present(*pmd)) {
|
|
|
- set_pmd(pmd, *pmd_k);
|
|
|
- arch_flush_lazy_mmu_mode();
|
|
|
- } else
|
|
|
- BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
|
|
|
- return pmd_k;
|
|
|
-}
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef CONFIG_X86_64
|
|
|
-static const char errata93_warning[] =
|
|
|
-KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
|
|
|
-KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
|
|
|
-KERN_ERR "******* Please consider a BIOS update.\n"
|
|
|
-KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
|
|
|
-#endif
|
|
|
-
|
|
|
-/* Workaround for K8 erratum #93 & buggy BIOS.
|
|
|
- BIOS SMM functions are required to use a specific workaround
|
|
|
- to avoid corruption of the 64bit RIP register on C stepping K8.
|
|
|
- A lot of BIOS that didn't get tested properly miss this.
|
|
|
- The OS sees this as a page fault with the upper 32bits of RIP cleared.
|
|
|
- Try to work around it here.
|
|
|
- Note we only handle faults in kernel here.
|
|
|
- Does nothing for X86_32
|
|
|
- */
|
|
|
-static int is_errata93(struct pt_regs *regs, unsigned long address)
|
|
|
-{
|
|
|
-#ifdef CONFIG_X86_64
|
|
|
- static int warned;
|
|
|
- if (address != regs->ip)
|
|
|
- return 0;
|
|
|
- if ((address >> 32) != 0)
|
|
|
- return 0;
|
|
|
- address |= 0xffffffffUL << 32;
|
|
|
- if ((address >= (u64)_stext && address <= (u64)_etext) ||
|
|
|
- (address >= MODULES_VADDR && address <= MODULES_END)) {
|
|
|
- if (!warned) {
|
|
|
- printk(errata93_warning);
|
|
|
- warned = 1;
|
|
|
- }
|
|
|
- regs->ip = address;
|
|
|
- return 1;
|
|
|
- }
|
|
|
-#endif
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
|
|
|
- * addresses >4GB. We catch this in the page fault handler because these
|
|
|
- * addresses are not reachable. Just detect this case and return. Any code
|
|
|
- * segment in LDT is compatibility mode.
|
|
|
- */
|
|
|
-static int is_errata100(struct pt_regs *regs, unsigned long address)
|
|
|
-{
|
|
|
-#ifdef CONFIG_X86_64
|
|
|
- if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
|
|
|
- (address >> 32))
|
|
|
- return 1;
|
|
|
-#endif
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-void do_invalid_op(struct pt_regs *, unsigned long);
|
|
|
-
|
|
|
-static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
|
|
|
-{
|
|
|
-#ifdef CONFIG_X86_F00F_BUG
|
|
|
- unsigned long nr;
|
|
|
- /*
|
|
|
- * Pentium F0 0F C7 C8 bug workaround.
|
|
|
- */
|
|
|
- if (boot_cpu_data.f00f_bug) {
|
|
|
- nr = (address - idt_descr.address) >> 3;
|
|
|
-
|
|
|
- if (nr == 6) {
|
|
|
- do_invalid_op(regs, 0);
|
|
|
- return 1;
|
|
|
- }
|
|
|
- }
|
|
|
-#endif
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
|
|
|
- unsigned long address)
|
|
|
-{
|
|
|
-#ifdef CONFIG_X86_32
|
|
|
- if (!oops_may_print())
|
|
|
- return;
|
|
|
-
|
|
|
-#ifdef CONFIG_X86_PAE
|
|
|
- if (error_code & PF_INSTR) {
|
|
|
- int level;
|
|
|
- pte_t *pte = lookup_address(address, &level);
|
|
|
-
|
|
|
- if (pte && pte_present(*pte) && !pte_exec(*pte))
|
|
|
- printk(KERN_CRIT "kernel tried to execute "
|
|
|
- "NX-protected page - exploit attempt? "
|
|
|
- "(uid: %d)\n", current->uid);
|
|
|
- }
|
|
|
-#endif
|
|
|
- printk(KERN_ALERT "BUG: unable to handle kernel ");
|
|
|
- if (address < PAGE_SIZE)
|
|
|
- printk(KERN_CONT "NULL pointer dereference");
|
|
|
- else
|
|
|
- printk(KERN_CONT "paging request");
|
|
|
- printk(KERN_CONT " at %08lx\n", address);
|
|
|
-
|
|
|
- printk(KERN_ALERT "IP:");
|
|
|
- printk_address(regs->ip, 1);
|
|
|
- dump_pagetable(address);
|
|
|
-#else /* CONFIG_X86_64 */
|
|
|
- printk(KERN_ALERT "BUG: unable to handle kernel ");
|
|
|
- if (address < PAGE_SIZE)
|
|
|
- printk(KERN_CONT "NULL pointer dereference");
|
|
|
- else
|
|
|
- printk(KERN_CONT "paging request");
|
|
|
- printk(KERN_CONT " at %016lx\n", address);
|
|
|
-
|
|
|
- printk(KERN_ALERT "IP:");
|
|
|
- printk_address(regs->ip, 1);
|
|
|
- dump_pagetable(address);
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
-#ifdef CONFIG_X86_64
|
|
|
-static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
|
|
|
- unsigned long error_code)
|
|
|
-{
|
|
|
- unsigned long flags = oops_begin();
|
|
|
- struct task_struct *tsk;
|
|
|
-
|
|
|
- printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
|
|
|
- current->comm, address);
|
|
|
- dump_pagetable(address);
|
|
|
- tsk = current;
|
|
|
- tsk->thread.cr2 = address;
|
|
|
- tsk->thread.trap_no = 14;
|
|
|
- tsk->thread.error_code = error_code;
|
|
|
- if (__die("Bad pagetable", regs, error_code))
|
|
|
- regs = NULL;
|
|
|
- oops_end(flags, regs, SIGKILL);
|
|
|
-}
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * X86_32
|
|
|
- * Handle a fault on the vmalloc or module mapping area
|
|
|
- *
|
|
|
- * X86_64
|
|
|
- * Handle a fault on the vmalloc area
|
|
|
- *
|
|
|
- * This assumes no large pages in there.
|
|
|
- */
|
|
|
-static int vmalloc_fault(unsigned long address)
|
|
|
-{
|
|
|
-#ifdef CONFIG_X86_32
|
|
|
- unsigned long pgd_paddr;
|
|
|
- pmd_t *pmd_k;
|
|
|
- pte_t *pte_k;
|
|
|
- /*
|
|
|
- * Synchronize this task's top level page-table
|
|
|
- * with the 'reference' page table.
|
|
|
- *
|
|
|
- * Do _not_ use "current" here. We might be inside
|
|
|
- * an interrupt in the middle of a task switch..
|
|
|
- */
|
|
|
- pgd_paddr = read_cr3();
|
|
|
- pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
|
|
|
- if (!pmd_k)
|
|
|
- return -1;
|
|
|
- pte_k = pte_offset_kernel(pmd_k, address);
|
|
|
- if (!pte_present(*pte_k))
|
|
|
- return -1;
|
|
|
- return 0;
|
|
|
-#else
|
|
|
- pgd_t *pgd, *pgd_ref;
|
|
|
- pud_t *pud, *pud_ref;
|
|
|
- pmd_t *pmd, *pmd_ref;
|
|
|
- pte_t *pte, *pte_ref;
|
|
|
-
|
|
|
- /* Copy kernel mappings over when needed. This can also
|
|
|
- happen within a race in page table update. In the later
|
|
|
- case just flush. */
|
|
|
-
|
|
|
- pgd = pgd_offset(current->mm ?: &init_mm, address);
|
|
|
- pgd_ref = pgd_offset_k(address);
|
|
|
- if (pgd_none(*pgd_ref))
|
|
|
- return -1;
|
|
|
- if (pgd_none(*pgd))
|
|
|
- set_pgd(pgd, *pgd_ref);
|
|
|
- else
|
|
|
- BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
|
|
|
-
|
|
|
- /* Below here mismatches are bugs because these lower tables
|
|
|
- are shared */
|
|
|
-
|
|
|
- pud = pud_offset(pgd, address);
|
|
|
- pud_ref = pud_offset(pgd_ref, address);
|
|
|
- if (pud_none(*pud_ref))
|
|
|
- return -1;
|
|
|
- if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
|
|
|
- BUG();
|
|
|
- pmd = pmd_offset(pud, address);
|
|
|
- pmd_ref = pmd_offset(pud_ref, address);
|
|
|
- if (pmd_none(*pmd_ref))
|
|
|
- return -1;
|
|
|
- if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
|
|
|
- BUG();
|
|
|
- pte_ref = pte_offset_kernel(pmd_ref, address);
|
|
|
- if (!pte_present(*pte_ref))
|
|
|
- return -1;
|
|
|
- pte = pte_offset_kernel(pmd, address);
|
|
|
- /* Don't use pte_page here, because the mappings can point
|
|
|
- outside mem_map, and the NUMA hash lookup cannot handle
|
|
|
- that. */
|
|
|
- if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
|
|
|
- BUG();
|
|
|
- return 0;
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
-int show_unhandled_signals = 1;
|
|
|
-
|
|
|
-/*
|
|
|
- * This routine handles page faults. It determines the address,
|
|
|
- * and the problem, and then passes it off to one of the appropriate
|
|
|
- * routines.
|
|
|
- */
|
|
|
-#ifdef CONFIG_X86_64
|
|
|
-asmlinkage
|
|
|
-#endif
|
|
|
-void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
|
|
|
-{
|
|
|
- struct task_struct *tsk;
|
|
|
- struct mm_struct *mm;
|
|
|
- struct vm_area_struct *vma;
|
|
|
- unsigned long address;
|
|
|
- int write, si_code;
|
|
|
- int fault;
|
|
|
-#ifdef CONFIG_X86_64
|
|
|
- unsigned long flags;
|
|
|
-#endif
|
|
|
-
|
|
|
- /*
|
|
|
- * We can fault from pretty much anywhere, with unknown IRQ state.
|
|
|
- */
|
|
|
- trace_hardirqs_fixup();
|
|
|
-
|
|
|
- tsk = current;
|
|
|
- mm = tsk->mm;
|
|
|
- prefetchw(&mm->mmap_sem);
|
|
|
-
|
|
|
- /* get the address */
|
|
|
- address = read_cr2();
|
|
|
-
|
|
|
- si_code = SEGV_MAPERR;
|
|
|
-
|
|
|
- if (notify_page_fault(regs))
|
|
|
- return;
|
|
|
-
|
|
|
- /*
|
|
|
- * We fault-in kernel-space virtual memory on-demand. The
|
|
|
- * 'reference' page table is init_mm.pgd.
|
|
|
- *
|
|
|
- * NOTE! We MUST NOT take any locks for this case. We may
|
|
|
- * be in an interrupt or a critical region, and should
|
|
|
- * only copy the information from the master page table,
|
|
|
- * nothing more.
|
|
|
- *
|
|
|
- * This verifies that the fault happens in kernel space
|
|
|
- * (error_code & 4) == 0, and that the fault was not a
|
|
|
- * protection error (error_code & 9) == 0.
|
|
|
- */
|
|
|
-#ifdef CONFIG_X86_32
|
|
|
- if (unlikely(address >= TASK_SIZE)) {
|
|
|
- if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
|
|
|
- vmalloc_fault(address) >= 0)
|
|
|
- return;
|
|
|
- /*
|
|
|
- * Don't take the mm semaphore here. If we fixup a prefetch
|
|
|
- * fault we could otherwise deadlock.
|
|
|
- */
|
|
|
- goto bad_area_nosemaphore;
|
|
|
- }
|
|
|
-
|
|
|
- /* It's safe to allow irq's after cr2 has been saved and the vmalloc
|
|
|
- fault has been handled. */
|
|
|
- if (regs->flags & (X86_EFLAGS_IF|VM_MASK))
|
|
|
- local_irq_enable();
|
|
|
-
|
|
|
- /*
|
|
|
- * If we're in an interrupt, have no user context or are running in an
|
|
|
- * atomic region then we must not take the fault.
|
|
|
- */
|
|
|
- if (in_atomic() || !mm)
|
|
|
- goto bad_area_nosemaphore;
|
|
|
-#else /* CONFIG_X86_64 */
|
|
|
- if (unlikely(address >= TASK_SIZE64)) {
|
|
|
- /*
|
|
|
- * Don't check for the module range here: its PML4
|
|
|
- * is always initialized because it's shared with the main
|
|
|
- * kernel text. Only vmalloc may need PML4 syncups.
|
|
|
- */
|
|
|
- if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
|
|
|
- ((address >= VMALLOC_START && address < VMALLOC_END))) {
|
|
|
- if (vmalloc_fault(address) >= 0)
|
|
|
- return;
|
|
|
- }
|
|
|
- /*
|
|
|
- * Don't take the mm semaphore here. If we fixup a prefetch
|
|
|
- * fault we could otherwise deadlock.
|
|
|
- */
|
|
|
- goto bad_area_nosemaphore;
|
|
|
- }
|
|
|
- if (likely(regs->flags & X86_EFLAGS_IF))
|
|
|
- local_irq_enable();
|
|
|
-
|
|
|
- if (unlikely(error_code & PF_RSVD))
|
|
|
- pgtable_bad(address, regs, error_code);
|
|
|
-
|
|
|
- /*
|
|
|
- * If we're in an interrupt, have no user context or are running in an
|
|
|
- * atomic region then we must not take the fault.
|
|
|
- */
|
|
|
- if (unlikely(in_atomic() || !mm))
|
|
|
- goto bad_area_nosemaphore;
|
|
|
-
|
|
|
- /*
|
|
|
- * User-mode registers count as a user access even for any
|
|
|
- * potential system fault or CPU buglet.
|
|
|
- */
|
|
|
- if (user_mode_vm(regs))
|
|
|
- error_code |= PF_USER;
|
|
|
-again:
|
|
|
-#endif
|
|
|
- /* When running in the kernel we expect faults to occur only to
|
|
|
- * addresses in user space. All other faults represent errors in the
|
|
|
- * kernel and should generate an OOPS. Unfortunately, in the case of an
|
|
|
- * erroneous fault occurring in a code path which already holds mmap_sem
|
|
|
- * we will deadlock attempting to validate the fault against the
|
|
|
- * address space. Luckily the kernel only validly references user
|
|
|
- * space from well defined areas of code, which are listed in the
|
|
|
- * exceptions table.
|
|
|
- *
|
|
|
- * As the vast majority of faults will be valid we will only perform
|
|
|
- * the source reference check when there is a possibility of a deadlock.
|
|
|
- * Attempt to lock the address space, if we cannot we then validate the
|
|
|
- * source. If this is invalid we can skip the address space check,
|
|
|
- * thus avoiding the deadlock.
|
|
|
- */
|
|
|
- if (!down_read_trylock(&mm->mmap_sem)) {
|
|
|
- if ((error_code & PF_USER) == 0 &&
|
|
|
- !search_exception_tables(regs->ip))
|
|
|
- goto bad_area_nosemaphore;
|
|
|
- down_read(&mm->mmap_sem);
|
|
|
- }
|
|
|
-
|
|
|
- vma = find_vma(mm, address);
|
|
|
- if (!vma)
|
|
|
- goto bad_area;
|
|
|
-#ifdef CONFIG_X86_32
|
|
|
- if (vma->vm_start <= address)
|
|
|
-#else
|
|
|
- if (likely(vma->vm_start <= address))
|
|
|
-#endif
|
|
|
- goto good_area;
|
|
|
- if (!(vma->vm_flags & VM_GROWSDOWN))
|
|
|
- goto bad_area;
|
|
|
- if (error_code & PF_USER) {
|
|
|
- /*
|
|
|
- * Accessing the stack below %sp is always a bug.
|
|
|
- * The large cushion allows instructions like enter
|
|
|
- * and pusha to work. ("enter $65535,$31" pushes
|
|
|
- * 32 pointers and then decrements %sp by 65535.)
|
|
|
- */
|
|
|
- if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
|
|
|
- goto bad_area;
|
|
|
- }
|
|
|
- if (expand_stack(vma, address))
|
|
|
- goto bad_area;
|
|
|
-/*
|
|
|
- * Ok, we have a good vm_area for this memory access, so
|
|
|
- * we can handle it..
|
|
|
- */
|
|
|
-good_area:
|
|
|
- si_code = SEGV_ACCERR;
|
|
|
- write = 0;
|
|
|
- switch (error_code & (PF_PROT|PF_WRITE)) {
|
|
|
- default: /* 3: write, present */
|
|
|
- /* fall through */
|
|
|
- case PF_WRITE: /* write, not present */
|
|
|
- if (!(vma->vm_flags & VM_WRITE))
|
|
|
- goto bad_area;
|
|
|
- write++;
|
|
|
- break;
|
|
|
- case PF_PROT: /* read, present */
|
|
|
- goto bad_area;
|
|
|
- case 0: /* read, not present */
|
|
|
- if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
|
|
|
- goto bad_area;
|
|
|
- }
|
|
|
-
|
|
|
-#ifdef CONFIG_X86_32
|
|
|
-survive:
|
|
|
-#endif
|
|
|
- /*
|
|
|
- * If for any reason at all we couldn't handle the fault,
|
|
|
- * make sure we exit gracefully rather than endlessly redo
|
|
|
- * the fault.
|
|
|
- */
|
|
|
- fault = handle_mm_fault(mm, vma, address, write);
|
|
|
- if (unlikely(fault & VM_FAULT_ERROR)) {
|
|
|
- if (fault & VM_FAULT_OOM)
|
|
|
- goto out_of_memory;
|
|
|
- else if (fault & VM_FAULT_SIGBUS)
|
|
|
- goto do_sigbus;
|
|
|
- BUG();
|
|
|
- }
|
|
|
- if (fault & VM_FAULT_MAJOR)
|
|
|
- tsk->maj_flt++;
|
|
|
- else
|
|
|
- tsk->min_flt++;
|
|
|
-
|
|
|
-#ifdef CONFIG_X86_32
|
|
|
- /*
|
|
|
- * Did it hit the DOS screen memory VA from vm86 mode?
|
|
|
- */
|
|
|
- if (v8086_mode(regs)) {
|
|
|
- unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
|
|
|
- if (bit < 32)
|
|
|
- tsk->thread.screen_bitmap |= 1 << bit;
|
|
|
- }
|
|
|
-#endif
|
|
|
- up_read(&mm->mmap_sem);
|
|
|
- return;
|
|
|
-
|
|
|
-/*
|
|
|
- * Something tried to access memory that isn't in our memory map..
|
|
|
- * Fix it, but check if it's kernel or user first..
|
|
|
- */
|
|
|
-bad_area:
|
|
|
- up_read(&mm->mmap_sem);
|
|
|
-
|
|
|
-bad_area_nosemaphore:
|
|
|
- /* User mode accesses just cause a SIGSEGV */
|
|
|
- if (error_code & PF_USER) {
|
|
|
- /*
|
|
|
- * It's possible to have interrupts off here.
|
|
|
- */
|
|
|
- local_irq_enable();
|
|
|
-
|
|
|
- /*
|
|
|
- * Valid to do another page fault here because this one came
|
|
|
- * from user space.
|
|
|
- */
|
|
|
- if (is_prefetch(regs, address, error_code))
|
|
|
- return;
|
|
|
-
|
|
|
- if (is_errata100(regs, address))
|
|
|
- return;
|
|
|
-
|
|
|
- if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
|
|
|
- printk_ratelimit()) {
|
|
|
- printk(
|
|
|
-#ifdef CONFIG_X86_32
|
|
|
- "%s%s[%d]: segfault at %lx ip %08lx sp %08lx error %lx",
|
|
|
-#else
|
|
|
- "%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx",
|
|
|
-#endif
|
|
|
- task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
|
|
|
- tsk->comm, task_pid_nr(tsk), address, regs->ip,
|
|
|
- regs->sp, error_code);
|
|
|
- print_vma_addr(" in ", regs->ip);
|
|
|
- printk("\n");
|
|
|
- }
|
|
|
-
|
|
|
- tsk->thread.cr2 = address;
|
|
|
- /* Kernel addresses are always protection faults */
|
|
|
- tsk->thread.error_code = error_code | (address >= TASK_SIZE);
|
|
|
- tsk->thread.trap_no = 14;
|
|
|
- force_sig_info_fault(SIGSEGV, si_code, address, tsk);
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- if (is_f00f_bug(regs, address))
|
|
|
- return;
|
|
|
-
|
|
|
-no_context:
|
|
|
- /* Are we prepared to handle this kernel fault? */
|
|
|
- if (fixup_exception(regs))
|
|
|
- return;
|
|
|
-
|
|
|
- /*
|
|
|
- * X86_32
|
|
|
- * Valid to do another page fault here, because if this fault
|
|
|
- * had been triggered by is_prefetch fixup_exception would have
|
|
|
- * handled it.
|
|
|
- *
|
|
|
- * X86_64
|
|
|
- * Hall of shame of CPU/BIOS bugs.
|
|
|
- */
|
|
|
- if (is_prefetch(regs, address, error_code))
|
|
|
- return;
|
|
|
-
|
|
|
- if (is_errata93(regs, address))
|
|
|
- return;
|
|
|
-
|
|
|
-/*
|
|
|
- * Oops. The kernel tried to access some bad page. We'll have to
|
|
|
- * terminate things with extreme prejudice.
|
|
|
- */
|
|
|
-#ifdef CONFIG_X86_32
|
|
|
- bust_spinlocks(1);
|
|
|
-
|
|
|
- show_fault_oops(regs, error_code, address);
|
|
|
-
|
|
|
- tsk->thread.cr2 = address;
|
|
|
- tsk->thread.trap_no = 14;
|
|
|
- tsk->thread.error_code = error_code;
|
|
|
- die("Oops", regs, error_code);
|
|
|
- bust_spinlocks(0);
|
|
|
- do_exit(SIGKILL);
|
|
|
-#else /* CONFIG_X86_64 */
|
|
|
- flags = oops_begin();
|
|
|
-
|
|
|
- show_fault_oops(regs, error_code, address);
|
|
|
-
|
|
|
- tsk->thread.cr2 = address;
|
|
|
- tsk->thread.trap_no = 14;
|
|
|
- tsk->thread.error_code = error_code;
|
|
|
- if (__die("Oops", regs, error_code))
|
|
|
- regs = NULL;
|
|
|
- /* Executive summary in case the body of the oops scrolled away */
|
|
|
- printk(KERN_EMERG "CR2: %016lx\n", address);
|
|
|
- oops_end(flags, regs, SIGKILL);
|
|
|
-#endif
|
|
|
-
|
|
|
-/*
|
|
|
- * We ran out of memory, or some other thing happened to us that made
|
|
|
- * us unable to handle the page fault gracefully.
|
|
|
- */
|
|
|
-out_of_memory:
|
|
|
- up_read(&mm->mmap_sem);
|
|
|
-#ifdef CONFIG_X86_32
|
|
|
- if (is_global_init(tsk)) {
|
|
|
- yield();
|
|
|
- down_read(&mm->mmap_sem);
|
|
|
- goto survive;
|
|
|
- }
|
|
|
-#else
|
|
|
- if (is_global_init(current)) {
|
|
|
- yield();
|
|
|
- goto again;
|
|
|
- }
|
|
|
-#endif
|
|
|
- printk("VM: killing process %s\n", tsk->comm);
|
|
|
- if (error_code & PF_USER)
|
|
|
- do_group_exit(SIGKILL);
|
|
|
- goto no_context;
|
|
|
-
|
|
|
-do_sigbus:
|
|
|
- up_read(&mm->mmap_sem);
|
|
|
-
|
|
|
- /* Kernel mode? Handle exceptions or die */
|
|
|
- if (!(error_code & PF_USER))
|
|
|
- goto no_context;
|
|
|
-#ifdef CONFIG_X86_32
|
|
|
- /* User space => ok to do another page fault */
|
|
|
- if (is_prefetch(regs, address, error_code))
|
|
|
- return;
|
|
|
-#endif
|
|
|
- tsk->thread.cr2 = address;
|
|
|
- tsk->thread.error_code = error_code;
|
|
|
- tsk->thread.trap_no = 14;
|
|
|
- force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
|
|
|
-}
|
|
|
-
|
|
|
-#ifdef CONFIG_X86_64
|
|
|
-DEFINE_SPINLOCK(pgd_lock);
|
|
|
-LIST_HEAD(pgd_list);
|
|
|
-#endif
|
|
|
-
|
|
|
-void vmalloc_sync_all(void)
|
|
|
-{
|
|
|
-#ifdef CONFIG_X86_32
|
|
|
- /*
|
|
|
- * Note that races in the updates of insync and start aren't
|
|
|
- * problematic: insync can only get set bits added, and updates to
|
|
|
- * start are only improving performance (without affecting correctness
|
|
|
- * if undone).
|
|
|
- */
|
|
|
- static DECLARE_BITMAP(insync, PTRS_PER_PGD);
|
|
|
- static unsigned long start = TASK_SIZE;
|
|
|
- unsigned long address;
|
|
|
-
|
|
|
- if (SHARED_KERNEL_PMD)
|
|
|
- return;
|
|
|
-
|
|
|
- BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
|
|
|
- for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
|
|
|
- if (!test_bit(pgd_index(address), insync)) {
|
|
|
- unsigned long flags;
|
|
|
- struct page *page;
|
|
|
-
|
|
|
- spin_lock_irqsave(&pgd_lock, flags);
|
|
|
- for (page = pgd_list; page; page =
|
|
|
- (struct page *)page->index)
|
|
|
- if (!vmalloc_sync_one(page_address(page),
|
|
|
- address)) {
|
|
|
- BUG_ON(page != pgd_list);
|
|
|
- break;
|
|
|
- }
|
|
|
- spin_unlock_irqrestore(&pgd_lock, flags);
|
|
|
- if (!page)
|
|
|
- set_bit(pgd_index(address), insync);
|
|
|
- }
|
|
|
- if (address == start && test_bit(pgd_index(address), insync))
|
|
|
- start = address + PGDIR_SIZE;
|
|
|
- }
|
|
|
-#else /* CONFIG_X86_64 */
|
|
|
- /*
|
|
|
- * Note that races in the updates of insync and start aren't
|
|
|
- * problematic: insync can only get set bits added, and updates to
|
|
|
- * start are only improving performance (without affecting correctness
|
|
|
- * if undone).
|
|
|
- */
|
|
|
- static DECLARE_BITMAP(insync, PTRS_PER_PGD);
|
|
|
- static unsigned long start = VMALLOC_START & PGDIR_MASK;
|
|
|
- unsigned long address;
|
|
|
-
|
|
|
- for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
|
|
|
- if (!test_bit(pgd_index(address), insync)) {
|
|
|
- const pgd_t *pgd_ref = pgd_offset_k(address);
|
|
|
- struct page *page;
|
|
|
-
|
|
|
- if (pgd_none(*pgd_ref))
|
|
|
- continue;
|
|
|
- spin_lock(&pgd_lock);
|
|
|
- list_for_each_entry(page, &pgd_list, lru) {
|
|
|
- pgd_t *pgd;
|
|
|
- pgd = (pgd_t *)page_address(page) + pgd_index(address);
|
|
|
- if (pgd_none(*pgd))
|
|
|
- set_pgd(pgd, *pgd_ref);
|
|
|
- else
|
|
|
- BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
|
|
|
- }
|
|
|
- spin_unlock(&pgd_lock);
|
|
|
- set_bit(pgd_index(address), insync);
|
|
|
- }
|
|
|
- if (address == start)
|
|
|
- start = address + PGDIR_SIZE;
|
|
|
- }
|
|
|
- /* Check that there is no need to do the same for the modules area. */
|
|
|
- BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
|
|
|
- BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
|
|
|
- (__START_KERNEL & PGDIR_MASK)));
|
|
|
-#endif
|
|
|
-}
|