|
@@ -34,13 +34,9 @@
|
|
|
*/
|
|
|
|
|
|
#define DEF_FREQUENCY_UP_THRESHOLD (80)
|
|
|
-#define MIN_FREQUENCY_UP_THRESHOLD (0)
|
|
|
+#define MIN_FREQUENCY_UP_THRESHOLD (11)
|
|
|
#define MAX_FREQUENCY_UP_THRESHOLD (100)
|
|
|
|
|
|
-#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
|
|
|
-#define MIN_FREQUENCY_DOWN_THRESHOLD (0)
|
|
|
-#define MAX_FREQUENCY_DOWN_THRESHOLD (100)
|
|
|
-
|
|
|
/*
|
|
|
* The polling frequency of this governor depends on the capability of
|
|
|
* the processor. Default polling frequency is 1000 times the transition
|
|
@@ -77,14 +73,11 @@ struct dbs_tuners {
|
|
|
unsigned int sampling_rate;
|
|
|
unsigned int sampling_down_factor;
|
|
|
unsigned int up_threshold;
|
|
|
- unsigned int down_threshold;
|
|
|
unsigned int ignore_nice;
|
|
|
- unsigned int freq_step;
|
|
|
};
|
|
|
|
|
|
static struct dbs_tuners dbs_tuners_ins = {
|
|
|
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
|
|
|
- .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
|
|
|
.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
|
|
|
};
|
|
|
|
|
@@ -125,9 +118,7 @@ static ssize_t show_##file_name \
|
|
|
show_one(sampling_rate, sampling_rate);
|
|
|
show_one(sampling_down_factor, sampling_down_factor);
|
|
|
show_one(up_threshold, up_threshold);
|
|
|
-show_one(down_threshold, down_threshold);
|
|
|
show_one(ignore_nice, ignore_nice);
|
|
|
-show_one(freq_step, freq_step);
|
|
|
|
|
|
static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
|
|
|
const char *buf, size_t count)
|
|
@@ -173,8 +164,7 @@ static ssize_t store_up_threshold(struct cpufreq_policy *unused,
|
|
|
|
|
|
down(&dbs_sem);
|
|
|
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
|
|
|
- input < MIN_FREQUENCY_UP_THRESHOLD ||
|
|
|
- input <= dbs_tuners_ins.down_threshold) {
|
|
|
+ input < MIN_FREQUENCY_UP_THRESHOLD) {
|
|
|
up(&dbs_sem);
|
|
|
return -EINVAL;
|
|
|
}
|
|
@@ -185,27 +175,6 @@ static ssize_t store_up_threshold(struct cpufreq_policy *unused,
|
|
|
return count;
|
|
|
}
|
|
|
|
|
|
-static ssize_t store_down_threshold(struct cpufreq_policy *unused,
|
|
|
- const char *buf, size_t count)
|
|
|
-{
|
|
|
- unsigned int input;
|
|
|
- int ret;
|
|
|
- ret = sscanf (buf, "%u", &input);
|
|
|
-
|
|
|
- down(&dbs_sem);
|
|
|
- if (ret != 1 || input > MAX_FREQUENCY_DOWN_THRESHOLD ||
|
|
|
- input < MIN_FREQUENCY_DOWN_THRESHOLD ||
|
|
|
- input >= dbs_tuners_ins.up_threshold) {
|
|
|
- up(&dbs_sem);
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
-
|
|
|
- dbs_tuners_ins.down_threshold = input;
|
|
|
- up(&dbs_sem);
|
|
|
-
|
|
|
- return count;
|
|
|
-}
|
|
|
-
|
|
|
static ssize_t store_ignore_nice(struct cpufreq_policy *policy,
|
|
|
const char *buf, size_t count)
|
|
|
{
|
|
@@ -240,29 +209,6 @@ static ssize_t store_ignore_nice(struct cpufreq_policy *policy,
|
|
|
return count;
|
|
|
}
|
|
|
|
|
|
-static ssize_t store_freq_step(struct cpufreq_policy *policy,
|
|
|
- const char *buf, size_t count)
|
|
|
-{
|
|
|
- unsigned int input;
|
|
|
- int ret;
|
|
|
-
|
|
|
- ret = sscanf (buf, "%u", &input);
|
|
|
-
|
|
|
- if ( ret != 1 )
|
|
|
- return -EINVAL;
|
|
|
-
|
|
|
- if ( input > 100 )
|
|
|
- input = 100;
|
|
|
-
|
|
|
- /* no need to test here if freq_step is zero as the user might actually
|
|
|
- * want this, they would be crazy though :) */
|
|
|
- down(&dbs_sem);
|
|
|
- dbs_tuners_ins.freq_step = input;
|
|
|
- up(&dbs_sem);
|
|
|
-
|
|
|
- return count;
|
|
|
-}
|
|
|
-
|
|
|
#define define_one_rw(_name) \
|
|
|
static struct freq_attr _name = \
|
|
|
__ATTR(_name, 0644, show_##_name, store_##_name)
|
|
@@ -270,9 +216,7 @@ __ATTR(_name, 0644, show_##_name, store_##_name)
|
|
|
define_one_rw(sampling_rate);
|
|
|
define_one_rw(sampling_down_factor);
|
|
|
define_one_rw(up_threshold);
|
|
|
-define_one_rw(down_threshold);
|
|
|
define_one_rw(ignore_nice);
|
|
|
-define_one_rw(freq_step);
|
|
|
|
|
|
static struct attribute * dbs_attributes[] = {
|
|
|
&sampling_rate_max.attr,
|
|
@@ -280,9 +224,7 @@ static struct attribute * dbs_attributes[] = {
|
|
|
&sampling_rate.attr,
|
|
|
&sampling_down_factor.attr,
|
|
|
&up_threshold.attr,
|
|
|
- &down_threshold.attr,
|
|
|
&ignore_nice.attr,
|
|
|
- &freq_step.attr,
|
|
|
NULL
|
|
|
};
|
|
|
|
|
@@ -295,8 +237,8 @@ static struct attribute_group dbs_attr_group = {
|
|
|
|
|
|
static void dbs_check_cpu(int cpu)
|
|
|
{
|
|
|
- unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
|
|
|
- unsigned int freq_down_step;
|
|
|
+ unsigned int idle_ticks, up_idle_ticks, total_ticks;
|
|
|
+ unsigned int freq_next;
|
|
|
unsigned int freq_down_sampling_rate;
|
|
|
static int down_skip[NR_CPUS];
|
|
|
struct cpu_dbs_info_s *this_dbs_info;
|
|
@@ -310,17 +252,15 @@ static void dbs_check_cpu(int cpu)
|
|
|
|
|
|
policy = this_dbs_info->cur_policy;
|
|
|
/*
|
|
|
- * The default safe range is 20% to 80%
|
|
|
- * Every sampling_rate, we check
|
|
|
- * - If current idle time is less than 20%, then we try to
|
|
|
- * increase frequency
|
|
|
- * Every sampling_rate*sampling_down_factor, we check
|
|
|
- * - If current idle time is more than 80%, then we try to
|
|
|
- * decrease frequency
|
|
|
+ * Every sampling_rate, we check, if current idle time is less
|
|
|
+ * than 20% (default), then we try to increase frequency
|
|
|
+ * Every sampling_rate*sampling_down_factor, we look for a the lowest
|
|
|
+ * frequency which can sustain the load while keeping idle time over
|
|
|
+ * 30%. If such a frequency exist, we try to decrease to this frequency.
|
|
|
*
|
|
|
* Any frequency increase takes it to the maximum frequency.
|
|
|
* Frequency reduction happens at minimum steps of
|
|
|
- * 5% (default) of max_frequency
|
|
|
+ * 5% (default) of current frequency
|
|
|
*/
|
|
|
|
|
|
/* Check for frequency increase */
|
|
@@ -383,33 +323,27 @@ static void dbs_check_cpu(int cpu)
|
|
|
idle_ticks = tmp_idle_ticks;
|
|
|
}
|
|
|
|
|
|
- /* Scale idle ticks by 100 and compare with up and down ticks */
|
|
|
- idle_ticks *= 100;
|
|
|
down_skip[cpu] = 0;
|
|
|
+ /* if we cannot reduce the frequency anymore, break out early */
|
|
|
+ if (policy->cur == policy->min)
|
|
|
+ return;
|
|
|
|
|
|
+ /* Compute how many ticks there are between two measurements */
|
|
|
freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
|
|
|
dbs_tuners_ins.sampling_down_factor;
|
|
|
- down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
|
|
|
- usecs_to_jiffies(freq_down_sampling_rate);
|
|
|
-
|
|
|
- if (idle_ticks > down_idle_ticks) {
|
|
|
- /* if we are already at the lowest speed then break out early
|
|
|
- * or if we 'cannot' reduce the speed as the user might want
|
|
|
- * freq_step to be zero */
|
|
|
- if (policy->cur == policy->min || dbs_tuners_ins.freq_step == 0)
|
|
|
- return;
|
|
|
+ total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
|
|
|
|
|
|
- freq_down_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
|
|
|
-
|
|
|
- /* max freq cannot be less than 100. But who knows.... */
|
|
|
- if (unlikely(freq_down_step == 0))
|
|
|
- freq_down_step = 5;
|
|
|
+ /*
|
|
|
+ * The optimal frequency is the frequency that is the lowest that
|
|
|
+ * can support the current CPU usage without triggering the up
|
|
|
+ * policy. To be safe, we focus 10 points under the threshold.
|
|
|
+ */
|
|
|
+ freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
|
|
|
+ freq_next = (freq_next * policy->cur) /
|
|
|
+ (dbs_tuners_ins.up_threshold - 10);
|
|
|
|
|
|
- __cpufreq_driver_target(policy,
|
|
|
- policy->cur - freq_down_step,
|
|
|
- CPUFREQ_RELATION_H);
|
|
|
- return;
|
|
|
- }
|
|
|
+ if (freq_next <= ((policy->cur * 95) / 100))
|
|
|
+ __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
|
|
|
}
|
|
|
|
|
|
static void do_dbs_timer(void *data)
|
|
@@ -487,7 +421,6 @@ static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
|
|
|
DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
|
|
|
dbs_tuners_ins.sampling_rate = def_sampling_rate;
|
|
|
dbs_tuners_ins.ignore_nice = 0;
|
|
|
- dbs_tuners_ins.freq_step = 5;
|
|
|
|
|
|
dbs_timer_init();
|
|
|
}
|