Browse Source

Merge commit '8700c95adb03' into timers/nohz

The full dynticks tree needs the latest RCU and sched
upstream updates in order to fix some dependencies.

Merge a common upstream merge point that has these
updates.

Conflicts:
	include/linux/perf_event.h
	kernel/rcutree.h
	kernel/rcutree_plugin.h

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Frederic Weisbecker 12 years ago
parent
commit
c032862fba
100 changed files with 3571 additions and 665 deletions
  1. 15 3
      CREDITS
  2. 7 0
      Documentation/ABI/testing/sysfs-bus-mei
  3. 3 3
      Documentation/ABI/testing/sysfs-bus-usb
  4. 12 0
      Documentation/ABI/testing/sysfs-devices-system-cpu
  5. 1 1
      Documentation/DocBook/device-drivers.tmpl
  6. 16 10
      Documentation/RCU/checklist.txt
  7. 5 0
      Documentation/RCU/lockdep.txt
  8. 14 1
      Documentation/RCU/rcubarrier.txt
  9. 24 9
      Documentation/RCU/stallwarn.txt
  10. 2 2
      Documentation/RCU/whatisRCU.txt
  11. 9 3
      Documentation/SubmittingPatches
  12. 56 0
      Documentation/arm/sunxi/clocks.txt
  13. 0 7
      Documentation/backlight/lp855x-driver.txt
  14. 2 1
      Documentation/cgroups/cgroups.txt
  15. 67 3
      Documentation/cgroups/devices.txt
  16. 69 1
      Documentation/cgroups/memory.txt
  17. 13 2
      Documentation/clk.txt
  18. 37 7
      Documentation/device-mapper/dm-raid.txt
  19. 13 0
      Documentation/devicetree/bindings/arm/atmel-adc.txt
  20. 18 0
      Documentation/devicetree/bindings/arm/msm/ssbi.txt
  21. 60 0
      Documentation/devicetree/bindings/arm/samsung/exynos-adc.txt
  22. 22 0
      Documentation/devicetree/bindings/clock/axi-clkgen.txt
  23. 24 0
      Documentation/devicetree/bindings/clock/fixed-factor-clock.txt
  24. 114 0
      Documentation/devicetree/bindings/clock/silabs,si5351.txt
  25. 151 0
      Documentation/devicetree/bindings/clock/sunxi.txt
  26. 3 3
      Documentation/devicetree/bindings/gpio/gpio.txt
  27. 29 0
      Documentation/devicetree/bindings/hwmon/ntc_thermistor.txt
  28. 97 0
      Documentation/devicetree/bindings/iio/iio-bindings.txt
  29. 30 0
      Documentation/devicetree/bindings/media/coda.txt
  30. 1 5
      Documentation/devicetree/bindings/mfd/ab8500.txt
  31. 33 3
      Documentation/devicetree/bindings/mfd/mc13xxx.txt
  32. 16 0
      Documentation/devicetree/bindings/misc/sram.txt
  33. 107 2
      Documentation/devicetree/bindings/pinctrl/pinctrl-single.txt
  34. 3 0
      Documentation/devicetree/bindings/pinctrl/samsung-pinctrl.txt
  35. 52 0
      Documentation/devicetree/bindings/regulator/max8952.txt
  36. 15 0
      Documentation/devicetree/bindings/rtc/atmel,at91rm9200-rtc.txt
  37. 22 0
      Documentation/devicetree/bindings/spi/brcm,bcm2835-spi.txt
  38. 2 1
      Documentation/devicetree/bindings/spi/fsl-spi.txt
  39. 26 0
      Documentation/devicetree/bindings/spi/nvidia,tegra114-spi.txt
  40. 2 6
      Documentation/devicetree/bindings/spi/spi-samsung.txt
  41. 15 0
      Documentation/devicetree/bindings/staging/dwc2.txt
  42. 1 1
      Documentation/devicetree/bindings/staging/imx-drm/fsl-imx-drm.txt
  43. 7 0
      Documentation/devicetree/bindings/tty/serial/of-serial.txt
  44. 2 0
      Documentation/devicetree/bindings/usb/ci13xxx-imx.txt
  45. 32 0
      Documentation/devicetree/bindings/usb/ehci-omap.txt
  46. 15 0
      Documentation/devicetree/bindings/usb/ohci-omap3.txt
  47. 34 6
      Documentation/devicetree/bindings/usb/omap-usb.txt
  48. 69 7
      Documentation/devicetree/bindings/usb/samsung-usbphy.txt
  49. 34 0
      Documentation/devicetree/bindings/usb/usb-nop-xceiv.txt
  50. 2 0
      Documentation/devicetree/bindings/vendor-prefixes.txt
  51. 41 0
      Documentation/devicetree/bindings/video/backlight/lp855x.txt
  52. 27 0
      Documentation/devicetree/bindings/video/backlight/tps65217-backlight.txt
  53. 11 37
      Documentation/devicetree/bindings/video/via,vt8500-fb.txt
  54. 21 11
      Documentation/devicetree/bindings/video/wm,wm8505-fb.txt
  55. 21 5
      Documentation/filesystems/vfat.txt
  56. 1 1
      Documentation/hwmon/adm1275
  57. 36 14
      Documentation/hwmon/adt7410
  58. 1 1
      Documentation/hwmon/jc42
  59. 1 1
      Documentation/hwmon/lineage-pem
  60. 24 12
      Documentation/hwmon/lm25066
  61. 1 1
      Documentation/hwmon/lm75
  62. 36 0
      Documentation/hwmon/lm95234
  63. 92 57
      Documentation/hwmon/ltc2978
  64. 1 1
      Documentation/hwmon/ltc4261
  65. 1 1
      Documentation/hwmon/max16064
  66. 1 1
      Documentation/hwmon/max16065
  67. 1 1
      Documentation/hwmon/max34440
  68. 1 1
      Documentation/hwmon/max8688
  69. 188 0
      Documentation/hwmon/nct6775
  70. 1 1
      Documentation/hwmon/pmbus
  71. 1 1
      Documentation/hwmon/sht15
  72. 1 1
      Documentation/hwmon/smm665
  73. 18 7
      Documentation/hwmon/tmp401
  74. 1 1
      Documentation/hwmon/ucd9000
  75. 1 1
      Documentation/hwmon/ucd9200
  76. 2 2
      Documentation/hwmon/zl6100
  77. 1 1
      Documentation/i2c/busses/i2c-diolan-u2c
  78. 1 1
      Documentation/ia64/err_inject.txt
  79. 60 7
      Documentation/input/alps.txt
  80. 1 0
      Documentation/ioctl/ioctl-number.txt
  81. 1 0
      Documentation/kdump/kdump.txt
  82. 74 14
      Documentation/kernel-parameters.txt
  83. 138 0
      Documentation/misc-devices/mei/mei-client-bus.txt
  84. 7 0
      Documentation/networking/ipvs-sysctl.txt
  85. 77 0
      Documentation/networking/tuntap.txt
  86. 112 0
      Documentation/pinctrl.txt
  87. 20 5
      Documentation/power/opp.txt
  88. 1 1
      Documentation/printk-formats.txt
  89. 2 1
      Documentation/s390/s390dbf.txt
  90. 1 1
      Documentation/scsi/LICENSE.qla2xxx
  91. 3 4
      Documentation/sound/alsa/ALSA-Configuration.txt
  92. 1 1
      Documentation/sound/alsa/seq_oss.html
  93. 50 0
      Documentation/sysctl/vm.txt
  94. 205 0
      Documentation/this_cpu_ops.txt
  95. 688 251
      Documentation/trace/ftrace.txt
  96. 67 47
      Documentation/trace/uprobetracer.txt
  97. 6 4
      Documentation/usb/power-management.txt
  98. 7 1
      Documentation/vm/overcommit-accounting
  99. 109 76
      MAINTAINERS
  100. 5 4
      Makefile

+ 15 - 3
CREDITS

@@ -761,6 +761,10 @@ S: Northampton
 S: NN1 3QT
 S: United Kingdom
 
+N: Massimo Dal Zotto
+E: dz@debian.org
+D: i8k Dell laptop SMM driver
+
 N: Uwe Dannowski
 E: Uwe.Dannowski@ira.uka.de
 W: http://i30www.ira.uka.de/~dannowsk/
@@ -953,11 +957,11 @@ S: Blacksburg, Virginia 24061
 S: USA
 
 N: Randy Dunlap
-E: rdunlap@xenotime.net
-W: http://www.xenotime.net/linux/linux.html
-W: http://www.linux-usb.org
+E: rdunlap@infradead.org
+W: http://www.infradead.org/~rdunlap/
 D: Linux-USB subsystem, USB core/UHCI/printer/storage drivers
 D: x86 SMP, ACPI, bootflag hacking
+D: documentation, builds
 S: (ask for current address)
 S: USA
 
@@ -1510,6 +1514,14 @@ D: Natsemi ethernet
 D: Cobalt Networks (x86) support
 D: This-and-That
 
+N: Mark M. Hoffman
+E: mhoffman@lightlink.com
+D: asb100, lm93 and smsc47b397 hardware monitoring drivers
+D: hwmon subsystem core
+D: hwmon subsystem maintainer
+D: i2c-sis96x and i2c-stub SMBus drivers
+S: USA
+
 N: Dirk Hohndel
 E: hohndel@suse.de
 D: The XFree86[tm] Project

+ 7 - 0
Documentation/ABI/testing/sysfs-bus-mei

@@ -0,0 +1,7 @@
+What:		/sys/bus/mei/devices/.../modalias
+Date:		March 2013
+KernelVersion:	3.10
+Contact:	Samuel Ortiz <sameo@linux.intel.com>
+		linux-mei@linux.intel.com
+Description:	Stores the same MODALIAS value emitted by uevent
+		Format: mei:<mei device name>

+ 3 - 3
Documentation/ABI/testing/sysfs-bus-usb

@@ -32,7 +32,7 @@ Date:		January 2008
 KernelVersion:	2.6.25
 Contact:	Sarah Sharp <sarah.a.sharp@intel.com>
 Description:
-		If CONFIG_PM and CONFIG_USB_SUSPEND are enabled, then this file
+		If CONFIG_PM_RUNTIME is enabled then this file
 		is present.  When read, it returns the total time (in msec)
 		that the USB device has been connected to the machine.  This
 		file is read-only.
@@ -45,7 +45,7 @@ Date:		January 2008
 KernelVersion:	2.6.25
 Contact:	Sarah Sharp <sarah.a.sharp@intel.com>
 Description:
-		If CONFIG_PM and CONFIG_USB_SUSPEND are enabled, then this file
+		If CONFIG_PM_RUNTIME is enabled then this file
 		is present.  When read, it returns the total time (in msec)
 		that the USB device has been active, i.e. not in a suspended
 		state.  This file is read-only.
@@ -187,7 +187,7 @@ What:		/sys/bus/usb/devices/.../power/usb2_hardware_lpm
 Date:		September 2011
 Contact:	Andiry Xu <andiry.xu@amd.com>
 Description:
-		If CONFIG_USB_SUSPEND is set and a USB 2.0 lpm-capable device
+		If CONFIG_PM_RUNTIME is set and a USB 2.0 lpm-capable device
 		is plugged in to a xHCI host which support link PM, it will
 		perform a LPM test; if the test is passed and host supports
 		USB2 hardware LPM (xHCI 1.0 feature), USB2 hardware LPM will

+ 12 - 0
Documentation/ABI/testing/sysfs-devices-system-cpu

@@ -173,3 +173,15 @@ Description:	Processor frequency boosting control
 		Boosting allows the CPU and the firmware to run at a frequency
 		beyound it's nominal limit.
 		More details can be found in Documentation/cpu-freq/boost.txt
+
+
+What:		/sys/devices/system/cpu/cpu#/crash_notes
+		/sys/devices/system/cpu/cpu#/crash_notes_size
+Date:		April 2013
+Contact:	kexec@lists.infradead.org
+Description:	address and size of the percpu note.
+
+		crash_notes: the physical address of the memory that holds the
+		note of cpu#.
+
+		crash_notes_size: size of the note of cpu#.

+ 1 - 1
Documentation/DocBook/device-drivers.tmpl

@@ -227,7 +227,7 @@ X!Isound/sound_firmware.c
   <chapter id="uart16x50">
      <title>16x50 UART Driver</title>
 !Edrivers/tty/serial/serial_core.c
-!Edrivers/tty/serial/8250/8250.c
+!Edrivers/tty/serial/8250/8250_core.c
   </chapter>
 
   <chapter id="fbdev">

+ 16 - 10
Documentation/RCU/checklist.txt

@@ -217,9 +217,14 @@ over a rather long period of time, but improvements are always welcome!
 	whether the increased speed is worth it.
 
 8.	Although synchronize_rcu() is slower than is call_rcu(), it
-	usually results in simpler code.  So, unless update performance
-	is critically important or the updaters cannot block,
-	synchronize_rcu() should be used in preference to call_rcu().
+	usually results in simpler code.  So, unless update performance is
+	critically important, the updaters cannot block, or the latency of
+	synchronize_rcu() is visible from userspace, synchronize_rcu()
+	should be used in preference to call_rcu().  Furthermore,
+	kfree_rcu() usually results in even simpler code than does
+	synchronize_rcu() without synchronize_rcu()'s multi-millisecond
+	latency.  So please take advantage of kfree_rcu()'s "fire and
+	forget" memory-freeing capabilities where it applies.
 
 	An especially important property of the synchronize_rcu()
 	primitive is that it automatically self-limits: if grace periods
@@ -268,7 +273,8 @@ over a rather long period of time, but improvements are always welcome!
 	e.	Periodically invoke synchronize_rcu(), permitting a limited
 		number of updates per grace period.
 
-	The same cautions apply to call_rcu_bh() and call_rcu_sched().
+	The same cautions apply to call_rcu_bh(), call_rcu_sched(),
+	call_srcu(), and kfree_rcu().
 
 9.	All RCU list-traversal primitives, which include
 	rcu_dereference(), list_for_each_entry_rcu(), and
@@ -296,9 +302,9 @@ over a rather long period of time, but improvements are always welcome!
 	all currently executing rcu_read_lock()-protected RCU read-side
 	critical sections complete.  It does -not- necessarily guarantee
 	that all currently running interrupts, NMIs, preempt_disable()
-	code, or idle loops will complete.  Therefore, if you do not have
-	rcu_read_lock()-protected read-side critical sections, do -not-
-	use synchronize_rcu().
+	code, or idle loops will complete.  Therefore, if your
+	read-side critical sections are protected by something other
+	than rcu_read_lock(), do -not- use synchronize_rcu().
 
 	Similarly, disabling preemption is not an acceptable substitute
 	for rcu_read_lock().  Code that attempts to use preemption
@@ -401,9 +407,9 @@ over a rather long period of time, but improvements are always welcome!
 	read-side critical sections.  It is the responsibility of the
 	RCU update-side primitives to deal with this.
 
-17.	Use CONFIG_PROVE_RCU, CONFIG_DEBUG_OBJECTS_RCU_HEAD, and
-	the __rcu sparse checks to validate your RCU code.  These
-	can help find problems as follows:
+17.	Use CONFIG_PROVE_RCU, CONFIG_DEBUG_OBJECTS_RCU_HEAD, and the
+	__rcu sparse checks (enabled by CONFIG_SPARSE_RCU_POINTER) to
+	validate your RCU code.  These can help find problems as follows:
 
 	CONFIG_PROVE_RCU: check that accesses to RCU-protected data
 		structures are carried out under the proper RCU

+ 5 - 0
Documentation/RCU/lockdep.txt

@@ -64,6 +64,11 @@ checking of rcu_dereference() primitives:
 		but retain the compiler constraints that prevent duplicating
 		or coalescsing.  This is useful when when testing the
 		value of the pointer itself, for example, against NULL.
+	rcu_access_index(idx):
+		Return the value of the index and omit all barriers, but
+		retain the compiler constraints that prevent duplicating
+		or coalescsing.  This is useful when when testing the
+		value of the index itself, for example, against -1.
 
 The rcu_dereference_check() check expression can be any boolean
 expression, but would normally include a lockdep expression.  However,

+ 14 - 1
Documentation/RCU/rcubarrier.txt

@@ -79,7 +79,20 @@ complete. Pseudo-code using rcu_barrier() is as follows:
    2. Execute rcu_barrier().
    3. Allow the module to be unloaded.
 
-The rcutorture module makes use of rcu_barrier in its exit function
+There are also rcu_barrier_bh(), rcu_barrier_sched(), and srcu_barrier()
+functions for the other flavors of RCU, and you of course must match
+the flavor of rcu_barrier() with that of call_rcu().  If your module
+uses multiple flavors of call_rcu(), then it must also use multiple
+flavors of rcu_barrier() when unloading that module.  For example, if
+it uses call_rcu_bh(), call_srcu() on srcu_struct_1, and call_srcu() on
+srcu_struct_2(), then the following three lines of code will be required
+when unloading:
+
+ 1 rcu_barrier_bh();
+ 2 srcu_barrier(&srcu_struct_1);
+ 3 srcu_barrier(&srcu_struct_2);
+
+The rcutorture module makes use of rcu_barrier() in its exit function
 as follows:
 
  1 static void

+ 24 - 9
Documentation/RCU/stallwarn.txt

@@ -92,14 +92,14 @@ If the CONFIG_RCU_CPU_STALL_INFO kernel configuration parameter is set,
 more information is printed with the stall-warning message, for example:
 
 	INFO: rcu_preempt detected stall on CPU
-	0: (63959 ticks this GP) idle=241/3fffffffffffffff/0
+	0: (63959 ticks this GP) idle=241/3fffffffffffffff/0 softirq=82/543
 	   (t=65000 jiffies)
 
 In kernels with CONFIG_RCU_FAST_NO_HZ, even more information is
 printed:
 
 	INFO: rcu_preempt detected stall on CPU
-	0: (64628 ticks this GP) idle=dd5/3fffffffffffffff/0 drain=0 . timer not pending
+	0: (64628 ticks this GP) idle=dd5/3fffffffffffffff/0 softirq=82/543 last_accelerate: a345/d342 nonlazy_posted: 25 .D
 	   (t=65000 jiffies)
 
 The "(64628 ticks this GP)" indicates that this CPU has taken more
@@ -116,13 +116,28 @@ number between the two "/"s is the value of the nesting, which will
 be a small positive number if in the idle loop and a very large positive
 number (as shown above) otherwise.
 
-For CONFIG_RCU_FAST_NO_HZ kernels, the "drain=0" indicates that the CPU is
-not in the process of trying to force itself into dyntick-idle state, the
-"." indicates that the CPU has not given up forcing RCU into dyntick-idle
-mode (it would be "H" otherwise), and the "timer not pending" indicates
-that the CPU has not recently forced RCU into dyntick-idle mode (it
-would otherwise indicate the number of microseconds remaining in this
-forced state).
+The "softirq=" portion of the message tracks the number of RCU softirq
+handlers that the stalled CPU has executed.  The number before the "/"
+is the number that had executed since boot at the time that this CPU
+last noted the beginning of a grace period, which might be the current
+(stalled) grace period, or it might be some earlier grace period (for
+example, if the CPU might have been in dyntick-idle mode for an extended
+time period.  The number after the "/" is the number that have executed
+since boot until the current time.  If this latter number stays constant
+across repeated stall-warning messages, it is possible that RCU's softirq
+handlers are no longer able to execute on this CPU.  This can happen if
+the stalled CPU is spinning with interrupts are disabled, or, in -rt
+kernels, if a high-priority process is starving RCU's softirq handler.
+
+For CONFIG_RCU_FAST_NO_HZ kernels, the "last_accelerate:" prints the
+low-order 16 bits (in hex) of the jiffies counter when this CPU last
+invoked rcu_try_advance_all_cbs() from rcu_needs_cpu() or last invoked
+rcu_accelerate_cbs() from rcu_prepare_for_idle().  The "nonlazy_posted:"
+prints the number of non-lazy callbacks posted since the last call to
+rcu_needs_cpu().  Finally, an "L" indicates that there are currently
+no non-lazy callbacks ("." is printed otherwise, as shown above) and
+"D" indicates that dyntick-idle processing is enabled ("." is printed
+otherwise, for example, if disabled via the "nohz=" kernel boot parameter).
 
 
 Multiple Warnings From One Stall

+ 2 - 2
Documentation/RCU/whatisRCU.txt

@@ -265,9 +265,9 @@ rcu_dereference()
 		rcu_read_lock();
 		p = rcu_dereference(head.next);
 		rcu_read_unlock();
-		x = p->address;
+		x = p->address;	/* BUG!!! */
 		rcu_read_lock();
-		y = p->data;
+		y = p->data;	/* BUG!!! */
 		rcu_read_unlock();
 
 	Holding a reference from one RCU read-side critical section

+ 9 - 3
Documentation/SubmittingPatches

@@ -60,8 +60,7 @@ own source tree.  For example:
 "dontdiff" is a list of files which are generated by the kernel during
 the build process, and should be ignored in any diff(1)-generated
 patch.  The "dontdiff" file is included in the kernel tree in
-2.6.12 and later.  For earlier kernel versions, you can get it
-from <http://www.xenotime.net/linux/doc/dontdiff>.
+2.6.12 and later.
 
 Make sure your patch does not include any extra files which do not
 belong in a patch submission.  Make sure to review your patch -after-
@@ -421,7 +420,7 @@ person it names.  This tag documents that potentially interested parties
 have been included in the discussion
 
 
-14) Using Reported-by:, Tested-by: and Reviewed-by:
+14) Using Reported-by:, Tested-by:, Reviewed-by: and Suggested-by:
 
 If this patch fixes a problem reported by somebody else, consider adding a
 Reported-by: tag to credit the reporter for their contribution.  Please
@@ -469,6 +468,13 @@ done on the patch.  Reviewed-by: tags, when supplied by reviewers known to
 understand the subject area and to perform thorough reviews, will normally
 increase the likelihood of your patch getting into the kernel.
 
+A Suggested-by: tag indicates that the patch idea is suggested by the person
+named and ensures credit to the person for the idea. Please note that this
+tag should not be added without the reporter's permission, especially if the
+idea was not posted in a public forum. That said, if we diligently credit our
+idea reporters, they will, hopefully, be inspired to help us again in the
+future.
+
 
 15) The canonical patch format
 

+ 56 - 0
Documentation/arm/sunxi/clocks.txt

@@ -0,0 +1,56 @@
+Frequently asked questions about the sunxi clock system
+=======================================================
+
+This document contains useful bits of information that people tend to ask
+about the sunxi clock system, as well as accompanying ASCII art when adequate.
+
+Q: Why is the main 24MHz oscillator gatable? Wouldn't that break the
+   system?
+
+A: The 24MHz oscillator allows gating to save power. Indeed, if gated
+   carelessly the system would stop functioning, but with the right
+   steps, one can gate it and keep the system running. Consider this
+   simplified suspend example:
+
+   While the system is operational, you would see something like
+
+      24MHz         32kHz
+       |
+      PLL1
+       \
+        \_ CPU Mux
+             |
+           [CPU]
+
+   When you are about to suspend, you switch the CPU Mux to the 32kHz
+   oscillator:
+
+      24Mhz         32kHz
+       |              |
+      PLL1            |
+                     /
+           CPU Mux _/
+             |
+           [CPU]
+
+    Finally you can gate the main oscillator
+
+                    32kHz
+                      |
+                      |
+                     /
+           CPU Mux _/
+             |
+           [CPU]
+
+Q: Were can I learn more about the sunxi clocks?
+
+A: The linux-sunxi wiki contains a page documenting the clock registers,
+   you can find it at
+
+        http://linux-sunxi.org/A10/CCM
+
+   The authoritative source for information at this time is the ccmu driver
+   released by Allwinner, you can find it at
+
+        https://github.com/linux-sunxi/linux-sunxi/tree/sunxi-3.0/arch/arm/mach-sun4i/clock/ccmu

+ 0 - 7
Documentation/backlight/lp855x-driver.txt

@@ -32,14 +32,10 @@ Platform data for lp855x
 For supporting platform specific data, the lp855x platform data can be used.
 
 * name : Backlight driver name. If it is not defined, default name is set.
-* mode : Brightness control mode. PWM or register based.
 * device_control : Value of DEVICE CONTROL register.
 * initial_brightness : Initial value of backlight brightness.
 * period_ns : Platform specific PWM period value. unit is nano.
 	     Only valid when brightness is pwm input mode.
-* load_new_rom_data :
-	0 : use default configuration data
-	1 : update values of eeprom or eprom registers on loading driver
 * size_program : Total size of lp855x_rom_data.
 * rom_data : List of new eeprom/eprom registers.
 
@@ -54,10 +50,8 @@ static struct lp855x_rom_data lp8552_eeprom_arr[] = {
 
 static struct lp855x_platform_data lp8552_pdata = {
 	.name = "lcd-bl",
-	.mode = REGISTER_BASED,
 	.device_control = I2C_CONFIG(LP8552),
 	.initial_brightness = INITIAL_BRT,
-	.load_new_rom_data = 1,
 	.size_program = ARRAY_SIZE(lp8552_eeprom_arr),
 	.rom_data = lp8552_eeprom_arr,
 };
@@ -65,7 +59,6 @@ static struct lp855x_platform_data lp8552_pdata = {
 example 2) lp8556 platform data : pwm input mode with default rom data
 
 static struct lp855x_platform_data lp8556_pdata = {
-	.mode = PWM_BASED,
 	.device_control = PWM_CONFIG(LP8556),
 	.initial_brightness = INITIAL_BRT,
 	.period_ns = 1000000,

+ 2 - 1
Documentation/cgroups/cgroups.txt

@@ -442,7 +442,7 @@ You can attach the current shell task by echoing 0:
 You can use the cgroup.procs file instead of the tasks file to move all
 threads in a threadgroup at once. Echoing the PID of any task in a
 threadgroup to cgroup.procs causes all tasks in that threadgroup to be
-be attached to the cgroup. Writing 0 to cgroup.procs moves all tasks
+attached to the cgroup. Writing 0 to cgroup.procs moves all tasks
 in the writing task's threadgroup.
 
 Note: Since every task is always a member of exactly one cgroup in each
@@ -580,6 +580,7 @@ propagation along the hierarchy. See the comment on
 cgroup_for_each_descendant_pre() for details.
 
 void css_offline(struct cgroup *cgrp);
+(cgroup_mutex held by caller)
 
 This is the counterpart of css_online() and called iff css_online()
 has succeeded on @cgrp. This signifies the beginning of the end of

+ 67 - 3
Documentation/cgroups/devices.txt

@@ -13,9 +13,7 @@ either an integer or * for all.  Access is a composition of r
 The root device cgroup starts with rwm to 'all'.  A child device
 cgroup gets a copy of the parent.  Administrators can then remove
 devices from the whitelist or add new entries.  A child cgroup can
-never receive a device access which is denied by its parent.  However
-when a device access is removed from a parent it will not also be
-removed from the child(ren).
+never receive a device access which is denied by its parent.
 
 2. User Interface
 
@@ -50,3 +48,69 @@ task to a new cgroup.  (Again we'll probably want to change that).
 
 A cgroup may not be granted more permissions than the cgroup's
 parent has.
+
+4. Hierarchy
+
+device cgroups maintain hierarchy by making sure a cgroup never has more
+access permissions than its parent.  Every time an entry is written to
+a cgroup's devices.deny file, all its children will have that entry removed
+from their whitelist and all the locally set whitelist entries will be
+re-evaluated.  In case one of the locally set whitelist entries would provide
+more access than the cgroup's parent, it'll be removed from the whitelist.
+
+Example:
+      A
+     / \
+        B
+
+    group        behavior	exceptions
+    A            allow		"b 8:* rwm", "c 116:1 rw"
+    B            deny		"c 1:3 rwm", "c 116:2 rwm", "b 3:* rwm"
+
+If a device is denied in group A:
+	# echo "c 116:* r" > A/devices.deny
+it'll propagate down and after revalidating B's entries, the whitelist entry
+"c 116:2 rwm" will be removed:
+
+    group        whitelist entries                        denied devices
+    A            all                                      "b 8:* rwm", "c 116:* rw"
+    B            "c 1:3 rwm", "b 3:* rwm"                 all the rest
+
+In case parent's exceptions change and local exceptions are not allowed
+anymore, they'll be deleted.
+
+Notice that new whitelist entries will not be propagated:
+      A
+     / \
+        B
+
+    group        whitelist entries                        denied devices
+    A            "c 1:3 rwm", "c 1:5 r"                   all the rest
+    B            "c 1:3 rwm", "c 1:5 r"                   all the rest
+
+when adding "c *:3 rwm":
+	# echo "c *:3 rwm" >A/devices.allow
+
+the result:
+    group        whitelist entries                        denied devices
+    A            "c *:3 rwm", "c 1:5 r"                   all the rest
+    B            "c 1:3 rwm", "c 1:5 r"                   all the rest
+
+but now it'll be possible to add new entries to B:
+	# echo "c 2:3 rwm" >B/devices.allow
+	# echo "c 50:3 r" >B/devices.allow
+or even
+	# echo "c *:3 rwm" >B/devices.allow
+
+Allowing or denying all by writing 'a' to devices.allow or devices.deny will
+not be possible once the device cgroups has children.
+
+4.1 Hierarchy (internal implementation)
+
+device cgroups is implemented internally using a behavior (ALLOW, DENY) and a
+list of exceptions.  The internal state is controlled using the same user
+interface to preserve compatibility with the previous whitelist-only
+implementation.  Removal or addition of exceptions that will reduce the access
+to devices will be propagated down the hierarchy.
+For every propagated exception, the effective rules will be re-evaluated based
+on current parent's access rules.

+ 69 - 1
Documentation/cgroups/memory.txt

@@ -40,6 +40,7 @@ Features:
  - soft limit
  - moving (recharging) account at moving a task is selectable.
  - usage threshold notifier
+ - memory pressure notifier
  - oom-killer disable knob and oom-notifier
  - Root cgroup has no limit controls.
 
@@ -65,6 +66,7 @@ Brief summary of control files.
  memory.stat			 # show various statistics
  memory.use_hierarchy		 # set/show hierarchical account enabled
  memory.force_empty		 # trigger forced move charge to parent
+ memory.pressure_level		 # set memory pressure notifications
  memory.swappiness		 # set/show swappiness parameter of vmscan
 				 (See sysctl's vm.swappiness)
  memory.move_charge_at_immigrate # set/show controls of moving charges
@@ -762,7 +764,73 @@ At reading, current status of OOM is shown.
 	under_oom	 0 or 1 (if 1, the memory cgroup is under OOM, tasks may
 				 be stopped.)
 
-11. TODO
+11. Memory Pressure
+
+The pressure level notifications can be used to monitor the memory
+allocation cost; based on the pressure, applications can implement
+different strategies of managing their memory resources. The pressure
+levels are defined as following:
+
+The "low" level means that the system is reclaiming memory for new
+allocations. Monitoring this reclaiming activity might be useful for
+maintaining cache level. Upon notification, the program (typically
+"Activity Manager") might analyze vmstat and act in advance (i.e.
+prematurely shutdown unimportant services).
+
+The "medium" level means that the system is experiencing medium memory
+pressure, the system might be making swap, paging out active file caches,
+etc. Upon this event applications may decide to further analyze
+vmstat/zoneinfo/memcg or internal memory usage statistics and free any
+resources that can be easily reconstructed or re-read from a disk.
+
+The "critical" level means that the system is actively thrashing, it is
+about to out of memory (OOM) or even the in-kernel OOM killer is on its
+way to trigger. Applications should do whatever they can to help the
+system. It might be too late to consult with vmstat or any other
+statistics, so it's advisable to take an immediate action.
+
+The events are propagated upward until the event is handled, i.e. the
+events are not pass-through. Here is what this means: for example you have
+three cgroups: A->B->C. Now you set up an event listener on cgroups A, B
+and C, and suppose group C experiences some pressure. In this situation,
+only group C will receive the notification, i.e. groups A and B will not
+receive it. This is done to avoid excessive "broadcasting" of messages,
+which disturbs the system and which is especially bad if we are low on
+memory or thrashing. So, organize the cgroups wisely, or propagate the
+events manually (or, ask us to implement the pass-through events,
+explaining why would you need them.)
+
+The file memory.pressure_level is only used to setup an eventfd. To
+register a notification, an application must:
+
+- create an eventfd using eventfd(2);
+- open memory.pressure_level;
+- write string like "<event_fd> <fd of memory.pressure_level> <level>"
+  to cgroup.event_control.
+
+Application will be notified through eventfd when memory pressure is at
+the specific level (or higher). Read/write operations to
+memory.pressure_level are no implemented.
+
+Test:
+
+   Here is a small script example that makes a new cgroup, sets up a
+   memory limit, sets up a notification in the cgroup and then makes child
+   cgroup experience a critical pressure:
+
+   # cd /sys/fs/cgroup/memory/
+   # mkdir foo
+   # cd foo
+   # cgroup_event_listener memory.pressure_level low &
+   # echo 8000000 > memory.limit_in_bytes
+   # echo 8000000 > memory.memsw.limit_in_bytes
+   # echo $$ > tasks
+   # dd if=/dev/zero | read x
+
+   (Expect a bunch of notifications, and eventually, the oom-killer will
+   trigger.)
+
+12. TODO
 
 1. Add support for accounting huge pages (as a separate controller)
 2. Make per-cgroup scanner reclaim not-shared pages first

+ 13 - 2
Documentation/clk.txt

@@ -174,9 +174,9 @@ int clk_foo_enable(struct clk_hw *hw)
 };
 
 Below is a matrix detailing which clk_ops are mandatory based upon the
-hardware capbilities of that clock.  A cell marked as "y" means
+hardware capabilities of that clock.  A cell marked as "y" means
 mandatory, a cell marked as "n" implies that either including that
-callback is invalid or otherwise uneccesary.  Empty cells are either
+callback is invalid or otherwise unnecessary.  Empty cells are either
 optional or must be evaluated on a case-by-case basis.
 
                            clock hardware characteristics
@@ -231,3 +231,14 @@ To better enforce this policy, always follow this simple rule: any
 statically initialized clock data MUST be defined in a separate file
 from the logic that implements its ops.  Basically separate the logic
 from the data and all is well.
+
+	Part 6 - Disabling clock gating of unused clocks
+
+Sometimes during development it can be useful to be able to bypass the
+default disabling of unused clocks. For example, if drivers aren't enabling
+clocks properly but rely on them being on from the bootloader, bypassing
+the disabling means that the driver will remain functional while the issues
+are sorted out.
+
+To bypass this disabling, include "clk_ignore_unused" in the bootargs to the
+kernel.

+ 37 - 7
Documentation/device-mapper/dm-raid.txt

@@ -30,6 +30,7 @@ The target is named "raid" and it accepts the following parameters:
   raid10        Various RAID10 inspired algorithms chosen by additional params
 		- RAID10: Striped Mirrors (aka 'Striping on top of mirrors')
 		- RAID1E: Integrated Adjacent Stripe Mirroring
+		- RAID1E: Integrated Offset Stripe Mirroring
 		-  and other similar RAID10 variants
 
   Reference: Chapter 4 of
@@ -64,15 +65,15 @@ The target is named "raid" and it accepts the following parameters:
 		synchronisation state for each region.
 
         [raid10_copies   <# copies>]
-        [raid10_format   near]
+        [raid10_format   <near|far|offset>]
 		These two options are used to alter the default layout of
 		a RAID10 configuration.  The number of copies is can be
-		specified, but the default is 2.  There are other variations
-		to how the copies are laid down - the default and only current
-		option is "near".  Near copies are what most people think of
-		with respect to mirroring.  If these options are left
-		unspecified, or 'raid10_copies 2' and/or 'raid10_format near'
-		are given, then the layouts for 2, 3 and 4 devices are:
+		specified, but the default is 2.  There are also three
+		variations to how the copies are laid down - the default
+		is "near".  Near copies are what most people think of with
+		respect to mirroring.  If these options are left unspecified,
+		or 'raid10_copies 2' and/or 'raid10_format near' are given,
+		then the layouts for 2, 3 and 4 devices	are:
 		2 drives         3 drives          4 drives
 		--------         ----------        --------------
 		A1  A1           A1  A1  A2        A1  A1  A2  A2
@@ -85,6 +86,33 @@ The target is named "raid" and it accepts the following parameters:
 		3-device layout is what might be called a 'RAID1E - Integrated
 		Adjacent Stripe Mirroring'.
 
+		If 'raid10_copies 2' and 'raid10_format far', then the layouts
+		for 2, 3 and 4 devices are:
+		2 drives             3 drives             4 drives
+		--------             --------------       --------------------
+		A1  A2               A1   A2   A3         A1   A2   A3   A4
+		A3  A4               A4   A5   A6         A5   A6   A7   A8
+		A5  A6               A7   A8   A9         A9   A10  A11  A12
+		..  ..               ..   ..   ..         ..   ..   ..   ..
+		A2  A1               A3   A1   A2         A2   A1   A4   A3
+		A4  A3               A6   A4   A5         A6   A5   A8   A7
+		A6  A5               A9   A7   A8         A10  A9   A12  A11
+		..  ..               ..   ..   ..         ..   ..   ..   ..
+
+		If 'raid10_copies 2' and 'raid10_format offset', then the
+		layouts for 2, 3 and 4 devices are:
+		2 drives       3 drives           4 drives
+		--------       ------------       -----------------
+		A1  A2         A1  A2  A3         A1  A2  A3  A4
+		A2  A1         A3  A1  A2         A2  A1  A4  A3
+		A3  A4         A4  A5  A6         A5  A6  A7  A8
+		A4  A3         A6  A4  A5         A6  A5  A8  A7
+		A5  A6         A7  A8  A9         A9  A10 A11 A12
+		A6  A5         A9  A7  A8         A10 A9  A12 A11
+		..  ..         ..  ..  ..         ..  ..  ..  ..
+		Here we see layouts closely akin to 'RAID1E - Integrated
+		Offset Stripe Mirroring'.
+
 <#raid_devs>: The number of devices composing the array.
 	Each device consists of two entries.  The first is the device
 	containing the metadata (if any); the second is the one containing the
@@ -142,3 +170,5 @@ Version History
 1.3.0	Added support for RAID 10
 1.3.1	Allow device replacement/rebuild for RAID 10
 1.3.2   Fix/improve redundancy checking for RAID10
+1.4.0	Non-functional change.  Removes arg from mapping function.
+1.4.1   Add RAID10 "far" and "offset" algorithm support.

+ 13 - 0
Documentation/devicetree/bindings/arm/atmel-adc.txt

@@ -14,9 +14,19 @@ Required properties:
   - atmel,adc-status-register: Offset of the Interrupt Status Register
   - atmel,adc-trigger-register: Offset of the Trigger Register
   - atmel,adc-vref: Reference voltage in millivolts for the conversions
+  - atmel,adc-res: List of resolution in bits supported by the ADC. List size
+		   must be two at least.
+  - atmel,adc-res-names: Contains one identifier string for each resolution
+			 in atmel,adc-res property. "lowres" and "highres"
+			 identifiers are required.
 
 Optional properties:
   - atmel,adc-use-external: Boolean to enable of external triggers
+  - atmel,adc-use-res: String corresponding to an identifier from
+		       atmel,adc-res-names property. If not specified, the highest
+		       resolution will be used.
+  - atmel,adc-sleep-mode: Boolean to enable sleep mode when no conversion
+  - atmel,adc-sample-hold-time: Sample and Hold Time in microseconds
  
 Optional trigger Nodes:
   - Required properties:
@@ -40,6 +50,9 @@ adc0: adc@fffb0000 {
 	atmel,adc-trigger-register = <0x08>;
 	atmel,adc-use-external;
 	atmel,adc-vref = <3300>;
+	atmel,adc-res = <8 10>;
+	atmel,adc-res-names = "lowres", "highres";
+	atmel,adc-use-res = "lowres";
 
 	trigger@0 {
 		trigger-name = "external-rising";

+ 18 - 0
Documentation/devicetree/bindings/arm/msm/ssbi.txt

@@ -0,0 +1,18 @@
+* Qualcomm SSBI
+
+Some Qualcomm MSM devices contain a point-to-point serial bus used to
+communicate with a limited range of devices (mostly power management
+chips).
+
+These require the following properties:
+
+- compatible: "qcom,ssbi"
+
+- qcom,controller-type
+  indicates the SSBI bus variant the controller should use to talk
+  with the slave device.  This should be one of "ssbi", "ssbi2", or
+  "pmic-arbiter".  The type chosen is determined by the attached
+  slave.
+
+The slave device should be the single child node of the ssbi device
+with a compatible field.

+ 60 - 0
Documentation/devicetree/bindings/arm/samsung/exynos-adc.txt

@@ -0,0 +1,60 @@
+Samsung Exynos Analog to Digital Converter bindings
+
+The devicetree bindings are for the new ADC driver written for
+Exynos4 and upward SoCs from Samsung.
+
+New driver handles the following
+1. Supports ADC IF found on EXYNOS4412/EXYNOS5250
+   and future SoCs from Samsung
+2. Add ADC driver under iio/adc framework
+3. Also adds the Documentation for device tree bindings
+
+Required properties:
+- compatible:		Must be "samsung,exynos-adc-v1"
+				for exynos4412/5250 controllers.
+			Must be "samsung,exynos-adc-v2" for
+				future controllers.
+- reg:			Contains ADC register address range (base address and
+			length) and the address of the phy enable register.
+- interrupts: 		Contains the interrupt information for the timer. The
+			format is being dependent on which interrupt controller
+			the Samsung device uses.
+- #io-channel-cells = <1>; As ADC has multiple outputs
+- clocks		From common clock binding: handle to adc clock.
+- clock-names		From common clock binding: Shall be "adc".
+- vdd-supply		VDD input supply.
+
+Note: child nodes can be added for auto probing from device tree.
+
+Example: adding device info in dtsi file
+
+adc: adc@12D10000 {
+	compatible = "samsung,exynos-adc-v1";
+	reg = <0x12D10000 0x100>, <0x10040718 0x4>;
+	interrupts = <0 106 0>;
+	#io-channel-cells = <1>;
+	io-channel-ranges;
+
+	clocks = <&clock 303>;
+	clock-names = "adc";
+
+	vdd-supply = <&buck5_reg>;
+};
+
+
+Example: Adding child nodes in dts file
+
+adc@12D10000 {
+
+	/* NTC thermistor is a hwmon device */
+	ncp15wb473@0 {
+		compatible = "ntc,ncp15wb473";
+		pullup-uV = <1800000>;
+		pullup-ohm = <47000>;
+		pulldown-ohm = <0>;
+		io-channels = <&adc 4>;
+	};
+};
+
+Note: Does not apply to ADC driver under arch/arm/plat-samsung/
+Note: The child node can be added under the adc node or separately.

+ 22 - 0
Documentation/devicetree/bindings/clock/axi-clkgen.txt

@@ -0,0 +1,22 @@
+Binding for the axi-clkgen clock generator
+
+This binding uses the common clock binding[1].
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+- compatible : shall be "adi,axi-clkgen".
+- #clock-cells : from common clock binding; Should always be set to 0.
+- reg : Address and length of the axi-clkgen register set.
+- clocks : Phandle and clock specifier for the parent clock.
+
+Optional properties:
+- clock-output-names : From common clock binding.
+
+Example:
+	clock@0xff000000 {
+		compatible = "adi,axi-clkgen";
+		#clock-cells = <0>;
+		reg = <0xff000000 0x1000>;
+		clocks = <&osc 1>;
+	};

+ 24 - 0
Documentation/devicetree/bindings/clock/fixed-factor-clock.txt

@@ -0,0 +1,24 @@
+Binding for simple fixed factor rate clock sources.
+
+This binding uses the common clock binding[1].
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+- compatible : shall be "fixed-factor-clock".
+- #clock-cells : from common clock binding; shall be set to 0.
+- clock-div: fixed divider.
+- clock-mult: fixed multiplier.
+- clocks: parent clock.
+
+Optional properties:
+- clock-output-names : From common clock binding.
+
+Example:
+	clock {
+		compatible = "fixed-factor-clock";
+		clocks = <&parentclk>;
+		#clock-cells = <0>;
+		div = <2>;
+		mult = <1>;
+	};

+ 114 - 0
Documentation/devicetree/bindings/clock/silabs,si5351.txt

@@ -0,0 +1,114 @@
+Binding for Silicon Labs Si5351a/b/c programmable i2c clock generator.
+
+Reference
+[1] Si5351A/B/C Data Sheet
+    http://www.silabs.com/Support%20Documents/TechnicalDocs/Si5351.pdf
+
+The Si5351a/b/c are programmable i2c clock generators with upto 8 output
+clocks. Si5351a also has a reduced pin-count package (MSOP10) where only
+3 output clocks are accessible. The internal structure of the clock
+generators can be found in [1].
+
+==I2C device node==
+
+Required properties:
+- compatible: shall be one of "silabs,si5351{a,a-msop,b,c}".
+- reg: i2c device address, shall be 0x60 or 0x61.
+- #clock-cells: from common clock binding; shall be set to 1.
+- clocks: from common clock binding; list of parent clock
+  handles, shall be xtal reference clock or xtal and clkin for
+  si5351c only.
+- #address-cells: shall be set to 1.
+- #size-cells: shall be set to 0.
+
+Optional properties:
+- silabs,pll-source: pair of (number, source) for each pll. Allows
+  to overwrite clock source of pll A (number=0) or B (number=1).
+
+==Child nodes==
+
+Each of the clock outputs can be overwritten individually by
+using a child node to the I2C device node. If a child node for a clock
+output is not set, the eeprom configuration is not overwritten.
+
+Required child node properties:
+- reg: number of clock output.
+
+Optional child node properties:
+- silabs,clock-source: source clock of the output divider stage N, shall be
+  0 = multisynth N
+  1 = multisynth 0 for output clocks 0-3, else multisynth4
+  2 = xtal
+  3 = clkin (si5351c only)
+- silabs,drive-strength: output drive strength in mA, shall be one of {2,4,6,8}.
+- silabs,multisynth-source: source pll A(0) or B(1) of corresponding multisynth
+  divider.
+- silabs,pll-master: boolean, multisynth can change pll frequency.
+
+==Example==
+
+/* 25MHz reference crystal */
+ref25: ref25M {
+	compatible = "fixed-clock";
+	#clock-cells = <0>;
+	clock-frequency = <25000000>;
+};
+
+i2c-master-node {
+
+	/* Si5351a msop10 i2c clock generator */
+	si5351a: clock-generator@60 {
+		compatible = "silabs,si5351a-msop";
+		reg = <0x60>;
+		#address-cells = <1>;
+		#size-cells = <0>;
+		#clock-cells = <1>;
+
+		/* connect xtal input to 25MHz reference */
+		clocks = <&ref25>;
+
+		/* connect xtal input as source of pll0 and pll1 */
+		silabs,pll-source = <0 0>, <1 0>;
+
+		/*
+		 * overwrite clkout0 configuration with:
+		 * - 8mA output drive strength
+		 * - pll0 as clock source of multisynth0
+		 * - multisynth0 as clock source of output divider
+		 * - multisynth0 can change pll0
+		 * - set initial clock frequency of 74.25MHz
+		 */
+		clkout0 {
+			reg = <0>;
+			silabs,drive-strength = <8>;
+			silabs,multisynth-source = <0>;
+			silabs,clock-source = <0>;
+			silabs,pll-master;
+			clock-frequency = <74250000>;
+		};
+
+		/*
+		 * overwrite clkout1 configuration with:
+		 * - 4mA output drive strength
+		 * - pll1 as clock source of multisynth1
+		 * - multisynth1 as clock source of output divider
+		 * - multisynth1 can change pll1
+		 */
+		clkout1 {
+			reg = <1>;
+			silabs,drive-strength = <4>;
+			silabs,multisynth-source = <1>;
+			silabs,clock-source = <0>;
+			pll-master;
+		};
+
+		/*
+		 * overwrite clkout2 configuration with:
+		 * - xtal as clock source of output divider
+		 */
+		clkout2 {
+			reg = <2>;
+			silabs,clock-source = <2>;
+		};
+	};
+};

+ 151 - 0
Documentation/devicetree/bindings/clock/sunxi.txt

@@ -0,0 +1,151 @@
+Device Tree Clock bindings for arch-sunxi
+
+This binding uses the common clock binding[1].
+
+[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Required properties:
+- compatible : shall be one of the following:
+	"allwinner,sun4i-osc-clk" - for a gatable oscillator
+	"allwinner,sun4i-pll1-clk" - for the main PLL clock
+	"allwinner,sun4i-cpu-clk" - for the CPU multiplexer clock
+	"allwinner,sun4i-axi-clk" - for the AXI clock
+	"allwinner,sun4i-axi-gates-clk" - for the AXI gates
+	"allwinner,sun4i-ahb-clk" - for the AHB clock
+	"allwinner,sun4i-ahb-gates-clk" - for the AHB gates
+	"allwinner,sun4i-apb0-clk" - for the APB0 clock
+	"allwinner,sun4i-apb0-gates-clk" - for the APB0 gates
+	"allwinner,sun4i-apb1-clk" - for the APB1 clock
+	"allwinner,sun4i-apb1-mux-clk" - for the APB1 clock muxing
+	"allwinner,sun4i-apb1-gates-clk" - for the APB1 gates
+
+Required properties for all clocks:
+- reg : shall be the control register address for the clock.
+- clocks : shall be the input parent clock(s) phandle for the clock
+- #clock-cells : from common clock binding; shall be set to 0 except for
+	"allwinner,sun4i-*-gates-clk" where it shall be set to 1
+
+Additionally, "allwinner,sun4i-*-gates-clk" clocks require:
+- clock-output-names : the corresponding gate names that the clock controls
+
+For example:
+
+osc24M: osc24M@01c20050 {
+	#clock-cells = <0>;
+	compatible = "allwinner,sun4i-osc-clk";
+	reg = <0x01c20050 0x4>;
+	clocks = <&osc24M_fixed>;
+};
+
+pll1: pll1@01c20000 {
+	#clock-cells = <0>;
+	compatible = "allwinner,sun4i-pll1-clk";
+	reg = <0x01c20000 0x4>;
+	clocks = <&osc24M>;
+};
+
+cpu: cpu@01c20054 {
+	#clock-cells = <0>;
+	compatible = "allwinner,sun4i-cpu-clk";
+	reg = <0x01c20054 0x4>;
+	clocks = <&osc32k>, <&osc24M>, <&pll1>;
+};
+
+
+
+Gate clock outputs
+
+The "allwinner,sun4i-*-gates-clk" clocks provide several gatable outputs;
+their corresponding offsets as present on sun4i are listed below. Note that
+some of these gates are not present on sun5i.
+
+  * AXI gates ("allwinner,sun4i-axi-gates-clk")
+
+    DRAM                                                                0
+
+  * AHB gates ("allwinner,sun4i-ahb-gates-clk")
+
+    USB0                                                                0
+    EHCI0                                                               1
+    OHCI0                                                               2*
+    EHCI1                                                               3
+    OHCI1                                                               4*
+    SS                                                                  5
+    DMA                                                                 6
+    BIST                                                                7
+    MMC0                                                                8
+    MMC1                                                                9
+    MMC2                                                                10
+    MMC3                                                                11
+    MS                                                                  12**
+    NAND                                                                13
+    SDRAM                                                               14
+
+    ACE                                                                 16
+    EMAC                                                                17
+    TS                                                                  18
+
+    SPI0                                                                20
+    SPI1                                                                21
+    SPI2                                                                22
+    SPI3                                                                23
+    PATA                                                                24
+    SATA                                                                25**
+    GPS                                                                 26*
+
+    VE                                                                  32
+    TVD                                                                 33
+    TVE0                                                                34
+    TVE1                                                                35
+    LCD0                                                                36
+    LCD1                                                                37
+
+    CSI0                                                                40
+    CSI1                                                                41
+
+    HDMI                                                                43
+    DE_BE0                                                              44
+    DE_BE1                                                              45
+    DE_FE0                                                              46
+    DE_FE1                                                              47
+
+    MP                                                                  50
+
+    MALI400                                                             52
+
+  * APB0 gates ("allwinner,sun4i-apb0-gates-clk")
+
+    CODEC                                                               0
+    SPDIF                                                               1*
+    AC97                                                                2
+    IIS                                                                 3
+
+    PIO                                                                 5
+    IR0                                                                 6
+    IR1                                                                 7
+
+    KEYPAD                                                              10
+
+  * APB1 gates ("allwinner,sun4i-apb1-gates-clk")
+
+    I2C0                                                                0
+    I2C1                                                                1
+    I2C2                                                                2
+
+    CAN                                                                 4
+    SCR                                                                 5
+    PS20                                                                6
+    PS21                                                                7
+
+    UART0                                                               16
+    UART1                                                               17
+    UART2                                                               18
+    UART3                                                               19
+    UART4                                                               20
+    UART5                                                               21
+    UART6                                                               22
+    UART7                                                               23
+
+Notation:
+ [*]:  The datasheet didn't mention these, but they are present on AW code
+ [**]: The datasheet had this marked as "NC" but they are used on AW code

+ 3 - 3
Documentation/devicetree/bindings/gpio/gpio.txt

@@ -98,7 +98,7 @@ announce the pinrange to the pin ctrl subsystem. For example,
 		compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank";
 		reg = <0x1460 0x18>;
 		gpio-controller;
-		gpio-ranges = <&pinctrl1 20 10>, <&pinctrl2 50 20>;
+		gpio-ranges = <&pinctrl1 0 20 10>, <&pinctrl2 10 50 20>;
 
     }
 
@@ -107,8 +107,8 @@ where,
 
    Next values specify the base pin and number of pins for the range
    handled by 'qe_pio_e' gpio. In the given example from base pin 20 to
-   pin 29 under pinctrl1 and pin 50 to pin 69 under pinctrl2 is handled
-   by this gpio controller.
+   pin 29 under pinctrl1 with gpio offset 0 and pin 50 to pin 69 under
+   pinctrl2 with gpio offset 10 is handled by this gpio controller.
 
 The pinctrl node must have "#gpio-range-cells" property to show number of
 arguments to pass with phandle from gpio controllers node.

+ 29 - 0
Documentation/devicetree/bindings/hwmon/ntc_thermistor.txt

@@ -0,0 +1,29 @@
+NTC Thermistor hwmon sensors
+-------------------------------
+
+Requires node properties:
+- "compatible" value : one of
+	"ntc,ncp15wb473"
+	"ntc,ncp18wb473"
+	"ntc,ncp21wb473"
+	"ntc,ncp03wb473"
+	"ntc,ncp15wl333"
+- "pullup-uv"	Pull up voltage in micro volts
+- "pullup-ohm"	Pull up resistor value in ohms
+- "pulldown-ohm" Pull down resistor value in ohms
+- "connected-positive" Always ON, If not specified.
+		Status change is possible.
+- "io-channels"	Channel node of ADC to be used for
+		conversion.
+
+Read more about iio bindings at
+	Documentation/devicetree/bindings/iio/iio-bindings.txt
+
+Example:
+	ncp15wb473@0 {
+		compatible = "ntc,ncp15wb473";
+		pullup-uv = <1800000>;
+		pullup-ohm = <47000>;
+		pulldown-ohm = <0>;
+		io-channels = <&adc 3>;
+	};

+ 97 - 0
Documentation/devicetree/bindings/iio/iio-bindings.txt

@@ -0,0 +1,97 @@
+This binding is derived from clock bindings, and based on suggestions
+from Lars-Peter Clausen [1].
+
+Sources of IIO channels can be represented by any node in the device
+tree. Those nodes are designated as IIO providers. IIO consumer
+nodes use a phandle and IIO specifier pair to connect IIO provider
+outputs to IIO inputs. Similar to the gpio specifiers, an IIO
+specifier is an array of one or more cells identifying the IIO
+output on a device. The length of an IIO specifier is defined by the
+value of a #io-channel-cells property in the IIO provider node.
+
+[1] http://marc.info/?l=linux-iio&m=135902119507483&w=2
+
+==IIO providers==
+
+Required properties:
+#io-channel-cells: Number of cells in an IIO specifier; Typically 0 for nodes
+		   with a single IIO output and 1 for nodes with multiple
+		   IIO outputs.
+
+Example for a simple configuration with no trigger:
+
+	adc: voltage-sensor@35 {
+		compatible = "maxim,max1139";
+		reg = <0x35>;
+		#io-channel-cells = <1>;
+	};
+
+Example for a configuration with trigger:
+
+	adc@35 {
+		compatible = "some-vendor,some-adc";
+		reg = <0x35>;
+
+		adc1: iio-device@0 {
+			#io-channel-cells = <1>;
+			/* other properties */
+		};
+		adc2: iio-device@1 {
+			#io-channel-cells = <1>;
+			/* other properties */
+		};
+	};
+
+==IIO consumers==
+
+Required properties:
+io-channels:	List of phandle and IIO specifier pairs, one pair
+		for each IIO input to the device. Note: if the
+		IIO provider specifies '0' for #io-channel-cells,
+		then only the phandle portion of the pair will appear.
+
+Optional properties:
+io-channel-names:
+		List of IIO input name strings sorted in the same
+		order as the io-channels property. Consumers drivers
+		will use io-channel-names to match IIO input names
+		with IIO specifiers.
+io-channel-ranges:
+		Empty property indicating that child nodes can inherit named
+		IIO channels from this node. Useful for bus nodes to provide
+		and IIO channel to their children.
+
+For example:
+
+	device {
+		io-channels = <&adc 1>, <&ref 0>;
+		io-channel-names = "vcc", "vdd";
+	};
+
+This represents a device with two IIO inputs, named "vcc" and "vdd".
+The vcc channel is connected to output 1 of the &adc device, and the
+vdd channel is connected to output 0 of the &ref device.
+
+==Example==
+
+	adc: max1139@35 {
+		compatible = "maxim,max1139";
+		reg = <0x35>;
+		#io-channel-cells = <1>;
+	};
+
+	...
+
+	iio_hwmon {
+		compatible = "iio-hwmon";
+		io-channels = <&adc 0>, <&adc 1>, <&adc 2>,
+			<&adc 3>, <&adc 4>, <&adc 5>,
+			<&adc 6>, <&adc 7>, <&adc 8>,
+			<&adc 9>;
+	};
+
+	some_consumer {
+		compatible = "some-consumer";
+		io-channels = <&adc 10>, <&adc 11>;
+		io-channel-names = "adc1", "adc2";
+	};

+ 30 - 0
Documentation/devicetree/bindings/media/coda.txt

@@ -0,0 +1,30 @@
+Chips&Media Coda multi-standard codec IP
+========================================
+
+Coda codec IPs are present in i.MX SoCs in various versions,
+called VPU (Video Processing Unit).
+
+Required properties:
+- compatible : should be "fsl,<chip>-src" for i.MX SoCs:
+  (a) "fsl,imx27-vpu" for CodaDx6 present in i.MX27
+  (b) "fsl,imx53-vpu" for CODA7541 present in i.MX53
+  (c) "fsl,imx6q-vpu" for CODA960 present in i.MX6q
+- reg: should be register base and length as documented in the
+  SoC reference manual
+- interrupts : Should contain the VPU interrupt. For CODA960,
+  a second interrupt is needed for the MJPEG unit.
+- clocks : Should contain the ahb and per clocks, in the order
+  determined by the clock-names property.
+- clock-names : Should be "ahb", "per"
+- iram : phandle pointing to the SRAM device node
+
+Example:
+
+vpu: vpu@63ff4000 {
+	compatible = "fsl,imx53-vpu";
+	reg = <0x63ff4000 0x1000>;
+	interrupts = <9>;
+	clocks = <&clks 63>, <&clks 63>;
+	clock-names = "ahb", "per";
+	iram = <&ocram>;
+};

+ 1 - 5
Documentation/devicetree/bindings/mfd/ab8500.txt

@@ -13,9 +13,6 @@ Required parent device properties:
                                   4 = active high level-sensitive
                                   8 = active low level-sensitive
 
-Optional parent device properties:
-- reg                    : contains the PRCMU mailbox address for the AB8500 i2c port
-
 The AB8500 consists of a large and varied group of sub-devices:
 
 Device                     IRQ Names              Supply Names   Description
@@ -86,9 +83,8 @@ Non-standard child device properties:
    - stericsson,amic2-bias-vamic1           : Analoge Mic wishes to use a non-standard Vamic
    - stericsson,earpeice-cmv                : Earpeice voltage (only: 950 | 1100 | 1270 | 1580)
 
-ab8500@5 {
+ab8500 {
          compatible = "stericsson,ab8500";
-         reg = <5>; /* mailbox 5 is i2c */
          interrupts = <0 40 0x4>;
          interrupt-controller;
          #interrupt-cells = <2>;

+ 33 - 3
Documentation/devicetree/bindings/mfd/mc13xxx.txt

@@ -10,10 +10,40 @@ Optional properties:
 - fsl,mc13xxx-uses-touch : Indicate the touchscreen controller is being used
 
 Sub-nodes:
-- regulators : Contain the regulator nodes.  The MC13892 regulators are
-  bound using their names as listed below with their registers and bits
-  for enabling.
+- regulators : Contain the regulator nodes. The regulators are bound using
+  their names as listed below with their registers and bits for enabling.
 
+MC13783 regulators:
+    sw1a      : regulator SW1A      (register 24, bit 0)
+    sw1b      : regulator SW1B      (register 25, bit 0)
+    sw2a      : regulator SW2A      (register 26, bit 0)
+    sw2b      : regulator SW2B      (register 27, bit 0)
+    sw3       : regulator SW3       (register 29, bit 20)
+    vaudio    : regulator VAUDIO    (register 32, bit 0)
+    viohi     : regulator VIOHI     (register 32, bit 3)
+    violo     : regulator VIOLO     (register 32, bit 6)
+    vdig      : regulator VDIG      (register 32, bit 9)
+    vgen      : regulator VGEN      (register 32, bit 12)
+    vrfdig    : regulator VRFDIG    (register 32, bit 15)
+    vrfref    : regulator VRFREF    (register 32, bit 18)
+    vrfcp     : regulator VRFCP     (register 32, bit 21)
+    vsim      : regulator VSIM      (register 33, bit 0)
+    vesim     : regulator VESIM     (register 33, bit 3)
+    vcam      : regulator VCAM      (register 33, bit 6)
+    vrfbg     : regulator VRFBG     (register 33, bit 9)
+    vvib      : regulator VVIB      (register 33, bit 11)
+    vrf1      : regulator VRF1      (register 33, bit 12)
+    vrf2      : regulator VRF2      (register 33, bit 15)
+    vmmc1     : regulator VMMC1     (register 33, bit 18)
+    vmmc2     : regulator VMMC2     (register 33, bit 21)
+    gpo1      : regulator GPO1      (register 34, bit 6)
+    gpo2      : regulator GPO2      (register 34, bit 8)
+    gpo3      : regulator GPO3      (register 34, bit 10)
+    gpo4      : regulator GPO4      (register 34, bit 12)
+    pwgt1spi  : regulator PWGT1SPI  (register 34, bit 15)
+    pwgt2spi  : regulator PWGT2SPI  (register 34, bit 16)
+
+MC13892 regulators:
     vcoincell : regulator VCOINCELL (register 13, bit 23)
     sw1       : regulator SW1	    (register 24, bit 0)
     sw2       : regulator SW2	    (register 25, bit 0)

+ 16 - 0
Documentation/devicetree/bindings/misc/sram.txt

@@ -0,0 +1,16 @@
+Generic on-chip SRAM
+
+Simple IO memory regions to be managed by the genalloc API.
+
+Required properties:
+
+- compatible : mmio-sram
+
+- reg : SRAM iomem address range
+
+Example:
+
+sram: sram@5c000000 {
+	compatible = "mmio-sram";
+	reg = <0x5c000000 0x40000>; /* 256 KiB SRAM at address 0x5c000000 */
+};

+ 107 - 2
Documentation/devicetree/bindings/pinctrl/pinctrl-single.txt

@@ -1,7 +1,9 @@
 One-register-per-pin type device tree based pinctrl driver
 
 Required properties:
-- compatible : "pinctrl-single"
+- compatible : "pinctrl-single" or "pinconf-single".
+  "pinctrl-single" means that pinconf isn't supported.
+  "pinconf-single" means that generic pinconf is supported.
 
 - reg : offset and length of the register set for the mux registers
 
@@ -14,9 +16,61 @@ Optional properties:
 - pinctrl-single,function-off : function off mode for disabled state if
   available and same for all registers; if not specified, disabling of
   pin functions is ignored
+
 - pinctrl-single,bit-per-mux : boolean to indicate that one register controls
   more than one pin
 
+- pinctrl-single,drive-strength : array of value that are used to configure
+  drive strength in the pinmux register. They're value of drive strength
+  current and drive strength mask.
+
+		/* drive strength current, mask */
+		pinctrl-single,power-source = <0x30 0xf0>;
+
+- pinctrl-single,bias-pullup : array of value that are used to configure the
+  input bias pullup in the pinmux register.
+
+		/* input, enabled pullup bits, disabled pullup bits, mask */
+		pinctrl-single,bias-pullup = <0 1 0 1>;
+
+- pinctrl-single,bias-pulldown : array of value that are used to configure the
+  input bias pulldown in the pinmux register.
+
+		/* input, enabled pulldown bits, disabled pulldown bits, mask */
+		pinctrl-single,bias-pulldown = <2 2 0 2>;
+
+  * Two bits to control input bias pullup and pulldown: User should use
+    pinctrl-single,bias-pullup & pinctrl-single,bias-pulldown. One bit means
+    pullup, and the other one bit means pulldown.
+  * Three bits to control input bias enable, pullup and pulldown. User should
+    use pinctrl-single,bias-pullup & pinctrl-single,bias-pulldown. Input bias
+    enable bit should be included in pullup or pulldown bits.
+  * Although driver could set PIN_CONFIG_BIAS_DISABLE, there's no property as
+    pinctrl-single,bias-disable. Because pinctrl single driver could implement
+    it by calling pulldown, pullup disabled.
+
+- pinctrl-single,input-schmitt : array of value that are used to configure
+  input schmitt in the pinmux register. In some silicons, there're two input
+  schmitt value (rising-edge & falling-edge) in the pinmux register.
+
+		/* input schmitt value, mask */
+		pinctrl-single,input-schmitt = <0x30 0x70>;
+
+- pinctrl-single,input-schmitt-enable : array of value that are used to
+  configure input schmitt enable or disable in the pinmux register.
+
+		/* input, enable bits, disable bits, mask */
+		pinctrl-single,input-schmitt-enable = <0x30 0x40 0 0x70>;
+
+- pinctrl-single,gpio-range : list of value that are used to configure a GPIO
+  range. They're value of subnode phandle, pin base in pinctrl device, pin
+  number in this range, GPIO function value of this GPIO range.
+  The number of parameters is depend on #pinctrl-single,gpio-range-cells
+  property.
+
+		/* pin base, nr pins & gpio function */
+		pinctrl-single,gpio-range = <&range 0 3 0 &range 3 9 1>;
+
 This driver assumes that there is only one register for each pin (unless the
 pinctrl-single,bit-per-mux is set), and uses the common pinctrl bindings as
 specified in the pinctrl-bindings.txt document in this directory.
@@ -42,6 +96,20 @@ Where 0xdc is the offset from the pinctrl register base address for the
 device pinctrl register, 0x18 is the desired value, and 0xff is the sub mask to
 be used when applying this change to the register.
 
+
+Optional sub-node: In case some pins could be configured as GPIO in the pinmux
+register, those pins could be defined as a GPIO range. This sub-node is required
+by pinctrl-single,gpio-range property.
+
+Required properties in sub-node:
+- #pinctrl-single,gpio-range-cells : the number of parameters after phandle in
+  pinctrl-single,gpio-range property.
+
+	range: gpio-range {
+		#pinctrl-single,gpio-range-cells = <3>;
+	};
+
+
 Example:
 
 /* SoC common file */
@@ -58,7 +126,7 @@ pmx_core: pinmux@4a100040 {
 
 /* second controller instance for pins in wkup domain */
 pmx_wkup: pinmux@4a31e040 {
-	compatible = "pinctrl-single;
+	compatible = "pinctrl-single";
 	reg = <0x4a31e040 0x0038>;
 	#address-cells = <1>;
 	#size-cells = <0>;
@@ -76,6 +144,29 @@ control_devconf0: pinmux@48002274 {
 	pinctrl-single,function-mask = <0x5F>;
 };
 
+/* third controller instance for pins in gpio domain */
+pmx_gpio: pinmux@d401e000 {
+	compatible = "pinconf-single";
+	reg = <0xd401e000 0x0330>;
+	#address-cells = <1>;
+	#size-cells = <1>;
+	ranges;
+
+	pinctrl-single,register-width = <32>;
+	pinctrl-single,function-mask = <7>;
+
+	/* sparse GPIO range could be supported */
+	pinctrl-single,gpio-range = <&range 0 3 0 &range 3 9 1
+				&range 12 1 0 &range 13 29 1
+				&range 43 1 0 &range 44 49 1
+				&range 94 1 1 &range 96 2 1>;
+
+	range: gpio-range {
+		#pinctrl-single,gpio-range-cells = <3>;
+	};
+};
+
+
 /* board specific .dts file */
 
 &pmx_core {
@@ -96,6 +187,15 @@ control_devconf0: pinmux@48002274 {
 		>;
 	};
 
+	uart0_pins: pinmux_uart0_pins {
+		pinctrl-single,pins = <
+			0x208 0		/* UART0_RXD (IOCFG138) */
+			0x20c 0		/* UART0_TXD (IOCFG139) */
+		>;
+		pinctrl-single,bias-pulldown = <0 2 2>;
+		pinctrl-single,bias-pullup = <0 1 1>;
+	};
+
 	/* map uart2 pins */
 	uart2_pins: pinmux_uart2_pins {
 		pinctrl-single,pins = <
@@ -122,6 +222,11 @@ control_devconf0: pinmux@48002274 {
 
 };
 
+&uart1 {
+       pinctrl-names = "default";
+       pinctrl-0 = <&uart0_pins>;
+};
+
 &uart2 {
        pinctrl-names = "default";
        pinctrl-0 = <&uart2_pins>;

+ 3 - 0
Documentation/devicetree/bindings/pinctrl/samsung-pinctrl.txt

@@ -7,6 +7,7 @@ on-chip controllers onto these pads.
 
 Required Properties:
 - compatible: should be one of the following.
+  - "samsung,s3c64xx-pinctrl": for S3C64xx-compatible pin-controller,
   - "samsung,exynos4210-pinctrl": for Exynos4210 compatible pin-controller.
   - "samsung,exynos4x12-pinctrl": for Exynos4x12 compatible pin-controller.
   - "samsung,exynos5250-pinctrl": for Exynos5250 compatible pin-controller.
@@ -105,6 +106,8 @@ B. External Wakeup Interrupts: For supporting external wakeup interrupts, a
 
    - compatible: identifies the type of the external wakeup interrupt controller
      The possible values are:
+     - samsung,s3c64xx-wakeup-eint: represents wakeup interrupt controller
+       found on Samsung S3C64xx SoCs,
      - samsung,exynos4210-wakeup-eint: represents wakeup interrupt controller
        found on Samsung Exynos4210 SoC.
    - interrupt-parent: phandle of the interrupt parent to which the external

+ 52 - 0
Documentation/devicetree/bindings/regulator/max8952.txt

@@ -0,0 +1,52 @@
+Maxim MAX8952 voltage regulator
+
+Required properties:
+- compatible: must be equal to "maxim,max8952"
+- reg: I2C slave address, usually 0x60
+- max8952,dvs-mode-microvolt: array of 4 integer values defining DVS voltages
+  in microvolts. All values must be from range <770000, 1400000>
+- any required generic properties defined in regulator.txt
+
+Optional properties:
+- max8952,vid-gpios: array of two GPIO pins used for DVS voltage selection
+- max8952,en-gpio: GPIO used to control enable status of regulator
+- max8952,default-mode: index of default DVS voltage, from <0, 3> range
+- max8952,sync-freq: sync frequency, must be one of following values:
+    - 0: 26 MHz
+    - 1: 13 MHz
+    - 2: 19.2 MHz
+  Defaults to 26 MHz if not specified.
+- max8952,ramp-speed: voltage ramp speed, must be one of following values:
+    - 0: 32mV/us
+    - 1: 16mV/us
+    - 2: 8mV/us
+    - 3: 4mV/us
+    - 4: 2mV/us
+    - 5: 1mV/us
+    - 6: 0.5mV/us
+    - 7: 0.25mV/us
+  Defaults to 32mV/us if not specified.
+- any available generic properties defined in regulator.txt
+
+Example:
+
+	vdd_arm_reg: pmic@60 {
+		compatible = "maxim,max8952";
+		reg = <0x60>;
+
+		/* max8952-specific properties */
+		max8952,vid-gpios = <&gpx0 3 0>, <&gpx0 4 0>;
+		max8952,en-gpio = <&gpx0 1 0>;
+		max8952,default-mode = <0>;
+		max8952,dvs-mode-microvolt = <1250000>, <1200000>,
+						<1050000>, <950000>;
+		max8952,sync-freq = <0>;
+		max8952,ramp-speed = <0>;
+
+		/* generic regulator properties */
+		regulator-name = "vdd_arm";
+		regulator-min-microvolt = <770000>;
+		regulator-max-microvolt = <1400000>;
+		regulator-always-on;
+		regulator-boot-on;
+	};

+ 15 - 0
Documentation/devicetree/bindings/rtc/atmel,at91rm9200-rtc.txt

@@ -0,0 +1,15 @@
+Atmel AT91RM9200 Real Time Clock
+
+Required properties:
+- compatible: should be: "atmel,at91rm9200-rtc"
+- reg: physical base address of the controller and length of memory mapped
+  region.
+- interrupts: rtc alarm/event interrupt
+
+Example:
+
+rtc@fffffe00 {
+	compatible = "atmel,at91rm9200-rtc";
+	reg = <0xfffffe00 0x100>;
+	interrupts = <1 4 7>;
+};

+ 22 - 0
Documentation/devicetree/bindings/spi/brcm,bcm2835-spi.txt

@@ -0,0 +1,22 @@
+Broadcom BCM2835 SPI0 controller
+
+The BCM2835 contains two forms of SPI master controller, one known simply as
+SPI0, and the other known as the "Universal SPI Master"; part of the
+auxilliary block. This binding applies to the SPI0 controller.
+
+Required properties:
+- compatible: Should be "brcm,bcm2835-spi".
+- reg: Should contain register location and length.
+- interrupts: Should contain interrupt.
+- clocks: The clock feeding the SPI controller.
+
+Example:
+
+spi@20204000 {
+	compatible = "brcm,bcm2835-spi";
+	reg = <0x7e204000 0x1000>;
+	interrupts = <2 22>;
+	clocks = <&clk_spi>;
+	#address-cells = <1>;
+	#size-cells = <0>;
+};

+ 2 - 1
Documentation/devicetree/bindings/spi/fsl-spi.txt

@@ -4,7 +4,7 @@ Required properties:
 - cell-index : QE SPI subblock index.
 		0: QE subblock SPI1
 		1: QE subblock SPI2
-- compatible : should be "fsl,spi".
+- compatible : should be "fsl,spi" or "aeroflexgaisler,spictrl".
 - mode : the SPI operation mode, it can be "cpu" or "cpu-qe".
 - reg : Offset and length of the register set for the device
 - interrupts : <a b> where a is the interrupt number and b is a
@@ -14,6 +14,7 @@ Required properties:
   controller you have.
 - interrupt-parent : the phandle for the interrupt controller that
   services interrupts for this device.
+- clock-frequency : input clock frequency to non FSL_SOC cores
 
 Optional properties:
 - gpios : specifies the gpio pins to be used for chipselects.

+ 26 - 0
Documentation/devicetree/bindings/spi/nvidia,tegra114-spi.txt

@@ -0,0 +1,26 @@
+NVIDIA Tegra114 SPI controller.
+
+Required properties:
+- compatible : should be "nvidia,tegra114-spi".
+- reg: Should contain SPI registers location and length.
+- interrupts: Should contain SPI interrupts.
+- nvidia,dma-request-selector : The Tegra DMA controller's phandle and
+  request selector for this SPI controller.
+- This is also require clock named "spi" as per binding document
+  Documentation/devicetree/bindings/clock/clock-bindings.txt
+
+Recommended properties:
+- spi-max-frequency: Definition as per
+                     Documentation/devicetree/bindings/spi/spi-bus.txt
+Example:
+
+spi@7000d600 {
+	compatible = "nvidia,tegra114-spi";
+	reg = <0x7000d600 0x200>;
+	interrupts = <0 82 0x04>;
+	nvidia,dma-request-selector = <&apbdma 16>;
+	spi-max-frequency = <25000000>;
+	#address-cells = <1>;
+	#size-cells = <0>;
+	status = "disabled";
+};

+ 2 - 6
Documentation/devicetree/bindings/spi/spi-samsung.txt

@@ -31,9 +31,6 @@ Required Board Specific Properties:
 
 - #address-cells: should be 1.
 - #size-cells: should be 0.
-- gpios: The gpio specifier for clock, mosi and miso interface lines (in the
-  order specified). The format of the gpio specifier depends on the gpio
-  controller.
 
 Optional Board Specific Properties:
 
@@ -86,9 +83,8 @@ Example:
 	spi_0: spi@12d20000 {
 		#address-cells = <1>;
 		#size-cells = <0>;
-		gpios = <&gpa2 4 2 3 0>,
-			<&gpa2 6 2 3 0>,
-			<&gpa2 7 2 3 0>;
+		pinctrl-names = "default";
+		pinctrl-0 = <&spi0_bus>;
 
 		w25q80bw@0 {
 			#address-cells = <1>;

+ 15 - 0
Documentation/devicetree/bindings/staging/dwc2.txt

@@ -0,0 +1,15 @@
+Platform DesignWare HS OTG USB 2.0 controller
+-----------------------------------------------------
+
+Required properties:
+- compatible : "snps,dwc2"
+- reg : Should contain 1 register range (address and length)
+- interrupts : Should contain 1 interrupt
+
+Example:
+
+        usb@101c0000 {
+                compatible = "ralink,rt3050-usb, snps,dwc2";
+                reg = <0x101c0000 40000>;
+                interrupts = <18>;
+        };

+ 1 - 1
Documentation/devicetree/bindings/staging/imx-drm/fsl-imx-drm.txt

@@ -26,7 +26,7 @@ Required properties:
 - crtc: the crtc this display is connected to, see below
 Optional properties:
 - interface_pix_fmt: How this display is connected to the
-  crtc. Currently supported types: "rgb24", "rgb565"
+  crtc. Currently supported types: "rgb24", "rgb565", "bgr666"
 - edid: verbatim EDID data block describing attached display.
 - ddc: phandle describing the i2c bus handling the display data
   channel

+ 7 - 0
Documentation/devicetree/bindings/tty/serial/of-serial.txt

@@ -11,6 +11,9 @@ Required properties:
 	- "nvidia,tegra20-uart"
 	- "nxp,lpc3220-uart"
 	- "ibm,qpace-nwp-serial"
+	- "altr,16550-FIFO32"
+	- "altr,16550-FIFO64"
+	- "altr,16550-FIFO128"
 	- "serial" if the port type is unknown.
 - reg : offset and length of the register set for the device.
 - interrupts : should contain uart interrupt.
@@ -30,6 +33,10 @@ Optional properties:
   RTAS and should not be registered.
 - no-loopback-test: set to indicate that the port does not implements loopback
   test mode
+- fifo-size: the fifo size of the UART.
+- auto-flow-control: one way to enable automatic flow control support. The
+  driver is allowed to detect support for the capability even without this
+  property.
 
 Example:
 

+ 2 - 0
Documentation/devicetree/bindings/usb/ci13xxx-imx.txt

@@ -11,6 +11,7 @@ Optional properties:
   that indicate usb controller index
 - vbus-supply: regulator for vbus
 - disable-over-current: disable over current detect
+- external-vbus-divider: enables off-chip resistor divider for Vbus
 
 Examples:
 usb@02184000 { /* USB OTG */
@@ -20,4 +21,5 @@ usb@02184000 { /* USB OTG */
 	fsl,usbphy = <&usbphy1>;
 	fsl,usbmisc = <&usbmisc 0>;
 	disable-over-current;
+	external-vbus-divider;
 };

+ 32 - 0
Documentation/devicetree/bindings/usb/ehci-omap.txt

@@ -0,0 +1,32 @@
+OMAP HS USB EHCI controller
+
+This device is usually the child of the omap-usb-host
+Documentation/devicetree/bindings/mfd/omap-usb-host.txt
+
+Required properties:
+
+- compatible: should be "ti,ehci-omap"
+- reg: should contain one register range i.e. start and length
+- interrupts: description of the interrupt line
+
+Optional properties:
+
+- phys: list of phandles to PHY nodes.
+  This property is required if at least one of the ports are in
+  PHY mode i.e. OMAP_EHCI_PORT_MODE_PHY
+
+To specify the port mode, see
+Documentation/devicetree/bindings/mfd/omap-usb-host.txt
+
+Example for OMAP4:
+
+usbhsehci: ehci@4a064c00 {
+	compatible = "ti,ehci-omap", "usb-ehci";
+	reg = <0x4a064c00 0x400>;
+	interrupts = <0 77 0x4>;
+};
+
+&usbhsehci {
+	phys = <&hsusb1_phy 0 &hsusb3_phy>;
+};
+

+ 15 - 0
Documentation/devicetree/bindings/usb/ohci-omap3.txt

@@ -0,0 +1,15 @@
+OMAP HS USB OHCI controller (OMAP3 and later)
+
+Required properties:
+
+- compatible: should be "ti,ohci-omap3"
+- reg: should contain one register range i.e. start and length
+- interrupts: description of the interrupt line
+
+Example for OMAP4:
+
+usbhsohci: ohci@4a064800 {
+	compatible = "ti,ohci-omap3", "usb-ohci";
+	reg = <0x4a064800 0x400>;
+	interrupts = <0 76 0x4>;
+};

+ 34 - 6
Documentation/devicetree/bindings/usb/omap-usb.txt

@@ -8,10 +8,10 @@ OMAP MUSB GLUE
    and disconnect.
  - multipoint : Should be "1" indicating the musb controller supports
    multipoint. This is a MUSB configuration-specific setting.
- - num_eps : Specifies the number of endpoints. This is also a
+ - num-eps : Specifies the number of endpoints. This is also a
    MUSB configuration-specific setting. Should be set to "16"
- - ram_bits : Specifies the ram address size. Should be set to "12"
- - interface_type : This is a board specific setting to describe the type of
+ - ram-bits : Specifies the ram address size. Should be set to "12"
+ - interface-type : This is a board specific setting to describe the type of
    interface between the controller and the phy. It should be "0" or "1"
    specifying ULPI and UTMI respectively.
  - mode : Should be "3" to represent OTG. "1" signifies HOST and "2"
@@ -29,18 +29,46 @@ usb_otg_hs: usb_otg_hs@4a0ab000 {
 	ti,hwmods = "usb_otg_hs";
 	ti,has-mailbox;
 	multipoint = <1>;
-	num_eps = <16>;
-	ram_bits = <12>;
+	num-eps = <16>;
+	ram-bits = <12>;
 	ctrl-module = <&omap_control_usb>;
 };
 
 Board specific device node entry
 &usb_otg_hs {
-	interface_type = <1>;
+	interface-type = <1>;
 	mode = <3>;
 	power = <50>;
 };
 
+OMAP DWC3 GLUE
+ - compatible : Should be "ti,dwc3"
+ - ti,hwmods : Should be "usb_otg_ss"
+ - reg : Address and length of the register set for the device.
+ - interrupts : The irq number of this device that is used to interrupt the
+   MPU
+ - #address-cells, #size-cells : Must be present if the device has sub-nodes
+ - utmi-mode : controls the source of UTMI/PIPE status for VBUS and OTG ID.
+   It should be set to "1" for HW mode and "2" for SW mode.
+ - ranges: the child address space are mapped 1:1 onto the parent address space
+
+Sub-nodes:
+The dwc3 core should be added as subnode to omap dwc3 glue.
+- dwc3 :
+   The binding details of dwc3 can be found in:
+   Documentation/devicetree/bindings/usb/dwc3.txt
+
+omap_dwc3 {
+	compatible = "ti,dwc3";
+	ti,hwmods = "usb_otg_ss";
+	reg = <0x4a020000 0x1ff>;
+	interrupts = <0 93 4>;
+	#address-cells = <1>;
+	#size-cells = <1>;
+	utmi-mode = <2>;
+	ranges;
+};
+
 OMAP CONTROL USB
 
 Required properties:

+ 69 - 7
Documentation/devicetree/bindings/usb/samsung-usbphy.txt

@@ -1,20 +1,25 @@
-* Samsung's usb phy transceiver
+SAMSUNG USB-PHY controllers
 
-The Samsung's phy transceiver is used for controlling usb phy for
-s3c-hsotg as well as ehci-s5p and ohci-exynos usb controllers
-across Samsung SOCs.
+** Samsung's usb 2.0 phy transceiver
+
+The Samsung's usb 2.0 phy transceiver is used for controlling
+usb 2.0 phy for s3c-hsotg as well as ehci-s5p and ohci-exynos
+usb controllers across Samsung SOCs.
 TODO: Adding the PHY binding with controller(s) according to the under
 developement generic PHY driver.
 
 Required properties:
 
 Exynos4210:
-- compatible : should be "samsung,exynos4210-usbphy"
+- compatible : should be "samsung,exynos4210-usb2phy"
 - reg : base physical address of the phy registers and length of memory mapped
 	region.
+- clocks: Clock IDs array as required by the controller.
+- clock-names: names of clock correseponding IDs clock property as requested
+	       by the controller driver.
 
 Exynos5250:
-- compatible : should be "samsung,exynos5250-usbphy"
+- compatible : should be "samsung,exynos5250-usb2phy"
 - reg : base physical address of the phy registers and length of memory mapped
 	region.
 
@@ -44,12 +49,69 @@ Example:
 	usbphy@125B0000 {
 		#address-cells = <1>;
 		#size-cells = <1>;
-		compatible = "samsung,exynos4210-usbphy";
+		compatible = "samsung,exynos4210-usb2phy";
 		reg = <0x125B0000 0x100>;
 		ranges;
 
+		clocks = <&clock 2>, <&clock 305>;
+		clock-names = "xusbxti", "otg";
+
 		usbphy-sys {
 			/* USB device and host PHY_CONTROL registers */
 			reg = <0x10020704 0x8>;
 		};
 	};
+
+
+** Samsung's usb 3.0 phy transceiver
+
+Starting exynso5250, Samsung's SoC have usb 3.0 phy transceiver
+which is used for controlling usb 3.0 phy for dwc3-exynos usb 3.0
+controllers across Samsung SOCs.
+
+Required properties:
+
+Exynos5250:
+- compatible : should be "samsung,exynos5250-usb3phy"
+- reg : base physical address of the phy registers and length of memory mapped
+	region.
+- clocks: Clock IDs array as required by the controller.
+- clock-names: names of clocks correseponding to IDs in the clock property
+	       as requested by the controller driver.
+
+Optional properties:
+- #address-cells: should be '1' when usbphy node has a child node with 'reg'
+		  property.
+- #size-cells: should be '1' when usbphy node has a child node with 'reg'
+	       property.
+- ranges: allows valid translation between child's address space and parent's
+	  address space.
+
+- The child node 'usbphy-sys' to the node 'usbphy' is for the system controller
+  interface for usb-phy. It should provide the following information required by
+  usb-phy controller to control phy.
+  - reg : base physical address of PHY_CONTROL registers.
+	  The size of this register is the total sum of size of all PHY_CONTROL
+	  registers that the SoC has. For example, the size will be
+	  '0x4' in case we have only one PHY_CONTROL register (e.g.
+	  OTHERS register in S3C64XX or USB_PHY_CONTROL register in S5PV210)
+	  and, '0x8' in case we have two PHY_CONTROL registers (e.g.
+	  USBDEVICE_PHY_CONTROL and USBHOST_PHY_CONTROL registers in exynos4x).
+	  and so on.
+
+Example:
+	usbphy@12100000 {
+		compatible = "samsung,exynos5250-usb3phy";
+		reg = <0x12100000 0x100>;
+		#address-cells = <1>;
+		#size-cells = <1>;
+		ranges;
+
+		clocks = <&clock 1>, <&clock 286>;
+		clock-names = "ext_xtal", "usbdrd30";
+
+		usbphy-sys {
+			/* USB device and host PHY_CONTROL registers */
+			reg = <0x10040704 0x8>;
+		};
+	};

+ 34 - 0
Documentation/devicetree/bindings/usb/usb-nop-xceiv.txt

@@ -0,0 +1,34 @@
+USB NOP PHY
+
+Required properties:
+- compatible: should be usb-nop-xceiv
+
+Optional properties:
+- clocks: phandle to the PHY clock. Use as per Documentation/devicetree
+  /bindings/clock/clock-bindings.txt
+  This property is required if clock-frequency is specified.
+
+- clock-names: Should be "main_clk"
+
+- clock-frequency: the clock frequency (in Hz) that the PHY clock must
+  be configured to.
+
+- vcc-supply: phandle to the regulator that provides RESET to the PHY.
+
+- reset-supply: phandle to the regulator that provides power to the PHY.
+
+Example:
+
+	hsusb1_phy {
+		compatible = "usb-nop-xceiv";
+		clock-frequency = <19200000>;
+		clocks = <&osc 0>;
+		clock-names = "main_clk";
+		vcc-supply = <&hsusb1_vcc_regulator>;
+		reset-supply = <&hsusb1_reset_regulator>;
+	};
+
+hsusb1_phy is a NOP USB PHY device that gets its clock from an oscillator
+and expects that clock to be configured to 19.2MHz by the NOP PHY driver.
+hsusb1_vcc_regulator provides power to the PHY and hsusb1_reset_regulator
+controls RESET.

+ 2 - 0
Documentation/devicetree/bindings/vendor-prefixes.txt

@@ -5,6 +5,7 @@ using them to avoid name-space collisions.
 
 ad	Avionic Design GmbH
 adi	Analog Devices, Inc.
+aeroflexgaisler	Aeroflex Gaisler AB
 ak	Asahi Kasei Corp.
 amcc	Applied Micro Circuits Corporation (APM, formally AMCC)
 apm	Applied Micro Circuits Corporation (APM)
@@ -48,6 +49,7 @@ samsung	Samsung Semiconductor
 sbs	Smart Battery System
 schindler	Schindler
 sil	Silicon Image
+silabs	Silicon Laboratories
 simtek
 sirf	SiRF Technology, Inc.
 snps 	Synopsys, Inc.

+ 41 - 0
Documentation/devicetree/bindings/video/backlight/lp855x.txt

@@ -0,0 +1,41 @@
+lp855x bindings
+
+Required properties:
+  - compatible: "ti,lp8550", "ti,lp8551", "ti,lp8552", "ti,lp8553",
+                "ti,lp8556", "ti,lp8557"
+  - reg: I2C slave address (u8)
+  - dev-ctrl: Value of DEVICE CONTROL register (u8). It depends on the device.
+
+Optional properties:
+  - bl-name: Backlight device name (string)
+  - init-brt: Initial value of backlight brightness (u8)
+  - pwm-period: PWM period value. Set only PWM input mode used (u32)
+  - rom-addr: Register address of ROM area to be updated (u8)
+  - rom-val: Register value to be updated (u8)
+
+Example:
+
+	/* LP8556 */
+	backlight@2c {
+		compatible = "ti,lp8556";
+		reg = <0x2c>;
+
+		bl-name = "lcd-bl";
+		dev-ctrl = /bits/ 8 <0x85>;
+		init-brt = /bits/ 8 <0x10>;
+	};
+
+	/* LP8557 */
+	backlight@2c {
+		compatible = "ti,lp8557";
+		reg = <0x2c>;
+
+		dev-ctrl = /bits/ 8 <0x41>;
+		init-brt = /bits/ 8 <0x0a>;
+
+		/* 4V OV, 4 output LED string enabled */
+		rom_14h {
+			rom-addr = /bits/ 8 <0x14>;
+			rom-val = /bits/ 8 <0xcf>;
+		};
+	};

+ 27 - 0
Documentation/devicetree/bindings/video/backlight/tps65217-backlight.txt

@@ -0,0 +1,27 @@
+TPS65217 family of regulators
+
+The TPS65217 chip contains a boost converter and current sinks which can be
+used to drive LEDs for use as backlights.
+
+Required properties:
+- compatible: "ti,tps65217"
+- reg: I2C slave address
+- backlight: node for specifying WLED1 and WLED2 lines in TPS65217
+- isel: selection bit, valid values: 1 for ISEL1 (low-level) and 2 for ISEL2 (high-level)
+- fdim: PWM dimming frequency, valid values: 100, 200, 500, 1000
+- default-brightness: valid values: 0-100
+
+Each regulator is defined using the standard binding for regulators.
+
+Example:
+
+	tps: tps@24 {
+		reg = <0x24>;
+		compatible = "ti,tps65217";
+		backlight {
+			isel = <1>;  /* 1 - ISET1, 2 ISET2 */
+			fdim = <100>; /* TPS65217_BL_FDIM_100HZ */
+			default-brightness = <50>;
+		};
+	};
+

+ 11 - 37
Documentation/devicetree/bindings/video/via,vt8500-fb.txt

@@ -5,58 +5,32 @@ Required properties:
 - compatible : "via,vt8500-fb"
 - reg : Should contain 1 register ranges(address and length)
 - interrupts : framebuffer controller interrupt
-- display: a phandle pointing to the display node
+- bits-per-pixel : bit depth of framebuffer (16 or 32)
 
-Required nodes:
-- display: a display node is required to initialize the lcd panel
-	This should be in the board dts.
-- default-mode: a videomode within the display with timing parameters
-	as specified below.
+Required subnodes:
+- display-timings: see display-timing.txt for information
 
 Example:
 
-	fb@d800e400 {
+	fb@d8050800 {
 		compatible = "via,vt8500-fb";
 		reg = <0xd800e400 0x400>;
 		interrupts = <12>;
-		display = <&display>;
-		default-mode = <&mode0>;
-	};
-
-VIA VT8500 Display
------------------------------------------------------
-Required properties (as per of_videomode_helper):
-
- - hactive, vactive: Display resolution
- - hfront-porch, hback-porch, hsync-len: Horizontal Display timing parameters
-   in pixels
-   vfront-porch, vback-porch, vsync-len: Vertical display timing parameters in
-   lines
- - clock: displayclock in Hz
- - bpp: lcd panel bit-depth.
-	<16> for RGB565, <32> for RGB888
-
-Optional properties (as per of_videomode_helper):
- - width-mm, height-mm: Display dimensions in mm
- - hsync-active-high (bool): Hsync pulse is active high
- - vsync-active-high (bool): Vsync pulse is active high
- - interlaced (bool): This is an interlaced mode
- - doublescan (bool): This is a doublescan mode
+		bits-per-pixel = <16>;
 
-Example:
-	display: display@0 {
-		modes {
-			mode0: mode@0 {
+		display-timings {
+			native-mode = <&timing0>;
+			timing0: 800x480 {
+				clock-frequency = <0>; /* unused but required */
 				hactive = <800>;
 				vactive = <480>;
-				hback-porch = <88>;
 				hfront-porch = <40>;
+				hback-porch = <88>;
 				hsync-len = <0>;
 				vback-porch = <32>;
 				vfront-porch = <11>;
 				vsync-len = <1>;
-				clock = <0>;	/* unused but required */
-				bpp = <16>;	/* non-standard but required */
 			};
 		};
 	};
+

+ 21 - 11
Documentation/devicetree/bindings/video/wm,wm8505-fb.txt

@@ -4,20 +4,30 @@ Wondermedia WM8505 Framebuffer
 Required properties:
 - compatible : "wm,wm8505-fb"
 - reg : Should contain 1 register ranges(address and length)
-- via,display: a phandle pointing to the display node
+- bits-per-pixel : bit depth of framebuffer (16 or 32)
 
-Required nodes:
-- display: a display node is required to initialize the lcd panel
-	This should be in the board dts. See definition in
-	Documentation/devicetree/bindings/video/via,vt8500-fb.txt
-- default-mode: a videomode node as specified in
-	Documentation/devicetree/bindings/video/via,vt8500-fb.txt
+Required subnodes:
+- display-timings: see display-timing.txt for information
 
 Example:
 
-	fb@d8050800 {
+	fb@d8051700 {
 		compatible = "wm,wm8505-fb";
-		reg = <0xd8050800 0x200>;
-		display = <&display>;
-		default-mode = <&mode0>;
+		reg = <0xd8051700 0x200>;
+		bits-per-pixel = <16>;
+
+		display-timings {
+			native-mode = <&timing0>;
+			timing0: 800x480 {
+				clock-frequency = <0>; /* unused but required */
+				hactive = <800>;
+				vactive = <480>;
+				hfront-porch = <40>;
+				hback-porch = <88>;
+				hsync-len = <0>;
+				vback-porch = <32>;
+				vfront-porch = <11>;
+				vsync-len = <1>;
+			};
+		};
 	};

+ 21 - 5
Documentation/filesystems/vfat.txt

@@ -150,12 +150,28 @@ discard       -- If set, issues discard/TRIM commands to the block
 		 device when blocks are freed. This is useful for SSD devices
 		 and sparse/thinly-provisoned LUNs.
 
-nfs           -- This option maintains an index (cache) of directory
-		 inodes by i_logstart which is used by the nfs-related code to
-		 improve look-ups.
+nfs=stale_rw|nostale_ro
+		Enable this only if you want to export the FAT filesystem
+		over NFS.
+
+		stale_rw: This option maintains an index (cache) of directory
+		inodes by i_logstart which is used by the nfs-related code to
+		improve look-ups. Full file operations (read/write) over NFS is
+		supported but with cache eviction at NFS server, this could
+		result in ESTALE issues.
+
+		nostale_ro: This option bases the inode number and filehandle
+		on the on-disk location of a file in the MS-DOS directory entry.
+		This ensures that ESTALE will not be returned after a file is
+		evicted from the inode cache. However, it means that operations
+		such as rename, create and unlink could cause filehandles that
+		previously pointed at one file to point at a different file,
+		potentially causing data corruption. For this reason, this
+		option also mounts the filesystem readonly.
+
+		To maintain backward compatibility, '-o nfs' is also accepted,
+		defaulting to stale_rw
 
-		 Enable this only if you want to export the FAT filesystem
-		 over NFS
 
 <bool>: 0,1,yes,no,true,false
 

+ 1 - 1
Documentation/hwmon/adm1275

@@ -15,7 +15,7 @@ Supported chips:
     Addresses scanned: -
     Datasheet: www.analog.com/static/imported-files/data_sheets/ADM1276.pdf
 
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
 
 
 Description

+ 36 - 14
Documentation/hwmon/adt7410

@@ -4,28 +4,50 @@ Kernel driver adt7410
 Supported chips:
   * Analog Devices ADT7410
     Prefix: 'adt7410'
-    Addresses scanned: I2C 0x48 - 0x4B
+    Addresses scanned: None
     Datasheet: Publicly available at the Analog Devices website
                http://www.analog.com/static/imported-files/data_sheets/ADT7410.pdf
+  * Analog Devices ADT7420
+    Prefix: 'adt7420'
+    Addresses scanned: None
+    Datasheet: Publicly available at the Analog Devices website
+               http://www.analog.com/static/imported-files/data_sheets/ADT7420.pdf
+  * Analog Devices ADT7310
+    Prefix: 'adt7310'
+    Addresses scanned: None
+    Datasheet: Publicly available at the Analog Devices website
+               http://www.analog.com/static/imported-files/data_sheets/ADT7310.pdf
+  * Analog Devices ADT7320
+    Prefix: 'adt7320'
+    Addresses scanned: None
+    Datasheet: Publicly available at the Analog Devices website
+               http://www.analog.com/static/imported-files/data_sheets/ADT7320.pdf
 
 Author: Hartmut Knaack <knaack.h@gmx.de>
 
 Description
 -----------
 
-The ADT7410 is a temperature sensor with rated temperature range of -55°C to
-+150°C. It has a high accuracy of +/-0.5°C and can be operated at a resolution
-of 13 bits (0.0625°C) or 16 bits (0.0078°C). The sensor provides an INT pin to
-indicate that a minimum or maximum temperature set point has been exceeded, as
-well as a critical temperature (CT) pin to indicate that the critical
-temperature set point has been exceeded. Both pins can be set up with a common
-hysteresis of 0°C - 15°C and a fault queue, ranging from 1 to 4 events. Both
-pins can individually set to be active-low or active-high, while the whole
-device can either run in comparator mode or interrupt mode. The ADT7410
-supports continous temperature sampling, as well as sampling one temperature
-value per second or even justget one sample on demand for power saving.
-Besides, it can completely power down its ADC, if power management is
-required.
+The ADT7310/ADT7410 is a temperature sensor with rated temperature range of
+-55°C to +150°C. It has a high accuracy of +/-0.5°C and can be operated at a
+resolution of 13 bits (0.0625°C) or 16 bits (0.0078°C). The sensor provides an
+INT pin to indicate that a minimum or maximum temperature set point has been
+exceeded, as well as a critical temperature (CT) pin to indicate that the
+critical temperature set point has been exceeded. Both pins can be set up with a
+common hysteresis of 0°C - 15°C and a fault queue, ranging from 1 to 4 events.
+Both pins can individually set to be active-low or active-high, while the whole
+device can either run in comparator mode or interrupt mode. The ADT7410 supports
+continuous temperature sampling, as well as sampling one temperature value per
+second or even just get one sample on demand for power saving. Besides, it can
+completely power down its ADC, if power management is required.
+
+The ADT7320/ADT7420 is register compatible, the only differences being the
+package, a slightly narrower operating temperature range (-40°C to +150°C), and
+a better accuracy (0.25°C instead of 0.50°C.)
+
+The difference between the ADT7310/ADT7320 and ADT7410/ADT7420 is the control
+interface, the ADT7310 and ADT7320 use SPI while the ADT7410 and ADT7420 use
+I2C.
 
 Configuration Notes
 -------------------

+ 1 - 1
Documentation/hwmon/jc42

@@ -49,7 +49,7 @@ Supported chips:
     Addresses scanned: I2C 0x18 - 0x1f
 
 Author:
-	Guenter Roeck <guenter.roeck@ericsson.com>
+	Guenter Roeck <linux@roeck-us.net>
 
 
 Description

+ 1 - 1
Documentation/hwmon/lineage-pem

@@ -8,7 +8,7 @@ Supported devices:
     Documentation:
         http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
 
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
 
 
 Description

+ 24 - 12
Documentation/hwmon/lm25066

@@ -1,7 +1,13 @@
-Kernel driver max8688
+Kernel driver lm25066
 =====================
 
 Supported chips:
+  * TI LM25056
+    Prefix: 'lm25056'
+    Addresses scanned: -
+    Datasheets:
+	http://www.ti.com/lit/gpn/lm25056
+	http://www.ti.com/lit/gpn/lm25056a
   * National Semiconductor LM25066
     Prefix: 'lm25066'
     Addresses scanned: -
@@ -19,14 +25,15 @@ Supported chips:
     Datasheet:
 	http://www.national.com/pf/LM/LM5066.html
 
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
 
 
 Description
 -----------
 
-This driver supports hardware montoring for National Semiconductor LM25066,
-LM5064, and LM5064 Power Management, Monitoring, Control, and Protection ICs.
+This driver supports hardware montoring for National Semiconductor / TI LM25056,
+LM25066, LM5064, and LM5064 Power Management, Monitoring, Control, and
+Protection ICs.
 
 The driver is a client driver to the core PMBus driver. Please see
 Documentation/hwmon/pmbus for details on PMBus client drivers.
@@ -60,14 +67,19 @@ in1_max			Maximum input voltage.
 in1_min_alarm		Input voltage low alarm.
 in1_max_alarm		Input voltage high alarm.
 
-in2_label		"vout1"
-in2_input		Measured output voltage.
-in2_average		Average measured output voltage.
-in2_min			Minimum output voltage.
-in2_min_alarm		Output voltage low alarm.
-
-in3_label		"vout2"
-in3_input		Measured voltage on vaux pin
+in2_label		"vmon"
+in2_input		Measured voltage on VAUX pin
+in2_min			Minimum VAUX voltage (LM25056 only).
+in2_max			Maximum VAUX voltage (LM25056 only).
+in2_min_alarm		VAUX voltage low alarm (LM25056 only).
+in2_max_alarm		VAUX voltage high alarm (LM25056 only).
+
+in3_label		"vout1"
+			Not supported on LM25056.
+in3_input		Measured output voltage.
+in3_average		Average measured output voltage.
+in3_min			Minimum output voltage.
+in3_min_alarm		Output voltage low alarm.
 
 curr1_label		"iin"
 curr1_input		Measured input current.

+ 1 - 1
Documentation/hwmon/lm75

@@ -23,7 +23,7 @@ Supported chips:
     Datasheet: Publicly available at the Maxim website
                http://www.maxim-ic.com/
   * Microchip (TelCom) TCN75
-    Prefix: 'lm75'
+    Prefix: 'tcn75'
     Addresses scanned: none
     Datasheet: Publicly available at the Microchip website
                http://www.microchip.com/

+ 36 - 0
Documentation/hwmon/lm95234

@@ -0,0 +1,36 @@
+Kernel driver lm95234
+=====================
+
+Supported chips:
+  * National Semiconductor / Texas Instruments LM95234
+    Addresses scanned: I2C 0x18, 0x4d, 0x4e
+    Datasheet: Publicly available at the Texas Instruments website
+               http://www.ti.com/product/lm95234
+
+
+Author: Guenter Roeck <linux@roeck-us.net>
+
+Description
+-----------
+
+LM95234 is an 11-bit digital temperature sensor with a 2-wire System Management
+Bus (SMBus) interface and TrueTherm technology that can very accurately monitor
+the temperature of four remote diodes as well as its own temperature.
+The four remote diodes can be external devices such as microprocessors,
+graphics processors or diode-connected 2N3904s. The LM95234's TruTherm
+beta compensation technology allows sensing of 90 nm or 65 nm process
+thermal diodes accurately.
+
+All temperature values are given in millidegrees Celsius. Temperature
+is provided within a range of -127 to +255 degrees (+127.875 degrees for
+the internal sensor). Resolution depends on temperature input and range.
+
+Each sensor has its own maximum limit, but the hysteresis is common to all
+channels. The hysteresis is configurable with the tem1_max_hyst attribute and
+affects the hysteresis on all channels. The first two external sensors also
+have a critical limit.
+
+The lm95234 driver can change its update interval to a fixed set of values.
+It will round up to the next selectable interval. See the datasheet for exact
+values. Reading sensor values more often will do no harm, but will return
+'old' values.

+ 92 - 57
Documentation/hwmon/ltc2978

@@ -2,24 +2,32 @@ Kernel driver ltc2978
 =====================
 
 Supported chips:
+  * Linear Technology LTC2974
+    Prefix: 'ltc2974'
+    Addresses scanned: -
+    Datasheet: http://www.linear.com/product/ltc2974
   * Linear Technology LTC2978
     Prefix: 'ltc2978'
     Addresses scanned: -
-    Datasheet: http://cds.linear.com/docs/Datasheet/2978fa.pdf
+    Datasheet: http://www.linear.com/product/ltc2978
   * Linear Technology LTC3880
     Prefix: 'ltc3880'
     Addresses scanned: -
-    Datasheet: http://cds.linear.com/docs/Datasheet/3880f.pdf
+    Datasheet: http://www.linear.com/product/ltc3880
+  * Linear Technology LTC3883
+    Prefix: 'ltc3883'
+    Addresses scanned: -
+    Datasheet: http://www.linear.com/product/ltc3883
 
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
 
 
 Description
 -----------
 
-The LTC2978 is an octal power supply monitor, supervisor, sequencer and
-margin controller. The LTC3880 is a dual, PolyPhase DC/DC synchronous
-step-down switching regulator controller.
+LTC2974 is a quad digital power supply manager. LTC2978 is an octal power supply
+monitor. LTC3880 is a dual output poly-phase step-down DC/DC controller. LTC3883
+is a single phase step-down DC/DC controller.
 
 
 Usage Notes
@@ -41,63 +49,90 @@ Sysfs attributes
 in1_label		"vin"
 in1_input		Measured input voltage.
 in1_min			Minimum input voltage.
-in1_max			Maximum input voltage.
-in1_lcrit		Critical minimum input voltage.
+in1_max			Maximum input voltage. LTC2974 and LTC2978 only.
+in1_lcrit		Critical minimum input voltage. LTC2974 and LTC2978
+			only.
 in1_crit		Critical maximum input voltage.
 in1_min_alarm		Input voltage low alarm.
-in1_max_alarm		Input voltage high alarm.
-in1_lcrit_alarm		Input voltage critical low alarm.
+in1_max_alarm		Input voltage high alarm. LTC2974 and LTC2978 only.
+in1_lcrit_alarm		Input voltage critical low alarm. LTC2974 and LTC2978
+			only.
 in1_crit_alarm		Input voltage critical high alarm.
-in1_lowest		Lowest input voltage. LTC2978 only.
+in1_lowest		Lowest input voltage. LTC2974 and LTC2978 only.
 in1_highest		Highest input voltage.
-in1_reset_history	Reset history. Writing into this attribute will reset
-			history for all attributes.
-
-in[2-9]_label		"vout[1-8]". Channels 3 to 9 on LTC2978 only.
-in[2-9]_input		Measured output voltage.
-in[2-9]_min		Minimum output voltage.
-in[2-9]_max		Maximum output voltage.
-in[2-9]_lcrit		Critical minimum output voltage.
-in[2-9]_crit		Critical maximum output voltage.
-in[2-9]_min_alarm	Output voltage low alarm.
-in[2-9]_max_alarm	Output voltage high alarm.
-in[2-9]_lcrit_alarm	Output voltage critical low alarm.
-in[2-9]_crit_alarm	Output voltage critical high alarm.
-in[2-9]_lowest		Lowest output voltage. LTC2978 only.
-in[2-9]_highest		Lowest output voltage.
-in[2-9]_reset_history	Reset history. Writing into this attribute will reset
-			history for all attributes.
-
-temp[1-3]_input		Measured temperature.
+in1_reset_history	Reset input voltage history.
+
+in[N]_label		"vout[1-8]".
+			LTC2974: N=2-5
+			LTC2978: N=2-9
+			LTC3880: N=2-3
+			LTC3883: N=2
+in[N]_input		Measured output voltage.
+in[N]_min		Minimum output voltage.
+in[N]_max		Maximum output voltage.
+in[N]_lcrit		Critical minimum output voltage.
+in[N]_crit		Critical maximum output voltage.
+in[N]_min_alarm		Output voltage low alarm.
+in[N]_max_alarm		Output voltage high alarm.
+in[N]_lcrit_alarm	Output voltage critical low alarm.
+in[N]_crit_alarm	Output voltage critical high alarm.
+in[N]_lowest		Lowest output voltage. LTC2974 and LTC2978 only.
+in[N]_highest		Highest output voltage.
+in[N]_reset_history	Reset output voltage history.
+
+temp[N]_input		Measured temperature.
+			On LTC2974, temp[1-4] report external temperatures,
+			and temp5 reports the chip temperature.
 			On LTC2978, only one temperature measurement is
-			supported and reflects the internal temperature.
+			supported and reports the chip temperature.
 			On LTC3880, temp1 and temp2 report external
-			temperatures, and temp3 reports the internal
-			temperature.
-temp[1-3]_min		Mimimum temperature.
-temp[1-3]_max		Maximum temperature.
-temp[1-3]_lcrit		Critical low temperature.
-temp[1-3]_crit		Critical high temperature.
-temp[1-3]_min_alarm	Chip temperature low alarm.
-temp[1-3]_max_alarm	Chip temperature high alarm.
-temp[1-3]_lcrit_alarm	Chip temperature critical low alarm.
-temp[1-3]_crit_alarm	Chip temperature critical high alarm.
-temp[1-3]_lowest	Lowest measured temperature. LTC2978 only.
-temp[1-3]_highest	Highest measured temperature.
-temp[1-3]_reset_history	Reset history. Writing into this attribute will reset
-			history for all attributes.
-
-power[1-2]_label	"pout[1-2]". LTC3880 only.
-power[1-2]_input	Measured power.
-
-curr1_label		"iin". LTC3880 only.
+			temperatures, and temp3 reports the chip temperature.
+			On LTC3883, temp1 reports an external temperature,
+			and temp2 reports the chip temperature.
+temp[N]_min		Mimimum temperature. LTC2974 and LTC2978 only.
+temp[N]_max		Maximum temperature.
+temp[N]_lcrit		Critical low temperature.
+temp[N]_crit		Critical high temperature.
+temp[N]_min_alarm	Temperature low alarm. LTC2974 and LTC2978 only.
+temp[N]_max_alarm	Temperature high alarm.
+temp[N]_lcrit_alarm	Temperature critical low alarm.
+temp[N]_crit_alarm	Temperature critical high alarm.
+temp[N]_lowest		Lowest measured temperature. LTC2974 and LTC2978 only.
+			Not supported for chip temperature sensor on LTC2974.
+temp[N]_highest		Highest measured temperature. Not supported for chip
+			temperature sensor on LTC2974.
+temp[N]_reset_history	Reset temperature history. Not supported for chip
+			temperature sensor on LTC2974.
+
+power1_label		"pin". LTC3883 only.
+power1_input		Measured input power.
+
+power[N]_label		"pout[1-4]".
+			LTC2974: N=1-4
+			LTC2978: Not supported
+			LTC3880: N=1-2
+			LTC3883: N=2
+power[N]_input		Measured output power.
+
+curr1_label		"iin". LTC3880 and LTC3883 only.
 curr1_input		Measured input current.
 curr1_max		Maximum input current.
 curr1_max_alarm		Input current high alarm.
-
-curr[2-3]_label		"iout[1-2]". LTC3880 only.
-curr[2-3]_input		Measured input current.
-curr[2-3]_max		Maximum input current.
-curr[2-3]_crit		Critical input current.
-curr[2-3]_max_alarm	Input current high alarm.
-curr[2-3]_crit_alarm	Input current critical high alarm.
+curr1_highest		Highest input current. LTC3883 only.
+curr1_reset_history	Reset input current history. LTC3883 only.
+
+curr[N]_label		"iout[1-4]".
+			LTC2974: N=1-4
+			LTC2978: not supported
+			LTC3880: N=2-3
+			LTC3883: N=2
+curr[N]_input		Measured output current.
+curr[N]_max		Maximum output current.
+curr[N]_crit		Critical high output current.
+curr[N]_lcrit		Critical low output current. LTC2974 only.
+curr[N]_max_alarm	Output current high alarm.
+curr[N]_crit_alarm	Output current critical high alarm.
+curr[N]_lcrit_alarm	Output current critical low alarm. LTC2974 only.
+curr[N]_lowest		Lowest output current. LTC2974 only.
+curr[N]_highest		Highest output current.
+curr[N]_reset_history	Reset output current history.

+ 1 - 1
Documentation/hwmon/ltc4261

@@ -8,7 +8,7 @@ Supported chips:
     Datasheet:
         http://cds.linear.com/docs/Datasheet/42612fb.pdf
 
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
 
 
 Description

+ 1 - 1
Documentation/hwmon/max16064

@@ -7,7 +7,7 @@ Supported chips:
     Addresses scanned: -
     Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX16064.pdf
 
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
 
 
 Description

+ 1 - 1
Documentation/hwmon/max16065

@@ -24,7 +24,7 @@ Supported chips:
 	http://datasheets.maxim-ic.com/en/ds/MAX16070-MAX16071.pdf
 
 
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
 
 
 Description

+ 1 - 1
Documentation/hwmon/max34440

@@ -27,7 +27,7 @@ Supported chips:
     Addresses scanned: -
     Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX34461.pdf
 
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
 
 
 Description

+ 1 - 1
Documentation/hwmon/max8688

@@ -7,7 +7,7 @@ Supported chips:
     Addresses scanned: -
     Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX8688.pdf
 
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
 
 
 Description

+ 188 - 0
Documentation/hwmon/nct6775

@@ -0,0 +1,188 @@
+Note
+====
+
+This driver supersedes the NCT6775F and NCT6776F support in the W83627EHF
+driver.
+
+Kernel driver NCT6775
+=====================
+
+Supported chips:
+  * Nuvoton NCT5572D/NCT6771F/NCT6772F/NCT6775F/W83677HG-I
+    Prefix: 'nct6775'
+    Addresses scanned: ISA address retrieved from Super I/O registers
+    Datasheet: Available from Nuvoton upon request
+  * Nuvoton NCT5577D/NCT6776D/NCT6776F
+    Prefix: 'nct6776'
+    Addresses scanned: ISA address retrieved from Super I/O registers
+    Datasheet: Available from Nuvoton upon request
+  * Nuvoton NCT5532D/NCT6779D
+    Prefix: 'nct6779'
+    Addresses scanned: ISA address retrieved from Super I/O registers
+    Datasheet: Available from Nuvoton upon request
+
+Authors:
+        Guenter Roeck <linux@roeck-us.net>
+
+Description
+-----------
+
+This driver implements support for the Nuvoton NCT6775F, NCT6776F, and NCT6779D
+and compatible super I/O chips.
+
+The chips support up to 25 temperature monitoring sources. Up to 6 of those are
+direct temperature sensor inputs, the others are special sources such as PECI,
+PCH, and SMBUS. Depending on the chip type, 2 to 6 of the temperature sources
+can be monitored and compared against minimum, maximum, and critical
+temperatures. The driver reports up to 10 of the temperatures to the user.
+There are 4 to 5 fan rotation speed sensors, 8 to 15 analog voltage sensors,
+one VID, alarms with beep warnings (control unimplemented), and some automatic
+fan regulation strategies (plus manual fan control mode).
+
+The temperature sensor sources on all chips are configurable. The configured
+source for each of the temperature sensors is provided in tempX_label.
+
+Temperatures are measured in degrees Celsius and measurement resolution is
+either 1 degC or 0.5 degC, depending on the temperature source and
+configuration. An alarm is triggered when the temperature gets higher than
+the high limit; it stays on until the temperature falls below the hysteresis
+value. Alarms are only supported for temp1 to temp6, depending on the chip type.
+
+Fan rotation speeds are reported in RPM (rotations per minute). An alarm is
+triggered if the rotation speed has dropped below a programmable limit. On
+NCT6775F, fan readings can be divided by a programmable divider (1, 2, 4, 8,
+16, 32, 64 or 128) to give the readings more range or accuracy; the other chips
+do not have a fan speed divider. The driver sets the most suitable fan divisor
+itself; specifically, it increases the divider value each time a fan speed
+reading returns an invalid value, and it reduces it if the fan speed reading
+is lower than optimal. Some fans might not be present because they share pins
+with other functions.
+
+Voltage sensors (also known as IN sensors) report their values in millivolts.
+An alarm is triggered if the voltage has crossed a programmable minimum
+or maximum limit.
+
+The driver supports automatic fan control mode known as Thermal Cruise.
+In this mode, the chip attempts to keep the measured temperature in a
+predefined temperature range. If the temperature goes out of range, fan
+is driven slower/faster to reach the predefined range again.
+
+The mode works for fan1-fan5.
+
+sysfs attributes
+----------------
+
+pwm[1-5] - this file stores PWM duty cycle or DC value (fan speed) in range:
+	   0 (lowest speed) to 255 (full)
+
+pwm[1-5]_enable - this file controls mode of fan/temperature control:
+	* 0 Fan control disabled (fans set to maximum speed)
+	* 1 Manual mode, write to pwm[0-5] any value 0-255
+	* 2 "Thermal Cruise" mode
+	* 3 "Fan Speed Cruise" mode
+	* 4 "Smart Fan III" mode (NCT6775F only)
+	* 5 "Smart Fan IV" mode
+
+pwm[1-5]_mode - controls if output is PWM or DC level
+        * 0 DC output
+        * 1 PWM output
+
+Common fan control attributes
+-----------------------------
+
+pwm[1-5]_temp_sel	Temperature source. Value is temperature sensor index.
+			For example, select '1' for temp1_input.
+pwm[1-5]_weight_temp_sel
+			Secondary temperature source. Value is temperature
+			sensor index. For example, select '1' for temp1_input.
+			Set to 0 to disable secondary temperature control.
+
+If secondary temperature functionality is enabled, it is controlled with the
+following attributes.
+
+pwm[1-5]_weight_duty_step
+			Duty step size.
+pwm[1-5]_weight_temp_step
+			Temperature step size. With each step over
+			temp_step_base, the value of weight_duty_step is added
+			to the current pwm value.
+pwm[1-5]_weight_temp_step_base
+			Temperature at which secondary temperature control kicks
+			in.
+pwm[1-5]_weight_temp_step_tol
+			Temperature step tolerance.
+
+Thermal Cruise mode (2)
+-----------------------
+
+If the temperature is in the range defined by:
+
+pwm[1-5]_target_temp	Target temperature, unit millidegree Celsius
+			(range 0 - 127000)
+pwm[1-5]_temp_tolerance
+			Target temperature tolerance, unit millidegree Celsius
+
+there are no changes to fan speed. Once the temperature leaves the interval, fan
+speed increases (if temperature is higher that desired) or decreases (if
+temperature is lower than desired), using the following limits and time
+intervals.
+
+pwm[1-5]_start		fan pwm start value (range 1 - 255), to start fan
+			when the temperature is above defined range.
+pwm[1-5]_floor		lowest fan pwm (range 0 - 255) if temperature is below
+			the defined range. If set to 0, the fan is expected to
+			stop if the temperature is below the defined range.
+pwm[1-5]_step_up_time	milliseconds before fan speed is increased
+pwm[1-5]_step_down_time	milliseconds before fan speed is decreased
+pwm[1-5]_stop_time	how many milliseconds must elapse to switch
+			corresponding fan off (when the temperature was below
+			defined range).
+
+Speed Cruise mode (3)
+---------------------
+
+This modes tries to keep the fan speed constant.
+
+fan[1-5]_target		Target fan speed
+fan[1-5]_tolerance
+			Target speed tolerance
+
+
+Untested; use at your own risk.
+
+Smart Fan IV mode (5)
+---------------------
+
+This mode offers multiple slopes to control the fan speed. The slopes can be
+controlled by setting the pwm and temperature attributes. When the temperature
+rises, the chip will calculate the DC/PWM output based on the current slope.
+There are up to seven data points depending on the chip type. Subsequent data
+points should be set to higher temperatures and higher pwm values to achieve
+higher fan speeds with increasing temperature. The last data point reflects
+critical temperature mode, in which the fans should run at full speed.
+
+pwm[1-5]_auto_point[1-7]_pwm
+			pwm value to be set if temperature reaches matching
+			temperature range.
+pwm[1-5]_auto_point[1-7]_temp
+			Temperature over which the matching pwm is enabled.
+pwm[1-5]_temp_tolerance
+			Temperature tolerance, unit millidegree Celsius
+pwm[1-5]_crit_temp_tolerance
+			Temperature tolerance for critical temperature,
+			unit millidegree Celsius
+
+pwm[1-5]_step_up_time	milliseconds before fan speed is increased
+pwm[1-5]_step_down_time	milliseconds before fan speed is decreased
+
+Usage Notes
+-----------
+
+On various ASUS boards with NCT6776F, it appears that CPUTIN is not really
+connected to anything and floats, or that it is connected to some non-standard
+temperature measurement device. As a result, the temperature reported on CPUTIN
+will not reflect a usable value. It often reports unreasonably high
+temperatures, and in some cases the reported temperature declines if the actual
+temperature increases (similar to the raw PECI temperature value - see PECI
+specification for details). CPUTIN should therefore be be ignored on ASUS
+boards. The CPU temperature on ASUS boards is reported from PECI 0.

+ 1 - 1
Documentation/hwmon/pmbus

@@ -34,7 +34,7 @@ Supported chips:
     Addresses scanned: -
     Datasheet: n.a.
 
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
 
 
 Description

+ 1 - 1
Documentation/hwmon/sht15

@@ -40,7 +40,7 @@ bits for humidity, or 12 bits for temperature and 8 bits for humidity.
 The humidity calibration coefficients are programmed into an OTP memory on the
 chip. These coefficients are used to internally calibrate the signals from the
 sensors. Disabling the reload of those coefficients allows saving 10ms for each
-measurement and decrease power consumption, while loosing on precision.
+measurement and decrease power consumption, while losing on precision.
 
 Some options may be set directly in the sht15_platform_data structure
 or via sysfs attributes.

+ 1 - 1
Documentation/hwmon/smm665

@@ -29,7 +29,7 @@ Supported chips:
       http://www.summitmicro.com/prod_select/summary/SMM766/SMM766_2086.pdf
       http://www.summitmicro.com/prod_select/summary/SMM766B/SMM766B_2122.pdf
 
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
 
 
 Module Parameters

+ 18 - 7
Documentation/hwmon/tmp401

@@ -8,8 +8,16 @@ Supported chips:
     Datasheet: http://focus.ti.com/docs/prod/folders/print/tmp401.html
   * Texas Instruments TMP411
     Prefix: 'tmp411'
-    Addresses scanned: I2C 0x4c
+    Addresses scanned: I2C 0x4c, 0x4d, 0x4e
     Datasheet: http://focus.ti.com/docs/prod/folders/print/tmp411.html
+  * Texas Instruments TMP431
+    Prefix: 'tmp431'
+    Addresses scanned: I2C 0x4c, 0x4d
+    Datasheet: http://focus.ti.com/docs/prod/folders/print/tmp431.html
+  * Texas Instruments TMP432
+    Prefix: 'tmp432'
+    Addresses scanned: I2C 0x4c, 0x4d
+    Datasheet: http://focus.ti.com/docs/prod/folders/print/tmp432.html
 
 Authors:
          Hans de Goede <hdegoede@redhat.com>
@@ -18,19 +26,19 @@ Authors:
 Description
 -----------
 
-This driver implements support for Texas Instruments TMP401 and
-TMP411 chips. These chips implements one remote and one local
-temperature sensor. Temperature is measured in degrees
+This driver implements support for Texas Instruments TMP401, TMP411,
+TMP431, and TMP432 chips. These chips implement one or two remote and
+one local temperature sensors. Temperature is measured in degrees
 Celsius. Resolution of the remote sensor is 0.0625 degree. Local
 sensor resolution can be set to 0.5, 0.25, 0.125 or 0.0625 degree (not
 supported by the driver so far, so using the default resolution of 0.5
 degree).
 
 The driver provides the common sysfs-interface for temperatures (see
-/Documentation/hwmon/sysfs-interface under Temperatures).
+Documentation/hwmon/sysfs-interface under Temperatures).
 
-The TMP411 chip is compatible with TMP401. It provides some additional
-features.
+The TMP411 and TMP431 chips are compatible with TMP401. TMP411 provides
+some additional features.
 
 * Minimum and Maximum temperature measured since power-on, chip-reset
 
@@ -40,3 +48,6 @@ features.
 
   Exported via sysfs attribute temp_reset_history. Writing 1 to this
   file triggers a reset.
+
+TMP432 is compatible with TMP401 and TMP431. It supports two external
+temperature sensors.

+ 1 - 1
Documentation/hwmon/ucd9000

@@ -11,7 +11,7 @@ Supported chips:
 	http://focus.ti.com/lit/ds/symlink/ucd9090.pdf
 	http://focus.ti.com/lit/ds/symlink/ucd90910.pdf
 
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
 
 
 Description

+ 1 - 1
Documentation/hwmon/ucd9200

@@ -15,7 +15,7 @@ Supported chips:
 	http://focus.ti.com/lit/ds/symlink/ucd9246.pdf
 	http://focus.ti.com/lit/ds/symlink/ucd9248.pdf
 
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
 
 
 Description

+ 2 - 2
Documentation/hwmon/zl6100

@@ -54,7 +54,7 @@ http://archive.ericsson.net/service/internet/picov/get?DocNo=28701-EN/LZT146401
 http://archive.ericsson.net/service/internet/picov/get?DocNo=28701-EN/LZT146256
 
 
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
 
 
 Description
@@ -125,7 +125,7 @@ in2_label		"vmon"
 in2_input		Measured voltage on VMON (ZL2004) or VDRV (ZL9101M,
 			ZL9117M) pin. Reported voltage is 16x the voltage on the
 			pin (adjusted internally by the chip).
-in2_lcrit		Critical minumum VMON/VDRV Voltage.
+in2_lcrit		Critical minimum VMON/VDRV Voltage.
 in2_crit		Critical maximum VMON/VDRV voltage.
 in2_lcrit_alarm		VMON/VDRV voltage critical low alarm.
 in2_crit_alarm		VMON/VDRV voltage critical high alarm.

+ 1 - 1
Documentation/i2c/busses/i2c-diolan-u2c

@@ -5,7 +5,7 @@ Supported adapters:
     Documentation:
 	http://www.diolan.com/i2c/u2c12.html
 
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
 
 Description
 -----------

+ 1 - 1
Documentation/ia64/err_inject.txt

@@ -882,7 +882,7 @@ int err_inj()
 			cpu=parameters[i].cpu;
 			k = cpu%64;
 			j = cpu/64;
-			mask[j]=1<<k;
+			mask[j] = 1UL << k;
 
 			if (sched_setaffinity(0, MASK_SIZE*8, mask)==-1) {
 				perror("Error sched_setaffinity:");

+ 60 - 7
Documentation/input/alps.txt

@@ -3,10 +3,26 @@ ALPS Touchpad Protocol
 
 Introduction
 ------------
-
-Currently the ALPS touchpad driver supports four protocol versions in use by
-ALPS touchpads, called versions 1, 2, 3, and 4. Information about the various
-protocol versions is contained in the following sections.
+Currently the ALPS touchpad driver supports five protocol versions in use by
+ALPS touchpads, called versions 1, 2, 3, 4 and 5.
+
+Since roughly mid-2010 several new ALPS touchpads have been released and
+integrated into a variety of laptops and netbooks.  These new touchpads
+have enough behavior differences that the alps_model_data definition
+table, describing the properties of the different versions, is no longer
+adequate.  The design choices were to re-define the alps_model_data
+table, with the risk of regression testing existing devices, or isolate
+the new devices outside of the alps_model_data table.  The latter design
+choice was made.  The new touchpad signatures are named: "Rushmore",
+"Pinnacle", and "Dolphin", which you will see in the alps.c code.
+For the purposes of this document, this group of ALPS touchpads will
+generically be called "new ALPS touchpads".
+
+We experimented with probing the ACPI interface _HID (Hardware ID)/_CID
+(Compatibility ID) definition as a way to uniquely identify the
+different ALPS variants but there did not appear to be a 1:1 mapping.
+In fact, it appeared to be an m:n mapping between the _HID and actual
+hardware type.
 
 Detection
 ---------
@@ -20,9 +36,13 @@ If the E6 report is successful, the touchpad model is identified using the "E7
 report" sequence: E8-E7-E7-E7-E9. The response is the model signature and is
 matched against known models in the alps_model_data_array.
 
-With protocol versions 3 and 4, the E7 report model signature is always
-73-02-64. To differentiate between these versions, the response from the
-"Enter Command Mode" sequence must be inspected as described below.
+For older touchpads supporting protocol versions 3 and 4, the E7 report
+model signature is always 73-02-64. To differentiate between these
+versions, the response from the "Enter Command Mode" sequence must be
+inspected as described below.
+
+The new ALPS touchpads have an E7 signature of 73-03-50 or 73-03-0A but
+seem to be better differentiated by the EC Command Mode response.
 
 Command Mode
 ------------
@@ -47,6 +67,14 @@ address of the register being read, and the third contains the value of the
 register. Registers are written by writing the value one nibble at a time
 using the same encoding used for addresses.
 
+For the new ALPS touchpads, the EC command is used to enter command
+mode. The response in the new ALPS touchpads is significantly different,
+and more important in determining the behavior.  This code has been
+separated from the original alps_model_data table and put in the
+alps_identify function.  For example, there seem to be two hardware init
+sequences for the "Dolphin" touchpads as determined by the second byte
+of the EC response.
+
 Packet Format
 -------------
 
@@ -187,3 +215,28 @@ There are several things worth noting here.
     well.
 
 So far no v4 devices with tracksticks have been encountered.
+
+ALPS Absolute Mode - Protocol Version 5
+---------------------------------------
+This is basically Protocol Version 3 but with different logic for packet
+decode.  It uses the same alps_process_touchpad_packet_v3 call with a
+specialized decode_fields function pointer to correctly interpret the
+packets.  This appears to only be used by the Dolphin devices.
+
+For single-touch, the 6-byte packet format is:
+
+ byte 0:    1    1    0    0    1    0    0    0
+ byte 1:    0   x6   x5   x4   x3   x2   x1   x0
+ byte 2:    0   y6   y5   y4   y3   y2   y1   y0
+ byte 3:    0    M    R    L    1    m    r    l
+ byte 4:   y10  y9   y8   y7  x10   x9   x8   x7
+ byte 5:    0   z6   z5   z4   z3   z2   z1   z0
+
+For mt, the format is:
+
+ byte 0:    1    1    1    n3   1   n2   n1   x24
+ byte 1:    1   y7   y6    y5  y4   y3   y2    y1
+ byte 2:    ?   x2   x1   y12 y11  y10   y9    y8
+ byte 3:    0  x23  x22   x21 x20  x19  x18   x17
+ byte 4:    0   x9   x8    x7  x6   x5   x4    x3
+ byte 5:    0  x16  x15   x14 x13  x12  x11   x10

+ 1 - 0
Documentation/ioctl/ioctl-number.txt

@@ -131,6 +131,7 @@ Code  Seq#(hex)	Include File		Comments
 'H'	40-4F	sound/hdspm.h		conflict!
 'H'	40-4F	sound/hdsp.h		conflict!
 'H'	90	sound/usb/usx2y/usb_stream.h
+'H'	A0	uapi/linux/usb/cdc-wdm.h
 'H'	C0-F0	net/bluetooth/hci.h	conflict!
 'H'	C0-DF	net/bluetooth/hidp/hidp.h	conflict!
 'H'	C0-DF	net/bluetooth/cmtp/cmtp.h	conflict!

+ 1 - 0
Documentation/kdump/kdump.txt

@@ -297,6 +297,7 @@ Boot into System Kernel
    On ia64, 256M@256M is a generous value that typically works.
    The region may be automatically placed on ia64, see the
    dump-capture kernel config option notes above.
+   If use sparse memory, the size should be rounded to GRANULE boundaries.
 
    On s390x, typically use "crashkernel=xxM". The value of xx is dependent
    on the memory consumption of the kdump system. In general this is not

+ 74 - 14
Documentation/kernel-parameters.txt

@@ -44,6 +44,7 @@ parameter is applicable:
 	AVR32	AVR32 architecture is enabled.
 	AX25	Appropriate AX.25 support is enabled.
 	BLACKFIN Blackfin architecture is enabled.
+	CLK	Common clock infrastructure is enabled.
 	DRM	Direct Rendering Management support is enabled.
 	DYNAMIC_DEBUG Build in debug messages and enable them at runtime
 	EDD	BIOS Enhanced Disk Drive Services (EDD) is enabled
@@ -320,6 +321,13 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 			on: enable for both 32- and 64-bit processes
 			off: disable for both 32- and 64-bit processes
 
+	alloc_snapshot	[FTRACE]
+			Allocate the ftrace snapshot buffer on boot up when the
+			main buffer is allocated. This is handy if debugging
+			and you need to use tracing_snapshot() on boot up, and
+			do not want to use tracing_snapshot_alloc() as it needs
+			to be done where GFP_KERNEL allocations are allowed.
+
 	amd_iommu=	[HW,X86-64]
 			Pass parameters to the AMD IOMMU driver in the system.
 			Possible values are:
@@ -465,6 +473,13 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 
 	cio_ignore=	[S390]
 			See Documentation/s390/CommonIO for details.
+	clk_ignore_unused
+			[CLK]
+			Keep all clocks already enabled by bootloader on,
+			even if no driver has claimed them. This is useful
+			for debug and development, but should not be
+			needed on a platform with proper driver support.
+			For more information, see Documentation/clk.txt.
 
 	clock=		[BUGS=X86-32, HW] gettimeofday clocksource override.
 			[Deprecated]
@@ -596,9 +611,6 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 			is selected automatically. Check
 			Documentation/kdump/kdump.txt for further details.
 
-	crashkernel_low=size[KMG]
-			[KNL, x86] parts under 4G.
-
 	crashkernel=range1:size1[,range2:size2,...][@offset]
 			[KNL] Same as above, but depends on the memory
 			in the running system. The syntax of range is
@@ -606,6 +618,26 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 			a memory unit (amount[KMG]). See also
 			Documentation/kdump/kdump.txt for an example.
 
+	crashkernel=size[KMG],high
+			[KNL, x86_64] range could be above 4G. Allow kernel
+			to allocate physical memory region from top, so could
+			be above 4G if system have more than 4G ram installed.
+			Otherwise memory region will be allocated below 4G, if
+			available.
+			It will be ignored if crashkernel=X is specified.
+	crashkernel=size[KMG],low
+			[KNL, x86_64] range under 4G. When crashkernel=X,high
+			is passed, kernel could allocate physical memory region
+			above 4G, that cause second kernel crash on system
+			that require some amount of low memory, e.g. swiotlb
+			requires at least 64M+32K low memory.  Kernel would
+			try to allocate 72M below 4G automatically.
+			This one let user to specify own low range under 4G
+			for second kernel instead.
+			0: to disable low allocation.
+			It will be ignored when crashkernel=X,high is not used
+			or memory reserved is below 4G.
+
 	cs89x0_dma=	[HW,NET]
 			Format: <dma>
 
@@ -788,6 +820,12 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 	edd=		[EDD]
 			Format: {"off" | "on" | "skip[mbr]"}
 
+	efi_no_storage_paranoia [EFI; X86]
+			Using this parameter you can use more than 50% of
+			your efi variable storage. Use this parameter only if
+			you are really sure that your UEFI does sane gc and
+			fulfills the spec otherwise your board may brick.
+
 	eisa_irq_edge=	[PARISC,HW]
 			See header of drivers/parisc/eisa.c.
 
@@ -2469,9 +2507,12 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 			In kernels built with CONFIG_RCU_NOCB_CPU=y, set
 			the specified list of CPUs to be no-callback CPUs.
 			Invocation of these CPUs' RCU callbacks will
-			be offloaded to "rcuoN" kthreads created for
-			that purpose.  This reduces OS jitter on the
+			be offloaded to "rcuox/N" kthreads created for
+			that purpose, where "x" is "b" for RCU-bh, "p"
+			for RCU-preempt, and "s" for RCU-sched, and "N"
+			is the CPU number.  This reduces OS jitter on the
 			offloaded CPUs, which can be useful for HPC and
+
 			real-time workloads.  It can also improve energy
 			efficiency for asymmetric multiprocessors.
 
@@ -2495,6 +2536,17 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 			leaf rcu_node structure.  Useful for very large
 			systems.
 
+	rcutree.jiffies_till_first_fqs= [KNL,BOOT]
+			Set delay from grace-period initialization to
+			first attempt to force quiescent states.
+			Units are jiffies, minimum value is zero,
+			and maximum value is HZ.
+
+	rcutree.jiffies_till_next_fqs= [KNL,BOOT]
+			Set delay between subsequent attempts to force
+			quiescent states.  Units are jiffies, minimum
+			value is one, and maximum value is HZ.
+
 	rcutree.qhimark=	[KNL,BOOT]
 			Set threshold of queued
 			RCU callbacks over which batch limiting is disabled.
@@ -2509,16 +2561,15 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 	rcutree.rcu_cpu_stall_timeout= [KNL,BOOT]
 			Set timeout for RCU CPU stall warning messages.
 
-	rcutree.jiffies_till_first_fqs= [KNL,BOOT]
-			Set delay from grace-period initialization to
-			first attempt to force quiescent states.
-			Units are jiffies, minimum value is zero,
-			and maximum value is HZ.
+	rcutree.rcu_idle_gp_delay=	[KNL,BOOT]
+			Set wakeup interval for idle CPUs that have
+			RCU callbacks (RCU_FAST_NO_HZ=y).
 
-	rcutree.jiffies_till_next_fqs= [KNL,BOOT]
-			Set delay between subsequent attempts to force
-			quiescent states.  Units are jiffies, minimum
-			value is one, and maximum value is HZ.
+	rcutree.rcu_idle_lazy_gp_delay=	[KNL,BOOT]
+			Set wakeup interval for idle CPUs that have
+			only "lazy" RCU callbacks (RCU_FAST_NO_HZ=y).
+			Lazy RCU callbacks are those which RCU can
+			prove do nothing more than free memory.
 
 	rcutorture.fqs_duration= [KNL,BOOT]
 			Set duration of force_quiescent_state bursts.
@@ -3230,6 +3281,15 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
 			or other driver-specific files in the
 			Documentation/watchdog/ directory.
 
+	workqueue.disable_numa
+			By default, all work items queued to unbound
+			workqueues are affine to the NUMA nodes they're
+			issued on, which results in better behavior in
+			general.  If NUMA affinity needs to be disabled for
+			whatever reason, this option can be used.  Note
+			that this also can be controlled per-workqueue for
+			workqueues visible under /sys/bus/workqueue/.
+
 	x2apic_phys	[X86-64,APIC] Use x2apic physical mode instead of
 			default x2apic cluster mode on platforms
 			supporting x2apic.

+ 138 - 0
Documentation/misc-devices/mei/mei-client-bus.txt

@@ -0,0 +1,138 @@
+Intel(R) Management Engine (ME) Client bus API
+===============================================
+
+
+Rationale
+=========
+MEI misc character device is useful for dedicated applications to send and receive
+data to the many FW appliance found in Intel's ME from the user space.
+However for some of the ME functionalities it make sense to leverage existing software
+stack and expose them through existing kernel subsystems.
+
+In order to plug seamlessly into the kernel device driver model we add kernel virtual
+bus abstraction on top of the MEI driver. This allows implementing linux kernel drivers
+for the various MEI features as a stand alone entities found in their respective subsystem.
+Existing device drivers can even potentially be re-used by adding an MEI CL bus layer to
+the existing code.
+
+
+MEI CL bus API
+===========
+A driver implementation for an MEI Client is very similar to existing bus
+based device drivers. The driver registers itself as an MEI CL bus driver through
+the mei_cl_driver structure:
+
+struct mei_cl_driver {
+	struct device_driver driver;
+	const char *name;
+
+	const struct mei_cl_device_id *id_table;
+
+	int (*probe)(struct mei_cl_device *dev, const struct mei_cl_id *id);
+	int (*remove)(struct mei_cl_device *dev);
+};
+
+struct mei_cl_id {
+	char name[MEI_NAME_SIZE];
+	kernel_ulong_t driver_info;
+};
+
+The mei_cl_id structure allows the driver to bind itself against a device name.
+
+To actually register a driver on the ME Client bus one must call the mei_cl_add_driver()
+API. This is typically called at module init time.
+
+Once registered on the ME Client bus, a driver will typically try to do some I/O on
+this bus and this should be done through the mei_cl_send() and mei_cl_recv()
+routines. The latter is synchronous (blocks and sleeps until data shows up).
+In order for drivers to be notified of pending events waiting for them (e.g.
+an Rx event) they can register an event handler through the
+mei_cl_register_event_cb() routine. Currently only the MEI_EVENT_RX event
+will trigger an event handler call and the driver implementation is supposed
+to call mei_recv() from the event handler in order to fetch the pending
+received buffers.
+
+
+Example
+=======
+As a theoretical example let's pretend the ME comes with a "contact" NFC IP.
+The driver init and exit routines for this device would look like:
+
+#define CONTACT_DRIVER_NAME "contact"
+
+static struct mei_cl_device_id contact_mei_cl_tbl[] = {
+	{ CONTACT_DRIVER_NAME, },
+
+	/* required last entry */
+	{ }
+};
+MODULE_DEVICE_TABLE(mei_cl, contact_mei_cl_tbl);
+
+static struct mei_cl_driver contact_driver = {
+       .id_table = contact_mei_tbl,
+       .name = CONTACT_DRIVER_NAME,
+
+       .probe = contact_probe,
+       .remove = contact_remove,
+};
+
+static int contact_init(void)
+{
+	int r;
+
+	r = mei_cl_driver_register(&contact_driver);
+	if (r) {
+		pr_err(CONTACT_DRIVER_NAME ": driver registration failed\n");
+		return r;
+	}
+
+	return 0;
+}
+
+static void __exit contact_exit(void)
+{
+	mei_cl_driver_unregister(&contact_driver);
+}
+
+module_init(contact_init);
+module_exit(contact_exit);
+
+And the driver's simplified probe routine would look like that:
+
+int contact_probe(struct mei_cl_device *dev, struct mei_cl_device_id *id)
+{
+	struct contact_driver *contact;
+
+	[...]
+	mei_cl_enable_device(dev);
+
+	mei_cl_register_event_cb(dev, contact_event_cb, contact);
+
+	return 0;
+ }
+
+In the probe routine the driver first enable the MEI device and then registers
+an ME bus event handler which is as close as it can get to registering a
+threaded IRQ handler.
+The handler implementation will typically call some I/O routine depending on
+the pending events:
+
+#define MAX_NFC_PAYLOAD 128
+
+static void contact_event_cb(struct mei_cl_device *dev, u32 events,
+			     void *context)
+{
+	struct contact_driver *contact = context;
+
+	if (events & BIT(MEI_EVENT_RX)) {
+		u8 payload[MAX_NFC_PAYLOAD];
+		int payload_size;
+
+		payload_size = mei_recv(dev, payload, MAX_NFC_PAYLOAD);
+		if (payload_size <= 0)
+			return;
+
+		/* Hook to the NFC subsystem */
+		nfc_hci_recv_frame(contact->hdev, payload, payload_size);
+	}
+}

+ 7 - 0
Documentation/networking/ipvs-sysctl.txt

@@ -15,6 +15,13 @@ amemthresh - INTEGER
         enabled and the variable is automatically set to 2, otherwise
         the strategy is disabled and the variable is  set  to 1.
 
+backup_only - BOOLEAN
+	0 - disabled (default)
+	not 0 - enabled
+
+	If set, disable the director function while the server is
+	in backup mode to avoid packet loops for DR/TUN methods.
+
 conntrack - BOOLEAN
 	0 - disabled (default)
 	not 0 - enabled

+ 77 - 0
Documentation/networking/tuntap.txt

@@ -105,6 +105,83 @@ Copyright (C) 1999-2000 Maxim Krasnyansky <max_mk@yahoo.com>
      Proto [2 bytes]
      Raw protocol(IP, IPv6, etc) frame.
 
+  3.3 Multiqueue tuntap interface:
+
+  From version 3.8, Linux supports multiqueue tuntap which can uses multiple
+  file descriptors (queues) to parallelize packets sending or receiving. The
+  device allocation is the same as before, and if user wants to create multiple
+  queues, TUNSETIFF with the same device name must be called many times with
+  IFF_MULTI_QUEUE flag.
+
+  char *dev should be the name of the device, queues is the number of queues to
+  be created, fds is used to store and return the file descriptors (queues)
+  created to the caller. Each file descriptor were served as the interface of a
+  queue which could be accessed by userspace.
+
+  #include <linux/if.h>
+  #include <linux/if_tun.h>
+
+  int tun_alloc_mq(char *dev, int queues, int *fds)
+  {
+      struct ifreq ifr;
+      int fd, err, i;
+
+      if (!dev)
+          return -1;
+
+      memset(&ifr, 0, sizeof(ifr));
+      /* Flags: IFF_TUN   - TUN device (no Ethernet headers)
+       *        IFF_TAP   - TAP device
+       *
+       *        IFF_NO_PI - Do not provide packet information
+       *        IFF_MULTI_QUEUE - Create a queue of multiqueue device
+       */
+      ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_MULTI_QUEUE;
+      strcpy(ifr.ifr_name, dev);
+
+      for (i = 0; i < queues; i++) {
+          if ((fd = open("/dev/net/tun", O_RDWR)) < 0)
+             goto err;
+          err = ioctl(fd, TUNSETIFF, (void *)&ifr);
+          if (err) {
+             close(fd);
+             goto err;
+          }
+          fds[i] = fd;
+      }
+
+      return 0;
+  err:
+      for (--i; i >= 0; i--)
+          close(fds[i]);
+      return err;
+  }
+
+  A new ioctl(TUNSETQUEUE) were introduced to enable or disable a queue. When
+  calling it with IFF_DETACH_QUEUE flag, the queue were disabled. And when
+  calling it with IFF_ATTACH_QUEUE flag, the queue were enabled. The queue were
+  enabled by default after it was created through TUNSETIFF.
+
+  fd is the file descriptor (queue) that we want to enable or disable, when
+  enable is true we enable it, otherwise we disable it
+
+  #include <linux/if.h>
+  #include <linux/if_tun.h>
+
+  int tun_set_queue(int fd, int enable)
+  {
+      struct ifreq ifr;
+
+      memset(&ifr, 0, sizeof(ifr));
+
+      if (enable)
+         ifr.ifr_flags = IFF_ATTACH_QUEUE;
+      else
+         ifr.ifr_flags = IFF_DETACH_QUEUE;
+
+      return ioctl(fd, TUNSETQUEUE, (void *)&ifr);
+  }
+
 Universal TUN/TAP device driver Frequently Asked Question.
    
 1. What platforms are supported by TUN/TAP driver ?

+ 112 - 0
Documentation/pinctrl.txt

@@ -736,6 +736,13 @@ All the above functions are mandatory to implement for a pinmux driver.
 Pin control interaction with the GPIO subsystem
 ===============================================
 
+Note that the following implies that the use case is to use a certain pin
+from the Linux kernel using the API in <linux/gpio.h> with gpio_request()
+and similar functions. There are cases where you may be using something
+that your datasheet calls "GPIO mode" but actually is just an electrical
+configuration for a certain device. See the section below named
+"GPIO mode pitfalls" for more details on this scenario.
+
 The public pinmux API contains two functions named pinctrl_request_gpio()
 and pinctrl_free_gpio(). These two functions shall *ONLY* be called from
 gpiolib-based drivers as part of their gpio_request() and
@@ -774,6 +781,111 @@ obtain the function "gpioN" where "N" is the global GPIO pin number if no
 special GPIO-handler is registered.
 
 
+GPIO mode pitfalls
+==================
+
+Sometime the developer may be confused by a datasheet talking about a pin
+being possible to set into "GPIO mode". It appears that what hardware
+engineers mean with "GPIO mode" is not necessarily the use case that is
+implied in the kernel interface <linux/gpio.h>: a pin that you grab from
+kernel code and then either listen for input or drive high/low to
+assert/deassert some external line.
+
+Rather hardware engineers think that "GPIO mode" means that you can
+software-control a few electrical properties of the pin that you would
+not be able to control if the pin was in some other mode, such as muxed in
+for a device.
+
+Example: a pin is usually muxed in to be used as a UART TX line. But during
+system sleep, we need to put this pin into "GPIO mode" and ground it.
+
+If you make a 1-to-1 map to the GPIO subsystem for this pin, you may start
+to think that you need to come up with something real complex, that the
+pin shall be used for UART TX and GPIO at the same time, that you will grab
+a pin control handle and set it to a certain state to enable UART TX to be
+muxed in, then twist it over to GPIO mode and use gpio_direction_output()
+to drive it low during sleep, then mux it over to UART TX again when you
+wake up and maybe even gpio_request/gpio_free as part of this cycle. This
+all gets very complicated.
+
+The solution is to not think that what the datasheet calls "GPIO mode"
+has to be handled by the <linux/gpio.h> interface. Instead view this as
+a certain pin config setting. Look in e.g. <linux/pinctrl/pinconf-generic.h>
+and you find this in the documentation:
+
+  PIN_CONFIG_OUTPUT: this will configure the pin in output, use argument
+     1 to indicate high level, argument 0 to indicate low level.
+
+So it is perfectly possible to push a pin into "GPIO mode" and drive the
+line low as part of the usual pin control map. So for example your UART
+driver may look like this:
+
+#include <linux/pinctrl/consumer.h>
+
+struct pinctrl          *pinctrl;
+struct pinctrl_state    *pins_default;
+struct pinctrl_state    *pins_sleep;
+
+pins_default = pinctrl_lookup_state(uap->pinctrl, PINCTRL_STATE_DEFAULT);
+pins_sleep = pinctrl_lookup_state(uap->pinctrl, PINCTRL_STATE_SLEEP);
+
+/* Normal mode */
+retval = pinctrl_select_state(pinctrl, pins_default);
+/* Sleep mode */
+retval = pinctrl_select_state(pinctrl, pins_sleep);
+
+And your machine configuration may look like this:
+--------------------------------------------------
+
+static unsigned long uart_default_mode[] = {
+    PIN_CONF_PACKED(PIN_CONFIG_DRIVE_PUSH_PULL, 0),
+};
+
+static unsigned long uart_sleep_mode[] = {
+    PIN_CONF_PACKED(PIN_CONFIG_OUTPUT, 0),
+};
+
+static struct pinctrl_map __initdata pinmap[] = {
+    PIN_MAP_MUX_GROUP("uart", PINCTRL_STATE_DEFAULT, "pinctrl-foo",
+                      "u0_group", "u0"),
+    PIN_MAP_CONFIGS_PIN("uart", PINCTRL_STATE_DEFAULT, "pinctrl-foo",
+                        "UART_TX_PIN", uart_default_mode),
+    PIN_MAP_MUX_GROUP("uart", PINCTRL_STATE_SLEEP, "pinctrl-foo",
+                      "u0_group", "gpio-mode"),
+    PIN_MAP_CONFIGS_PIN("uart", PINCTRL_STATE_SLEEP, "pinctrl-foo",
+                        "UART_TX_PIN", uart_sleep_mode),
+};
+
+foo_init(void) {
+    pinctrl_register_mappings(pinmap, ARRAY_SIZE(pinmap));
+}
+
+Here the pins we want to control are in the "u0_group" and there is some
+function called "u0" that can be enabled on this group of pins, and then
+everything is UART business as usual. But there is also some function
+named "gpio-mode" that can be mapped onto the same pins to move them into
+GPIO mode.
+
+This will give the desired effect without any bogus interaction with the
+GPIO subsystem. It is just an electrical configuration used by that device
+when going to sleep, it might imply that the pin is set into something the
+datasheet calls "GPIO mode" but that is not the point: it is still used
+by that UART device to control the pins that pertain to that very UART
+driver, putting them into modes needed by the UART. GPIO in the Linux
+kernel sense are just some 1-bit line, and is a different use case.
+
+How the registers are poked to attain the push/pull and output low
+configuration and the muxing of the "u0" or "gpio-mode" group onto these
+pins is a question for the driver.
+
+Some datasheets will be more helpful and refer to the "GPIO mode" as
+"low power mode" rather than anything to do with GPIO. This often means
+the same thing electrically speaking, but in this latter case the
+software engineers will usually quickly identify that this is some
+specific muxing/configuration rather than anything related to the GPIO
+API.
+
+
 Board/machine configuration
 ==================================
 

+ 20 - 5
Documentation/power/opp.txt

@@ -1,6 +1,5 @@
-*=============*
-* OPP Library *
-*=============*
+Operating Performance Points (OPP) Library
+==========================================
 
 (C) 2009-2010 Nishanth Menon <nm@ti.com>, Texas Instruments Incorporated
 
@@ -16,15 +15,31 @@ Contents
 
 1. Introduction
 ===============
+1.1 What is an Operating Performance Point (OPP)?
+
 Complex SoCs of today consists of a multiple sub-modules working in conjunction.
 In an operational system executing varied use cases, not all modules in the SoC
 need to function at their highest performing frequency all the time. To
 facilitate this, sub-modules in a SoC are grouped into domains, allowing some
-domains to run at lower voltage and frequency while other domains are loaded
-more. The set of discrete tuples consisting of frequency and voltage pairs that
+domains to run at lower voltage and frequency while other domains run at
+voltage/frequency pairs that are higher.
+
+The set of discrete tuples consisting of frequency and voltage pairs that
 the device will support per domain are called Operating Performance Points or
 OPPs.
 
+As an example:
+Let us consider an MPU device which supports the following:
+{300MHz at minimum voltage of 1V}, {800MHz at minimum voltage of 1.2V},
+{1GHz at minimum voltage of 1.3V}
+
+We can represent these as three OPPs as the following {Hz, uV} tuples:
+{300000000, 1000000}
+{800000000, 1200000}
+{1000000000, 1300000}
+
+1.2 Operating Performance Points Library
+
 OPP library provides a set of helper functions to organize and query the OPP
 information. The library is located in drivers/base/power/opp.c and the header
 is located in include/linux/opp.h. OPP library can be enabled by enabling

+ 1 - 1
Documentation/printk-formats.txt

@@ -170,5 +170,5 @@ Reminder: sizeof() result is of type size_t.
 Thank you for your cooperation and attention.
 
 
-By Randy Dunlap <rdunlap@xenotime.net> and
+By Randy Dunlap <rdunlap@infradead.org> and
 Andrew Murray <amurray@mpc-data.co.uk>

+ 2 - 1
Documentation/s390/s390dbf.txt

@@ -143,7 +143,8 @@ Parameter:     id:   handle for debug log
 
 Return Value:  none 
 
-Description:   frees memory for a debug log     
+Description:   frees memory for a debug log and removes all registered debug
+	       views.
                Must not be called within an interrupt handler 
 
 ---------------------------------------------------------------------------

+ 1 - 1
Documentation/scsi/LICENSE.qla2xxx

@@ -1,4 +1,4 @@
-Copyright (c) 2003-2012 QLogic Corporation
+Copyright (c) 2003-2013 QLogic Corporation
 QLogic Linux FC-FCoE Driver
 
 This program includes a device driver for Linux 3.x.

+ 3 - 4
Documentation/sound/alsa/ALSA-Configuration.txt

@@ -890,9 +890,8 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
     enable_msi	- Enable Message Signaled Interrupt (MSI) (default = off)
     power_save	- Automatic power-saving timeout (in second, 0 =
 		disable)
-    power_save_controller - Support runtime D3 of HD-audio controller
-		(-1 = on for supported chip (default), false = off,
-		 true = force to on even for unsupported hardware)
+    power_save_controller - Reset HD-audio controller in power-saving mode
+		(default = on)
     align_buffer_size - Force rounding of buffer/period sizes to multiples
     		      of 128 bytes. This is more efficient in terms of memory
 		      access but isn't required by the HDA spec and prevents
@@ -912,7 +911,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
     models depending on the codec chip.  The list of available models
     is found in HD-Audio-Models.txt
 
-    The model name "genric" is treated as a special case.  When this
+    The model name "generic" is treated as a special case.  When this
     model is given, the driver uses the generic codec parser without
     "codec-patch".  It's sometimes good for testing and debugging.
 

+ 1 - 1
Documentation/sound/alsa/seq_oss.html

@@ -285,7 +285,7 @@ sample data.
 <H4>
 7.2.4 Close Callback</H4>
 The <TT>close</TT> callback is called when this device is closed by the
-applicaion. If any private data was allocated in open callback, it must
+application. If any private data was allocated in open callback, it must
 be released in the close callback. The deletion of ALSA port should be
 done here, too. This callback must not be NULL.
 <H4>

+ 50 - 0
Documentation/sysctl/vm.txt

@@ -18,6 +18,7 @@ files can be found in mm/swap.c.
 
 Currently, these files are in /proc/sys/vm:
 
+- admin_reserve_kbytes
 - block_dump
 - compact_memory
 - dirty_background_bytes
@@ -53,11 +54,41 @@ Currently, these files are in /proc/sys/vm:
 - percpu_pagelist_fraction
 - stat_interval
 - swappiness
+- user_reserve_kbytes
 - vfs_cache_pressure
 - zone_reclaim_mode
 
 ==============================================================
 
+admin_reserve_kbytes
+
+The amount of free memory in the system that should be reserved for users
+with the capability cap_sys_admin.
+
+admin_reserve_kbytes defaults to min(3% of free pages, 8MB)
+
+That should provide enough for the admin to log in and kill a process,
+if necessary, under the default overcommit 'guess' mode.
+
+Systems running under overcommit 'never' should increase this to account
+for the full Virtual Memory Size of programs used to recover. Otherwise,
+root may not be able to log in to recover the system.
+
+How do you calculate a minimum useful reserve?
+
+sshd or login + bash (or some other shell) + top (or ps, kill, etc.)
+
+For overcommit 'guess', we can sum resident set sizes (RSS).
+On x86_64 this is about 8MB.
+
+For overcommit 'never', we can take the max of their virtual sizes (VSZ)
+and add the sum of their RSS.
+On x86_64 this is about 128MB.
+
+Changing this takes effect whenever an application requests memory.
+
+==============================================================
+
 block_dump
 
 block_dump enables block I/O debugging when set to a nonzero value. More
@@ -542,6 +573,7 @@ memory until it actually runs out.
 
 When this flag is 2, the kernel uses a "never overcommit"
 policy that attempts to prevent any overcommit of memory.
+Note that user_reserve_kbytes affects this policy.
 
 This feature can be very useful because there are a lot of
 programs that malloc() huge amounts of memory "just-in-case"
@@ -645,6 +677,24 @@ The default value is 60.
 
 ==============================================================
 
+- user_reserve_kbytes
+
+When overcommit_memory is set to 2, "never overommit" mode, reserve
+min(3% of current process size, user_reserve_kbytes) of free memory.
+This is intended to prevent a user from starting a single memory hogging
+process, such that they cannot recover (kill the hog).
+
+user_reserve_kbytes defaults to min(3% of the current process size, 128MB).
+
+If this is reduced to zero, then the user will be allowed to allocate
+all free memory with a single process, minus admin_reserve_kbytes.
+Any subsequent attempts to execute a command will result in
+"fork: Cannot allocate memory".
+
+Changing this takes effect whenever an application requests memory.
+
+==============================================================
+
 vfs_cache_pressure
 ------------------
 

+ 205 - 0
Documentation/this_cpu_ops.txt

@@ -0,0 +1,205 @@
+this_cpu operations
+-------------------
+
+this_cpu operations are a way of optimizing access to per cpu
+variables associated with the *currently* executing processor through
+the use of segment registers (or a dedicated register where the cpu
+permanently stored the beginning of the per cpu area for a specific
+processor).
+
+The this_cpu operations add a per cpu variable offset to the processor
+specific percpu base and encode that operation in the instruction
+operating on the per cpu variable.
+
+This means there are no atomicity issues between the calculation of
+the offset and the operation on the data. Therefore it is not
+necessary to disable preempt or interrupts to ensure that the
+processor is not changed between the calculation of the address and
+the operation on the data.
+
+Read-modify-write operations are of particular interest. Frequently
+processors have special lower latency instructions that can operate
+without the typical synchronization overhead but still provide some
+sort of relaxed atomicity guarantee. The x86 for example can execute
+RMV (Read Modify Write) instructions like inc/dec/cmpxchg without the
+lock prefix and the associated latency penalty.
+
+Access to the variable without the lock prefix is not synchronized but
+synchronization is not necessary since we are dealing with per cpu
+data specific to the currently executing processor. Only the current
+processor should be accessing that variable and therefore there are no
+concurrency issues with other processors in the system.
+
+On x86 the fs: or the gs: segment registers contain the base of the
+per cpu area. It is then possible to simply use the segment override
+to relocate a per cpu relative address to the proper per cpu area for
+the processor. So the relocation to the per cpu base is encoded in the
+instruction via a segment register prefix.
+
+For example:
+
+	DEFINE_PER_CPU(int, x);
+	int z;
+
+	z = this_cpu_read(x);
+
+results in a single instruction
+
+	mov ax, gs:[x]
+
+instead of a sequence of calculation of the address and then a fetch
+from that address which occurs with the percpu operations. Before
+this_cpu_ops such sequence also required preempt disable/enable to
+prevent the kernel from moving the thread to a different processor
+while the calculation is performed.
+
+The main use of the this_cpu operations has been to optimize counter
+operations.
+
+	this_cpu_inc(x)
+
+results in the following single instruction (no lock prefix!)
+
+	inc gs:[x]
+
+instead of the following operations required if there is no segment
+register.
+
+	int *y;
+	int cpu;
+
+	cpu = get_cpu();
+	y = per_cpu_ptr(&x, cpu);
+	(*y)++;
+	put_cpu();
+
+Note that these operations can only be used on percpu data that is
+reserved for a specific processor. Without disabling preemption in the
+surrounding code this_cpu_inc() will only guarantee that one of the
+percpu counters is correctly incremented. However, there is no
+guarantee that the OS will not move the process directly before or
+after the this_cpu instruction is executed. In general this means that
+the value of the individual counters for each processor are
+meaningless. The sum of all the per cpu counters is the only value
+that is of interest.
+
+Per cpu variables are used for performance reasons. Bouncing cache
+lines can be avoided if multiple processors concurrently go through
+the same code paths.  Since each processor has its own per cpu
+variables no concurrent cacheline updates take place. The price that
+has to be paid for this optimization is the need to add up the per cpu
+counters when the value of the counter is needed.
+
+
+Special operations:
+-------------------
+
+	y = this_cpu_ptr(&x)
+
+Takes the offset of a per cpu variable (&x !) and returns the address
+of the per cpu variable that belongs to the currently executing
+processor.  this_cpu_ptr avoids multiple steps that the common
+get_cpu/put_cpu sequence requires. No processor number is
+available. Instead the offset of the local per cpu area is simply
+added to the percpu offset.
+
+
+
+Per cpu variables and offsets
+-----------------------------
+
+Per cpu variables have *offsets* to the beginning of the percpu
+area. They do not have addresses although they look like that in the
+code. Offsets cannot be directly dereferenced. The offset must be
+added to a base pointer of a percpu area of a processor in order to
+form a valid address.
+
+Therefore the use of x or &x outside of the context of per cpu
+operations is invalid and will generally be treated like a NULL
+pointer dereference.
+
+In the context of per cpu operations
+
+	x is a per cpu variable. Most this_cpu operations take a cpu
+	variable.
+
+	&x is the *offset* a per cpu variable. this_cpu_ptr() takes
+	the offset of a per cpu variable which makes this look a bit
+	strange.
+
+
+
+Operations on a field of a per cpu structure
+--------------------------------------------
+
+Let's say we have a percpu structure
+
+	struct s {
+		int n,m;
+	};
+
+	DEFINE_PER_CPU(struct s, p);
+
+
+Operations on these fields are straightforward
+
+	this_cpu_inc(p.m)
+
+	z = this_cpu_cmpxchg(p.m, 0, 1);
+
+
+If we have an offset to struct s:
+
+	struct s __percpu *ps = &p;
+
+	z = this_cpu_dec(ps->m);
+
+	z = this_cpu_inc_return(ps->n);
+
+
+The calculation of the pointer may require the use of this_cpu_ptr()
+if we do not make use of this_cpu ops later to manipulate fields:
+
+	struct s *pp;
+
+	pp = this_cpu_ptr(&p);
+
+	pp->m--;
+
+	z = pp->n++;
+
+
+Variants of this_cpu ops
+-------------------------
+
+this_cpu ops are interrupt safe. Some architecture do not support
+these per cpu local operations. In that case the operation must be
+replaced by code that disables interrupts, then does the operations
+that are guaranteed to be atomic and then reenable interrupts. Doing
+so is expensive. If there are other reasons why the scheduler cannot
+change the processor we are executing on then there is no reason to
+disable interrupts. For that purpose the __this_cpu operations are
+provided. For example.
+
+	__this_cpu_inc(x);
+
+Will increment x and will not fallback to code that disables
+interrupts on platforms that cannot accomplish atomicity through
+address relocation and a Read-Modify-Write operation in the same
+instruction.
+
+
+
+&this_cpu_ptr(pp)->n vs this_cpu_ptr(&pp->n)
+--------------------------------------------
+
+The first operation takes the offset and forms an address and then
+adds the offset of the n field.
+
+The second one first adds the two offsets and then does the
+relocation.  IMHO the second form looks cleaner and has an easier time
+with (). The second form also is consistent with the way
+this_cpu_read() and friends are used.
+
+
+Christoph Lameter, April 3rd, 2013

File diff suppressed because it is too large
+ 688 - 251
Documentation/trace/ftrace.txt


+ 67 - 47
Documentation/trace/uprobetracer.txt

@@ -1,6 +1,8 @@
-		Uprobe-tracer: Uprobe-based Event Tracing
-		=========================================
-                 Documentation written by Srikar Dronamraju
+            Uprobe-tracer: Uprobe-based Event Tracing
+            =========================================
+
+           Documentation written by Srikar Dronamraju
+
 
 Overview
 --------
@@ -13,78 +15,94 @@ current_tracer. Instead of that, add probe points via
 /sys/kernel/debug/tracing/events/uprobes/<EVENT>/enabled.
 
 However unlike kprobe-event tracer, the uprobe event interface expects the
-user to calculate the offset of the probepoint in the object
+user to calculate the offset of the probepoint in the object.
 
 Synopsis of uprobe_tracer
 -------------------------
-  p[:[GRP/]EVENT] PATH:SYMBOL[+offs] [FETCHARGS]	: Set a probe
+  p[:[GRP/]EVENT] PATH:SYMBOL[+offs] [FETCHARGS] : Set a uprobe
+  r[:[GRP/]EVENT] PATH:SYMBOL[+offs] [FETCHARGS] : Set a return uprobe (uretprobe)
+  -:[GRP/]EVENT                                  : Clear uprobe or uretprobe event
 
- GRP		: Group name. If omitted, use "uprobes" for it.
- EVENT		: Event name. If omitted, the event name is generated
-		  based on SYMBOL+offs.
- PATH		: path to an executable or a library.
- SYMBOL[+offs]	: Symbol+offset where the probe is inserted.
+  GRP           : Group name. If omitted, "uprobes" is the default value.
+  EVENT         : Event name. If omitted, the event name is generated based
+                  on SYMBOL+offs.
+  PATH          : Path to an executable or a library.
+  SYMBOL[+offs] : Symbol+offset where the probe is inserted.
 
- FETCHARGS	: Arguments. Each probe can have up to 128 args.
-  %REG		: Fetch register REG
+  FETCHARGS     : Arguments. Each probe can have up to 128 args.
+   %REG         : Fetch register REG
 
 Event Profiling
 ---------------
- You can check the total number of probe hits and probe miss-hits via
+You can check the total number of probe hits and probe miss-hits via
 /sys/kernel/debug/tracing/uprobe_profile.
- The first column is event name, the second is the number of probe hits,
+The first column is event name, the second is the number of probe hits,
 the third is the number of probe miss-hits.
 
 Usage examples
 --------------
-To add a probe as a new event, write a new definition to uprobe_events
-as below.
+ * Add a probe as a new uprobe event, write a new definition to uprobe_events
+as below: (sets a uprobe at an offset of 0x4245c0 in the executable /bin/bash)
+
+    echo 'p: /bin/bash:0x4245c0' > /sys/kernel/debug/tracing/uprobe_events
+
+ * Add a probe as a new uretprobe event:
+
+    echo 'r: /bin/bash:0x4245c0' > /sys/kernel/debug/tracing/uprobe_events
+
+ * Unset registered event:
 
-  echo 'p: /bin/bash:0x4245c0' > /sys/kernel/debug/tracing/uprobe_events
+    echo '-:bash_0x4245c0' >> /sys/kernel/debug/tracing/uprobe_events
 
- This sets a uprobe at an offset of 0x4245c0 in the executable /bin/bash
+ * Print out the events that are registered:
 
-  echo > /sys/kernel/debug/tracing/uprobe_events
+    cat /sys/kernel/debug/tracing/uprobe_events
 
- This clears all probe points.
+ * Clear all events:
 
-The following example shows how to dump the instruction pointer and %ax
-a register at the probed text address.  Here we are trying to probe
-function zfree in /bin/zsh
+    echo > /sys/kernel/debug/tracing/uprobe_events
+
+Following example shows how to dump the instruction pointer and %ax register
+at the probed text address. Probe zfree function in /bin/zsh:
 
     # cd /sys/kernel/debug/tracing/
-    # cat /proc/`pgrep  zsh`/maps | grep /bin/zsh | grep r-xp
+    # cat /proc/`pgrep zsh`/maps | grep /bin/zsh | grep r-xp
     00400000-0048a000 r-xp 00000000 08:03 130904 /bin/zsh
     # objdump -T /bin/zsh | grep -w zfree
     0000000000446420 g    DF .text  0000000000000012  Base        zfree
 
-0x46420 is the offset of zfree in object /bin/zsh that is loaded at
-0x00400000. Hence the command to probe would be :
+  0x46420 is the offset of zfree in object /bin/zsh that is loaded at
+  0x00400000. Hence the command to uprobe would be:
+
+    # echo 'p:zfree_entry /bin/zsh:0x46420 %ip %ax' > uprobe_events
+
+  And the same for the uretprobe would be:
 
-    # echo 'p /bin/zsh:0x46420 %ip %ax' > uprobe_events
+    # echo 'r:zfree_exit /bin/zsh:0x46420 %ip %ax' >> uprobe_events
 
-Please note: User has to explicitly calculate the offset of the probepoint
+Please note: User has to explicitly calculate the offset of the probe-point
 in the object. We can see the events that are registered by looking at the
 uprobe_events file.
 
     # cat uprobe_events
-    p:uprobes/p_zsh_0x46420 /bin/zsh:0x00046420 arg1=%ip arg2=%ax
+    p:uprobes/zfree_entry /bin/zsh:0x00046420 arg1=%ip arg2=%ax
+    r:uprobes/zfree_exit /bin/zsh:0x00046420 arg1=%ip arg2=%ax
 
-The format of events can be seen by viewing the file events/uprobes/p_zsh_0x46420/format
+Format of events can be seen by viewing the file events/uprobes/zfree_entry/format
 
-    # cat events/uprobes/p_zsh_0x46420/format
-    name: p_zsh_0x46420
+    # cat events/uprobes/zfree_entry/format
+    name: zfree_entry
     ID: 922
     format:
-	field:unsigned short common_type;	offset:0;	size:2;	signed:0;
-	field:unsigned char common_flags;	offset:2;	size:1;	signed:0;
-	field:unsigned char common_preempt_count;	offset:3;	size:1;	signed:0;
-	field:int common_pid;	offset:4;	size:4;	signed:1;
-	field:int common_padding;	offset:8;	size:4;	signed:1;
+         field:unsigned short common_type;         offset:0;  size:2; signed:0;
+         field:unsigned char common_flags;         offset:2;  size:1; signed:0;
+         field:unsigned char common_preempt_count; offset:3;  size:1; signed:0;
+         field:int common_pid;                     offset:4;  size:4; signed:1;
+         field:int common_padding;                 offset:8;  size:4; signed:1;
 
-	field:unsigned long __probe_ip;	offset:12;	size:4;	signed:0;
-	field:u32 arg1;	offset:16;	size:4;	signed:0;
-	field:u32 arg2;	offset:20;	size:4;	signed:0;
+         field:unsigned long __probe_ip;           offset:12; size:4; signed:0;
+         field:u32 arg1;                           offset:16; size:4; signed:0;
+         field:u32 arg2;                           offset:20; size:4; signed:0;
 
     print fmt: "(%lx) arg1=%lx arg2=%lx", REC->__probe_ip, REC->arg1, REC->arg2
 
@@ -94,6 +112,7 @@ events, you need to enable it by:
     # echo 1 > events/uprobes/enable
 
 Lets disable the event after sleeping for some time.
+
     # sleep 20
     # echo 0 > events/uprobes/enable
 
@@ -104,10 +123,11 @@ And you can see the traced information via /sys/kernel/debug/tracing/trace.
     #
     #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
     #              | |       |          |         |
-                 zsh-24842 [006] 258544.995456: p_zsh_0x46420: (0x446420) arg1=446421 arg2=79
-                 zsh-24842 [007] 258545.000270: p_zsh_0x46420: (0x446420) arg1=446421 arg2=79
-                 zsh-24842 [002] 258545.043929: p_zsh_0x46420: (0x446420) arg1=446421 arg2=79
-                 zsh-24842 [004] 258547.046129: p_zsh_0x46420: (0x446420) arg1=446421 arg2=79
-
-Each line shows us probes were triggered for a pid 24842 with ip being
-0x446421 and contents of ax register being 79.
+                 zsh-24842 [006] 258544.995456: zfree_entry: (0x446420) arg1=446420 arg2=79
+                 zsh-24842 [007] 258545.000270: zfree_exit:  (0x446540 <- 0x446420) arg1=446540 arg2=0
+                 zsh-24842 [002] 258545.043929: zfree_entry: (0x446420) arg1=446420 arg2=79
+                 zsh-24842 [004] 258547.046129: zfree_exit:  (0x446540 <- 0x446420) arg1=446540 arg2=0
+
+Output shows us uprobe was triggered for a pid 24842 with ip being 0x446420
+and contents of ax register being 79. And uretprobe was triggered with ip at
+0x446540 with counterpart function entry at 0x446420.

+ 6 - 4
Documentation/usb/power-management.txt

@@ -33,6 +33,10 @@ built with CONFIG_USB_SUSPEND enabled (which depends on
 CONFIG_PM_RUNTIME).  System PM support is present only if the kernel
 was built with CONFIG_SUSPEND or CONFIG_HIBERNATION enabled.
 
+(Starting with the 3.10 kernel release, dynamic PM support for USB is
+present whenever the kernel was built with CONFIG_PM_RUNTIME enabled.
+The CONFIG_USB_SUSPEND option has been eliminated.)
+
 
 	What is Remote Wakeup?
 	----------------------
@@ -206,10 +210,8 @@ initialized to 5.  (The idle-delay values for already existing devices
 will not be affected.)
 
 Setting the initial default idle-delay to -1 will prevent any
-autosuspend of any USB device.  This is a simple alternative to
-disabling CONFIG_USB_SUSPEND and rebuilding the kernel, and it has the
-added benefit of allowing you to enable autosuspend for selected
-devices.
+autosuspend of any USB device.  This has the benefit of allowing you
+then to enable autosuspend for selected devices.
 
 
 	Warnings

+ 7 - 1
Documentation/vm/overcommit-accounting

@@ -8,7 +8,9 @@ The Linux kernel supports the following overcommit handling modes
 		default.
 
 1	-	Always overcommit. Appropriate for some scientific
-		applications.
+		applications. Classic example is code using sparse arrays
+		and just relying on the virtual memory consisting almost
+		entirely of zero pages.
 
 2	-	Don't overcommit. The total address space commit
 		for the system is not permitted to exceed swap + a
@@ -18,6 +20,10 @@ The Linux kernel supports the following overcommit handling modes
 		pages but will receive errors on memory allocation as
 		appropriate.
 
+		Useful for applications that want to guarantee their
+		memory allocations will be available in the future
+		without having to initialize every page.
+
 The overcommit policy is set via the sysctl `vm.overcommit_memory'.
 
 The overcommit percentage is set via `vm.overcommit_ratio'.

+ 109 - 76
MAINTAINERS

@@ -90,6 +90,9 @@ Descriptions of section entries:
 	   F:	drivers/net/*	all files in drivers/net, but not below
 	   F:	*/net/*		all files in "any top level directory"/net
 	   One pattern per line.  Multiple F: lines acceptable.
+	N: Files and directories with regex patterns.
+	   N:	[^a-z]tegra	all files whose path contains the word tegra
+	   One pattern per line.  Multiple N: lines acceptable.
 	X: Files and directories that are NOT maintained, same rules as F:
 	   Files exclusions are tested before file matches.
 	   Can be useful for excluding a specific subdirectory, for instance:
@@ -97,13 +100,12 @@ Descriptions of section entries:
 	   X:	net/ipv6/
 	   matches all files in and below net excluding net/ipv6/
 	K: Keyword perl extended regex pattern to match content in a
-	   patch or file, or an affected filename.  For instance:
+	   patch or file.  For instance:
 	   K: of_get_profile
-	      matches patch or file content, or filenames, that contain
-	      "of_get_profile"
+	      matches patches or files that contain "of_get_profile"
 	   K: \b(printk|pr_(info|err))\b
-	      matches patch or file content, or filenames, that contain one or
-	      more of the words printk, pr_info or pr_err
+	      matches patches or files that contain one or more of the words
+	      printk, pr_info or pr_err
 	   One regex pattern per line.  Multiple K: lines acceptable.
 
 Note: For the hard of thinking, this list is meant to remain in alphabetical
@@ -114,12 +116,6 @@ Maintainers List (try to look for most precise areas first)
 
 		-----------------------------------
 
-3C505 NETWORK DRIVER
-M:	Philip Blundell <philb@gnu.org>
-L:	netdev@vger.kernel.org
-S:	Maintained
-F:	drivers/net/ethernet/i825xx/3c505*
-
 3C59X NETWORK DRIVER
 M:	Steffen Klassert <klassert@mathematik.tu-chemnitz.de>
 L:	netdev@vger.kernel.org
@@ -1037,6 +1033,7 @@ F:	drivers/mmc/host/msm_sdcc.h
 F:	drivers/tty/serial/msm_serial.h
 F:	drivers/tty/serial/msm_serial.c
 F:	drivers/*/pm8???-*
+F:	drivers/ssbi/
 F:	include/linux/mfd/pm8xxx/
 T:	git git://git.kernel.org/pub/scm/linux/kernel/git/davidb/linux-msm.git
 S:	Maintained
@@ -1344,12 +1341,6 @@ S:	Maintained
 F:	drivers/platform/x86/asus*.c
 F:	drivers/platform/x86/eeepc*.c
 
-ASUS ASB100 HARDWARE MONITOR DRIVER
-M:	"Mark M. Hoffman" <mhoffman@lightlink.com>
-L:	lm-sensors@lm-sensors.org
-S:	Maintained
-F:	drivers/hwmon/asb100.c
-
 ASYNCHRONOUS TRANSFERS/TRANSFORMS (IOAT) API
 M:	Dan Williams <djbw@fb.com>
 W:	http://sourceforge.net/projects/xscaleiop
@@ -1473,6 +1464,12 @@ F:	drivers/dma/at_hdmac.c
 F:	drivers/dma/at_hdmac_regs.h
 F:	include/linux/platform_data/dma-atmel.h
 
+ATMEL I2C DRIVER
+M:	Ludovic Desroches <ludovic.desroches@atmel.com>
+L:	linux-i2c@vger.kernel.org
+S:	Supported
+F:	drivers/i2c/busses/i2c-at91.c
+
 ATMEL ISI DRIVER
 M:	Josh Wu <josh.wu@atmel.com>
 L:	linux-media@vger.kernel.org
@@ -2361,12 +2358,6 @@ W:	http://www.arm.linux.org.uk/
 S:	Maintained
 F:	drivers/video/cyber2000fb.*
 
-CYCLADES 2X SYNC CARD DRIVER
-M:	Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
-W:	http://oops.ghostprotocols.net:81/blog
-S:	Maintained
-F:	drivers/net/wan/cycx*
-
 CYCLADES ASYNC MUX DRIVER
 W:	http://www.cyclades.com/
 S:	Orphan
@@ -2453,9 +2444,7 @@ S:	Maintained
 F:	drivers/platform/x86/dell-laptop.c
 
 DELL LAPTOP SMM DRIVER
-M:	Massimo Dal Zotto <dz@debian.org>
-W:	http://www.debian.org/~dz/i8k/
-S:	Maintained
+S:	Orphan
 F:	drivers/char/i8k.c
 F:	include/uapi/linux/i8k.h
 
@@ -2470,6 +2459,12 @@ M:	Matthew Garrett <mjg59@srcf.ucam.org>
 S:	Maintained
 F:	drivers/platform/x86/dell-wmi.c
 
+DESIGNWARE USB2 DRD IP DRIVER
+M:	Paul Zimmerman <paulz@synopsys.com>
+L:	linux-usb@vger.kernel.org
+S:	Maintained
+F:	drivers/staging/dwc2/
+
 DESIGNWARE USB3 DRD IP DRIVER
 M:	Felipe Balbi <balbi@ti.com>
 L:	linux-usb@vger.kernel.org
@@ -2641,7 +2636,7 @@ F:	include/uapi/drm/
 
 INTEL DRM DRIVERS (excluding Poulsbo, Moorestown and derivative chipsets)
 M:	Daniel Vetter <daniel.vetter@ffwll.ch>
-L:	intel-gfx@lists.freedesktop.org (subscribers-only)
+L:	intel-gfx@lists.freedesktop.org
 L:	dri-devel@lists.freedesktop.org
 T:	git git://people.freedesktop.org/~danvet/drm-intel
 S:	Supported
@@ -3067,12 +3062,6 @@ T:	git git://git.kernel.org/pub/scm/linux/kernel/git/kristoffer/linux-hpc.git
 F:	drivers/video/s1d13xxxfb.c
 F:	include/video/s1d13xxxfb.h
 
-ETHEREXPRESS-16 NETWORK DRIVER
-M:	Philip Blundell <philb@gnu.org>
-L:	netdev@vger.kernel.org
-S:	Maintained
-F:	drivers/net/ethernet/i825xx/eexpress.*
-
 ETHERNET BRIDGE
 M:	Stephen Hemminger <stephen@networkplumber.org>
 L:	bridge@lists.linux-foundation.org
@@ -3260,6 +3249,12 @@ F:	Documentation/firmware_class/
 F:	drivers/base/firmware*.c
 F:	include/linux/firmware.h
 
+FLASHSYSTEM DRIVER (IBM FlashSystem 70/80 PCI SSD Flash Card)
+M:	Joshua Morris <josh.h.morris@us.ibm.com>
+M:	Philip Kelleher <pjk1939@linux.vnet.ibm.com>
+S:	Maintained
+F:	drivers/block/rsxx/
+
 FLOPPY DRIVER
 M:	Jiri Kosina <jkosina@suse.cz>
 T:	git git://git.kernel.org/pub/scm/linux/kernel/git/jikos/floppy.git
@@ -3520,7 +3515,7 @@ F:	drivers/isdn/gigaset/
 F:	include/uapi/linux/gigaset_dev.h
 
 GPIO SUBSYSTEM
-M:	Grant Likely <grant.likely@secretlab.ca>
+M:	Grant Likely <grant.likely@linaro.org>
 M:	Linus Walleij <linus.walleij@linaro.org>
 S:	Maintained
 T:	git git://git.secretlab.ca/git/linux-2.6.git
@@ -3869,7 +3864,7 @@ F:	drivers/i2c/busses/i2c-ismt.c
 F:	Documentation/i2c/busses/i2c-ismt
 
 I2C/SMBUS STUB DRIVER
-M:	"Mark M. Hoffman" <mhoffman@lightlink.com>
+M:	Jean Delvare <khali@linux-fr.org>
 L:	linux-i2c@vger.kernel.org
 S:	Maintained
 F:	drivers/i2c/i2c-stub.c
@@ -4023,6 +4018,22 @@ M:	Stanislaw Gruszka <stf_xl@wp.pl>
 S:	Maintained
 F:	drivers/usb/atm/ueagle-atm.c
 
+INA209 HARDWARE MONITOR DRIVER
+M:	Guenter Roeck <linux@roeck-us.net>
+L:	lm-sensors@lm-sensors.org
+S:	Maintained
+F:	Documentation/hwmon/ina209
+F:	Documentation/devicetree/bindings/i2c/ina209.txt
+F:	drivers/hwmon/ina209.c
+
+INA2XX HARDWARE MONITOR DRIVER
+M:	Guenter Roeck <linux@roeck-us.net>
+L:	lm-sensors@lm-sensors.org
+S:	Maintained
+F:	Documentation/hwmon/ina2xx
+F:	drivers/hwmon/ina2xx.c
+F:	include/linux/platform_data/ina2xx.h
+
 INDUSTRY PACK SUBSYSTEM (IPACK)
 M:	Samuel Iglesias Gonsalvez <siglesias@igalia.com>
 M:	Jens Taprogge <jens.taprogge@taprogge.org>
@@ -4337,7 +4348,7 @@ F:	drivers/irqchip/
 
 IRQ DOMAINS (IRQ NUMBER MAPPING LIBRARY)
 M:	Benjamin Herrenschmidt <benh@kernel.crashing.org>
-M:	Grant Likely <grant.likely@secretlab.ca>
+M:	Grant Likely <grant.likely@linaro.org>
 T:	git git://git.secretlab.ca/git/linux-2.6.git irqdomain/next
 S:	Maintained
 F:	Documentation/IRQ-domain.txt
@@ -4824,11 +4835,8 @@ F:	arch/powerpc/platforms/40x/
 F:	arch/powerpc/platforms/44x/
 
 LINUX FOR POWERPC EMBEDDED XILINX VIRTEX
-M:	Grant Likely <grant.likely@secretlab.ca>
-W:	http://wiki.secretlab.ca/index.php/Linux_on_Xilinx_Virtex
 L:	linuxppc-dev@lists.ozlabs.org
-T:	git git://git.secretlab.ca/git/linux-2.6.git
-S:	Maintained
+S:	Unmaintained
 F:	arch/powerpc/*/*virtex*
 F:	arch/powerpc/*/*/*virtex*
 
@@ -4937,6 +4945,12 @@ W:	logfs.org
 S:	Maintained
 F:	fs/logfs/
 
+LPC32XX MACHINE SUPPORT
+M:	Roland Stigge <stigge@antcom.de>
+L:	linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
+S:	Maintained
+F:	arch/arm/mach-lpc32xx/
+
 LSILOGIC MPT FUSION DRIVERS (FC/SAS/SPI)
 M:	Nagalakshmi Nandigama <Nagalakshmi.Nandigama@lsi.com>
 M:	Sreekanth Reddy <Sreekanth.Reddy@lsi.com>
@@ -5061,9 +5075,8 @@ S:	Maintained
 F:	drivers/net/ethernet/marvell/sk*
 
 MARVELL LIBERTAS WIRELESS DRIVER
-M:	Dan Williams <dcbw@redhat.com>
 L:	libertas-dev@lists.infradead.org
-S:	Maintained
+S:	Orphan
 F:	drivers/net/wireless/libertas/
 
 MARVELL MV643XX ETHERNET DRIVER
@@ -5116,6 +5129,15 @@ S:	Maintained
 F:	Documentation/hwmon/max6650
 F:	drivers/hwmon/max6650.c
 
+MAX6697 HARDWARE MONITOR DRIVER
+M:	Guenter Roeck <linux@roeck-us.net>
+L:	lm-sensors@lm-sensors.org
+S:	Maintained
+F:	Documentation/hwmon/max6697
+F:	Documentation/devicetree/bindings/i2c/max6697.txt
+F:	drivers/hwmon/max6697.c
+F:	include/linux/platform_data/max6697.h
+
 MAXIRADIO FM RADIO RECEIVER DRIVER
 M:	Hans Verkuil <hverkuil@xs4all.nl>
 L:	linux-media@vger.kernel.org
@@ -5394,6 +5416,13 @@ L:	linux-scsi@vger.kernel.org
 S:	Maintained
 F:	drivers/scsi/NCR_D700.*
 
+NCT6775 HARDWARE MONITOR DRIVER
+M:	Guenter Roeck <linux@roeck-us.net>
+L:	lm-sensors@lm-sensors.org
+S:	Maintained
+F:	Documentation/hwmon/nct6775
+F:	drivers/hwmon/nct6775.c
+
 NETEFFECT IWARP RNIC DRIVER (IW_NES)
 M:	Faisal Latif <faisal.latif@intel.com>
 L:	linux-rdma@vger.kernel.org
@@ -5556,6 +5585,7 @@ F:	include/uapi/linux/if_*
 F:	include/uapi/linux/netdevice.h
 
 NETXEN (1/10) GbE SUPPORT
+M:	Manish Chopra <manish.chopra@qlogic.com>
 M:	Sony Chacko <sony.chacko@qlogic.com>
 M:	Rajesh Borundia <rajesh.borundia@qlogic.com>
 L:	netdev@vger.kernel.org
@@ -5640,6 +5670,14 @@ S:	Maintained
 F:	drivers/video/riva/
 F:	drivers/video/nvidia/
 
+NVM EXPRESS DRIVER
+M:	Matthew Wilcox <willy@linux.intel.com>
+L:	linux-nvme@lists.infradead.org
+T:	git git://git.infradead.org/users/willy/linux-nvme.git
+S:	Supported
+F:	drivers/block/nvme.c
+F:	include/linux/nvme.h
+
 OMAP SUPPORT
 M:	Tony Lindgren <tony@atomide.com>
 L:	linux-omap@vger.kernel.org
@@ -5668,7 +5706,7 @@ S:	Maintained
 F:	arch/arm/*omap*/*clock*
 
 OMAP POWER MANAGEMENT SUPPORT
-M:	Kevin Hilman <khilman@ti.com>
+M:	Kevin Hilman <khilman@deeprootsystems.com>
 L:	linux-omap@vger.kernel.org
 S:	Maintained
 F:	arch/arm/*omap*/*pm*
@@ -5762,7 +5800,7 @@ F:	arch/arm/*omap*/usb*
 
 OMAP GPIO DRIVER
 M:	Santosh Shilimkar <santosh.shilimkar@ti.com>
-M:	Kevin Hilman <khilman@ti.com>
+M:	Kevin Hilman <khilman@deeprootsystems.com>
 L:	linux-omap@vger.kernel.org
 S:	Maintained
 F:	drivers/gpio/gpio-omap.c
@@ -5816,7 +5854,7 @@ F:	Documentation/i2c/busses/i2c-ocores
 F:	drivers/i2c/busses/i2c-ocores.c
 
 OPEN FIRMWARE AND FLATTENED DEVICE TREE
-M:	Grant Likely <grant.likely@secretlab.ca>
+M:	Grant Likely <grant.likely@linaro.org>
 M:	Rob Herring <rob.herring@calxeda.com>
 L:	devicetree-discuss@lists.ozlabs.org (moderated for non-subscribers)
 W:	http://fdt.secretlab.ca
@@ -6194,7 +6232,7 @@ F:	include/linux/power_supply.h
 F:	drivers/power/
 
 PNP SUPPORT
-M:	Adam Belay <abelay@mit.edu>
+M:	Rafael J. Wysocki <rafael.j.wysocki@intel.com>
 M:	Bjorn Helgaas <bhelgaas@google.com>
 S:	Maintained
 F:	drivers/pnp/
@@ -6430,6 +6468,8 @@ F:	Documentation/networking/LICENSE.qla3xxx
 F:	drivers/net/ethernet/qlogic/qla3xxx.*
 
 QLOGIC QLCNIC (1/10)Gb ETHERNET DRIVER
+M:	Rajesh Borundia <rajesh.borundia@qlogic.com>
+M:	Shahed Shaikh <shahed.shaikh@qlogic.com>
 M:	Jitendra Kalsaria <jitendra.kalsaria@qlogic.com>
 M:	Sony Chacko <sony.chacko@qlogic.com>
 M:	linux-driver@qlogic.com
@@ -6534,12 +6574,6 @@ S:	Maintained
 F:	Documentation/blockdev/ramdisk.txt
 F:	drivers/block/brd.c
 
-RAMSAM DRIVER (IBM RamSan 70/80 PCI SSD Flash Card)
-M:	Joshua Morris <josh.h.morris@us.ibm.com>
-M:	Philip Kelleher <pjk1939@linux.vnet.ibm.com>
-S:	Maintained
-F:	drivers/block/rsxx/
-
 RANDOM NUMBER DRIVER
 M:	Theodore Ts'o" <tytso@mit.edu>
 S:	Maintained
@@ -6608,7 +6642,7 @@ S:	Supported
 F:	fs/reiserfs/
 
 REGISTER MAP ABSTRACTION
-M:	Mark Brown <broonie@opensource.wolfsonmicro.com>
+M:	Mark Brown <broonie@kernel.org>
 T:	git git://git.kernel.org/pub/scm/linux/kernel/git/broonie/regmap.git
 S:	Supported
 F:	drivers/base/regmap/
@@ -6934,7 +6968,6 @@ F:	drivers/scsi/st*
 
 SCTP PROTOCOL
 M:	Vlad Yasevich <vyasevich@gmail.com>
-M:	Sridhar Samudrala <sri@us.ibm.com>
 M:	Neil Horman <nhorman@tuxdriver.com>
 L:	linux-sctp@vger.kernel.org
 W:	http://lksctp.sourceforge.net
@@ -7156,7 +7189,7 @@ F:	arch/arm/mach-s3c2410/bast-irq.c
 
 TI DAVINCI MACHINE SUPPORT
 M:	Sekhar Nori <nsekhar@ti.com>
-M:	Kevin Hilman <khilman@ti.com>
+M:	Kevin Hilman <khilman@deeprootsystems.com>
 L:	davinci-linux-open-source@linux.davincidsp.com (moderated for non-subscribers)
 T:	git git://gitorious.org/linux-davinci/linux-davinci.git
 Q:	http://patchwork.kernel.org/project/linux-davinci/list/
@@ -7189,13 +7222,6 @@ L:	netdev@vger.kernel.org
 S:	Maintained
 F:	drivers/net/ethernet/sis/sis900.*
 
-SIS 96X I2C/SMBUS DRIVER
-M:	"Mark M. Hoffman" <mhoffman@lightlink.com>
-L:	linux-i2c@vger.kernel.org
-S:	Maintained
-F:	Documentation/i2c/busses/i2c-sis96x
-F:	drivers/i2c/busses/i2c-sis96x.c
-
 SIS FRAMEBUFFER DRIVER
 M:	Thomas Winischhofer <thomas@winischhofer.net>
 W:	http://www.winischhofer.net/linuxsisvga.shtml
@@ -7273,7 +7299,7 @@ F:	Documentation/hwmon/sch5627
 F:	drivers/hwmon/sch5627.c
 
 SMSC47B397 HARDWARE MONITOR DRIVER
-M:	"Mark M. Hoffman" <mhoffman@lightlink.com>
+M:	Jean Delvare <khali@linux-fr.org>
 L:	lm-sensors@lm-sensors.org
 S:	Maintained
 F:	Documentation/hwmon/smsc47b397
@@ -7364,7 +7390,7 @@ F:	sound/
 
 SOUND - SOC LAYER / DYNAMIC AUDIO POWER MANAGEMENT (ASoC)
 M:	Liam Girdwood <lgirdwood@gmail.com>
-M:	Mark Brown <broonie@opensource.wolfsonmicro.com>
+M:	Mark Brown <broonie@kernel.org>
 T:	git git://git.kernel.org/pub/scm/linux/kernel/git/broonie/sound.git
 L:	alsa-devel@alsa-project.org (moderated for non-subscribers)
 W:	http://alsa-project.org/main/index.php/ASoC
@@ -7452,11 +7478,11 @@ S:	Maintained
 F:	drivers/clk/spear/
 
 SPI SUBSYSTEM
-M:	Grant Likely <grant.likely@secretlab.ca>
-M:	Mark Brown <broonie@opensource.wolfsonmicro.com>
+M:	Mark Brown <broonie@kernel.org>
+M:	Grant Likely <grant.likely@linaro.org>
 L:	spi-devel-general@lists.sourceforge.net
+T:	git git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi.git
 Q:	http://patchwork.kernel.org/project/spi-devel-general/list/
-T:	git git://git.secretlab.ca/git/linux-2.6.git
 S:	Maintained
 F:	Documentation/spi/
 F:	drivers/spi/
@@ -7696,9 +7722,10 @@ F:	include/linux/swiotlb.h
 
 SYNOPSYS ARC ARCHITECTURE
 M:	Vineet Gupta <vgupta@synopsys.com>
-L:	linux-snps-arc@vger.kernel.org
 S:	Supported
 F:	arch/arc/
+F:	Documentation/devicetree/bindings/arc/
+F:	drivers/tty/serial/arc-uart.c
 
 SYSV FILESYSTEM
 M:	Christoph Hellwig <hch@infradead.org>
@@ -7866,7 +7893,7 @@ L:	linux-tegra@vger.kernel.org
 Q:	http://patchwork.ozlabs.org/project/linux-tegra/list/
 T:	git git://git.kernel.org/pub/scm/linux/kernel/git/swarren/linux-tegra.git
 S:	Supported
-K:	(?i)[^a-z]tegra
+N:	[^a-z]tegra
 
 TEHUTI ETHERNET DRIVER
 M:	Andy Gospodarek <andy@greyhouse.net>
@@ -7909,6 +7936,12 @@ T:	git git://repo.or.cz/linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git
 S:	Maintained
 F:	drivers/platform/x86/thinkpad_acpi.c
 
+TI BANDGAP AND THERMAL DRIVER
+M:	Eduardo Valentin <eduardo.valentin@ti.com>
+L:	linux-pm@vger.kernel.org
+S:	Maintained
+F:	drivers/staging/omap-thermal/
+
 TI FLASH MEDIA INTERFACE DRIVER
 M:	Alex Dubov <oakad@yahoo.com>
 S:	Maintained
@@ -8346,9 +8379,10 @@ S:	Maintained
 F:	drivers/usb/serial/option.c
 
 USB PEGASUS DRIVER
-M:	Petko Manolov <petkan@users.sourceforge.net>
+M:	Petko Manolov <petkan@nucleusys.com>
 L:	linux-usb@vger.kernel.org
 L:	netdev@vger.kernel.org
+T:	git git://git.code.sf.net/p/pegasus2/git
 W:	http://pegasus2.sourceforge.net/
 S:	Maintained
 F:	drivers/net/usb/pegasus.*
@@ -8368,9 +8402,10 @@ S:	Supported
 F:	drivers/usb/class/usblp.c
 
 USB RTL8150 DRIVER
-M:	Petko Manolov <petkan@users.sourceforge.net>
+M:	Petko Manolov <petkan@nucleusys.com>
 L:	linux-usb@vger.kernel.org
 L:	netdev@vger.kernel.org
+T:	git git://git.code.sf.net/p/pegasus2/git
 W:	http://pegasus2.sourceforge.net/
 S:	Maintained
 F:	drivers/net/usb/rtl8150.c
@@ -8696,8 +8731,8 @@ F:	drivers/scsi/vmw_pvscsi.c
 F:	drivers/scsi/vmw_pvscsi.h
 
 VOLTAGE AND CURRENT REGULATOR FRAMEWORK
-M:	Liam Girdwood <lrg@ti.com>
-M:	Mark Brown <broonie@opensource.wolfsonmicro.com>
+M:	Liam Girdwood <lgirdwood@gmail.com>
+M:	Mark Brown <broonie@kernel.org>
 W:	http://opensource.wolfsonmicro.com/node/15
 W:	http://www.slimlogic.co.uk/?p=48
 T:	git git://git.kernel.org/pub/scm/linux/kernel/git/lrg/regulator.git
@@ -8960,9 +8995,7 @@ S:	Maintained
 F:	drivers/net/ethernet/xilinx/xilinx_axienet*
 
 XILINX SYSTEMACE DRIVER
-M:	Grant Likely <grant.likely@secretlab.ca>
-W:	http://www.secretlab.ca/
-S:	Maintained
+S:	Unmaintained
 F:	drivers/block/xsysace.c
 
 XILINX UARTLITE SERIAL DRIVER

+ 5 - 4
Makefile

@@ -1,7 +1,7 @@
 VERSION = 3
 PATCHLEVEL = 9
 SUBLEVEL = 0
-EXTRAVERSION = -rc1
+EXTRAVERSION =
 NAME = Unicycling Gorilla
 
 # *DOCUMENTATION*
@@ -513,7 +513,8 @@ ifeq ($(KBUILD_EXTMOD),)
 # Carefully list dependencies so we do not try to build scripts twice
 # in parallel
 PHONY += scripts
-scripts: scripts_basic include/config/auto.conf include/config/tristate.conf
+scripts: scripts_basic include/config/auto.conf include/config/tristate.conf \
+	 asm-generic
 	$(Q)$(MAKE) $(build)=$(@)
 
 # Objects we will link into vmlinux / subdirs we need to visit
@@ -1331,11 +1332,11 @@ kernelversion:
 # Clear a bunch of variables before executing the submake
 tools/: FORCE
 	$(Q)mkdir -p $(objtree)/tools
-	$(Q)$(MAKE) LDFLAGS= MAKEFLAGS= O=$(objtree) subdir=tools -C $(src)/tools/
+	$(Q)$(MAKE) LDFLAGS= MAKEFLAGS="$(filter --j% -j,$(MAKEFLAGS))" O=$(objtree) subdir=tools -C $(src)/tools/
 
 tools/%: FORCE
 	$(Q)mkdir -p $(objtree)/tools
-	$(Q)$(MAKE) LDFLAGS= MAKEFLAGS= O=$(objtree) subdir=tools -C $(src)/tools/ $*
+	$(Q)$(MAKE) LDFLAGS= MAKEFLAGS="$(filter --j% -j,$(MAKEFLAGS))" O=$(objtree) subdir=tools -C $(src)/tools/ $*
 
 # Single targets
 # ---------------------------------------------------------------------------

Some files were not shown because too many files changed in this diff