|
@@ -35,7 +35,6 @@
|
|
|
#include <linux/interrupt.h>
|
|
|
#include <linux/slab.h>
|
|
|
#include <linux/time.h>
|
|
|
-#include <linux/calc64.h>
|
|
|
|
|
|
#include <asm/uaccess.h>
|
|
|
#include <asm/semaphore.h>
|
|
@@ -49,12 +48,6 @@
|
|
|
#include <linux/workqueue.h>
|
|
|
#include <linux/module.h>
|
|
|
|
|
|
-#define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */
|
|
|
-
|
|
|
-static inline u64 mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2)
|
|
|
-{
|
|
|
- return (u64)mpy1 * mpy2;
|
|
|
-}
|
|
|
/*
|
|
|
* Management arrays for POSIX timers. Timers are kept in slab memory
|
|
|
* Timer ids are allocated by an external routine that keeps track of the
|
|
@@ -140,18 +133,18 @@ static DEFINE_SPINLOCK(idr_lock);
|
|
|
*/
|
|
|
|
|
|
static struct k_clock posix_clocks[MAX_CLOCKS];
|
|
|
+
|
|
|
/*
|
|
|
- * We only have one real clock that can be set so we need only one abs list,
|
|
|
- * even if we should want to have several clocks with differing resolutions.
|
|
|
+ * These ones are defined below.
|
|
|
*/
|
|
|
-static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list),
|
|
|
- .lock = SPIN_LOCK_UNLOCKED};
|
|
|
+static int common_nsleep(const clockid_t, int flags, struct timespec *t,
|
|
|
+ struct timespec __user *rmtp);
|
|
|
+static void common_timer_get(struct k_itimer *, struct itimerspec *);
|
|
|
+static int common_timer_set(struct k_itimer *, int,
|
|
|
+ struct itimerspec *, struct itimerspec *);
|
|
|
+static int common_timer_del(struct k_itimer *timer);
|
|
|
|
|
|
-static void posix_timer_fn(unsigned long);
|
|
|
-static u64 do_posix_clock_monotonic_gettime_parts(
|
|
|
- struct timespec *tp, struct timespec *mo);
|
|
|
-int do_posix_clock_monotonic_gettime(struct timespec *tp);
|
|
|
-static int do_posix_clock_monotonic_get(const clockid_t, struct timespec *tp);
|
|
|
+static int posix_timer_fn(void *data);
|
|
|
|
|
|
static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
|
|
|
|
|
@@ -184,10 +177,12 @@ static inline int common_clock_getres(const clockid_t which_clock,
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
-static inline int common_clock_get(const clockid_t which_clock,
|
|
|
- struct timespec *tp)
|
|
|
+/*
|
|
|
+ * Get real time for posix timers
|
|
|
+ */
|
|
|
+static int common_clock_get(clockid_t which_clock, struct timespec *tp)
|
|
|
{
|
|
|
- getnstimeofday(tp);
|
|
|
+ ktime_get_real_ts(tp);
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
@@ -199,25 +194,14 @@ static inline int common_clock_set(const clockid_t which_clock,
|
|
|
|
|
|
static inline int common_timer_create(struct k_itimer *new_timer)
|
|
|
{
|
|
|
- INIT_LIST_HEAD(&new_timer->it.real.abs_timer_entry);
|
|
|
- init_timer(&new_timer->it.real.timer);
|
|
|
- new_timer->it.real.timer.data = (unsigned long) new_timer;
|
|
|
+ hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock);
|
|
|
+ new_timer->it.real.timer.data = new_timer;
|
|
|
new_timer->it.real.timer.function = posix_timer_fn;
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- * These ones are defined below.
|
|
|
- */
|
|
|
-static int common_nsleep(const clockid_t, int flags, struct timespec *t,
|
|
|
- struct timespec __user *rmtp);
|
|
|
-static void common_timer_get(struct k_itimer *, struct itimerspec *);
|
|
|
-static int common_timer_set(struct k_itimer *, int,
|
|
|
- struct itimerspec *, struct itimerspec *);
|
|
|
-static int common_timer_del(struct k_itimer *timer);
|
|
|
-
|
|
|
-/*
|
|
|
- * Return nonzero iff we know a priori this clockid_t value is bogus.
|
|
|
+ * Return nonzero if we know a priori this clockid_t value is bogus.
|
|
|
*/
|
|
|
static inline int invalid_clockid(const clockid_t which_clock)
|
|
|
{
|
|
@@ -227,26 +211,32 @@ static inline int invalid_clockid(const clockid_t which_clock)
|
|
|
return 1;
|
|
|
if (posix_clocks[which_clock].clock_getres != NULL)
|
|
|
return 0;
|
|
|
-#ifndef CLOCK_DISPATCH_DIRECT
|
|
|
if (posix_clocks[which_clock].res != 0)
|
|
|
return 0;
|
|
|
-#endif
|
|
|
return 1;
|
|
|
}
|
|
|
|
|
|
+/*
|
|
|
+ * Get monotonic time for posix timers
|
|
|
+ */
|
|
|
+static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
|
|
|
+{
|
|
|
+ ktime_get_ts(tp);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
|
|
|
/*
|
|
|
* Initialize everything, well, just everything in Posix clocks/timers ;)
|
|
|
*/
|
|
|
static __init int init_posix_timers(void)
|
|
|
{
|
|
|
- struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES,
|
|
|
- .abs_struct = &abs_list
|
|
|
+ struct k_clock clock_realtime = {
|
|
|
+ .clock_getres = hrtimer_get_res,
|
|
|
};
|
|
|
- struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES,
|
|
|
- .abs_struct = NULL,
|
|
|
- .clock_get = do_posix_clock_monotonic_get,
|
|
|
- .clock_set = do_posix_clock_nosettime
|
|
|
+ struct k_clock clock_monotonic = {
|
|
|
+ .clock_getres = hrtimer_get_res,
|
|
|
+ .clock_get = posix_ktime_get_ts,
|
|
|
+ .clock_set = do_posix_clock_nosettime,
|
|
|
};
|
|
|
|
|
|
register_posix_clock(CLOCK_REALTIME, &clock_realtime);
|
|
@@ -260,117 +250,17 @@ static __init int init_posix_timers(void)
|
|
|
|
|
|
__initcall(init_posix_timers);
|
|
|
|
|
|
-static void tstojiffie(struct timespec *tp, int res, u64 *jiff)
|
|
|
-{
|
|
|
- long sec = tp->tv_sec;
|
|
|
- long nsec = tp->tv_nsec + res - 1;
|
|
|
-
|
|
|
- if (nsec >= NSEC_PER_SEC) {
|
|
|
- sec++;
|
|
|
- nsec -= NSEC_PER_SEC;
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- * The scaling constants are defined in <linux/time.h>
|
|
|
- * The difference between there and here is that we do the
|
|
|
- * res rounding and compute a 64-bit result (well so does that
|
|
|
- * but it then throws away the high bits).
|
|
|
- */
|
|
|
- *jiff = (mpy_l_X_l_ll(sec, SEC_CONVERSION) +
|
|
|
- (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >>
|
|
|
- (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * This function adjusts the timer as needed as a result of the clock
|
|
|
- * being set. It should only be called for absolute timers, and then
|
|
|
- * under the abs_list lock. It computes the time difference and sets
|
|
|
- * the new jiffies value in the timer. It also updates the timers
|
|
|
- * reference wall_to_monotonic value. It is complicated by the fact
|
|
|
- * that tstojiffies() only handles positive times and it needs to work
|
|
|
- * with both positive and negative times. Also, for negative offsets,
|
|
|
- * we need to defeat the res round up.
|
|
|
- *
|
|
|
- * Return is true if there is a new time, else false.
|
|
|
- */
|
|
|
-static long add_clockset_delta(struct k_itimer *timr,
|
|
|
- struct timespec *new_wall_to)
|
|
|
-{
|
|
|
- struct timespec delta;
|
|
|
- int sign = 0;
|
|
|
- u64 exp;
|
|
|
-
|
|
|
- set_normalized_timespec(&delta,
|
|
|
- new_wall_to->tv_sec -
|
|
|
- timr->it.real.wall_to_prev.tv_sec,
|
|
|
- new_wall_to->tv_nsec -
|
|
|
- timr->it.real.wall_to_prev.tv_nsec);
|
|
|
- if (likely(!(delta.tv_sec | delta.tv_nsec)))
|
|
|
- return 0;
|
|
|
- if (delta.tv_sec < 0) {
|
|
|
- set_normalized_timespec(&delta,
|
|
|
- -delta.tv_sec,
|
|
|
- 1 - delta.tv_nsec -
|
|
|
- posix_clocks[timr->it_clock].res);
|
|
|
- sign++;
|
|
|
- }
|
|
|
- tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp);
|
|
|
- timr->it.real.wall_to_prev = *new_wall_to;
|
|
|
- timr->it.real.timer.expires += (sign ? -exp : exp);
|
|
|
- return 1;
|
|
|
-}
|
|
|
-
|
|
|
-static void remove_from_abslist(struct k_itimer *timr)
|
|
|
-{
|
|
|
- if (!list_empty(&timr->it.real.abs_timer_entry)) {
|
|
|
- spin_lock(&abs_list.lock);
|
|
|
- list_del_init(&timr->it.real.abs_timer_entry);
|
|
|
- spin_unlock(&abs_list.lock);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
static void schedule_next_timer(struct k_itimer *timr)
|
|
|
{
|
|
|
- struct timespec new_wall_to;
|
|
|
- struct now_struct now;
|
|
|
- unsigned long seq;
|
|
|
-
|
|
|
- /*
|
|
|
- * Set up the timer for the next interval (if there is one).
|
|
|
- * Note: this code uses the abs_timer_lock to protect
|
|
|
- * it.real.wall_to_prev and must hold it until exp is set, not exactly
|
|
|
- * obvious...
|
|
|
-
|
|
|
- * This function is used for CLOCK_REALTIME* and
|
|
|
- * CLOCK_MONOTONIC* timers. If we ever want to handle other
|
|
|
- * CLOCKs, the calling code (do_schedule_next_timer) would need
|
|
|
- * to pull the "clock" info from the timer and dispatch the
|
|
|
- * "other" CLOCKs "next timer" code (which, I suppose should
|
|
|
- * also be added to the k_clock structure).
|
|
|
- */
|
|
|
- if (!timr->it.real.incr)
|
|
|
+ if (timr->it.real.interval.tv64 == 0)
|
|
|
return;
|
|
|
|
|
|
- do {
|
|
|
- seq = read_seqbegin(&xtime_lock);
|
|
|
- new_wall_to = wall_to_monotonic;
|
|
|
- posix_get_now(&now);
|
|
|
- } while (read_seqretry(&xtime_lock, seq));
|
|
|
-
|
|
|
- if (!list_empty(&timr->it.real.abs_timer_entry)) {
|
|
|
- spin_lock(&abs_list.lock);
|
|
|
- add_clockset_delta(timr, &new_wall_to);
|
|
|
-
|
|
|
- posix_bump_timer(timr, now);
|
|
|
-
|
|
|
- spin_unlock(&abs_list.lock);
|
|
|
- } else {
|
|
|
- posix_bump_timer(timr, now);
|
|
|
- }
|
|
|
+ timr->it_overrun += hrtimer_forward(&timr->it.real.timer,
|
|
|
+ timr->it.real.interval);
|
|
|
timr->it_overrun_last = timr->it_overrun;
|
|
|
timr->it_overrun = -1;
|
|
|
++timr->it_requeue_pending;
|
|
|
- add_timer(&timr->it.real.timer);
|
|
|
+ hrtimer_restart(&timr->it.real.timer);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -391,31 +281,23 @@ void do_schedule_next_timer(struct siginfo *info)
|
|
|
|
|
|
timr = lock_timer(info->si_tid, &flags);
|
|
|
|
|
|
- if (!timr || timr->it_requeue_pending != info->si_sys_private)
|
|
|
- goto exit;
|
|
|
+ if (timr && timr->it_requeue_pending == info->si_sys_private) {
|
|
|
+ if (timr->it_clock < 0)
|
|
|
+ posix_cpu_timer_schedule(timr);
|
|
|
+ else
|
|
|
+ schedule_next_timer(timr);
|
|
|
|
|
|
- if (timr->it_clock < 0) /* CPU clock */
|
|
|
- posix_cpu_timer_schedule(timr);
|
|
|
- else
|
|
|
- schedule_next_timer(timr);
|
|
|
- info->si_overrun = timr->it_overrun_last;
|
|
|
-exit:
|
|
|
- if (timr)
|
|
|
- unlock_timer(timr, flags);
|
|
|
+ info->si_overrun = timr->it_overrun_last;
|
|
|
+ }
|
|
|
+
|
|
|
+ unlock_timer(timr, flags);
|
|
|
}
|
|
|
|
|
|
int posix_timer_event(struct k_itimer *timr,int si_private)
|
|
|
{
|
|
|
memset(&timr->sigq->info, 0, sizeof(siginfo_t));
|
|
|
timr->sigq->info.si_sys_private = si_private;
|
|
|
- /*
|
|
|
- * Send signal to the process that owns this timer.
|
|
|
-
|
|
|
- * This code assumes that all the possible abs_lists share the
|
|
|
- * same lock (there is only one list at this time). If this is
|
|
|
- * not the case, the CLOCK info would need to be used to find
|
|
|
- * the proper abs list lock.
|
|
|
- */
|
|
|
+ /* Send signal to the process that owns this timer.*/
|
|
|
|
|
|
timr->sigq->info.si_signo = timr->it_sigev_signo;
|
|
|
timr->sigq->info.si_errno = 0;
|
|
@@ -449,64 +331,35 @@ EXPORT_SYMBOL_GPL(posix_timer_event);
|
|
|
|
|
|
* This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
|
|
|
*/
|
|
|
-static void posix_timer_fn(unsigned long __data)
|
|
|
+static int posix_timer_fn(void *data)
|
|
|
{
|
|
|
- struct k_itimer *timr = (struct k_itimer *) __data;
|
|
|
+ struct k_itimer *timr = data;
|
|
|
unsigned long flags;
|
|
|
- unsigned long seq;
|
|
|
- struct timespec delta, new_wall_to;
|
|
|
- u64 exp = 0;
|
|
|
- int do_notify = 1;
|
|
|
+ int si_private = 0;
|
|
|
+ int ret = HRTIMER_NORESTART;
|
|
|
|
|
|
spin_lock_irqsave(&timr->it_lock, flags);
|
|
|
- if (!list_empty(&timr->it.real.abs_timer_entry)) {
|
|
|
- spin_lock(&abs_list.lock);
|
|
|
- do {
|
|
|
- seq = read_seqbegin(&xtime_lock);
|
|
|
- new_wall_to = wall_to_monotonic;
|
|
|
- } while (read_seqretry(&xtime_lock, seq));
|
|
|
- set_normalized_timespec(&delta,
|
|
|
- new_wall_to.tv_sec -
|
|
|
- timr->it.real.wall_to_prev.tv_sec,
|
|
|
- new_wall_to.tv_nsec -
|
|
|
- timr->it.real.wall_to_prev.tv_nsec);
|
|
|
- if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) {
|
|
|
- /* do nothing, timer is on time */
|
|
|
- } else if (delta.tv_sec < 0) {
|
|
|
- /* do nothing, timer is already late */
|
|
|
- } else {
|
|
|
- /* timer is early due to a clock set */
|
|
|
- tstojiffie(&delta,
|
|
|
- posix_clocks[timr->it_clock].res,
|
|
|
- &exp);
|
|
|
- timr->it.real.wall_to_prev = new_wall_to;
|
|
|
- timr->it.real.timer.expires += exp;
|
|
|
- add_timer(&timr->it.real.timer);
|
|
|
- do_notify = 0;
|
|
|
- }
|
|
|
- spin_unlock(&abs_list.lock);
|
|
|
|
|
|
- }
|
|
|
- if (do_notify) {
|
|
|
- int si_private=0;
|
|
|
+ if (timr->it.real.interval.tv64 != 0)
|
|
|
+ si_private = ++timr->it_requeue_pending;
|
|
|
|
|
|
- if (timr->it.real.incr)
|
|
|
- si_private = ++timr->it_requeue_pending;
|
|
|
- else {
|
|
|
- remove_from_abslist(timr);
|
|
|
+ if (posix_timer_event(timr, si_private)) {
|
|
|
+ /*
|
|
|
+ * signal was not sent because of sig_ignor
|
|
|
+ * we will not get a call back to restart it AND
|
|
|
+ * it should be restarted.
|
|
|
+ */
|
|
|
+ if (timr->it.real.interval.tv64 != 0) {
|
|
|
+ timr->it_overrun +=
|
|
|
+ hrtimer_forward(&timr->it.real.timer,
|
|
|
+ timr->it.real.interval);
|
|
|
+ ret = HRTIMER_RESTART;
|
|
|
}
|
|
|
-
|
|
|
- if (posix_timer_event(timr, si_private))
|
|
|
- /*
|
|
|
- * signal was not sent because of sig_ignor
|
|
|
- * we will not get a call back to restart it AND
|
|
|
- * it should be restarted.
|
|
|
- */
|
|
|
- schedule_next_timer(timr);
|
|
|
}
|
|
|
- unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */
|
|
|
-}
|
|
|
|
|
|
+ unlock_timer(timr, flags);
|
|
|
+ return ret;
|
|
|
+}
|
|
|
|
|
|
static inline struct task_struct * good_sigevent(sigevent_t * event)
|
|
|
{
|
|
@@ -597,8 +450,7 @@ sys_timer_create(const clockid_t which_clock,
|
|
|
goto out;
|
|
|
}
|
|
|
spin_lock_irq(&idr_lock);
|
|
|
- error = idr_get_new(&posix_timers_id,
|
|
|
- (void *) new_timer,
|
|
|
+ error = idr_get_new(&posix_timers_id, (void *) new_timer,
|
|
|
&new_timer_id);
|
|
|
spin_unlock_irq(&idr_lock);
|
|
|
if (error == -EAGAIN)
|
|
@@ -698,26 +550,6 @@ out:
|
|
|
return error;
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * good_timespec
|
|
|
- *
|
|
|
- * This function checks the elements of a timespec structure.
|
|
|
- *
|
|
|
- * Arguments:
|
|
|
- * ts : Pointer to the timespec structure to check
|
|
|
- *
|
|
|
- * Return value:
|
|
|
- * If a NULL pointer was passed in, or the tv_nsec field was less than 0
|
|
|
- * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0,
|
|
|
- * this function returns 0. Otherwise it returns 1.
|
|
|
- */
|
|
|
-static int good_timespec(const struct timespec *ts)
|
|
|
-{
|
|
|
- if ((!ts) || !timespec_valid(ts))
|
|
|
- return 0;
|
|
|
- return 1;
|
|
|
-}
|
|
|
-
|
|
|
/*
|
|
|
* Locking issues: We need to protect the result of the id look up until
|
|
|
* we get the timer locked down so it is not deleted under us. The
|
|
@@ -770,39 +602,39 @@ static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
|
|
|
static void
|
|
|
common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
|
|
|
{
|
|
|
- unsigned long expires;
|
|
|
- struct now_struct now;
|
|
|
-
|
|
|
- do
|
|
|
- expires = timr->it.real.timer.expires;
|
|
|
- while ((volatile long) (timr->it.real.timer.expires) != expires);
|
|
|
-
|
|
|
- posix_get_now(&now);
|
|
|
-
|
|
|
- if (expires &&
|
|
|
- ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) &&
|
|
|
- !timr->it.real.incr &&
|
|
|
- posix_time_before(&timr->it.real.timer, &now))
|
|
|
- timr->it.real.timer.expires = expires = 0;
|
|
|
- if (expires) {
|
|
|
- if (timr->it_requeue_pending & REQUEUE_PENDING ||
|
|
|
- (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
|
|
|
- posix_bump_timer(timr, now);
|
|
|
- expires = timr->it.real.timer.expires;
|
|
|
- }
|
|
|
- else
|
|
|
- if (!timer_pending(&timr->it.real.timer))
|
|
|
- expires = 0;
|
|
|
- if (expires)
|
|
|
- expires -= now.jiffies;
|
|
|
- }
|
|
|
- jiffies_to_timespec(expires, &cur_setting->it_value);
|
|
|
- jiffies_to_timespec(timr->it.real.incr, &cur_setting->it_interval);
|
|
|
+ ktime_t remaining;
|
|
|
+ struct hrtimer *timer = &timr->it.real.timer;
|
|
|
|
|
|
- if (cur_setting->it_value.tv_sec < 0) {
|
|
|
- cur_setting->it_value.tv_nsec = 1;
|
|
|
- cur_setting->it_value.tv_sec = 0;
|
|
|
+ memset(cur_setting, 0, sizeof(struct itimerspec));
|
|
|
+ remaining = hrtimer_get_remaining(timer);
|
|
|
+
|
|
|
+ /* Time left ? or timer pending */
|
|
|
+ if (remaining.tv64 > 0 || hrtimer_active(timer))
|
|
|
+ goto calci;
|
|
|
+ /* interval timer ? */
|
|
|
+ if (timr->it.real.interval.tv64 == 0)
|
|
|
+ return;
|
|
|
+ /*
|
|
|
+ * When a requeue is pending or this is a SIGEV_NONE timer
|
|
|
+ * move the expiry time forward by intervals, so expiry is >
|
|
|
+ * now.
|
|
|
+ */
|
|
|
+ if (timr->it_requeue_pending & REQUEUE_PENDING ||
|
|
|
+ (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
|
|
|
+ timr->it_overrun +=
|
|
|
+ hrtimer_forward(timer, timr->it.real.interval);
|
|
|
+ remaining = hrtimer_get_remaining(timer);
|
|
|
}
|
|
|
+ calci:
|
|
|
+ /* interval timer ? */
|
|
|
+ if (timr->it.real.interval.tv64 != 0)
|
|
|
+ cur_setting->it_interval =
|
|
|
+ ktime_to_timespec(timr->it.real.interval);
|
|
|
+ /* Return 0 only, when the timer is expired and not pending */
|
|
|
+ if (remaining.tv64 <= 0)
|
|
|
+ cur_setting->it_value.tv_nsec = 1;
|
|
|
+ else
|
|
|
+ cur_setting->it_value = ktime_to_timespec(remaining);
|
|
|
}
|
|
|
|
|
|
/* Get the time remaining on a POSIX.1b interval timer. */
|
|
@@ -826,6 +658,7 @@ sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
|
|
|
|
|
|
return 0;
|
|
|
}
|
|
|
+
|
|
|
/*
|
|
|
* Get the number of overruns of a POSIX.1b interval timer. This is to
|
|
|
* be the overrun of the timer last delivered. At the same time we are
|
|
@@ -835,7 +668,6 @@ sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
|
|
|
* the call back to do_schedule_next_timer(). So all we need to do is
|
|
|
* to pick up the frozen overrun.
|
|
|
*/
|
|
|
-
|
|
|
asmlinkage long
|
|
|
sys_timer_getoverrun(timer_t timer_id)
|
|
|
{
|
|
@@ -852,84 +684,6 @@ sys_timer_getoverrun(timer_t timer_id)
|
|
|
|
|
|
return overrun;
|
|
|
}
|
|
|
-/*
|
|
|
- * Adjust for absolute time
|
|
|
- *
|
|
|
- * If absolute time is given and it is not CLOCK_MONOTONIC, we need to
|
|
|
- * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and
|
|
|
- * what ever clock he is using.
|
|
|
- *
|
|
|
- * If it is relative time, we need to add the current (CLOCK_MONOTONIC)
|
|
|
- * time to it to get the proper time for the timer.
|
|
|
- */
|
|
|
-static int adjust_abs_time(struct k_clock *clock, struct timespec *tp,
|
|
|
- int abs, u64 *exp, struct timespec *wall_to)
|
|
|
-{
|
|
|
- struct timespec now;
|
|
|
- struct timespec oc = *tp;
|
|
|
- u64 jiffies_64_f;
|
|
|
- int rtn =0;
|
|
|
-
|
|
|
- if (abs) {
|
|
|
- /*
|
|
|
- * The mask pick up the 4 basic clocks
|
|
|
- */
|
|
|
- if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) {
|
|
|
- jiffies_64_f = do_posix_clock_monotonic_gettime_parts(
|
|
|
- &now, wall_to);
|
|
|
- /*
|
|
|
- * If we are doing a MONOTONIC clock
|
|
|
- */
|
|
|
- if((clock - &posix_clocks[0]) & CLOCKS_MONO){
|
|
|
- now.tv_sec += wall_to->tv_sec;
|
|
|
- now.tv_nsec += wall_to->tv_nsec;
|
|
|
- }
|
|
|
- } else {
|
|
|
- /*
|
|
|
- * Not one of the basic clocks
|
|
|
- */
|
|
|
- clock->clock_get(clock - posix_clocks, &now);
|
|
|
- jiffies_64_f = get_jiffies_64();
|
|
|
- }
|
|
|
- /*
|
|
|
- * Take away now to get delta and normalize
|
|
|
- */
|
|
|
- set_normalized_timespec(&oc, oc.tv_sec - now.tv_sec,
|
|
|
- oc.tv_nsec - now.tv_nsec);
|
|
|
- }else{
|
|
|
- jiffies_64_f = get_jiffies_64();
|
|
|
- }
|
|
|
- /*
|
|
|
- * Check if the requested time is prior to now (if so set now)
|
|
|
- */
|
|
|
- if (oc.tv_sec < 0)
|
|
|
- oc.tv_sec = oc.tv_nsec = 0;
|
|
|
-
|
|
|
- if (oc.tv_sec | oc.tv_nsec)
|
|
|
- set_normalized_timespec(&oc, oc.tv_sec,
|
|
|
- oc.tv_nsec + clock->res);
|
|
|
- tstojiffie(&oc, clock->res, exp);
|
|
|
-
|
|
|
- /*
|
|
|
- * Check if the requested time is more than the timer code
|
|
|
- * can handle (if so we error out but return the value too).
|
|
|
- */
|
|
|
- if (*exp > ((u64)MAX_JIFFY_OFFSET))
|
|
|
- /*
|
|
|
- * This is a considered response, not exactly in
|
|
|
- * line with the standard (in fact it is silent on
|
|
|
- * possible overflows). We assume such a large
|
|
|
- * value is ALMOST always a programming error and
|
|
|
- * try not to compound it by setting a really dumb
|
|
|
- * value.
|
|
|
- */
|
|
|
- rtn = -EINVAL;
|
|
|
- /*
|
|
|
- * return the actual jiffies expire time, full 64 bits
|
|
|
- */
|
|
|
- *exp += jiffies_64_f;
|
|
|
- return rtn;
|
|
|
-}
|
|
|
|
|
|
/* Set a POSIX.1b interval timer. */
|
|
|
/* timr->it_lock is taken. */
|
|
@@ -937,68 +691,48 @@ static inline int
|
|
|
common_timer_set(struct k_itimer *timr, int flags,
|
|
|
struct itimerspec *new_setting, struct itimerspec *old_setting)
|
|
|
{
|
|
|
- struct k_clock *clock = &posix_clocks[timr->it_clock];
|
|
|
- u64 expire_64;
|
|
|
+ struct hrtimer *timer = &timr->it.real.timer;
|
|
|
|
|
|
if (old_setting)
|
|
|
common_timer_get(timr, old_setting);
|
|
|
|
|
|
/* disable the timer */
|
|
|
- timr->it.real.incr = 0;
|
|
|
+ timr->it.real.interval.tv64 = 0;
|
|
|
/*
|
|
|
* careful here. If smp we could be in the "fire" routine which will
|
|
|
* be spinning as we hold the lock. But this is ONLY an SMP issue.
|
|
|
*/
|
|
|
- if (try_to_del_timer_sync(&timr->it.real.timer) < 0) {
|
|
|
-#ifdef CONFIG_SMP
|
|
|
- /*
|
|
|
- * It can only be active if on an other cpu. Since
|
|
|
- * we have cleared the interval stuff above, it should
|
|
|
- * clear once we release the spin lock. Of course once
|
|
|
- * we do that anything could happen, including the
|
|
|
- * complete melt down of the timer. So return with
|
|
|
- * a "retry" exit status.
|
|
|
- */
|
|
|
+ if (hrtimer_try_to_cancel(timer) < 0)
|
|
|
return TIMER_RETRY;
|
|
|
-#endif
|
|
|
- }
|
|
|
-
|
|
|
- remove_from_abslist(timr);
|
|
|
|
|
|
timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
|
|
|
~REQUEUE_PENDING;
|
|
|
timr->it_overrun_last = 0;
|
|
|
- timr->it_overrun = -1;
|
|
|
- /*
|
|
|
- *switch off the timer when it_value is zero
|
|
|
- */
|
|
|
- if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) {
|
|
|
- timr->it.real.timer.expires = 0;
|
|
|
- return 0;
|
|
|
- }
|
|
|
|
|
|
- if (adjust_abs_time(clock,
|
|
|
- &new_setting->it_value, flags & TIMER_ABSTIME,
|
|
|
- &expire_64, &(timr->it.real.wall_to_prev))) {
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
- timr->it.real.timer.expires = (unsigned long)expire_64;
|
|
|
- tstojiffie(&new_setting->it_interval, clock->res, &expire_64);
|
|
|
- timr->it.real.incr = (unsigned long)expire_64;
|
|
|
+ /* switch off the timer when it_value is zero */
|
|
|
+ if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
|
|
|
+ return 0;
|
|
|
|
|
|
- /*
|
|
|
- * We do not even queue SIGEV_NONE timers! But we do put them
|
|
|
- * in the abs list so we can do that right.
|
|
|
+ /* Posix madness. Only absolute CLOCK_REALTIME timers
|
|
|
+ * are affected by clock sets. So we must reiniatilize
|
|
|
+ * the timer.
|
|
|
*/
|
|
|
- if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE))
|
|
|
- add_timer(&timr->it.real.timer);
|
|
|
-
|
|
|
- if (flags & TIMER_ABSTIME && clock->abs_struct) {
|
|
|
- spin_lock(&clock->abs_struct->lock);
|
|
|
- list_add_tail(&(timr->it.real.abs_timer_entry),
|
|
|
- &(clock->abs_struct->list));
|
|
|
- spin_unlock(&clock->abs_struct->lock);
|
|
|
- }
|
|
|
+ if (timr->it_clock == CLOCK_REALTIME && (flags & TIMER_ABSTIME))
|
|
|
+ hrtimer_rebase(timer, CLOCK_REALTIME);
|
|
|
+ else
|
|
|
+ hrtimer_rebase(timer, CLOCK_MONOTONIC);
|
|
|
+
|
|
|
+ timer->expires = timespec_to_ktime(new_setting->it_value);
|
|
|
+
|
|
|
+ /* Convert interval */
|
|
|
+ timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
|
|
|
+
|
|
|
+ /* SIGEV_NONE timers are not queued ! See common_timer_get */
|
|
|
+ if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ hrtimer_start(timer, timer->expires, (flags & TIMER_ABSTIME) ?
|
|
|
+ HRTIMER_ABS : HRTIMER_REL);
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
@@ -1020,8 +754,8 @@ sys_timer_settime(timer_t timer_id, int flags,
|
|
|
if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
|
|
|
return -EFAULT;
|
|
|
|
|
|
- if ((!good_timespec(&new_spec.it_interval)) ||
|
|
|
- (!good_timespec(&new_spec.it_value)))
|
|
|
+ if (!timespec_valid(&new_spec.it_interval) ||
|
|
|
+ !timespec_valid(&new_spec.it_value))
|
|
|
return -EINVAL;
|
|
|
retry:
|
|
|
timr = lock_timer(timer_id, &flag);
|
|
@@ -1037,8 +771,8 @@ retry:
|
|
|
goto retry;
|
|
|
}
|
|
|
|
|
|
- if (old_setting && !error && copy_to_user(old_setting,
|
|
|
- &old_spec, sizeof (old_spec)))
|
|
|
+ if (old_setting && !error &&
|
|
|
+ copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
|
|
|
error = -EFAULT;
|
|
|
|
|
|
return error;
|
|
@@ -1046,24 +780,10 @@ retry:
|
|
|
|
|
|
static inline int common_timer_del(struct k_itimer *timer)
|
|
|
{
|
|
|
- timer->it.real.incr = 0;
|
|
|
+ timer->it.real.interval.tv64 = 0;
|
|
|
|
|
|
- if (try_to_del_timer_sync(&timer->it.real.timer) < 0) {
|
|
|
-#ifdef CONFIG_SMP
|
|
|
- /*
|
|
|
- * It can only be active if on an other cpu. Since
|
|
|
- * we have cleared the interval stuff above, it should
|
|
|
- * clear once we release the spin lock. Of course once
|
|
|
- * we do that anything could happen, including the
|
|
|
- * complete melt down of the timer. So return with
|
|
|
- * a "retry" exit status.
|
|
|
- */
|
|
|
+ if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
|
|
|
return TIMER_RETRY;
|
|
|
-#endif
|
|
|
- }
|
|
|
-
|
|
|
- remove_from_abslist(timer);
|
|
|
-
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
@@ -1079,24 +799,16 @@ sys_timer_delete(timer_t timer_id)
|
|
|
struct k_itimer *timer;
|
|
|
long flags;
|
|
|
|
|
|
-#ifdef CONFIG_SMP
|
|
|
- int error;
|
|
|
retry_delete:
|
|
|
-#endif
|
|
|
timer = lock_timer(timer_id, &flags);
|
|
|
if (!timer)
|
|
|
return -EINVAL;
|
|
|
|
|
|
-#ifdef CONFIG_SMP
|
|
|
- error = timer_delete_hook(timer);
|
|
|
-
|
|
|
- if (error == TIMER_RETRY) {
|
|
|
+ if (timer_delete_hook(timer) == TIMER_RETRY) {
|
|
|
unlock_timer(timer, flags);
|
|
|
goto retry_delete;
|
|
|
}
|
|
|
-#else
|
|
|
- timer_delete_hook(timer);
|
|
|
-#endif
|
|
|
+
|
|
|
spin_lock(¤t->sighand->siglock);
|
|
|
list_del(&timer->list);
|
|
|
spin_unlock(¤t->sighand->siglock);
|
|
@@ -1113,6 +825,7 @@ retry_delete:
|
|
|
release_posix_timer(timer, IT_ID_SET);
|
|
|
return 0;
|
|
|
}
|
|
|
+
|
|
|
/*
|
|
|
* return timer owned by the process, used by exit_itimers
|
|
|
*/
|
|
@@ -1120,22 +833,13 @@ static inline void itimer_delete(struct k_itimer *timer)
|
|
|
{
|
|
|
unsigned long flags;
|
|
|
|
|
|
-#ifdef CONFIG_SMP
|
|
|
- int error;
|
|
|
retry_delete:
|
|
|
-#endif
|
|
|
spin_lock_irqsave(&timer->it_lock, flags);
|
|
|
|
|
|
-#ifdef CONFIG_SMP
|
|
|
- error = timer_delete_hook(timer);
|
|
|
-
|
|
|
- if (error == TIMER_RETRY) {
|
|
|
+ if (timer_delete_hook(timer) == TIMER_RETRY) {
|
|
|
unlock_timer(timer, flags);
|
|
|
goto retry_delete;
|
|
|
}
|
|
|
-#else
|
|
|
- timer_delete_hook(timer);
|
|
|
-#endif
|
|
|
list_del(&timer->list);
|
|
|
/*
|
|
|
* This keeps any tasks waiting on the spin lock from thinking
|
|
@@ -1164,57 +868,7 @@ void exit_itimers(struct signal_struct *sig)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * And now for the "clock" calls
|
|
|
- *
|
|
|
- * These functions are called both from timer functions (with the timer
|
|
|
- * spin_lock_irq() held and from clock calls with no locking. They must
|
|
|
- * use the save flags versions of locks.
|
|
|
- */
|
|
|
-
|
|
|
-/*
|
|
|
- * We do ticks here to avoid the irq lock ( they take sooo long).
|
|
|
- * The seqlock is great here. Since we a reader, we don't really care
|
|
|
- * if we are interrupted since we don't take lock that will stall us or
|
|
|
- * any other cpu. Voila, no irq lock is needed.
|
|
|
- *
|
|
|
- */
|
|
|
-
|
|
|
-static u64 do_posix_clock_monotonic_gettime_parts(
|
|
|
- struct timespec *tp, struct timespec *mo)
|
|
|
-{
|
|
|
- u64 jiff;
|
|
|
- unsigned int seq;
|
|
|
-
|
|
|
- do {
|
|
|
- seq = read_seqbegin(&xtime_lock);
|
|
|
- getnstimeofday(tp);
|
|
|
- *mo = wall_to_monotonic;
|
|
|
- jiff = jiffies_64;
|
|
|
-
|
|
|
- } while(read_seqretry(&xtime_lock, seq));
|
|
|
-
|
|
|
- return jiff;
|
|
|
-}
|
|
|
-
|
|
|
-static int do_posix_clock_monotonic_get(const clockid_t clock,
|
|
|
- struct timespec *tp)
|
|
|
-{
|
|
|
- struct timespec wall_to_mono;
|
|
|
-
|
|
|
- do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono);
|
|
|
-
|
|
|
- set_normalized_timespec(tp, tp->tv_sec + wall_to_mono.tv_sec,
|
|
|
- tp->tv_nsec + wall_to_mono.tv_nsec);
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-int do_posix_clock_monotonic_gettime(struct timespec *tp)
|
|
|
-{
|
|
|
- return do_posix_clock_monotonic_get(CLOCK_MONOTONIC, tp);
|
|
|
-}
|
|
|
-
|
|
|
+/* Not available / possible... functions */
|
|
|
int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
|
|
|
{
|
|
|
return -EINVAL;
|
|
@@ -1287,107 +941,6 @@ sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
|
|
|
return error;
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * The standard says that an absolute nanosleep call MUST wake up at
|
|
|
- * the requested time in spite of clock settings. Here is what we do:
|
|
|
- * For each nanosleep call that needs it (only absolute and not on
|
|
|
- * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure
|
|
|
- * into the "nanosleep_abs_list". All we need is the task_struct pointer.
|
|
|
- * When ever the clock is set we just wake up all those tasks. The rest
|
|
|
- * is done by the while loop in clock_nanosleep().
|
|
|
- *
|
|
|
- * On locking, clock_was_set() is called from update_wall_clock which
|
|
|
- * holds (or has held for it) a write_lock_irq( xtime_lock) and is
|
|
|
- * called from the timer bh code. Thus we need the irq save locks.
|
|
|
- *
|
|
|
- * Also, on the call from update_wall_clock, that is done as part of a
|
|
|
- * softirq thing. We don't want to delay the system that much (possibly
|
|
|
- * long list of timers to fix), so we defer that work to keventd.
|
|
|
- */
|
|
|
-
|
|
|
-static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue);
|
|
|
-static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL);
|
|
|
-
|
|
|
-static DECLARE_MUTEX(clock_was_set_lock);
|
|
|
-
|
|
|
-void clock_was_set(void)
|
|
|
-{
|
|
|
- struct k_itimer *timr;
|
|
|
- struct timespec new_wall_to;
|
|
|
- LIST_HEAD(cws_list);
|
|
|
- unsigned long seq;
|
|
|
-
|
|
|
-
|
|
|
- if (unlikely(in_interrupt())) {
|
|
|
- schedule_work(&clock_was_set_work);
|
|
|
- return;
|
|
|
- }
|
|
|
- wake_up_all(&nanosleep_abs_wqueue);
|
|
|
-
|
|
|
- /*
|
|
|
- * Check if there exist TIMER_ABSTIME timers to correct.
|
|
|
- *
|
|
|
- * Notes on locking: This code is run in task context with irq
|
|
|
- * on. We CAN be interrupted! All other usage of the abs list
|
|
|
- * lock is under the timer lock which holds the irq lock as
|
|
|
- * well. We REALLY don't want to scan the whole list with the
|
|
|
- * interrupt system off, AND we would like a sequence lock on
|
|
|
- * this code as well. Since we assume that the clock will not
|
|
|
- * be set often, it seems ok to take and release the irq lock
|
|
|
- * for each timer. In fact add_timer will do this, so this is
|
|
|
- * not an issue. So we know when we are done, we will move the
|
|
|
- * whole list to a new location. Then as we process each entry,
|
|
|
- * we will move it to the actual list again. This way, when our
|
|
|
- * copy is empty, we are done. We are not all that concerned
|
|
|
- * about preemption so we will use a semaphore lock to protect
|
|
|
- * aginst reentry. This way we will not stall another
|
|
|
- * processor. It is possible that this may delay some timers
|
|
|
- * that should have expired, given the new clock, but even this
|
|
|
- * will be minimal as we will always update to the current time,
|
|
|
- * even if it was set by a task that is waiting for entry to
|
|
|
- * this code. Timers that expire too early will be caught by
|
|
|
- * the expire code and restarted.
|
|
|
-
|
|
|
- * Absolute timers that repeat are left in the abs list while
|
|
|
- * waiting for the task to pick up the signal. This means we
|
|
|
- * may find timers that are not in the "add_timer" list, but are
|
|
|
- * in the abs list. We do the same thing for these, save
|
|
|
- * putting them back in the "add_timer" list. (Note, these are
|
|
|
- * left in the abs list mainly to indicate that they are
|
|
|
- * ABSOLUTE timers, a fact that is used by the re-arm code, and
|
|
|
- * for which we have no other flag.)
|
|
|
-
|
|
|
- */
|
|
|
-
|
|
|
- down(&clock_was_set_lock);
|
|
|
- spin_lock_irq(&abs_list.lock);
|
|
|
- list_splice_init(&abs_list.list, &cws_list);
|
|
|
- spin_unlock_irq(&abs_list.lock);
|
|
|
- do {
|
|
|
- do {
|
|
|
- seq = read_seqbegin(&xtime_lock);
|
|
|
- new_wall_to = wall_to_monotonic;
|
|
|
- } while (read_seqretry(&xtime_lock, seq));
|
|
|
-
|
|
|
- spin_lock_irq(&abs_list.lock);
|
|
|
- if (list_empty(&cws_list)) {
|
|
|
- spin_unlock_irq(&abs_list.lock);
|
|
|
- break;
|
|
|
- }
|
|
|
- timr = list_entry(cws_list.next, struct k_itimer,
|
|
|
- it.real.abs_timer_entry);
|
|
|
-
|
|
|
- list_del_init(&timr->it.real.abs_timer_entry);
|
|
|
- if (add_clockset_delta(timr, &new_wall_to) &&
|
|
|
- del_timer(&timr->it.real.timer)) /* timer run yet? */
|
|
|
- add_timer(&timr->it.real.timer);
|
|
|
- list_add(&timr->it.real.abs_timer_entry, &abs_list.list);
|
|
|
- spin_unlock_irq(&abs_list.lock);
|
|
|
- } while (1);
|
|
|
-
|
|
|
- up(&clock_was_set_lock);
|
|
|
-}
|
|
|
-
|
|
|
/*
|
|
|
* nanosleep for monotonic and realtime clocks
|
|
|
*/
|
|
@@ -1401,7 +954,7 @@ static int common_nsleep(const clockid_t which_clock, int flags,
|
|
|
case CLOCK_REALTIME:
|
|
|
/* Posix madness. Only absolute timers on clock realtime
|
|
|
are affected by clock set. */
|
|
|
- if (mode == HRTIMER_ABS)
|
|
|
+ if (mode != HRTIMER_ABS)
|
|
|
clockid = CLOCK_MONOTONIC;
|
|
|
case CLOCK_MONOTONIC:
|
|
|
break;
|