|
@@ -0,0 +1,876 @@
|
|
|
+/*
|
|
|
+ * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
|
|
|
+ *
|
|
|
+ * This file is subject to the terms and conditions of the GNU General Public
|
|
|
+ * License. See the file "COPYING" in the main directory of this archive
|
|
|
+ * for more details.
|
|
|
+ *
|
|
|
+ * This is an implementation of a DWARF unwinder. Its main purpose is
|
|
|
+ * for generating stacktrace information. Based on the DWARF 3
|
|
|
+ * specification from http://www.dwarfstd.org.
|
|
|
+ *
|
|
|
+ * TODO:
|
|
|
+ * - DWARF64 doesn't work.
|
|
|
+ */
|
|
|
+
|
|
|
+/* #define DEBUG */
|
|
|
+#include <linux/kernel.h>
|
|
|
+#include <linux/io.h>
|
|
|
+#include <linux/list.h>
|
|
|
+#include <linux/mm.h>
|
|
|
+#include <asm/dwarf.h>
|
|
|
+#include <asm/unwinder.h>
|
|
|
+#include <asm/sections.h>
|
|
|
+#include <asm-generic/unaligned.h>
|
|
|
+#include <asm/dwarf.h>
|
|
|
+#include <asm/stacktrace.h>
|
|
|
+
|
|
|
+static LIST_HEAD(dwarf_cie_list);
|
|
|
+DEFINE_SPINLOCK(dwarf_cie_lock);
|
|
|
+
|
|
|
+static LIST_HEAD(dwarf_fde_list);
|
|
|
+DEFINE_SPINLOCK(dwarf_fde_lock);
|
|
|
+
|
|
|
+static struct dwarf_cie *cached_cie;
|
|
|
+
|
|
|
+/*
|
|
|
+ * Figure out whether we need to allocate some dwarf registers. If dwarf
|
|
|
+ * registers have already been allocated then we may need to realloc
|
|
|
+ * them. "reg" is a register number that we need to be able to access
|
|
|
+ * after this call.
|
|
|
+ *
|
|
|
+ * Register numbers start at zero, therefore we need to allocate space
|
|
|
+ * for "reg" + 1 registers.
|
|
|
+ */
|
|
|
+static void dwarf_frame_alloc_regs(struct dwarf_frame *frame,
|
|
|
+ unsigned int reg)
|
|
|
+{
|
|
|
+ struct dwarf_reg *regs;
|
|
|
+ unsigned int num_regs = reg + 1;
|
|
|
+ size_t new_size;
|
|
|
+ size_t old_size;
|
|
|
+
|
|
|
+ new_size = num_regs * sizeof(*regs);
|
|
|
+ old_size = frame->num_regs * sizeof(*regs);
|
|
|
+
|
|
|
+ /* Fast path: don't allocate any regs if we've already got enough. */
|
|
|
+ if (frame->num_regs >= num_regs)
|
|
|
+ return;
|
|
|
+
|
|
|
+ regs = kzalloc(new_size, GFP_KERNEL);
|
|
|
+ if (!regs) {
|
|
|
+ printk(KERN_WARNING "Unable to allocate DWARF registers\n");
|
|
|
+ /*
|
|
|
+ * Let's just bomb hard here, we have no way to
|
|
|
+ * gracefully recover.
|
|
|
+ */
|
|
|
+ BUG();
|
|
|
+ }
|
|
|
+
|
|
|
+ if (frame->regs) {
|
|
|
+ memcpy(regs, frame->regs, old_size);
|
|
|
+ kfree(frame->regs);
|
|
|
+ }
|
|
|
+
|
|
|
+ frame->regs = regs;
|
|
|
+ frame->num_regs = num_regs;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * dwarf_read_addr - read dwarf data
|
|
|
+ * @src: source address of data
|
|
|
+ * @dst: destination address to store the data to
|
|
|
+ *
|
|
|
+ * Read 'n' bytes from @src, where 'n' is the size of an address on
|
|
|
+ * the native machine. We return the number of bytes read, which
|
|
|
+ * should always be 'n'. We also have to be careful when reading
|
|
|
+ * from @src and writing to @dst, because they can be arbitrarily
|
|
|
+ * aligned. Return 'n' - the number of bytes read.
|
|
|
+ */
|
|
|
+static inline int dwarf_read_addr(void *src, void *dst)
|
|
|
+{
|
|
|
+ u32 val = __get_unaligned_cpu32(src);
|
|
|
+ __put_unaligned_cpu32(val, dst);
|
|
|
+
|
|
|
+ return sizeof(unsigned long *);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * dwarf_read_uleb128 - read unsigned LEB128 data
|
|
|
+ * @addr: the address where the ULEB128 data is stored
|
|
|
+ * @ret: address to store the result
|
|
|
+ *
|
|
|
+ * Decode an unsigned LEB128 encoded datum. The algorithm is taken
|
|
|
+ * from Appendix C of the DWARF 3 spec. For information on the
|
|
|
+ * encodings refer to section "7.6 - Variable Length Data". Return
|
|
|
+ * the number of bytes read.
|
|
|
+ */
|
|
|
+static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
|
|
|
+{
|
|
|
+ unsigned int result;
|
|
|
+ unsigned char byte;
|
|
|
+ int shift, count;
|
|
|
+
|
|
|
+ result = 0;
|
|
|
+ shift = 0;
|
|
|
+ count = 0;
|
|
|
+
|
|
|
+ while (1) {
|
|
|
+ byte = __raw_readb(addr);
|
|
|
+ addr++;
|
|
|
+ count++;
|
|
|
+
|
|
|
+ result |= (byte & 0x7f) << shift;
|
|
|
+ shift += 7;
|
|
|
+
|
|
|
+ if (!(byte & 0x80))
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ *ret = result;
|
|
|
+
|
|
|
+ return count;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * dwarf_read_leb128 - read signed LEB128 data
|
|
|
+ * @addr: the address of the LEB128 encoded data
|
|
|
+ * @ret: address to store the result
|
|
|
+ *
|
|
|
+ * Decode signed LEB128 data. The algorithm is taken from Appendix
|
|
|
+ * C of the DWARF 3 spec. Return the number of bytes read.
|
|
|
+ */
|
|
|
+static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
|
|
|
+{
|
|
|
+ unsigned char byte;
|
|
|
+ int result, shift;
|
|
|
+ int num_bits;
|
|
|
+ int count;
|
|
|
+
|
|
|
+ result = 0;
|
|
|
+ shift = 0;
|
|
|
+ count = 0;
|
|
|
+
|
|
|
+ while (1) {
|
|
|
+ byte = __raw_readb(addr);
|
|
|
+ addr++;
|
|
|
+ result |= (byte & 0x7f) << shift;
|
|
|
+ shift += 7;
|
|
|
+ count++;
|
|
|
+
|
|
|
+ if (!(byte & 0x80))
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* The number of bits in a signed integer. */
|
|
|
+ num_bits = 8 * sizeof(result);
|
|
|
+
|
|
|
+ if ((shift < num_bits) && (byte & 0x40))
|
|
|
+ result |= (-1 << shift);
|
|
|
+
|
|
|
+ *ret = result;
|
|
|
+
|
|
|
+ return count;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * dwarf_read_encoded_value - return the decoded value at @addr
|
|
|
+ * @addr: the address of the encoded value
|
|
|
+ * @val: where to write the decoded value
|
|
|
+ * @encoding: the encoding with which we can decode @addr
|
|
|
+ *
|
|
|
+ * GCC emits encoded address in the .eh_frame FDE entries. Decode
|
|
|
+ * the value at @addr using @encoding. The decoded value is written
|
|
|
+ * to @val and the number of bytes read is returned.
|
|
|
+ */
|
|
|
+static int dwarf_read_encoded_value(char *addr, unsigned long *val,
|
|
|
+ char encoding)
|
|
|
+{
|
|
|
+ unsigned long decoded_addr = 0;
|
|
|
+ int count = 0;
|
|
|
+
|
|
|
+ switch (encoding & 0x70) {
|
|
|
+ case DW_EH_PE_absptr:
|
|
|
+ break;
|
|
|
+ case DW_EH_PE_pcrel:
|
|
|
+ decoded_addr = (unsigned long)addr;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ pr_debug("encoding=0x%x\n", (encoding & 0x70));
|
|
|
+ BUG();
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((encoding & 0x07) == 0x00)
|
|
|
+ encoding |= DW_EH_PE_udata4;
|
|
|
+
|
|
|
+ switch (encoding & 0x0f) {
|
|
|
+ case DW_EH_PE_sdata4:
|
|
|
+ case DW_EH_PE_udata4:
|
|
|
+ count += 4;
|
|
|
+ decoded_addr += __get_unaligned_cpu32(addr);
|
|
|
+ __raw_writel(decoded_addr, val);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ pr_debug("encoding=0x%x\n", encoding);
|
|
|
+ BUG();
|
|
|
+ }
|
|
|
+
|
|
|
+ return count;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * dwarf_entry_len - return the length of an FDE or CIE
|
|
|
+ * @addr: the address of the entry
|
|
|
+ * @len: the length of the entry
|
|
|
+ *
|
|
|
+ * Read the initial_length field of the entry and store the size of
|
|
|
+ * the entry in @len. We return the number of bytes read. Return a
|
|
|
+ * count of 0 on error.
|
|
|
+ */
|
|
|
+static inline int dwarf_entry_len(char *addr, unsigned long *len)
|
|
|
+{
|
|
|
+ u32 initial_len;
|
|
|
+ int count;
|
|
|
+
|
|
|
+ initial_len = __get_unaligned_cpu32(addr);
|
|
|
+ count = 4;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * An initial length field value in the range DW_LEN_EXT_LO -
|
|
|
+ * DW_LEN_EXT_HI indicates an extension, and should not be
|
|
|
+ * interpreted as a length. The only extension that we currently
|
|
|
+ * understand is the use of DWARF64 addresses.
|
|
|
+ */
|
|
|
+ if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
|
|
|
+ /*
|
|
|
+ * The 64-bit length field immediately follows the
|
|
|
+ * compulsory 32-bit length field.
|
|
|
+ */
|
|
|
+ if (initial_len == DW_EXT_DWARF64) {
|
|
|
+ *len = __get_unaligned_cpu64(addr + 4);
|
|
|
+ count = 12;
|
|
|
+ } else {
|
|
|
+ printk(KERN_WARNING "Unknown DWARF extension\n");
|
|
|
+ count = 0;
|
|
|
+ }
|
|
|
+ } else
|
|
|
+ *len = initial_len;
|
|
|
+
|
|
|
+ return count;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * dwarf_lookup_cie - locate the cie
|
|
|
+ * @cie_ptr: pointer to help with lookup
|
|
|
+ */
|
|
|
+static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
|
|
|
+{
|
|
|
+ struct dwarf_cie *cie, *n;
|
|
|
+ unsigned long flags;
|
|
|
+
|
|
|
+ spin_lock_irqsave(&dwarf_cie_lock, flags);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We've cached the last CIE we looked up because chances are
|
|
|
+ * that the FDE wants this CIE.
|
|
|
+ */
|
|
|
+ if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
|
|
|
+ cie = cached_cie;
|
|
|
+ goto out;
|
|
|
+ }
|
|
|
+
|
|
|
+ list_for_each_entry_safe(cie, n, &dwarf_cie_list, link) {
|
|
|
+ if (cie->cie_pointer == cie_ptr) {
|
|
|
+ cached_cie = cie;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Couldn't find the entry in the list. */
|
|
|
+ if (&cie->link == &dwarf_cie_list)
|
|
|
+ cie = NULL;
|
|
|
+out:
|
|
|
+ spin_unlock_irqrestore(&dwarf_cie_lock, flags);
|
|
|
+ return cie;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * dwarf_lookup_fde - locate the FDE that covers pc
|
|
|
+ * @pc: the program counter
|
|
|
+ */
|
|
|
+struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
|
|
|
+{
|
|
|
+ unsigned long flags;
|
|
|
+ struct dwarf_fde *fde, *n;
|
|
|
+
|
|
|
+ spin_lock_irqsave(&dwarf_fde_lock, flags);
|
|
|
+ list_for_each_entry_safe(fde, n, &dwarf_fde_list, link) {
|
|
|
+ unsigned long start, end;
|
|
|
+
|
|
|
+ start = fde->initial_location;
|
|
|
+ end = fde->initial_location + fde->address_range;
|
|
|
+
|
|
|
+ if (pc >= start && pc < end)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Couldn't find the entry in the list. */
|
|
|
+ if (&fde->link == &dwarf_fde_list)
|
|
|
+ fde = NULL;
|
|
|
+
|
|
|
+ spin_unlock_irqrestore(&dwarf_fde_lock, flags);
|
|
|
+
|
|
|
+ return fde;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * dwarf_cfa_execute_insns - execute instructions to calculate a CFA
|
|
|
+ * @insn_start: address of the first instruction
|
|
|
+ * @insn_end: address of the last instruction
|
|
|
+ * @cie: the CIE for this function
|
|
|
+ * @fde: the FDE for this function
|
|
|
+ * @frame: the instructions calculate the CFA for this frame
|
|
|
+ * @pc: the program counter of the address we're interested in
|
|
|
+ *
|
|
|
+ * Execute the Call Frame instruction sequence starting at
|
|
|
+ * @insn_start and ending at @insn_end. The instructions describe
|
|
|
+ * how to calculate the Canonical Frame Address of a stackframe.
|
|
|
+ * Store the results in @frame.
|
|
|
+ */
|
|
|
+static int dwarf_cfa_execute_insns(unsigned char *insn_start,
|
|
|
+ unsigned char *insn_end,
|
|
|
+ struct dwarf_cie *cie,
|
|
|
+ struct dwarf_fde *fde,
|
|
|
+ struct dwarf_frame *frame,
|
|
|
+ unsigned long pc)
|
|
|
+{
|
|
|
+ unsigned char insn;
|
|
|
+ unsigned char *current_insn;
|
|
|
+ unsigned int count, delta, reg, expr_len, offset;
|
|
|
+
|
|
|
+ current_insn = insn_start;
|
|
|
+
|
|
|
+ while (current_insn < insn_end && frame->pc <= pc) {
|
|
|
+ insn = __raw_readb(current_insn++);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Firstly, handle the opcodes that embed their operands
|
|
|
+ * in the instructions.
|
|
|
+ */
|
|
|
+ switch (DW_CFA_opcode(insn)) {
|
|
|
+ case DW_CFA_advance_loc:
|
|
|
+ delta = DW_CFA_operand(insn);
|
|
|
+ delta *= cie->code_alignment_factor;
|
|
|
+ frame->pc += delta;
|
|
|
+ continue;
|
|
|
+ /* NOTREACHED */
|
|
|
+ case DW_CFA_offset:
|
|
|
+ reg = DW_CFA_operand(insn);
|
|
|
+ count = dwarf_read_uleb128(current_insn, &offset);
|
|
|
+ current_insn += count;
|
|
|
+ offset *= cie->data_alignment_factor;
|
|
|
+ dwarf_frame_alloc_regs(frame, reg);
|
|
|
+ frame->regs[reg].addr = offset;
|
|
|
+ frame->regs[reg].flags |= DWARF_REG_OFFSET;
|
|
|
+ continue;
|
|
|
+ /* NOTREACHED */
|
|
|
+ case DW_CFA_restore:
|
|
|
+ reg = DW_CFA_operand(insn);
|
|
|
+ continue;
|
|
|
+ /* NOTREACHED */
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Secondly, handle the opcodes that don't embed their
|
|
|
+ * operands in the instruction.
|
|
|
+ */
|
|
|
+ switch (insn) {
|
|
|
+ case DW_CFA_nop:
|
|
|
+ continue;
|
|
|
+ case DW_CFA_advance_loc1:
|
|
|
+ delta = *current_insn++;
|
|
|
+ frame->pc += delta * cie->code_alignment_factor;
|
|
|
+ break;
|
|
|
+ case DW_CFA_advance_loc2:
|
|
|
+ delta = __get_unaligned_cpu16(current_insn);
|
|
|
+ current_insn += 2;
|
|
|
+ frame->pc += delta * cie->code_alignment_factor;
|
|
|
+ break;
|
|
|
+ case DW_CFA_advance_loc4:
|
|
|
+ delta = __get_unaligned_cpu32(current_insn);
|
|
|
+ current_insn += 4;
|
|
|
+ frame->pc += delta * cie->code_alignment_factor;
|
|
|
+ break;
|
|
|
+ case DW_CFA_offset_extended:
|
|
|
+ count = dwarf_read_uleb128(current_insn, ®);
|
|
|
+ current_insn += count;
|
|
|
+ count = dwarf_read_uleb128(current_insn, &offset);
|
|
|
+ current_insn += count;
|
|
|
+ offset *= cie->data_alignment_factor;
|
|
|
+ break;
|
|
|
+ case DW_CFA_restore_extended:
|
|
|
+ count = dwarf_read_uleb128(current_insn, ®);
|
|
|
+ current_insn += count;
|
|
|
+ break;
|
|
|
+ case DW_CFA_undefined:
|
|
|
+ count = dwarf_read_uleb128(current_insn, ®);
|
|
|
+ current_insn += count;
|
|
|
+ break;
|
|
|
+ case DW_CFA_def_cfa:
|
|
|
+ count = dwarf_read_uleb128(current_insn,
|
|
|
+ &frame->cfa_register);
|
|
|
+ current_insn += count;
|
|
|
+ count = dwarf_read_uleb128(current_insn,
|
|
|
+ &frame->cfa_offset);
|
|
|
+ current_insn += count;
|
|
|
+
|
|
|
+ frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
|
|
|
+ break;
|
|
|
+ case DW_CFA_def_cfa_register:
|
|
|
+ count = dwarf_read_uleb128(current_insn,
|
|
|
+ &frame->cfa_register);
|
|
|
+ current_insn += count;
|
|
|
+ frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
|
|
|
+ break;
|
|
|
+ case DW_CFA_def_cfa_offset:
|
|
|
+ count = dwarf_read_uleb128(current_insn, &offset);
|
|
|
+ current_insn += count;
|
|
|
+ frame->cfa_offset = offset;
|
|
|
+ break;
|
|
|
+ case DW_CFA_def_cfa_expression:
|
|
|
+ count = dwarf_read_uleb128(current_insn, &expr_len);
|
|
|
+ current_insn += count;
|
|
|
+
|
|
|
+ frame->cfa_expr = current_insn;
|
|
|
+ frame->cfa_expr_len = expr_len;
|
|
|
+ current_insn += expr_len;
|
|
|
+
|
|
|
+ frame->flags |= DWARF_FRAME_CFA_REG_EXP;
|
|
|
+ break;
|
|
|
+ case DW_CFA_offset_extended_sf:
|
|
|
+ count = dwarf_read_uleb128(current_insn, ®);
|
|
|
+ current_insn += count;
|
|
|
+ count = dwarf_read_leb128(current_insn, &offset);
|
|
|
+ current_insn += count;
|
|
|
+ offset *= cie->data_alignment_factor;
|
|
|
+ dwarf_frame_alloc_regs(frame, reg);
|
|
|
+ frame->regs[reg].flags |= DWARF_REG_OFFSET;
|
|
|
+ frame->regs[reg].addr = offset;
|
|
|
+ break;
|
|
|
+ case DW_CFA_val_offset:
|
|
|
+ count = dwarf_read_uleb128(current_insn, ®);
|
|
|
+ current_insn += count;
|
|
|
+ count = dwarf_read_leb128(current_insn, &offset);
|
|
|
+ offset *= cie->data_alignment_factor;
|
|
|
+ frame->regs[reg].flags |= DWARF_REG_OFFSET;
|
|
|
+ frame->regs[reg].addr = offset;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ pr_debug("unhandled DWARF instruction 0x%x\n", insn);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * dwarf_unwind_stack - recursively unwind the stack
|
|
|
+ * @pc: address of the function to unwind
|
|
|
+ * @prev: struct dwarf_frame of the previous stackframe on the callstack
|
|
|
+ *
|
|
|
+ * Return a struct dwarf_frame representing the most recent frame
|
|
|
+ * on the callstack. Each of the lower (older) stack frames are
|
|
|
+ * linked via the "prev" member.
|
|
|
+ */
|
|
|
+struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
|
|
|
+ struct dwarf_frame *prev)
|
|
|
+{
|
|
|
+ struct dwarf_frame *frame;
|
|
|
+ struct dwarf_cie *cie;
|
|
|
+ struct dwarf_fde *fde;
|
|
|
+ unsigned long addr;
|
|
|
+ int i, offset;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If this is the first invocation of this recursive function we
|
|
|
+ * need get the contents of a physical register to get the CFA
|
|
|
+ * in order to begin the virtual unwinding of the stack.
|
|
|
+ *
|
|
|
+ * The constant DWARF_ARCH_UNWIND_OFFSET is added to the address of
|
|
|
+ * this function because the return address register
|
|
|
+ * (DWARF_ARCH_RA_REG) will probably not be initialised until a
|
|
|
+ * few instructions into the prologue.
|
|
|
+ */
|
|
|
+ if (!pc && !prev) {
|
|
|
+ pc = (unsigned long)&dwarf_unwind_stack;
|
|
|
+ pc += DWARF_ARCH_UNWIND_OFFSET;
|
|
|
+ }
|
|
|
+
|
|
|
+ frame = kzalloc(sizeof(*frame), GFP_KERNEL);
|
|
|
+ if (!frame)
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ frame->prev = prev;
|
|
|
+
|
|
|
+ fde = dwarf_lookup_fde(pc);
|
|
|
+ if (!fde) {
|
|
|
+ /*
|
|
|
+ * This is our normal exit path - the one that stops the
|
|
|
+ * recursion. There's two reasons why we might exit
|
|
|
+ * here,
|
|
|
+ *
|
|
|
+ * a) pc has no asscociated DWARF frame info and so
|
|
|
+ * we don't know how to unwind this frame. This is
|
|
|
+ * usually the case when we're trying to unwind a
|
|
|
+ * frame that was called from some assembly code
|
|
|
+ * that has no DWARF info, e.g. syscalls.
|
|
|
+ *
|
|
|
+ * b) the DEBUG info for pc is bogus. There's
|
|
|
+ * really no way to distinguish this case from the
|
|
|
+ * case above, which sucks because we could print a
|
|
|
+ * warning here.
|
|
|
+ */
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ cie = dwarf_lookup_cie(fde->cie_pointer);
|
|
|
+
|
|
|
+ frame->pc = fde->initial_location;
|
|
|
+
|
|
|
+ /* CIE initial instructions */
|
|
|
+ dwarf_cfa_execute_insns(cie->initial_instructions,
|
|
|
+ cie->instructions_end, cie, fde, frame, pc);
|
|
|
+
|
|
|
+ /* FDE instructions */
|
|
|
+ dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
|
|
|
+ fde, frame, pc);
|
|
|
+
|
|
|
+ /* Calculate the CFA */
|
|
|
+ switch (frame->flags) {
|
|
|
+ case DWARF_FRAME_CFA_REG_OFFSET:
|
|
|
+ if (prev) {
|
|
|
+ BUG_ON(!prev->regs[frame->cfa_register].flags);
|
|
|
+
|
|
|
+ addr = prev->cfa;
|
|
|
+ addr += prev->regs[frame->cfa_register].addr;
|
|
|
+ frame->cfa = __raw_readl(addr);
|
|
|
+
|
|
|
+ } else {
|
|
|
+ /*
|
|
|
+ * Again, this is the first invocation of this
|
|
|
+ * recurisve function. We need to physically
|
|
|
+ * read the contents of a register in order to
|
|
|
+ * get the Canonical Frame Address for this
|
|
|
+ * function.
|
|
|
+ */
|
|
|
+ frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
|
|
|
+ }
|
|
|
+
|
|
|
+ frame->cfa += frame->cfa_offset;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ BUG();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* If we haven't seen the return address reg, we're screwed. */
|
|
|
+ BUG_ON(!frame->regs[DWARF_ARCH_RA_REG].flags);
|
|
|
+
|
|
|
+ for (i = 0; i <= frame->num_regs; i++) {
|
|
|
+ struct dwarf_reg *reg = &frame->regs[i];
|
|
|
+
|
|
|
+ if (!reg->flags)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ offset = reg->addr;
|
|
|
+ offset += frame->cfa;
|
|
|
+ }
|
|
|
+
|
|
|
+ addr = frame->cfa + frame->regs[DWARF_ARCH_RA_REG].addr;
|
|
|
+ frame->return_addr = __raw_readl(addr);
|
|
|
+
|
|
|
+ frame->next = dwarf_unwind_stack(frame->return_addr, frame);
|
|
|
+ return frame;
|
|
|
+}
|
|
|
+
|
|
|
+static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
|
|
|
+ unsigned char *end)
|
|
|
+{
|
|
|
+ struct dwarf_cie *cie;
|
|
|
+ unsigned long flags;
|
|
|
+ int count;
|
|
|
+
|
|
|
+ cie = kzalloc(sizeof(*cie), GFP_KERNEL);
|
|
|
+ if (!cie)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ cie->length = len;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Record the offset into the .eh_frame section
|
|
|
+ * for this CIE. It allows this CIE to be
|
|
|
+ * quickly and easily looked up from the
|
|
|
+ * corresponding FDE.
|
|
|
+ */
|
|
|
+ cie->cie_pointer = (unsigned long)entry;
|
|
|
+
|
|
|
+ cie->version = *(char *)p++;
|
|
|
+ BUG_ON(cie->version != 1);
|
|
|
+
|
|
|
+ cie->augmentation = p;
|
|
|
+ p += strlen(cie->augmentation) + 1;
|
|
|
+
|
|
|
+ count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
|
|
|
+ p += count;
|
|
|
+
|
|
|
+ count = dwarf_read_leb128(p, &cie->data_alignment_factor);
|
|
|
+ p += count;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Which column in the rule table contains the
|
|
|
+ * return address?
|
|
|
+ */
|
|
|
+ if (cie->version == 1) {
|
|
|
+ cie->return_address_reg = __raw_readb(p);
|
|
|
+ p++;
|
|
|
+ } else {
|
|
|
+ count = dwarf_read_uleb128(p, &cie->return_address_reg);
|
|
|
+ p += count;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (cie->augmentation[0] == 'z') {
|
|
|
+ unsigned int length, count;
|
|
|
+ cie->flags |= DWARF_CIE_Z_AUGMENTATION;
|
|
|
+
|
|
|
+ count = dwarf_read_uleb128(p, &length);
|
|
|
+ p += count;
|
|
|
+
|
|
|
+ BUG_ON((unsigned char *)p > end);
|
|
|
+
|
|
|
+ cie->initial_instructions = p + length;
|
|
|
+ cie->augmentation++;
|
|
|
+ }
|
|
|
+
|
|
|
+ while (*cie->augmentation) {
|
|
|
+ /*
|
|
|
+ * "L" indicates a byte showing how the
|
|
|
+ * LSDA pointer is encoded. Skip it.
|
|
|
+ */
|
|
|
+ if (*cie->augmentation == 'L') {
|
|
|
+ p++;
|
|
|
+ cie->augmentation++;
|
|
|
+ } else if (*cie->augmentation == 'R') {
|
|
|
+ /*
|
|
|
+ * "R" indicates a byte showing
|
|
|
+ * how FDE addresses are
|
|
|
+ * encoded.
|
|
|
+ */
|
|
|
+ cie->encoding = *(char *)p++;
|
|
|
+ cie->augmentation++;
|
|
|
+ } else if (*cie->augmentation == 'P') {
|
|
|
+ /*
|
|
|
+ * "R" indicates a personality
|
|
|
+ * routine in the CIE
|
|
|
+ * augmentation.
|
|
|
+ */
|
|
|
+ BUG();
|
|
|
+ } else if (*cie->augmentation == 'S') {
|
|
|
+ BUG();
|
|
|
+ } else {
|
|
|
+ /*
|
|
|
+ * Unknown augmentation. Assume
|
|
|
+ * 'z' augmentation.
|
|
|
+ */
|
|
|
+ p = cie->initial_instructions;
|
|
|
+ BUG_ON(!p);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ cie->initial_instructions = p;
|
|
|
+ cie->instructions_end = end;
|
|
|
+
|
|
|
+ /* Add to list */
|
|
|
+ spin_lock_irqsave(&dwarf_cie_lock, flags);
|
|
|
+ list_add_tail(&cie->link, &dwarf_cie_list);
|
|
|
+ spin_unlock_irqrestore(&dwarf_cie_lock, flags);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int dwarf_parse_fde(void *entry, u32 entry_type,
|
|
|
+ void *start, unsigned long len)
|
|
|
+{
|
|
|
+ struct dwarf_fde *fde;
|
|
|
+ struct dwarf_cie *cie;
|
|
|
+ unsigned long flags;
|
|
|
+ int count;
|
|
|
+ void *p = start;
|
|
|
+
|
|
|
+ fde = kzalloc(sizeof(*fde), GFP_KERNEL);
|
|
|
+ if (!fde)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ fde->length = len;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * In a .eh_frame section the CIE pointer is the
|
|
|
+ * delta between the address within the FDE
|
|
|
+ */
|
|
|
+ fde->cie_pointer = (unsigned long)(p - entry_type - 4);
|
|
|
+
|
|
|
+ cie = dwarf_lookup_cie(fde->cie_pointer);
|
|
|
+ fde->cie = cie;
|
|
|
+
|
|
|
+ if (cie->encoding)
|
|
|
+ count = dwarf_read_encoded_value(p, &fde->initial_location,
|
|
|
+ cie->encoding);
|
|
|
+ else
|
|
|
+ count = dwarf_read_addr(p, &fde->initial_location);
|
|
|
+
|
|
|
+ p += count;
|
|
|
+
|
|
|
+ if (cie->encoding)
|
|
|
+ count = dwarf_read_encoded_value(p, &fde->address_range,
|
|
|
+ cie->encoding & 0x0f);
|
|
|
+ else
|
|
|
+ count = dwarf_read_addr(p, &fde->address_range);
|
|
|
+
|
|
|
+ p += count;
|
|
|
+
|
|
|
+ if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
|
|
|
+ unsigned int length;
|
|
|
+ count = dwarf_read_uleb128(p, &length);
|
|
|
+ p += count + length;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Call frame instructions. */
|
|
|
+ fde->instructions = p;
|
|
|
+ fde->end = start + len;
|
|
|
+
|
|
|
+ /* Add to list. */
|
|
|
+ spin_lock_irqsave(&dwarf_fde_lock, flags);
|
|
|
+ list_add_tail(&fde->link, &dwarf_fde_list);
|
|
|
+ spin_unlock_irqrestore(&dwarf_fde_lock, flags);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static void dwarf_unwinder_dump(struct task_struct *task, struct pt_regs *regs,
|
|
|
+ unsigned long *sp,
|
|
|
+ const struct stacktrace_ops *ops, void *data)
|
|
|
+{
|
|
|
+ struct dwarf_frame *frame;
|
|
|
+
|
|
|
+ frame = dwarf_unwind_stack(0, NULL);
|
|
|
+
|
|
|
+ while (frame && frame->return_addr) {
|
|
|
+ ops->address(data, frame->return_addr, 1);
|
|
|
+ frame = frame->next;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static struct unwinder dwarf_unwinder = {
|
|
|
+ .name = "dwarf-unwinder",
|
|
|
+ .dump = dwarf_unwinder_dump,
|
|
|
+ .rating = 150,
|
|
|
+};
|
|
|
+
|
|
|
+static void dwarf_unwinder_cleanup(void)
|
|
|
+{
|
|
|
+ struct dwarf_cie *cie, *m;
|
|
|
+ struct dwarf_fde *fde, *n;
|
|
|
+ unsigned long flags;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Deallocate all the memory allocated for the DWARF unwinder.
|
|
|
+ * Traverse all the FDE/CIE lists and remove and free all the
|
|
|
+ * memory associated with those data structures.
|
|
|
+ */
|
|
|
+ spin_lock_irqsave(&dwarf_cie_lock, flags);
|
|
|
+ list_for_each_entry_safe(cie, m, &dwarf_cie_list, link)
|
|
|
+ kfree(cie);
|
|
|
+ spin_unlock_irqrestore(&dwarf_cie_lock, flags);
|
|
|
+
|
|
|
+ spin_lock_irqsave(&dwarf_fde_lock, flags);
|
|
|
+ list_for_each_entry_safe(fde, n, &dwarf_fde_list, link)
|
|
|
+ kfree(fde);
|
|
|
+ spin_unlock_irqrestore(&dwarf_fde_lock, flags);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * dwarf_unwinder_init - initialise the dwarf unwinder
|
|
|
+ *
|
|
|
+ * Build the data structures describing the .dwarf_frame section to
|
|
|
+ * make it easier to lookup CIE and FDE entries. Because the
|
|
|
+ * .eh_frame section is packed as tightly as possible it is not
|
|
|
+ * easy to lookup the FDE for a given PC, so we build a list of FDE
|
|
|
+ * and CIE entries that make it easier.
|
|
|
+ */
|
|
|
+void dwarf_unwinder_init(void)
|
|
|
+{
|
|
|
+ u32 entry_type;
|
|
|
+ void *p, *entry;
|
|
|
+ int count, err;
|
|
|
+ unsigned long len;
|
|
|
+ unsigned int c_entries, f_entries;
|
|
|
+ unsigned char *end;
|
|
|
+ INIT_LIST_HEAD(&dwarf_cie_list);
|
|
|
+ INIT_LIST_HEAD(&dwarf_fde_list);
|
|
|
+
|
|
|
+ c_entries = 0;
|
|
|
+ f_entries = 0;
|
|
|
+ entry = &__start_eh_frame;
|
|
|
+
|
|
|
+ while ((char *)entry < __stop_eh_frame) {
|
|
|
+ p = entry;
|
|
|
+
|
|
|
+ count = dwarf_entry_len(p, &len);
|
|
|
+ if (count == 0) {
|
|
|
+ /*
|
|
|
+ * We read a bogus length field value. There is
|
|
|
+ * nothing we can do here apart from disabling
|
|
|
+ * the DWARF unwinder. We can't even skip this
|
|
|
+ * entry and move to the next one because 'len'
|
|
|
+ * tells us where our next entry is.
|
|
|
+ */
|
|
|
+ goto out;
|
|
|
+ } else
|
|
|
+ p += count;
|
|
|
+
|
|
|
+ /* initial length does not include itself */
|
|
|
+ end = p + len;
|
|
|
+
|
|
|
+ entry_type = __get_unaligned_cpu32(p);
|
|
|
+ p += 4;
|
|
|
+
|
|
|
+ if (entry_type == DW_EH_FRAME_CIE) {
|
|
|
+ err = dwarf_parse_cie(entry, p, len, end);
|
|
|
+ if (err < 0)
|
|
|
+ goto out;
|
|
|
+ else
|
|
|
+ c_entries++;
|
|
|
+ } else {
|
|
|
+ err = dwarf_parse_fde(entry, entry_type, p, len);
|
|
|
+ if (err < 0)
|
|
|
+ goto out;
|
|
|
+ else
|
|
|
+ f_entries++;
|
|
|
+ }
|
|
|
+
|
|
|
+ entry = (char *)entry + len + 4;
|
|
|
+ }
|
|
|
+
|
|
|
+ printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
|
|
|
+ c_entries, f_entries);
|
|
|
+
|
|
|
+ err = unwinder_register(&dwarf_unwinder);
|
|
|
+ if (err)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ return;
|
|
|
+
|
|
|
+out:
|
|
|
+ printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
|
|
|
+ dwarf_unwinder_cleanup();
|
|
|
+}
|