Эх сурвалжийг харах

Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6 into avr32-arch

Haavard Skinnemoen 16 жил өмнө
parent
commit
b92efa9abf
100 өөрчлөгдсөн 11317 нэмэгдсэн , 7850 устгасан
  1. 3 1
      .mailmap
  2. 1 2
      CREDITS
  3. 61 0
      Documentation/ABI/testing/ima_policy
  4. 43 0
      Documentation/ABI/testing/sysfs-bus-pci
  5. 1 1
      Documentation/ABI/testing/sysfs-firmware-memmap
  6. 3 1
      Documentation/Changes
  7. 13 5
      Documentation/CodingStyle
  8. 1 1
      Documentation/DMA-API.txt
  9. 3 2
      Documentation/DocBook/Makefile
  10. 109 0
      Documentation/DocBook/alsa-driver-api.tmpl
  11. 418 0
      Documentation/DocBook/device-drivers.tmpl
  12. 1 0
      Documentation/DocBook/genericirq.tmpl
  13. 0 377
      Documentation/DocBook/kernel-api.tmpl
  14. 8 4
      Documentation/DocBook/mac80211.tmpl
  15. 113 4
      Documentation/DocBook/uio-howto.tmpl
  16. 6216 0
      Documentation/DocBook/writing-an-alsa-driver.tmpl
  17. 2 2
      Documentation/IO-mapping.txt
  18. 1 1
      Documentation/PCI/PCIEBUS-HOWTO.txt
  19. 12 0
      Documentation/RCU/checklist.txt
  20. 6 5
      Documentation/block/biodoc.txt
  21. 63 0
      Documentation/block/queue-sysfs.txt
  22. 0 6
      Documentation/block/switching-sched.txt
  23. 2 4
      Documentation/cgroups/cgroups.txt
  24. 37 28
      Documentation/cgroups/cpusets.txt
  25. 22 2
      Documentation/cgroups/memcg_test.txt
  26. 2 4
      Documentation/connector/cn_test.c
  27. 22 4
      Documentation/cpu-freq/governors.txt
  28. 12 16
      Documentation/cpu-freq/user-guide.txt
  29. 0 1
      Documentation/dontdiff
  30. 5 3
      Documentation/driver-model/device.txt
  31. 0 205
      Documentation/dvb/README.flexcop
  32. 20 14
      Documentation/dvb/technisat.txt
  33. 240 0
      Documentation/dynamic-debug-howto.txt
  34. 29 1
      Documentation/feature-removal-schedule.txt
  35. 5 2
      Documentation/filesystems/Locking
  36. 5 4
      Documentation/filesystems/ext2.txt
  37. 2 2
      Documentation/filesystems/ext3.txt
  38. 2 2
      Documentation/filesystems/nfs-rdma.txt
  39. 35 0
      Documentation/filesystems/proc.txt
  40. 1 1
      Documentation/filesystems/squashfs.txt
  41. 12 1
      Documentation/filesystems/sysfs-pci.txt
  42. 28 22
      Documentation/filesystems/sysfs.txt
  43. 0 7
      Documentation/filesystems/ubifs.txt
  44. 101 0
      Documentation/hwmon/hpfall.c
  45. 8 0
      Documentation/hwmon/lis3lv02d
  46. 10 0
      Documentation/hwmon/lm90
  47. 10 5
      Documentation/ja_JP/stable_kernel_rules.txt
  48. 15 14
      Documentation/kbuild/kbuild.txt
  49. 4 3
      Documentation/kernel-doc-nano-HOWTO.txt
  50. 25 18
      Documentation/kernel-parameters.txt
  51. 22 3
      Documentation/laptops/thinkpad-acpi.txt
  52. 1 1
      Documentation/lguest/Makefile
  53. BIN
      Documentation/logo.gif
  54. 1570 0
      Documentation/logo.svg
  55. 3 12
      Documentation/logo.txt
  56. 6 19
      Documentation/networking/alias.txt
  57. 2 1
      Documentation/networking/dccp.txt
  58. 81 67
      Documentation/networking/ip-sysctl.txt
  59. 35 0
      Documentation/networking/ipv6.txt
  60. 199 0
      Documentation/networking/ixgbe.txt
  61. 2 1
      Documentation/networking/netconsole.txt
  62. 356 0
      Documentation/networking/rds.txt
  63. 180 0
      Documentation/networking/timestamping.txt
  64. 1 0
      Documentation/networking/timestamping/.gitignore
  65. 6 0
      Documentation/networking/timestamping/Makefile
  66. 533 0
      Documentation/networking/timestamping/timestamping.c
  67. 180 0
      Documentation/powerpc/dts-bindings/fsl/mpc5200.txt
  68. 6 0
      Documentation/powerpc/dts-bindings/fsl/tsec.txt
  69. 0 277
      Documentation/powerpc/mpc52xx-device-tree-bindings.txt
  70. 0 2
      Documentation/scheduler/00-INDEX
  71. 0 126
      Documentation/scheduler/sched-coding.txt
  72. 5 6
      Documentation/scsi/cxgb3i.txt
  73. 61 26
      Documentation/sound/alsa/ALSA-Configuration.txt
  74. 0 100
      Documentation/sound/alsa/DocBook/alsa-driver-api.tmpl
  75. 0 6210
      Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl
  76. 19 3
      Documentation/sound/alsa/HD-Audio-Models.txt
  77. 44 3
      Documentation/sound/alsa/HD-Audio.txt
  78. 3 0
      Documentation/sound/alsa/soc/dapm.txt
  79. 0 23
      Documentation/sound/oss/CS4232
  80. 1 1
      Documentation/sound/oss/Introduction
  81. 2 4
      Documentation/tracers/mmiotrace.txt
  82. 6 5
      Documentation/usb/dma.txt
  83. 20 7
      Documentation/usb/usbmon.txt
  84. 17 8
      Documentation/video4linux/v4lgrab.c
  85. 97 27
      MAINTAINERS
  86. 43 50
      Makefile
  87. 1 1
      README
  88. 1 0
      arch/alpha/Kconfig
  89. 6 11
      arch/alpha/include/asm/bug.h
  90. 2 0
      arch/alpha/include/asm/dma-mapping.h
  91. 3 0
      arch/alpha/include/asm/socket.h
  92. 2 0
      arch/alpha/include/asm/statfs.h
  93. 1 1
      arch/alpha/include/asm/swab.h
  94. 1 1
      arch/alpha/kernel/entry.S
  95. 1 1
      arch/alpha/kernel/irq.c
  96. 1 1
      arch/alpha/kernel/irq_alpha.c
  97. 50 63
      arch/alpha/kernel/osf_sys.c
  98. 2 1
      arch/alpha/kernel/pci-noop.c
  99. 4 4
      arch/alpha/kernel/process.c
  100. 9 9
      arch/alpha/kernel/signal.c

+ 3 - 1
.mailmap

@@ -92,6 +92,7 @@ Rudolf Marek <R.Marek@sh.cvut.cz>
 Rui Saraiva <rmps@joel.ist.utl.pt>
 Sachin P Sant <ssant@in.ibm.com>
 Sam Ravnborg <sam@mars.ravnborg.org>
+Sascha Hauer <s.hauer@pengutronix.de>
 S.Çağlar Onur <caglar@pardus.org.tr>
 Simon Kelley <simon@thekelleys.org.uk>
 Stéphane Witzmann <stephane.witzmann@ubpmes.univ-bpclermont.fr>
@@ -100,6 +101,7 @@ Tejun Heo <htejun@gmail.com>
 Thomas Graf <tgraf@suug.ch>
 Tony Luck <tony.luck@intel.com>
 Tsuneo Yoshioka <Tsuneo.Yoshioka@f-secure.com>
-Uwe Kleine-König <Uwe.Kleine-Koenig@digi.com>
 Uwe Kleine-König <ukleinek@informatik.uni-freiburg.de>
+Uwe Kleine-König <ukl@pengutronix.de>
+Uwe Kleine-König <Uwe.Kleine-Koenig@digi.com>
 Valdis Kletnieks <Valdis.Kletnieks@vt.edu>

+ 1 - 2
CREDITS

@@ -2166,7 +2166,6 @@ D: Initial implementation of VC's, pty's and select()
 
 N: Pavel Machek
 E: pavel@ucw.cz
-E: pavel@suse.cz
 D: Softcursor for vga, hypertech cdrom support, vcsa bugfix, nbd
 D: sun4/330 port, capabilities for elf, speedup for rm on ext2, USB,
 D: work on suspend-to-ram/disk, killing duplicates from ioctl32
@@ -3739,7 +3738,7 @@ S: 93149 Nittenau
 S: Germany
 
 N: Gertjan van Wingerde
-E: gwingerde@home.nl
+E: gwingerde@gmail.com
 D: Ralink rt2x00 WLAN driver
 D: Minix V2 file-system
 D: Misc fixes

+ 61 - 0
Documentation/ABI/testing/ima_policy

@@ -0,0 +1,61 @@
+What:		security/ima/policy
+Date:		May 2008
+Contact:	Mimi Zohar <zohar@us.ibm.com>
+Description:
+		The Trusted Computing Group(TCG) runtime Integrity
+		Measurement Architecture(IMA) maintains a list of hash
+		values of executables and other sensitive system files
+		loaded into the run-time of this system.  At runtime,
+		the policy can be constrained based on LSM specific data.
+		Policies are loaded into the securityfs file ima/policy
+		by opening the file, writing the rules one at a time and
+		then closing the file.  The new policy takes effect after
+		the file ima/policy is closed.
+
+		rule format: action [condition ...]
+
+		action: measure | dont_measure
+		condition:= base | lsm
+			base:	[[func=] [mask=] [fsmagic=] [uid=]]
+			lsm:	[[subj_user=] [subj_role=] [subj_type=]
+				 [obj_user=] [obj_role=] [obj_type=]]
+
+		base: 	func:= [BPRM_CHECK][FILE_MMAP][INODE_PERMISSION]
+			mask:= [MAY_READ] [MAY_WRITE] [MAY_APPEND] [MAY_EXEC]
+			fsmagic:= hex value
+			uid:= decimal value
+		lsm:  	are LSM specific
+
+		default policy:
+			# PROC_SUPER_MAGIC
+			dont_measure fsmagic=0x9fa0
+			# SYSFS_MAGIC
+			dont_measure fsmagic=0x62656572
+			# DEBUGFS_MAGIC
+			dont_measure fsmagic=0x64626720
+			# TMPFS_MAGIC
+			dont_measure fsmagic=0x01021994
+			# SECURITYFS_MAGIC
+			dont_measure fsmagic=0x73636673
+
+			measure func=BPRM_CHECK
+			measure func=FILE_MMAP mask=MAY_EXEC
+			measure func=INODE_PERM mask=MAY_READ uid=0
+
+		The default policy measures all executables in bprm_check,
+		all files mmapped executable in file_mmap, and all files
+		open for read by root in inode_permission.
+
+		Examples of LSM specific definitions:
+
+		SELinux:
+			# SELINUX_MAGIC
+			dont_measure fsmagic=0xF97CFF8C
+
+			dont_measure obj_type=var_log_t
+			dont_measure obj_type=auditd_log_t
+			measure subj_user=system_u func=INODE_PERM mask=MAY_READ
+			measure subj_role=system_r func=INODE_PERM mask=MAY_READ
+
+		Smack:
+			measure subj_user=_ func=INODE_PERM mask=MAY_READ

+ 43 - 0
Documentation/ABI/testing/sysfs-bus-pci

@@ -1,3 +1,46 @@
+What:		/sys/bus/pci/drivers/.../bind
+Date:		December 2003
+Contact:	linux-pci@vger.kernel.org
+Description:
+		Writing a device location to this file will cause
+		the driver to attempt to bind to the device found at
+		this location.	This is useful for overriding default
+		bindings.  The format for the location is: DDDD:BB:DD.F.
+		That is Domain:Bus:Device.Function and is the same as
+		found in /sys/bus/pci/devices/.  For example:
+		# echo 0000:00:19.0 > /sys/bus/pci/drivers/foo/bind
+		(Note: kernels before 2.6.28 may require echo -n).
+
+What:		/sys/bus/pci/drivers/.../unbind
+Date:		December 2003
+Contact:	linux-pci@vger.kernel.org
+Description:
+		Writing a device location to this file will cause the
+		driver to attempt to unbind from the device found at
+		this location.	This may be useful when overriding default
+		bindings.  The format for the location is: DDDD:BB:DD.F.
+		That is Domain:Bus:Device.Function and is the same as
+		found in /sys/bus/pci/devices/. For example:
+		# echo 0000:00:19.0 > /sys/bus/pci/drivers/foo/unbind
+		(Note: kernels before 2.6.28 may require echo -n).
+
+What:		/sys/bus/pci/drivers/.../new_id
+Date:		December 2003
+Contact:	linux-pci@vger.kernel.org
+Description:
+		Writing a device ID to this file will attempt to
+		dynamically add a new device ID to a PCI device driver.
+		This may allow the driver to support more hardware than
+		was included in the driver's static device ID support
+		table at compile time.  The format for the device ID is:
+		VVVV DDDD SVVV SDDD CCCC MMMM PPPP.  That is Vendor ID,
+		Device ID, Subsystem Vendor ID, Subsystem Device ID,
+		Class, Class Mask, and Private Driver Data.  The Vendor ID
+		and Device ID fields are required, the rest are optional.
+		Upon successfully adding an ID, the driver will probe
+		for the device and attempt to bind to it.  For example:
+		# echo "8086 10f5" > /sys/bus/pci/drivers/foo/new_id
+
 What:		/sys/bus/pci/devices/.../vpd
 Date:		February 2008
 Contact:	Ben Hutchings <bhutchings@solarflare.com>

+ 1 - 1
Documentation/ABI/testing/sysfs-firmware-memmap

@@ -1,6 +1,6 @@
 What:		/sys/firmware/memmap/
 Date:		June 2008
-Contact:	Bernhard Walle <bwalle@suse.de>
+Contact:	Bernhard Walle <bernhard.walle@gmx.de>
 Description:
 		On all platforms, the firmware provides a memory map which the
 		kernel reads. The resources from that memory map are registered

+ 3 - 1
Documentation/Changes

@@ -33,10 +33,12 @@ o  Gnu make               3.79.1                  # make --version
 o  binutils               2.12                    # ld -v
 o  util-linux             2.10o                   # fdformat --version
 o  module-init-tools      0.9.10                  # depmod -V
-o  e2fsprogs              1.29                    # tune2fs
+o  e2fsprogs              1.41.4                  # e2fsck -V
 o  jfsutils               1.1.3                   # fsck.jfs -V
 o  reiserfsprogs          3.6.3                   # reiserfsck -V 2>&1|grep reiserfsprogs
 o  xfsprogs               2.6.0                   # xfs_db -V
+o  squashfs-tools         4.0                     # mksquashfs -version
+o  btrfs-progs            0.18                    # btrfsck
 o  pcmciautils            004                     # pccardctl -V
 o  quota-tools            3.09                    # quota -V
 o  PPP                    2.4.0                   # pppd --version

+ 13 - 5
Documentation/CodingStyle

@@ -483,17 +483,25 @@ values.  To do the latter, you can stick the following in your .emacs file:
     (* (max steps 1)
        c-basic-offset)))
 
+(add-hook 'c-mode-common-hook
+          (lambda ()
+            ;; Add kernel style
+            (c-add-style
+             "linux-tabs-only"
+             '("linux" (c-offsets-alist
+                        (arglist-cont-nonempty
+                         c-lineup-gcc-asm-reg
+                         c-lineup-arglist-tabs-only))))))
+
 (add-hook 'c-mode-hook
           (lambda ()
             (let ((filename (buffer-file-name)))
               ;; Enable kernel mode for the appropriate files
               (when (and filename
-                         (string-match "~/src/linux-trees" filename))
+                         (string-match (expand-file-name "~/src/linux-trees")
+                                       filename))
                 (setq indent-tabs-mode t)
-                (c-set-style "linux")
-                (c-set-offset 'arglist-cont-nonempty
-                              '(c-lineup-gcc-asm-reg
-                                c-lineup-arglist-tabs-only))))))
+                (c-set-style "linux-tabs-only")))))
 
 This will make emacs go better with the kernel coding style for C
 files below ~/src/linux-trees.

+ 1 - 1
Documentation/DMA-API.txt

@@ -5,7 +5,7 @@
 
 This document describes the DMA API.  For a more gentle introduction
 phrased in terms of the pci_ equivalents (and actual examples) see
-DMA-mapping.txt
+Documentation/PCI/PCI-DMA-mapping.txt.
 
 This API is split into two pieces.  Part I describes the API and the
 corresponding pci_ API.  Part II describes the extensions to the API

+ 3 - 2
Documentation/DocBook/Makefile

@@ -6,13 +6,14 @@
 # To add a new book the only step required is to add the book to the
 # list of DOCBOOKS.
 
-DOCBOOKS := z8530book.xml mcabook.xml \
+DOCBOOKS := z8530book.xml mcabook.xml device-drivers.xml \
 	    kernel-hacking.xml kernel-locking.xml deviceiobook.xml \
 	    procfs-guide.xml writing_usb_driver.xml networking.xml \
 	    kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \
 	    gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \
 	    genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \
-	    mac80211.xml debugobjects.xml sh.xml regulator.xml
+	    mac80211.xml debugobjects.xml sh.xml regulator.xml \
+	    alsa-driver-api.xml writing-an-alsa-driver.xml
 
 ###
 # The build process is as follows (targets):

+ 109 - 0
Documentation/DocBook/alsa-driver-api.tmpl

@@ -0,0 +1,109 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
+	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
+
+<!-- ****************************************************** -->
+<!-- Header  -->
+<!-- ****************************************************** -->
+<book id="ALSA-Driver-API">
+  <bookinfo>
+    <title>The ALSA Driver API</title>
+
+    <legalnotice>
+    <para>
+    This document is free; you can redistribute it and/or modify it
+    under the terms of the GNU General Public License as published by
+    the Free Software Foundation; either version 2 of the License, or
+    (at your option) any later version. 
+    </para>
+
+    <para>
+    This document is distributed in the hope that it will be useful,
+    but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the
+    implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A
+    PARTICULAR PURPOSE</emphasis>. See the GNU General Public License
+    for more details.
+    </para>
+
+    <para>
+    You should have received a copy of the GNU General Public
+    License along with this program; if not, write to the Free
+    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+    MA 02111-1307 USA
+    </para>
+    </legalnotice>
+
+  </bookinfo>
+
+<toc></toc>
+
+  <chapter><title>Management of Cards and Devices</title>
+     <sect1><title>Card Management</title>
+!Esound/core/init.c
+     </sect1>
+     <sect1><title>Device Components</title>
+!Esound/core/device.c
+     </sect1>
+     <sect1><title>Module requests and Device File Entries</title>
+!Esound/core/sound.c
+     </sect1>
+     <sect1><title>Memory Management Helpers</title>
+!Esound/core/memory.c
+!Esound/core/memalloc.c
+     </sect1>
+  </chapter>
+  <chapter><title>PCM API</title>
+     <sect1><title>PCM Core</title>
+!Esound/core/pcm.c
+!Esound/core/pcm_lib.c
+!Esound/core/pcm_native.c
+     </sect1>
+     <sect1><title>PCM Format Helpers</title>
+!Esound/core/pcm_misc.c
+     </sect1>
+     <sect1><title>PCM Memory Management</title>
+!Esound/core/pcm_memory.c
+     </sect1>
+  </chapter>
+  <chapter><title>Control/Mixer API</title>
+     <sect1><title>General Control Interface</title>
+!Esound/core/control.c
+     </sect1>
+     <sect1><title>AC97 Codec API</title>
+!Esound/pci/ac97/ac97_codec.c
+!Esound/pci/ac97/ac97_pcm.c
+     </sect1>
+     <sect1><title>Virtual Master Control API</title>
+!Esound/core/vmaster.c
+!Iinclude/sound/control.h
+     </sect1>
+  </chapter>
+  <chapter><title>MIDI API</title>
+     <sect1><title>Raw MIDI API</title>
+!Esound/core/rawmidi.c
+     </sect1>
+     <sect1><title>MPU401-UART API</title>
+!Esound/drivers/mpu401/mpu401_uart.c
+     </sect1>
+  </chapter>
+  <chapter><title>Proc Info API</title>
+     <sect1><title>Proc Info Interface</title>
+!Esound/core/info.c
+     </sect1>
+  </chapter>
+  <chapter><title>Miscellaneous Functions</title>
+     <sect1><title>Hardware-Dependent Devices API</title>
+!Esound/core/hwdep.c
+     </sect1>
+     <sect1><title>Jack Abstraction Layer API</title>
+!Esound/core/jack.c
+     </sect1>
+     <sect1><title>ISA DMA Helpers</title>
+!Esound/core/isadma.c
+     </sect1>
+     <sect1><title>Other Helper Macros</title>
+!Iinclude/sound/core.h
+     </sect1>
+  </chapter>
+
+</book>

+ 418 - 0
Documentation/DocBook/device-drivers.tmpl

@@ -0,0 +1,418 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
+	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
+
+<book id="LinuxDriversAPI">
+ <bookinfo>
+  <title>Linux Device Drivers</title>
+
+  <legalnotice>
+   <para>
+     This documentation is free software; you can redistribute
+     it and/or modify it under the terms of the GNU General Public
+     License as published by the Free Software Foundation; either
+     version 2 of the License, or (at your option) any later
+     version.
+   </para>
+
+   <para>
+     This program is distributed in the hope that it will be
+     useful, but WITHOUT ANY WARRANTY; without even the implied
+     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+     See the GNU General Public License for more details.
+   </para>
+
+   <para>
+     You should have received a copy of the GNU General Public
+     License along with this program; if not, write to the Free
+     Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+     MA 02111-1307 USA
+   </para>
+
+   <para>
+     For more details see the file COPYING in the source
+     distribution of Linux.
+   </para>
+  </legalnotice>
+ </bookinfo>
+
+<toc></toc>
+
+  <chapter id="Basics">
+     <title>Driver Basics</title>
+     <sect1><title>Driver Entry and Exit points</title>
+!Iinclude/linux/init.h
+     </sect1>
+
+     <sect1><title>Atomic and pointer manipulation</title>
+!Iarch/x86/include/asm/atomic_32.h
+!Iarch/x86/include/asm/unaligned.h
+     </sect1>
+
+     <sect1><title>Delaying, scheduling, and timer routines</title>
+!Iinclude/linux/sched.h
+!Ekernel/sched.c
+!Ekernel/timer.c
+     </sect1>
+     <sect1><title>High-resolution timers</title>
+!Iinclude/linux/ktime.h
+!Iinclude/linux/hrtimer.h
+!Ekernel/hrtimer.c
+     </sect1>
+     <sect1><title>Workqueues and Kevents</title>
+!Ekernel/workqueue.c
+     </sect1>
+     <sect1><title>Internal Functions</title>
+!Ikernel/exit.c
+!Ikernel/signal.c
+!Iinclude/linux/kthread.h
+!Ekernel/kthread.c
+     </sect1>
+
+     <sect1><title>Kernel objects manipulation</title>
+<!--
+X!Iinclude/linux/kobject.h
+-->
+!Elib/kobject.c
+     </sect1>
+
+     <sect1><title>Kernel utility functions</title>
+!Iinclude/linux/kernel.h
+!Ekernel/printk.c
+!Ekernel/panic.c
+!Ekernel/sys.c
+!Ekernel/rcupdate.c
+     </sect1>
+
+     <sect1><title>Device Resource Management</title>
+!Edrivers/base/devres.c
+     </sect1>
+
+  </chapter>
+
+  <chapter id="devdrivers">
+     <title>Device drivers infrastructure</title>
+     <sect1><title>Device Drivers Base</title>
+<!--
+X!Iinclude/linux/device.h
+-->
+!Edrivers/base/driver.c
+!Edrivers/base/core.c
+!Edrivers/base/class.c
+!Edrivers/base/firmware_class.c
+!Edrivers/base/transport_class.c
+<!-- Cannot be included, because
+     attribute_container_add_class_device_adapter
+ and attribute_container_classdev_to_container
+     exceed allowed 44 characters maximum
+X!Edrivers/base/attribute_container.c
+-->
+!Edrivers/base/sys.c
+<!--
+X!Edrivers/base/interface.c
+-->
+!Edrivers/base/platform.c
+!Edrivers/base/bus.c
+     </sect1>
+     <sect1><title>Device Drivers Power Management</title>
+!Edrivers/base/power/main.c
+     </sect1>
+     <sect1><title>Device Drivers ACPI Support</title>
+<!-- Internal functions only
+X!Edrivers/acpi/sleep/main.c
+X!Edrivers/acpi/sleep/wakeup.c
+X!Edrivers/acpi/motherboard.c
+X!Edrivers/acpi/bus.c
+-->
+!Edrivers/acpi/scan.c
+!Idrivers/acpi/scan.c
+<!-- No correct structured comments
+X!Edrivers/acpi/pci_bind.c
+-->
+     </sect1>
+     <sect1><title>Device drivers PnP support</title>
+!Idrivers/pnp/core.c
+<!-- No correct structured comments
+X!Edrivers/pnp/system.c
+ -->
+!Edrivers/pnp/card.c
+!Idrivers/pnp/driver.c
+!Edrivers/pnp/manager.c
+!Edrivers/pnp/support.c
+     </sect1>
+     <sect1><title>Userspace IO devices</title>
+!Edrivers/uio/uio.c
+!Iinclude/linux/uio_driver.h
+     </sect1>
+  </chapter>
+
+  <chapter id="parportdev">
+     <title>Parallel Port Devices</title>
+!Iinclude/linux/parport.h
+!Edrivers/parport/ieee1284.c
+!Edrivers/parport/share.c
+!Idrivers/parport/daisy.c
+  </chapter>
+
+  <chapter id="message_devices">
+	<title>Message-based devices</title>
+     <sect1><title>Fusion message devices</title>
+!Edrivers/message/fusion/mptbase.c
+!Idrivers/message/fusion/mptbase.c
+!Edrivers/message/fusion/mptscsih.c
+!Idrivers/message/fusion/mptscsih.c
+!Idrivers/message/fusion/mptctl.c
+!Idrivers/message/fusion/mptspi.c
+!Idrivers/message/fusion/mptfc.c
+!Idrivers/message/fusion/mptlan.c
+     </sect1>
+     <sect1><title>I2O message devices</title>
+!Iinclude/linux/i2o.h
+!Idrivers/message/i2o/core.h
+!Edrivers/message/i2o/iop.c
+!Idrivers/message/i2o/iop.c
+!Idrivers/message/i2o/config-osm.c
+!Edrivers/message/i2o/exec-osm.c
+!Idrivers/message/i2o/exec-osm.c
+!Idrivers/message/i2o/bus-osm.c
+!Edrivers/message/i2o/device.c
+!Idrivers/message/i2o/device.c
+!Idrivers/message/i2o/driver.c
+!Idrivers/message/i2o/pci.c
+!Idrivers/message/i2o/i2o_block.c
+!Idrivers/message/i2o/i2o_scsi.c
+!Idrivers/message/i2o/i2o_proc.c
+     </sect1>
+  </chapter>
+
+  <chapter id="snddev">
+     <title>Sound Devices</title>
+!Iinclude/sound/core.h
+!Esound/sound_core.c
+!Iinclude/sound/pcm.h
+!Esound/core/pcm.c
+!Esound/core/device.c
+!Esound/core/info.c
+!Esound/core/rawmidi.c
+!Esound/core/sound.c
+!Esound/core/memory.c
+!Esound/core/pcm_memory.c
+!Esound/core/init.c
+!Esound/core/isadma.c
+!Esound/core/control.c
+!Esound/core/pcm_lib.c
+!Esound/core/hwdep.c
+!Esound/core/pcm_native.c
+!Esound/core/memalloc.c
+<!-- FIXME: Removed for now since no structured comments in source
+X!Isound/sound_firmware.c
+-->
+  </chapter>
+
+  <chapter id="uart16x50">
+     <title>16x50 UART Driver</title>
+!Iinclude/linux/serial_core.h
+!Edrivers/serial/serial_core.c
+!Edrivers/serial/8250.c
+  </chapter>
+
+  <chapter id="fbdev">
+     <title>Frame Buffer Library</title>
+
+     <para>
+       The frame buffer drivers depend heavily on four data structures.
+       These structures are declared in include/linux/fb.h.  They are
+       fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs.
+       The last three can be made available to and from userland.
+     </para>
+
+     <para>
+       fb_info defines the current state of a particular video card.
+       Inside fb_info, there exists a fb_ops structure which is a
+       collection of needed functions to make fbdev and fbcon work.
+       fb_info is only visible to the kernel.
+     </para>
+
+     <para>
+       fb_var_screeninfo is used to describe the features of a video card
+       that are user defined.  With fb_var_screeninfo, things such as
+       depth and the resolution may be defined.
+     </para>
+
+     <para>
+       The next structure is fb_fix_screeninfo. This defines the
+       properties of a card that are created when a mode is set and can't
+       be changed otherwise.  A good example of this is the start of the
+       frame buffer memory.  This "locks" the address of the frame buffer
+       memory, so that it cannot be changed or moved.
+     </para>
+
+     <para>
+       The last structure is fb_monospecs. In the old API, there was
+       little importance for fb_monospecs. This allowed for forbidden things
+       such as setting a mode of 800x600 on a fix frequency monitor. With
+       the new API, fb_monospecs prevents such things, and if used
+       correctly, can prevent a monitor from being cooked.  fb_monospecs
+       will not be useful until kernels 2.5.x.
+     </para>
+
+     <sect1><title>Frame Buffer Memory</title>
+!Edrivers/video/fbmem.c
+     </sect1>
+<!--
+     <sect1><title>Frame Buffer Console</title>
+X!Edrivers/video/console/fbcon.c
+     </sect1>
+-->
+     <sect1><title>Frame Buffer Colormap</title>
+!Edrivers/video/fbcmap.c
+     </sect1>
+<!-- FIXME:
+  drivers/video/fbgen.c has no docs, which stuffs up the sgml.  Comment
+  out until somebody adds docs.  KAO
+     <sect1><title>Frame Buffer Generic Functions</title>
+X!Idrivers/video/fbgen.c
+     </sect1>
+KAO -->
+     <sect1><title>Frame Buffer Video Mode Database</title>
+!Idrivers/video/modedb.c
+!Edrivers/video/modedb.c
+     </sect1>
+     <sect1><title>Frame Buffer Macintosh Video Mode Database</title>
+!Edrivers/video/macmodes.c
+     </sect1>
+     <sect1><title>Frame Buffer Fonts</title>
+        <para>
+           Refer to the file drivers/video/console/fonts.c for more information.
+        </para>
+<!-- FIXME: Removed for now since no structured comments in source
+X!Idrivers/video/console/fonts.c
+-->
+     </sect1>
+  </chapter>
+
+  <chapter id="input_subsystem">
+     <title>Input Subsystem</title>
+!Iinclude/linux/input.h
+!Edrivers/input/input.c
+!Edrivers/input/ff-core.c
+!Edrivers/input/ff-memless.c
+  </chapter>
+
+  <chapter id="spi">
+      <title>Serial Peripheral Interface (SPI)</title>
+  <para>
+	SPI is the "Serial Peripheral Interface", widely used with
+	embedded systems because it is a simple and efficient
+	interface:  basically a multiplexed shift register.
+	Its three signal wires hold a clock (SCK, often in the range
+	of 1-20 MHz), a "Master Out, Slave In" (MOSI) data line, and
+	a "Master In, Slave Out" (MISO) data line.
+	SPI is a full duplex protocol; for each bit shifted out the
+	MOSI line (one per clock) another is shifted in on the MISO line.
+	Those bits are assembled into words of various sizes on the
+	way to and from system memory.
+	An additional chipselect line is usually active-low (nCS);
+	four signals are normally used for each peripheral, plus
+	sometimes an interrupt.
+  </para>
+  <para>
+	The SPI bus facilities listed here provide a generalized
+	interface to declare SPI busses and devices, manage them
+	according to the standard Linux driver model, and perform
+	input/output operations.
+	At this time, only "master" side interfaces are supported,
+	where Linux talks to SPI peripherals and does not implement
+	such a peripheral itself.
+	(Interfaces to support implementing SPI slaves would
+	necessarily look different.)
+  </para>
+  <para>
+	The programming interface is structured around two kinds of driver,
+	and two kinds of device.
+	A "Controller Driver" abstracts the controller hardware, which may
+	be as simple as a set of GPIO pins or as complex as a pair of FIFOs
+	connected to dual DMA engines on the other side of the SPI shift
+	register (maximizing throughput).  Such drivers bridge between
+	whatever bus they sit on (often the platform bus) and SPI, and
+	expose the SPI side of their device as a
+	<structname>struct spi_master</structname>.
+	SPI devices are children of that master, represented as a
+	<structname>struct spi_device</structname> and manufactured from
+	<structname>struct spi_board_info</structname> descriptors which
+	are usually provided by board-specific initialization code.
+	A <structname>struct spi_driver</structname> is called a
+	"Protocol Driver", and is bound to a spi_device using normal
+	driver model calls.
+  </para>
+  <para>
+	The I/O model is a set of queued messages.  Protocol drivers
+	submit one or more <structname>struct spi_message</structname>
+	objects, which are processed and completed asynchronously.
+	(There are synchronous wrappers, however.)  Messages are
+	built from one or more <structname>struct spi_transfer</structname>
+	objects, each of which wraps a full duplex SPI transfer.
+	A variety of protocol tweaking options are needed, because
+	different chips adopt very different policies for how they
+	use the bits transferred with SPI.
+  </para>
+!Iinclude/linux/spi/spi.h
+!Fdrivers/spi/spi.c spi_register_board_info
+!Edrivers/spi/spi.c
+  </chapter>
+
+  <chapter id="i2c">
+     <title>I<superscript>2</superscript>C and SMBus Subsystem</title>
+
+     <para>
+	I<superscript>2</superscript>C (or without fancy typography, "I2C")
+	is an acronym for the "Inter-IC" bus, a simple bus protocol which is
+	widely used where low data rate communications suffice.
+	Since it's also a licensed trademark, some vendors use another
+	name (such as "Two-Wire Interface", TWI) for the same bus.
+	I2C only needs two signals (SCL for clock, SDA for data), conserving
+	board real estate and minimizing signal quality issues.
+	Most I2C devices use seven bit addresses, and bus speeds of up
+	to 400 kHz; there's a high speed extension (3.4 MHz) that's not yet
+	found wide use.
+	I2C is a multi-master bus; open drain signaling is used to
+	arbitrate between masters, as well as to handshake and to
+	synchronize clocks from slower clients.
+     </para>
+
+     <para>
+	The Linux I2C programming interfaces support only the master
+	side of bus interactions, not the slave side.
+	The programming interface is structured around two kinds of driver,
+	and two kinds of device.
+	An I2C "Adapter Driver" abstracts the controller hardware; it binds
+	to a physical device (perhaps a PCI device or platform_device) and
+	exposes a <structname>struct i2c_adapter</structname> representing
+	each I2C bus segment it manages.
+	On each I2C bus segment will be I2C devices represented by a
+	<structname>struct i2c_client</structname>.  Those devices will
+	be bound to a <structname>struct i2c_driver</structname>,
+	which should follow the standard Linux driver model.
+	(At this writing, a legacy model is more widely used.)
+	There are functions to perform various I2C protocol operations; at
+	this writing all such functions are usable only from task context.
+     </para>
+
+     <para>
+	The System Management Bus (SMBus) is a sibling protocol.  Most SMBus
+	systems are also I2C conformant.  The electrical constraints are
+	tighter for SMBus, and it standardizes particular protocol messages
+	and idioms.  Controllers that support I2C can also support most
+	SMBus operations, but SMBus controllers don't support all the protocol
+	options that an I2C controller will.
+	There are functions to perform various SMBus protocol operations,
+	either using I2C primitives or by issuing SMBus commands to
+	i2c_adapter devices which don't support those I2C operations.
+     </para>
+
+!Iinclude/linux/i2c.h
+!Fdrivers/i2c/i2c-boardinfo.c i2c_register_board_info
+!Edrivers/i2c/i2c-core.c
+  </chapter>
+
+</book>

+ 1 - 0
Documentation/DocBook/genericirq.tmpl

@@ -440,6 +440,7 @@ desc->chip->end();
      used in the generic IRQ layer.
      </para>
 !Iinclude/linux/irq.h
+!Iinclude/linux/interrupt.h
   </chapter>
 
   <chapter id="pubfunctions">

+ 0 - 377
Documentation/DocBook/kernel-api.tmpl

@@ -38,58 +38,6 @@
 
 <toc></toc>
 
-  <chapter id="Basics">
-     <title>Driver Basics</title>
-     <sect1><title>Driver Entry and Exit points</title>
-!Iinclude/linux/init.h
-     </sect1>
-
-     <sect1><title>Atomic and pointer manipulation</title>
-!Iarch/x86/include/asm/atomic_32.h
-!Iarch/x86/include/asm/unaligned.h
-     </sect1>
-
-     <sect1><title>Delaying, scheduling, and timer routines</title>
-!Iinclude/linux/sched.h
-!Ekernel/sched.c
-!Ekernel/timer.c
-     </sect1>
-     <sect1><title>High-resolution timers</title>
-!Iinclude/linux/ktime.h
-!Iinclude/linux/hrtimer.h
-!Ekernel/hrtimer.c
-     </sect1>
-     <sect1><title>Workqueues and Kevents</title>
-!Ekernel/workqueue.c
-     </sect1>
-     <sect1><title>Internal Functions</title>
-!Ikernel/exit.c
-!Ikernel/signal.c
-!Iinclude/linux/kthread.h
-!Ekernel/kthread.c
-     </sect1>
-
-     <sect1><title>Kernel objects manipulation</title>
-<!--
-X!Iinclude/linux/kobject.h
--->
-!Elib/kobject.c
-     </sect1>
-
-     <sect1><title>Kernel utility functions</title>
-!Iinclude/linux/kernel.h
-!Ekernel/printk.c
-!Ekernel/panic.c
-!Ekernel/sys.c
-!Ekernel/rcupdate.c
-     </sect1>
-
-     <sect1><title>Device Resource Management</title>
-!Edrivers/base/devres.c
-     </sect1>
-
-  </chapter>
-
   <chapter id="adt">
      <title>Data Types</title>
      <sect1><title>Doubly Linked Lists</title>
@@ -298,62 +246,6 @@ X!Earch/x86/kernel/mca_32.c
 !Ikernel/acct.c
   </chapter>
 
-  <chapter id="devdrivers">
-     <title>Device drivers infrastructure</title>
-     <sect1><title>Device Drivers Base</title>
-<!--
-X!Iinclude/linux/device.h
--->
-!Edrivers/base/driver.c
-!Edrivers/base/core.c
-!Edrivers/base/class.c
-!Edrivers/base/firmware_class.c
-!Edrivers/base/transport_class.c
-<!-- Cannot be included, because
-     attribute_container_add_class_device_adapter
- and attribute_container_classdev_to_container
-     exceed allowed 44 characters maximum
-X!Edrivers/base/attribute_container.c
--->
-!Edrivers/base/sys.c
-<!--
-X!Edrivers/base/interface.c
--->
-!Edrivers/base/platform.c
-!Edrivers/base/bus.c
-     </sect1>
-     <sect1><title>Device Drivers Power Management</title>
-!Edrivers/base/power/main.c
-     </sect1>
-     <sect1><title>Device Drivers ACPI Support</title>
-<!-- Internal functions only
-X!Edrivers/acpi/sleep/main.c
-X!Edrivers/acpi/sleep/wakeup.c
-X!Edrivers/acpi/motherboard.c
-X!Edrivers/acpi/bus.c
--->
-!Edrivers/acpi/scan.c
-!Idrivers/acpi/scan.c
-<!-- No correct structured comments
-X!Edrivers/acpi/pci_bind.c
--->
-     </sect1>
-     <sect1><title>Device drivers PnP support</title>
-!Idrivers/pnp/core.c
-<!-- No correct structured comments
-X!Edrivers/pnp/system.c
- -->
-!Edrivers/pnp/card.c
-!Idrivers/pnp/driver.c
-!Edrivers/pnp/manager.c
-!Edrivers/pnp/support.c
-     </sect1>
-     <sect1><title>Userspace IO devices</title>
-!Edrivers/uio/uio.c
-!Iinclude/linux/uio_driver.h
-     </sect1>
-  </chapter>
-
   <chapter id="blkdev">
      <title>Block Devices</title>
 !Eblock/blk-core.c
@@ -381,275 +273,6 @@ X!Edrivers/pnp/system.c
 !Edrivers/char/misc.c
   </chapter>
 
-  <chapter id="parportdev">
-     <title>Parallel Port Devices</title>
-!Iinclude/linux/parport.h
-!Edrivers/parport/ieee1284.c
-!Edrivers/parport/share.c
-!Idrivers/parport/daisy.c
-  </chapter>
-
-  <chapter id="message_devices">
-	<title>Message-based devices</title>
-     <sect1><title>Fusion message devices</title>
-!Edrivers/message/fusion/mptbase.c
-!Idrivers/message/fusion/mptbase.c
-!Edrivers/message/fusion/mptscsih.c
-!Idrivers/message/fusion/mptscsih.c
-!Idrivers/message/fusion/mptctl.c
-!Idrivers/message/fusion/mptspi.c
-!Idrivers/message/fusion/mptfc.c
-!Idrivers/message/fusion/mptlan.c
-     </sect1>
-     <sect1><title>I2O message devices</title>
-!Iinclude/linux/i2o.h
-!Idrivers/message/i2o/core.h
-!Edrivers/message/i2o/iop.c
-!Idrivers/message/i2o/iop.c
-!Idrivers/message/i2o/config-osm.c
-!Edrivers/message/i2o/exec-osm.c
-!Idrivers/message/i2o/exec-osm.c
-!Idrivers/message/i2o/bus-osm.c
-!Edrivers/message/i2o/device.c
-!Idrivers/message/i2o/device.c
-!Idrivers/message/i2o/driver.c
-!Idrivers/message/i2o/pci.c
-!Idrivers/message/i2o/i2o_block.c
-!Idrivers/message/i2o/i2o_scsi.c
-!Idrivers/message/i2o/i2o_proc.c
-     </sect1>
-  </chapter>
-
-  <chapter id="snddev">
-     <title>Sound Devices</title>
-!Iinclude/sound/core.h
-!Esound/sound_core.c
-!Iinclude/sound/pcm.h
-!Esound/core/pcm.c
-!Esound/core/device.c
-!Esound/core/info.c
-!Esound/core/rawmidi.c
-!Esound/core/sound.c
-!Esound/core/memory.c
-!Esound/core/pcm_memory.c
-!Esound/core/init.c
-!Esound/core/isadma.c
-!Esound/core/control.c
-!Esound/core/pcm_lib.c
-!Esound/core/hwdep.c
-!Esound/core/pcm_native.c
-!Esound/core/memalloc.c
-<!-- FIXME: Removed for now since no structured comments in source
-X!Isound/sound_firmware.c
--->
-  </chapter>
-
-  <chapter id="uart16x50">
-     <title>16x50 UART Driver</title>
-!Iinclude/linux/serial_core.h
-!Edrivers/serial/serial_core.c
-!Edrivers/serial/8250.c
-  </chapter>
-
-  <chapter id="fbdev">
-     <title>Frame Buffer Library</title>
-
-     <para>
-       The frame buffer drivers depend heavily on four data structures.  
-       These structures are declared in include/linux/fb.h.  They are 
-       fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs. 
-       The last three can be made available to and from userland. 
-     </para>
-
-     <para>
-       fb_info defines the current state of a particular video card. 
-       Inside fb_info, there exists a fb_ops structure which is a 
-       collection of needed functions to make fbdev and fbcon work.
-       fb_info is only visible to the kernel.
-     </para>
-
-     <para>
-       fb_var_screeninfo is used to describe the features of a video card 
-       that are user defined.  With fb_var_screeninfo, things such as
-       depth and the resolution may be defined.
-     </para>
-
-     <para>
-       The next structure is fb_fix_screeninfo. This defines the 
-       properties of a card that are created when a mode is set and can't 
-       be changed otherwise.  A good example of this is the start of the 
-       frame buffer memory.  This "locks" the address of the frame buffer
-       memory, so that it cannot be changed or moved.
-     </para>
-
-     <para>
-       The last structure is fb_monospecs. In the old API, there was 
-       little importance for fb_monospecs. This allowed for forbidden things 
-       such as setting a mode of 800x600 on a fix frequency monitor. With 
-       the new API, fb_monospecs prevents such things, and if used 
-       correctly, can prevent a monitor from being cooked.  fb_monospecs
-       will not be useful until kernels 2.5.x.
-     </para>
-
-     <sect1><title>Frame Buffer Memory</title>
-!Edrivers/video/fbmem.c
-     </sect1>
-<!--
-     <sect1><title>Frame Buffer Console</title>
-X!Edrivers/video/console/fbcon.c
-     </sect1>
--->
-     <sect1><title>Frame Buffer Colormap</title>
-!Edrivers/video/fbcmap.c
-     </sect1>
-<!-- FIXME:
-  drivers/video/fbgen.c has no docs, which stuffs up the sgml.  Comment
-  out until somebody adds docs.  KAO
-     <sect1><title>Frame Buffer Generic Functions</title>
-X!Idrivers/video/fbgen.c
-     </sect1>
-KAO -->
-     <sect1><title>Frame Buffer Video Mode Database</title>
-!Idrivers/video/modedb.c
-!Edrivers/video/modedb.c
-     </sect1>
-     <sect1><title>Frame Buffer Macintosh Video Mode Database</title>
-!Edrivers/video/macmodes.c
-     </sect1>
-     <sect1><title>Frame Buffer Fonts</title>
-        <para>
-           Refer to the file drivers/video/console/fonts.c for more information.
-        </para>
-<!-- FIXME: Removed for now since no structured comments in source
-X!Idrivers/video/console/fonts.c
--->
-     </sect1>
-  </chapter>
-
-  <chapter id="input_subsystem">
-     <title>Input Subsystem</title>
-!Iinclude/linux/input.h
-!Edrivers/input/input.c
-!Edrivers/input/ff-core.c
-!Edrivers/input/ff-memless.c
-  </chapter>
-
-  <chapter id="spi">
-      <title>Serial Peripheral Interface (SPI)</title>
-  <para>
-	SPI is the "Serial Peripheral Interface", widely used with
-	embedded systems because it is a simple and efficient
-	interface:  basically a multiplexed shift register.
-	Its three signal wires hold a clock (SCK, often in the range
-	of 1-20 MHz), a "Master Out, Slave In" (MOSI) data line, and
-	a "Master In, Slave Out" (MISO) data line.
-	SPI is a full duplex protocol; for each bit shifted out the
-	MOSI line (one per clock) another is shifted in on the MISO line.
-	Those bits are assembled into words of various sizes on the
-	way to and from system memory.
-	An additional chipselect line is usually active-low (nCS);
-	four signals are normally used for each peripheral, plus
-	sometimes an interrupt.
-  </para>
-  <para>
-	The SPI bus facilities listed here provide a generalized
-	interface to declare SPI busses and devices, manage them
-	according to the standard Linux driver model, and perform
-	input/output operations.
-	At this time, only "master" side interfaces are supported,
-	where Linux talks to SPI peripherals and does not implement
-	such a peripheral itself.
-	(Interfaces to support implementing SPI slaves would
-	necessarily look different.)
-  </para>
-  <para>
-	The programming interface is structured around two kinds of driver,
-	and two kinds of device.
-	A "Controller Driver" abstracts the controller hardware, which may
-	be as simple as a set of GPIO pins or as complex as a pair of FIFOs
-	connected to dual DMA engines on the other side of the SPI shift
-	register (maximizing throughput).  Such drivers bridge between
-	whatever bus they sit on (often the platform bus) and SPI, and
-	expose the SPI side of their device as a
-	<structname>struct spi_master</structname>.
-	SPI devices are children of that master, represented as a
-	<structname>struct spi_device</structname> and manufactured from
-	<structname>struct spi_board_info</structname> descriptors which
-	are usually provided by board-specific initialization code.
-	A <structname>struct spi_driver</structname> is called a
-	"Protocol Driver", and is bound to a spi_device using normal
-	driver model calls.
-  </para>
-  <para>
-	The I/O model is a set of queued messages.  Protocol drivers
-	submit one or more <structname>struct spi_message</structname>
-	objects, which are processed and completed asynchronously.
-	(There are synchronous wrappers, however.)  Messages are
-	built from one or more <structname>struct spi_transfer</structname>
-	objects, each of which wraps a full duplex SPI transfer.
-	A variety of protocol tweaking options are needed, because
-	different chips adopt very different policies for how they
-	use the bits transferred with SPI.
-  </para>
-!Iinclude/linux/spi/spi.h
-!Fdrivers/spi/spi.c spi_register_board_info
-!Edrivers/spi/spi.c
-  </chapter>
-
-  <chapter id="i2c">
-     <title>I<superscript>2</superscript>C and SMBus Subsystem</title>
-
-     <para>
-	I<superscript>2</superscript>C (or without fancy typography, "I2C")
-	is an acronym for the "Inter-IC" bus, a simple bus protocol which is
-	widely used where low data rate communications suffice.
-	Since it's also a licensed trademark, some vendors use another
-	name (such as "Two-Wire Interface", TWI) for the same bus.
-	I2C only needs two signals (SCL for clock, SDA for data), conserving
-	board real estate and minimizing signal quality issues.
-	Most I2C devices use seven bit addresses, and bus speeds of up
-	to 400 kHz; there's a high speed extension (3.4 MHz) that's not yet
-	found wide use.
-	I2C is a multi-master bus; open drain signaling is used to
-	arbitrate between masters, as well as to handshake and to
-	synchronize clocks from slower clients.
-     </para>
-
-     <para>
-	The Linux I2C programming interfaces support only the master
-	side of bus interactions, not the slave side.
-	The programming interface is structured around two kinds of driver,
-	and two kinds of device.
-	An I2C "Adapter Driver" abstracts the controller hardware; it binds
-	to a physical device (perhaps a PCI device or platform_device) and
-	exposes a <structname>struct i2c_adapter</structname> representing
-	each I2C bus segment it manages.
-	On each I2C bus segment will be I2C devices represented by a
-	<structname>struct i2c_client</structname>.  Those devices will
-	be bound to a <structname>struct i2c_driver</structname>,
-	which should follow the standard Linux driver model.
-	(At this writing, a legacy model is more widely used.)
-	There are functions to perform various I2C protocol operations; at
-	this writing all such functions are usable only from task context.
-     </para>
-
-     <para>
-	The System Management Bus (SMBus) is a sibling protocol.  Most SMBus
-	systems are also I2C conformant.  The electrical constraints are
-	tighter for SMBus, and it standardizes particular protocol messages
-	and idioms.  Controllers that support I2C can also support most
-	SMBus operations, but SMBus controllers don't support all the protocol
-	options that an I2C controller will.
-	There are functions to perform various SMBus protocol operations,
-	either using I2C primitives or by issuing SMBus commands to
-	i2c_adapter devices which don't support those I2C operations.
-     </para>
-
-!Iinclude/linux/i2c.h
-!Fdrivers/i2c/i2c-boardinfo.c i2c_register_board_info
-!Edrivers/i2c/i2c-core.c
-  </chapter>
-
   <chapter id="clk">
      <title>Clock Framework</title>
 

+ 8 - 4
Documentation/DocBook/mac80211.tmpl

@@ -17,8 +17,7 @@
     </authorgroup>
 
     <copyright>
-      <year>2007</year>
-      <year>2008</year>
+      <year>2007-2009</year>
       <holder>Johannes Berg</holder>
     </copyright>
 
@@ -165,8 +164,8 @@ usage should require reading the full document.
 !Pinclude/net/mac80211.h Frame format
       </sect1>
       <sect1>
-        <title>Alignment issues</title>
-        <para>TBD</para>
+        <title>Packet alignment</title>
+!Pnet/mac80211/rx.c Packet alignment
       </sect1>
       <sect1>
         <title>Calling into mac80211 from interrupts</title>
@@ -223,6 +222,11 @@ usage should require reading the full document.
 !Finclude/net/mac80211.h ieee80211_key_flags
     </chapter>
 
+    <chapter id="powersave">
+      <title>Powersave support</title>
+!Pinclude/net/mac80211.h Powersave support
+    </chapter>
+
     <chapter id="qos">
       <title>Multiple queues and QoS support</title>
       <para>TBD</para>

+ 113 - 4
Documentation/DocBook/uio-howto.tmpl

@@ -41,6 +41,19 @@ GPL version 2.
 </abstract>
 
 <revhistory>
+	<revision>
+	<revnumber>0.8</revnumber>
+	<date>2008-12-24</date>
+	<authorinitials>hjk</authorinitials>
+	<revremark>Added name attributes in mem and portio sysfs directories.
+		</revremark>
+	</revision>
+	<revision>
+	<revnumber>0.7</revnumber>
+	<date>2008-12-23</date>
+	<authorinitials>hjk</authorinitials>
+	<revremark>Added generic platform drivers and offset attribute.</revremark>
+	</revision>
 	<revision>
 	<revnumber>0.6</revnumber>
 	<date>2008-12-05</date>
@@ -297,10 +310,17 @@ interested in translating it, please email me
 	appear if the size of the mapping is not 0.
 </para>
 <para>
-	Each <filename>mapX/</filename> directory contains two read-only files
-	that show start address and size of the memory:
+	Each <filename>mapX/</filename> directory contains four read-only files
+	that show attributes of the memory:
 </para>
 <itemizedlist>
+<listitem>
+	<para>
+	<filename>name</filename>: A string identifier for this mapping. This
+	is optional, the string can be empty. Drivers can set this to make it
+	easier for userspace to find the correct mapping.
+	</para>
+</listitem>
 <listitem>
 	<para>
 	<filename>addr</filename>: The address of memory that can be mapped.
@@ -312,6 +332,16 @@ interested in translating it, please email me
 	pointed to by addr.
 	</para>
 </listitem>
+<listitem>
+	<para>
+	<filename>offset</filename>: The offset, in bytes, that has to be
+	added to the pointer returned by <function>mmap()</function> to get
+	to the actual device memory. This is important if the device's memory
+	is not page aligned. Remember that pointers returned by
+	<function>mmap()</function> are always page aligned, so it is good
+	style to always add this offset.
+	</para>
+</listitem>
 </itemizedlist>
 
 <para>
@@ -350,10 +380,17 @@ offset = N * getpagesize();
 	<filename>/sys/class/uio/uioX/portio/</filename>.
 </para>
 <para>
-	Each <filename>portX/</filename> directory contains three read-only
-	files that show start, size, and type of the port region:
+	Each <filename>portX/</filename> directory contains four read-only
+	files that show name, start, size, and type of the port region:
 </para>
 <itemizedlist>
+<listitem>
+	<para>
+	<filename>name</filename>: A string identifier for this port region.
+	The string is optional and can be empty. Drivers can set it to make it
+	easier for userspace to find a certain port region.
+	</para>
+</listitem>
 <listitem>
 	<para>
 	<filename>start</filename>: The first port of this region.
@@ -594,6 +631,78 @@ framework to set up sysfs files for this region. Simply leave it alone.
 	</para>
 </sect1>
 
+<sect1 id="using_uio_pdrv">
+<title>Using uio_pdrv for platform devices</title>
+	<para>
+	In many cases, UIO drivers for platform devices can be handled in a
+	generic way. In the same place where you define your
+	<varname>struct platform_device</varname>, you simply also implement
+	your interrupt handler and fill your
+	<varname>struct uio_info</varname>. A pointer to this
+	<varname>struct uio_info</varname> is then used as
+	<varname>platform_data</varname> for your platform device.
+	</para>
+	<para>
+	You also need to set up an array of <varname>struct resource</varname>
+	containing addresses and sizes of your memory mappings. This
+	information is passed to the driver using the
+	<varname>.resource</varname> and <varname>.num_resources</varname>
+	elements of <varname>struct platform_device</varname>.
+	</para>
+	<para>
+	You now have to set the <varname>.name</varname> element of
+	<varname>struct platform_device</varname> to
+	<varname>"uio_pdrv"</varname> to use the generic UIO platform device
+	driver. This driver will fill the <varname>mem[]</varname> array
+	according to the resources given, and register the device.
+	</para>
+	<para>
+	The advantage of this approach is that you only have to edit a file
+	you need to edit anyway. You do not have to create an extra driver.
+	</para>
+</sect1>
+
+<sect1 id="using_uio_pdrv_genirq">
+<title>Using uio_pdrv_genirq for platform devices</title>
+	<para>
+	Especially in embedded devices, you frequently find chips where the
+	irq pin is tied to its own dedicated interrupt line. In such cases,
+	where you can be really sure the interrupt is not shared, we can take
+	the concept of <varname>uio_pdrv</varname> one step further and use a
+	generic interrupt handler. That's what
+	<varname>uio_pdrv_genirq</varname> does.
+	</para>
+	<para>
+	The setup for this driver is the same as described above for
+	<varname>uio_pdrv</varname>, except that you do not implement an
+	interrupt handler. The <varname>.handler</varname> element of
+	<varname>struct uio_info</varname> must remain
+	<varname>NULL</varname>. The  <varname>.irq_flags</varname> element
+	must not contain <varname>IRQF_SHARED</varname>.
+	</para>
+	<para>
+	You will set the <varname>.name</varname> element of
+	<varname>struct platform_device</varname> to
+	<varname>"uio_pdrv_genirq"</varname> to use this driver.
+	</para>
+	<para>
+	The generic interrupt handler of <varname>uio_pdrv_genirq</varname>
+	will simply disable the interrupt line using
+	<function>disable_irq_nosync()</function>. After doing its work,
+	userspace can reenable the interrupt by writing 0x00000001 to the UIO
+	device file. The driver already implements an
+	<function>irq_control()</function> to make this possible, you must not
+	implement your own.
+	</para>
+	<para>
+	Using <varname>uio_pdrv_genirq</varname> not only saves a few lines of
+	interrupt handler code. You also do not need to know anything about
+	the chip's internal registers to create the kernel part of the driver.
+	All you need to know is the irq number of the pin the chip is
+	connected to.
+	</para>
+</sect1>
+
 </chapter>
 
 <chapter id="userspace_driver" xreflabel="Writing a driver in user space">

+ 6216 - 0
Documentation/DocBook/writing-an-alsa-driver.tmpl

@@ -0,0 +1,6216 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
+	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
+
+<!-- ****************************************************** -->
+<!-- Header  -->
+<!-- ****************************************************** -->
+<book id="Writing-an-ALSA-Driver">
+  <bookinfo>
+    <title>Writing an ALSA Driver</title>
+    <author>
+      <firstname>Takashi</firstname>
+      <surname>Iwai</surname>
+      <affiliation>
+        <address>
+          <email>tiwai@suse.de</email>
+        </address>
+      </affiliation>
+     </author>
+
+     <date>Oct 15, 2007</date>
+     <edition>0.3.7</edition>
+
+    <abstract>
+      <para>
+        This document describes how to write an ALSA (Advanced Linux
+        Sound Architecture) driver.
+      </para>
+    </abstract>
+
+    <legalnotice>
+    <para>
+    Copyright (c) 2002-2005  Takashi Iwai <email>tiwai@suse.de</email>
+    </para>
+
+    <para>
+    This document is free; you can redistribute it and/or modify it
+    under the terms of the GNU General Public License as published by
+    the Free Software Foundation; either version 2 of the License, or
+    (at your option) any later version. 
+    </para>
+
+    <para>
+    This document is distributed in the hope that it will be useful,
+    but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the
+    implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A
+    PARTICULAR PURPOSE</emphasis>. See the GNU General Public License
+    for more details.
+    </para>
+
+    <para>
+    You should have received a copy of the GNU General Public
+    License along with this program; if not, write to the Free
+    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+    MA 02111-1307 USA
+    </para>
+    </legalnotice>
+
+  </bookinfo>
+
+<!-- ****************************************************** -->
+<!-- Preface  -->
+<!-- ****************************************************** -->
+  <preface id="preface">
+    <title>Preface</title>
+    <para>
+      This document describes how to write an
+      <ulink url="http://www.alsa-project.org/"><citetitle>
+      ALSA (Advanced Linux Sound Architecture)</citetitle></ulink>
+      driver. The document focuses mainly on PCI soundcards.
+      In the case of other device types, the API might
+      be different, too. However, at least the ALSA kernel API is
+      consistent, and therefore it would be still a bit help for
+      writing them.
+    </para>
+
+    <para>
+    This document targets people who already have enough
+    C language skills and have basic linux kernel programming
+    knowledge.  This document doesn't explain the general
+    topic of linux kernel coding and doesn't cover low-level
+    driver implementation details. It only describes
+    the standard way to write a PCI sound driver on ALSA.
+    </para>
+
+    <para>
+      If you are already familiar with the older ALSA ver.0.5.x API, you
+    can check the drivers such as <filename>sound/pci/es1938.c</filename> or
+    <filename>sound/pci/maestro3.c</filename> which have also almost the same
+    code-base in the ALSA 0.5.x tree, so you can compare the differences.
+    </para>
+
+    <para>
+      This document is still a draft version. Any feedback and
+    corrections, please!!
+    </para>
+  </preface>
+
+
+<!-- ****************************************************** -->
+<!-- File Tree Structure  -->
+<!-- ****************************************************** -->
+  <chapter id="file-tree">
+    <title>File Tree Structure</title>
+
+    <section id="file-tree-general">
+      <title>General</title>
+      <para>
+        The ALSA drivers are provided in two ways.
+      </para>
+
+      <para>
+        One is the trees provided as a tarball or via cvs from the
+      ALSA's ftp site, and another is the 2.6 (or later) Linux kernel
+      tree. To synchronize both, the ALSA driver tree is split into
+      two different trees: alsa-kernel and alsa-driver. The former
+      contains purely the source code for the Linux 2.6 (or later)
+      tree. This tree is designed only for compilation on 2.6 or
+      later environment. The latter, alsa-driver, contains many subtle
+      files for compiling ALSA drivers outside of the Linux kernel tree,
+      wrapper functions for older 2.2 and 2.4 kernels, to adapt the latest kernel API,
+      and additional drivers which are still in development or in
+      tests.  The drivers in alsa-driver tree will be moved to
+      alsa-kernel (and eventually to the 2.6 kernel tree) when they are
+      finished and confirmed to work fine.
+      </para>
+
+      <para>
+        The file tree structure of ALSA driver is depicted below. Both
+        alsa-kernel and alsa-driver have almost the same file
+        structure, except for <quote>core</quote> directory. It's
+        named as <quote>acore</quote> in alsa-driver tree. 
+
+        <example>
+          <title>ALSA File Tree Structure</title>
+          <literallayout>
+        sound
+                /core
+                        /oss
+                        /seq
+                                /oss
+                                /instr
+                /ioctl32
+                /include
+                /drivers
+                        /mpu401
+                        /opl3
+                /i2c
+                        /l3
+                /synth
+                        /emux
+                /pci
+                        /(cards)
+                /isa
+                        /(cards)
+                /arm
+                /ppc
+                /sparc
+                /usb
+                /pcmcia /(cards)
+                /oss
+          </literallayout>
+        </example>
+      </para>
+    </section>
+
+    <section id="file-tree-core-directory">
+      <title>core directory</title>
+      <para>
+        This directory contains the middle layer which is the heart
+      of ALSA drivers. In this directory, the native ALSA modules are
+      stored. The sub-directories contain different modules and are
+      dependent upon the kernel config. 
+      </para>
+
+      <section id="file-tree-core-directory-oss">
+        <title>core/oss</title>
+
+        <para>
+          The codes for PCM and mixer OSS emulation modules are stored
+        in this directory. The rawmidi OSS emulation is included in
+        the ALSA rawmidi code since it's quite small. The sequencer
+        code is stored in <filename>core/seq/oss</filename> directory (see
+        <link linkend="file-tree-core-directory-seq-oss"><citetitle>
+        below</citetitle></link>).
+        </para>
+      </section>
+
+      <section id="file-tree-core-directory-ioctl32">
+        <title>core/ioctl32</title>
+
+        <para>
+          This directory contains the 32bit-ioctl wrappers for 64bit
+        architectures such like x86-64, ppc64 and sparc64. For 32bit
+        and alpha architectures, these are not compiled. 
+        </para>
+      </section>
+
+      <section id="file-tree-core-directory-seq">
+        <title>core/seq</title>
+        <para>
+          This directory and its sub-directories are for the ALSA
+        sequencer. This directory contains the sequencer core and
+        primary sequencer modules such like snd-seq-midi,
+        snd-seq-virmidi, etc. They are compiled only when
+        <constant>CONFIG_SND_SEQUENCER</constant> is set in the kernel
+        config. 
+        </para>
+      </section>
+
+      <section id="file-tree-core-directory-seq-oss">
+        <title>core/seq/oss</title>
+        <para>
+          This contains the OSS sequencer emulation codes.
+        </para>
+      </section>
+
+      <section id="file-tree-core-directory-deq-instr">
+        <title>core/seq/instr</title>
+        <para>
+          This directory contains the modules for the sequencer
+        instrument layer. 
+        </para>
+      </section>
+    </section>
+
+    <section id="file-tree-include-directory">
+      <title>include directory</title>
+      <para>
+        This is the place for the public header files of ALSA drivers,
+      which are to be exported to user-space, or included by
+      several files at different directories. Basically, the private
+      header files should not be placed in this directory, but you may
+      still find files there, due to historical reasons :) 
+      </para>
+    </section>
+
+    <section id="file-tree-drivers-directory">
+      <title>drivers directory</title>
+      <para>
+        This directory contains code shared among different drivers
+      on different architectures.  They are hence supposed not to be
+      architecture-specific.
+      For example, the dummy pcm driver and the serial MIDI
+      driver are found in this directory. In the sub-directories,
+      there is code for components which are independent from
+      bus and cpu architectures. 
+      </para>
+
+      <section id="file-tree-drivers-directory-mpu401">
+        <title>drivers/mpu401</title>
+        <para>
+          The MPU401 and MPU401-UART modules are stored here.
+        </para>
+      </section>
+
+      <section id="file-tree-drivers-directory-opl3">
+        <title>drivers/opl3 and opl4</title>
+        <para>
+          The OPL3 and OPL4 FM-synth stuff is found here.
+        </para>
+      </section>
+    </section>
+
+    <section id="file-tree-i2c-directory">
+      <title>i2c directory</title>
+      <para>
+        This contains the ALSA i2c components.
+      </para>
+
+      <para>
+        Although there is a standard i2c layer on Linux, ALSA has its
+      own i2c code for some cards, because the soundcard needs only a
+      simple operation and the standard i2c API is too complicated for
+      such a purpose. 
+      </para>
+
+      <section id="file-tree-i2c-directory-l3">
+        <title>i2c/l3</title>
+        <para>
+          This is a sub-directory for ARM L3 i2c.
+        </para>
+      </section>
+    </section>
+
+    <section id="file-tree-synth-directory">
+        <title>synth directory</title>
+        <para>
+          This contains the synth middle-level modules.
+        </para>
+
+        <para>
+          So far, there is only Emu8000/Emu10k1 synth driver under
+        the <filename>synth/emux</filename> sub-directory. 
+        </para>
+    </section>
+
+    <section id="file-tree-pci-directory">
+      <title>pci directory</title>
+      <para>
+        This directory and its sub-directories hold the top-level card modules
+      for PCI soundcards and the code specific to the PCI BUS.
+      </para>
+
+      <para>
+        The drivers compiled from a single file are stored directly
+      in the pci directory, while the drivers with several source files are
+      stored on their own sub-directory (e.g. emu10k1, ice1712). 
+      </para>
+    </section>
+
+    <section id="file-tree-isa-directory">
+      <title>isa directory</title>
+      <para>
+        This directory and its sub-directories hold the top-level card modules
+      for ISA soundcards. 
+      </para>
+    </section>
+
+    <section id="file-tree-arm-ppc-sparc-directories">
+      <title>arm, ppc, and sparc directories</title>
+      <para>
+        They are used for top-level card modules which are
+      specific to one of these architectures. 
+      </para>
+    </section>
+
+    <section id="file-tree-usb-directory">
+      <title>usb directory</title>
+      <para>
+        This directory contains the USB-audio driver. In the latest version, the
+      USB MIDI driver is integrated in the usb-audio driver. 
+      </para>
+    </section>
+
+    <section id="file-tree-pcmcia-directory">
+      <title>pcmcia directory</title>
+      <para>
+        The PCMCIA, especially PCCard drivers will go here. CardBus
+      drivers will be in the pci directory, because their API is identical
+      to that of standard PCI cards. 
+      </para>
+    </section>
+
+    <section id="file-tree-oss-directory">
+      <title>oss directory</title>
+      <para>
+        The OSS/Lite source files are stored here in Linux 2.6 (or
+      later) tree. In the ALSA driver tarball, this directory is empty,
+      of course :) 
+      </para>
+    </section>
+  </chapter>
+
+
+<!-- ****************************************************** -->
+<!-- Basic Flow for PCI Drivers  -->
+<!-- ****************************************************** -->
+  <chapter id="basic-flow">
+    <title>Basic Flow for PCI Drivers</title>
+
+    <section id="basic-flow-outline">
+      <title>Outline</title>
+      <para>
+        The minimum flow for PCI soundcards is as follows:
+
+        <itemizedlist>
+          <listitem><para>define the PCI ID table (see the section
+          <link linkend="pci-resource-entries"><citetitle>PCI Entries
+          </citetitle></link>).</para></listitem> 
+          <listitem><para>create <function>probe()</function> callback.</para></listitem>
+          <listitem><para>create <function>remove()</function> callback.</para></listitem>
+          <listitem><para>create a <structname>pci_driver</structname> structure
+	  containing the three pointers above.</para></listitem>
+          <listitem><para>create an <function>init()</function> function just calling
+	  the <function>pci_register_driver()</function> to register the pci_driver table
+	  defined above.</para></listitem>
+          <listitem><para>create an <function>exit()</function> function to call
+	  the <function>pci_unregister_driver()</function> function.</para></listitem>
+        </itemizedlist>
+      </para>
+    </section>
+
+    <section id="basic-flow-example">
+      <title>Full Code Example</title>
+      <para>
+        The code example is shown below. Some parts are kept
+      unimplemented at this moment but will be filled in the
+      next sections. The numbers in the comment lines of the
+      <function>snd_mychip_probe()</function> function
+      refer to details explained in the following section. 
+
+        <example>
+          <title>Basic Flow for PCI Drivers - Example</title>
+          <programlisting>
+<![CDATA[
+  #include <linux/init.h>
+  #include <linux/pci.h>
+  #include <linux/slab.h>
+  #include <sound/core.h>
+  #include <sound/initval.h>
+
+  /* module parameters (see "Module Parameters") */
+  /* SNDRV_CARDS: maximum number of cards supported by this module */
+  static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
+  static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
+  static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
+
+  /* definition of the chip-specific record */
+  struct mychip {
+          struct snd_card *card;
+          /* the rest of the implementation will be in section
+           * "PCI Resource Management"
+           */
+  };
+
+  /* chip-specific destructor
+   * (see "PCI Resource Management")
+   */
+  static int snd_mychip_free(struct mychip *chip)
+  {
+          .... /* will be implemented later... */
+  }
+
+  /* component-destructor
+   * (see "Management of Cards and Components")
+   */
+  static int snd_mychip_dev_free(struct snd_device *device)
+  {
+          return snd_mychip_free(device->device_data);
+  }
+
+  /* chip-specific constructor
+   * (see "Management of Cards and Components")
+   */
+  static int __devinit snd_mychip_create(struct snd_card *card,
+                                         struct pci_dev *pci,
+                                         struct mychip **rchip)
+  {
+          struct mychip *chip;
+          int err;
+          static struct snd_device_ops ops = {
+                 .dev_free = snd_mychip_dev_free,
+          };
+
+          *rchip = NULL;
+
+          /* check PCI availability here
+           * (see "PCI Resource Management")
+           */
+          ....
+
+          /* allocate a chip-specific data with zero filled */
+          chip = kzalloc(sizeof(*chip), GFP_KERNEL);
+          if (chip == NULL)
+                  return -ENOMEM;
+
+          chip->card = card;
+
+          /* rest of initialization here; will be implemented
+           * later, see "PCI Resource Management"
+           */
+          ....
+
+          err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
+          if (err < 0) {
+                  snd_mychip_free(chip);
+                  return err;
+          }
+
+          snd_card_set_dev(card, &pci->dev);
+
+          *rchip = chip;
+          return 0;
+  }
+
+  /* constructor -- see "Constructor" sub-section */
+  static int __devinit snd_mychip_probe(struct pci_dev *pci,
+                               const struct pci_device_id *pci_id)
+  {
+          static int dev;
+          struct snd_card *card;
+          struct mychip *chip;
+          int err;
+
+          /* (1) */
+          if (dev >= SNDRV_CARDS)
+                  return -ENODEV;
+          if (!enable[dev]) {
+                  dev++;
+                  return -ENOENT;
+          }
+
+          /* (2) */
+          err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
+          if (err < 0)
+                  return err;
+
+          /* (3) */
+          err = snd_mychip_create(card, pci, &chip);
+          if (err < 0) {
+                  snd_card_free(card);
+                  return err;
+          }
+
+          /* (4) */
+          strcpy(card->driver, "My Chip");
+          strcpy(card->shortname, "My Own Chip 123");
+          sprintf(card->longname, "%s at 0x%lx irq %i",
+                  card->shortname, chip->ioport, chip->irq);
+
+          /* (5) */
+          .... /* implemented later */
+
+          /* (6) */
+          err = snd_card_register(card);
+          if (err < 0) {
+                  snd_card_free(card);
+                  return err;
+          }
+
+          /* (7) */
+          pci_set_drvdata(pci, card);
+          dev++;
+          return 0;
+  }
+
+  /* destructor -- see the "Destructor" sub-section */
+  static void __devexit snd_mychip_remove(struct pci_dev *pci)
+  {
+          snd_card_free(pci_get_drvdata(pci));
+          pci_set_drvdata(pci, NULL);
+  }
+]]>
+          </programlisting>
+        </example>
+      </para>
+    </section>
+
+    <section id="basic-flow-constructor">
+      <title>Constructor</title>
+      <para>
+        The real constructor of PCI drivers is the <function>probe</function> callback.
+      The <function>probe</function> callback and other component-constructors which are called
+      from the <function>probe</function> callback should be defined with
+      the <parameter>__devinit</parameter> prefix. You 
+      cannot use the <parameter>__init</parameter> prefix for them,
+      because any PCI device could be a hotplug device. 
+      </para>
+
+      <para>
+        In the <function>probe</function> callback, the following scheme is often used.
+      </para>
+
+      <section id="basic-flow-constructor-device-index">
+        <title>1) Check and increment the device index.</title>
+        <para>
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  static int dev;
+  ....
+  if (dev >= SNDRV_CARDS)
+          return -ENODEV;
+  if (!enable[dev]) {
+          dev++;
+          return -ENOENT;
+  }
+]]>
+            </programlisting>
+          </informalexample>
+
+        where enable[dev] is the module option.
+        </para>
+
+        <para>
+          Each time the <function>probe</function> callback is called, check the
+        availability of the device. If not available, simply increment
+        the device index and returns. dev will be incremented also
+        later (<link
+        linkend="basic-flow-constructor-set-pci"><citetitle>step
+        7</citetitle></link>). 
+        </para>
+      </section>
+
+      <section id="basic-flow-constructor-create-card">
+        <title>2) Create a card instance</title>
+        <para>
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  struct snd_card *card;
+  int err;
+  ....
+  err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+
+        <para>
+          The details will be explained in the section
+          <link linkend="card-management-card-instance"><citetitle>
+          Management of Cards and Components</citetitle></link>.
+        </para>
+      </section>
+
+      <section id="basic-flow-constructor-create-main">
+        <title>3) Create a main component</title>
+        <para>
+          In this part, the PCI resources are allocated.
+
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  struct mychip *chip;
+  ....
+  err = snd_mychip_create(card, pci, &chip);
+  if (err < 0) {
+          snd_card_free(card);
+          return err;
+  }
+]]>
+            </programlisting>
+          </informalexample>
+
+          The details will be explained in the section <link
+        linkend="pci-resource"><citetitle>PCI Resource
+        Management</citetitle></link>.
+        </para>
+      </section>
+
+      <section id="basic-flow-constructor-main-component">
+        <title>4) Set the driver ID and name strings.</title>
+        <para>
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  strcpy(card->driver, "My Chip");
+  strcpy(card->shortname, "My Own Chip 123");
+  sprintf(card->longname, "%s at 0x%lx irq %i",
+          card->shortname, chip->ioport, chip->irq);
+]]>
+            </programlisting>
+          </informalexample>
+
+          The driver field holds the minimal ID string of the
+        chip. This is used by alsa-lib's configurator, so keep it
+        simple but unique. 
+          Even the same driver can have different driver IDs to
+        distinguish the functionality of each chip type. 
+        </para>
+
+        <para>
+          The shortname field is a string shown as more verbose
+        name. The longname field contains the information
+        shown in <filename>/proc/asound/cards</filename>. 
+        </para>
+      </section>
+
+      <section id="basic-flow-constructor-create-other">
+        <title>5) Create other components, such as mixer, MIDI, etc.</title>
+        <para>
+          Here you define the basic components such as
+          <link linkend="pcm-interface"><citetitle>PCM</citetitle></link>,
+          mixer (e.g. <link linkend="api-ac97"><citetitle>AC97</citetitle></link>),
+          MIDI (e.g. <link linkend="midi-interface"><citetitle>MPU-401</citetitle></link>),
+          and other interfaces.
+          Also, if you want a <link linkend="proc-interface"><citetitle>proc
+        file</citetitle></link>, define it here, too.
+        </para>
+      </section>
+
+      <section id="basic-flow-constructor-register-card">
+        <title>6) Register the card instance.</title>
+        <para>
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  err = snd_card_register(card);
+  if (err < 0) {
+          snd_card_free(card);
+          return err;
+  }
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+
+        <para>
+          Will be explained in the section <link
+        linkend="card-management-registration"><citetitle>Management
+        of Cards and Components</citetitle></link>, too. 
+        </para>
+      </section>
+
+      <section id="basic-flow-constructor-set-pci">
+        <title>7) Set the PCI driver data and return zero.</title>
+        <para>
+          <informalexample>
+            <programlisting>
+<![CDATA[
+        pci_set_drvdata(pci, card);
+        dev++;
+        return 0;
+]]>
+            </programlisting>
+          </informalexample>
+
+          In the above, the card record is stored. This pointer is
+        used in the remove callback and power-management
+        callbacks, too. 
+        </para>
+      </section>
+    </section>
+
+    <section id="basic-flow-destructor">
+      <title>Destructor</title>
+      <para>
+        The destructor, remove callback, simply releases the card
+      instance. Then the ALSA middle layer will release all the
+      attached components automatically. 
+      </para>
+
+      <para>
+        It would be typically like the following:
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static void __devexit snd_mychip_remove(struct pci_dev *pci)
+  {
+          snd_card_free(pci_get_drvdata(pci));
+          pci_set_drvdata(pci, NULL);
+  }
+]]>
+          </programlisting>
+        </informalexample>
+
+        The above code assumes that the card pointer is set to the PCI
+	driver data.
+      </para>
+    </section>
+
+    <section id="basic-flow-header-files">
+      <title>Header Files</title>
+      <para>
+        For the above example, at least the following include files
+      are necessary. 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  #include <linux/init.h>
+  #include <linux/pci.h>
+  #include <linux/slab.h>
+  #include <sound/core.h>
+  #include <sound/initval.h>
+]]>
+          </programlisting>
+        </informalexample>
+
+	where the last one is necessary only when module options are
+      defined in the source file.  If the code is split into several
+      files, the files without module options don't need them.
+      </para>
+
+      <para>
+        In addition to these headers, you'll need
+      <filename>&lt;linux/interrupt.h&gt;</filename> for interrupt
+      handling, and <filename>&lt;asm/io.h&gt;</filename> for I/O
+      access. If you use the <function>mdelay()</function> or
+      <function>udelay()</function> functions, you'll need to include
+      <filename>&lt;linux/delay.h&gt;</filename> too. 
+      </para>
+
+      <para>
+      The ALSA interfaces like the PCM and control APIs are defined in other
+      <filename>&lt;sound/xxx.h&gt;</filename> header files.
+      They have to be included after
+      <filename>&lt;sound/core.h&gt;</filename>.
+      </para>
+
+    </section>
+  </chapter>
+
+
+<!-- ****************************************************** -->
+<!-- Management of Cards and Components  -->
+<!-- ****************************************************** -->
+  <chapter id="card-management">
+    <title>Management of Cards and Components</title>
+
+    <section id="card-management-card-instance">
+      <title>Card Instance</title>
+      <para>
+      For each soundcard, a <quote>card</quote> record must be allocated.
+      </para>
+
+      <para>
+      A card record is the headquarters of the soundcard.  It manages
+      the whole list of devices (components) on the soundcard, such as
+      PCM, mixers, MIDI, synthesizer, and so on.  Also, the card
+      record holds the ID and the name strings of the card, manages
+      the root of proc files, and controls the power-management states
+      and hotplug disconnections.  The component list on the card
+      record is used to manage the correct release of resources at
+      destruction. 
+      </para>
+
+      <para>
+        As mentioned above, to create a card instance, call
+      <function>snd_card_create()</function>.
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct snd_card *card;
+  int err;
+  err = snd_card_create(index, id, module, extra_size, &card);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        The function takes five arguments, the card-index number, the
+        id string, the module pointer (usually
+        <constant>THIS_MODULE</constant>),
+        the size of extra-data space, and the pointer to return the
+        card instance.  The extra_size argument is used to
+        allocate card-&gt;private_data for the
+        chip-specific data.  Note that these data
+        are allocated by <function>snd_card_create()</function>.
+      </para>
+    </section>
+
+    <section id="card-management-component">
+      <title>Components</title>
+      <para>
+        After the card is created, you can attach the components
+      (devices) to the card instance. In an ALSA driver, a component is
+      represented as a struct <structname>snd_device</structname> object.
+      A component can be a PCM instance, a control interface, a raw
+      MIDI interface, etc.  Each such instance has one component
+      entry.
+      </para>
+
+      <para>
+        A component can be created via
+        <function>snd_device_new()</function> function. 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        This takes the card pointer, the device-level
+      (<constant>SNDRV_DEV_XXX</constant>), the data pointer, and the
+      callback pointers (<parameter>&amp;ops</parameter>). The
+      device-level defines the type of components and the order of
+      registration and de-registration.  For most components, the
+      device-level is already defined.  For a user-defined component,
+      you can use <constant>SNDRV_DEV_LOWLEVEL</constant>.
+      </para>
+
+      <para>
+      This function itself doesn't allocate the data space. The data
+      must be allocated manually beforehand, and its pointer is passed
+      as the argument. This pointer is used as the
+      (<parameter>chip</parameter> identifier in the above example)
+      for the instance. 
+      </para>
+
+      <para>
+        Each pre-defined ALSA component such as ac97 and pcm calls
+      <function>snd_device_new()</function> inside its
+      constructor. The destructor for each component is defined in the
+      callback pointers.  Hence, you don't need to take care of
+      calling a destructor for such a component.
+      </para>
+
+      <para>
+        If you wish to create your own component, you need to
+      set the destructor function to the dev_free callback in
+      the <parameter>ops</parameter>, so that it can be released
+      automatically via <function>snd_card_free()</function>.
+      The next example will show an implementation of chip-specific
+      data.
+      </para>
+    </section>
+
+    <section id="card-management-chip-specific">
+      <title>Chip-Specific Data</title>
+      <para>
+      Chip-specific information, e.g. the I/O port address, its
+      resource pointer, or the irq number, is stored in the
+      chip-specific record.
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct mychip {
+          ....
+  };
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        In general, there are two ways of allocating the chip record.
+      </para>
+
+      <section id="card-management-chip-specific-snd-card-new">
+        <title>1. Allocating via <function>snd_card_create()</function>.</title>
+        <para>
+          As mentioned above, you can pass the extra-data-length
+	  to the 4th argument of <function>snd_card_create()</function>, i.e.
+
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  err = snd_card_create(index[dev], id[dev], THIS_MODULE,
+                        sizeof(struct mychip), &card);
+]]>
+            </programlisting>
+          </informalexample>
+
+          struct <structname>mychip</structname> is the type of the chip record.
+        </para>
+
+        <para>
+          In return, the allocated record can be accessed as
+
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  struct mychip *chip = card->private_data;
+]]>
+            </programlisting>
+          </informalexample>
+
+          With this method, you don't have to allocate twice.
+          The record is released together with the card instance.
+        </para>
+      </section>
+
+      <section id="card-management-chip-specific-allocate-extra">
+        <title>2. Allocating an extra device.</title>
+
+        <para>
+          After allocating a card instance via
+          <function>snd_card_create()</function> (with
+          <constant>0</constant> on the 4th arg), call
+          <function>kzalloc()</function>. 
+
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  struct snd_card *card;
+  struct mychip *chip;
+  err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
+  .....
+  chip = kzalloc(sizeof(*chip), GFP_KERNEL);
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+
+        <para>
+          The chip record should have the field to hold the card
+          pointer at least, 
+
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  struct mychip {
+          struct snd_card *card;
+          ....
+  };
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+
+        <para>
+          Then, set the card pointer in the returned chip instance.
+
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  chip->card = card;
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+
+        <para>
+          Next, initialize the fields, and register this chip
+          record as a low-level device with a specified
+          <parameter>ops</parameter>, 
+
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  static struct snd_device_ops ops = {
+          .dev_free =        snd_mychip_dev_free,
+  };
+  ....
+  snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
+]]>
+            </programlisting>
+          </informalexample>
+
+          <function>snd_mychip_dev_free()</function> is the
+        device-destructor function, which will call the real
+        destructor. 
+        </para>
+
+        <para>
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  static int snd_mychip_dev_free(struct snd_device *device)
+  {
+          return snd_mychip_free(device->device_data);
+  }
+]]>
+            </programlisting>
+          </informalexample>
+
+          where <function>snd_mychip_free()</function> is the real destructor.
+        </para>
+      </section>
+    </section>
+
+    <section id="card-management-registration">
+      <title>Registration and Release</title>
+      <para>
+        After all components are assigned, register the card instance
+      by calling <function>snd_card_register()</function>. Access
+      to the device files is enabled at this point. That is, before
+      <function>snd_card_register()</function> is called, the
+      components are safely inaccessible from external side. If this
+      call fails, exit the probe function after releasing the card via
+      <function>snd_card_free()</function>. 
+      </para>
+
+      <para>
+        For releasing the card instance, you can call simply
+      <function>snd_card_free()</function>. As mentioned earlier, all
+      components are released automatically by this call. 
+      </para>
+
+      <para>
+        As further notes, the destructors (both
+      <function>snd_mychip_dev_free</function> and
+      <function>snd_mychip_free</function>) cannot be defined with
+      the <parameter>__devexit</parameter> prefix, because they may be
+      called from the constructor, too, at the false path. 
+      </para>
+
+      <para>
+      For a device which allows hotplugging, you can use
+      <function>snd_card_free_when_closed</function>.  This one will
+      postpone the destruction until all devices are closed.
+      </para>
+
+    </section>
+
+  </chapter>
+
+
+<!-- ****************************************************** -->
+<!-- PCI Resource Management  -->
+<!-- ****************************************************** -->
+  <chapter id="pci-resource">
+    <title>PCI Resource Management</title>
+
+    <section id="pci-resource-example">
+      <title>Full Code Example</title>
+      <para>
+        In this section, we'll complete the chip-specific constructor,
+      destructor and PCI entries. Example code is shown first,
+      below. 
+
+        <example>
+          <title>PCI Resource Management Example</title>
+          <programlisting>
+<![CDATA[
+  struct mychip {
+          struct snd_card *card;
+          struct pci_dev *pci;
+
+          unsigned long port;
+          int irq;
+  };
+
+  static int snd_mychip_free(struct mychip *chip)
+  {
+          /* disable hardware here if any */
+          .... /* (not implemented in this document) */
+
+          /* release the irq */
+          if (chip->irq >= 0)
+                  free_irq(chip->irq, chip);
+          /* release the I/O ports & memory */
+          pci_release_regions(chip->pci);
+          /* disable the PCI entry */
+          pci_disable_device(chip->pci);
+          /* release the data */
+          kfree(chip);
+          return 0;
+  }
+
+  /* chip-specific constructor */
+  static int __devinit snd_mychip_create(struct snd_card *card,
+                                         struct pci_dev *pci,
+                                         struct mychip **rchip)
+  {
+          struct mychip *chip;
+          int err;
+          static struct snd_device_ops ops = {
+                 .dev_free = snd_mychip_dev_free,
+          };
+
+          *rchip = NULL;
+
+          /* initialize the PCI entry */
+          err = pci_enable_device(pci);
+          if (err < 0)
+                  return err;
+          /* check PCI availability (28bit DMA) */
+          if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 ||
+              pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) {
+                  printk(KERN_ERR "error to set 28bit mask DMA\n");
+                  pci_disable_device(pci);
+                  return -ENXIO;
+          }
+
+          chip = kzalloc(sizeof(*chip), GFP_KERNEL);
+          if (chip == NULL) {
+                  pci_disable_device(pci);
+                  return -ENOMEM;
+          }
+
+          /* initialize the stuff */
+          chip->card = card;
+          chip->pci = pci;
+          chip->irq = -1;
+
+          /* (1) PCI resource allocation */
+          err = pci_request_regions(pci, "My Chip");
+          if (err < 0) {
+                  kfree(chip);
+                  pci_disable_device(pci);
+                  return err;
+          }
+          chip->port = pci_resource_start(pci, 0);
+          if (request_irq(pci->irq, snd_mychip_interrupt,
+                          IRQF_SHARED, "My Chip", chip)) {
+                  printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
+                  snd_mychip_free(chip);
+                  return -EBUSY;
+          }
+          chip->irq = pci->irq;
+
+          /* (2) initialization of the chip hardware */
+          .... /*   (not implemented in this document) */
+
+          err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
+          if (err < 0) {
+                  snd_mychip_free(chip);
+                  return err;
+          }
+
+          snd_card_set_dev(card, &pci->dev);
+
+          *rchip = chip;
+          return 0;
+  }        
+
+  /* PCI IDs */
+  static struct pci_device_id snd_mychip_ids[] = {
+          { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
+            PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
+          ....
+          { 0, }
+  };
+  MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
+
+  /* pci_driver definition */
+  static struct pci_driver driver = {
+          .name = "My Own Chip",
+          .id_table = snd_mychip_ids,
+          .probe = snd_mychip_probe,
+          .remove = __devexit_p(snd_mychip_remove),
+  };
+
+  /* module initialization */
+  static int __init alsa_card_mychip_init(void)
+  {
+          return pci_register_driver(&driver);
+  }
+
+  /* module clean up */
+  static void __exit alsa_card_mychip_exit(void)
+  {
+          pci_unregister_driver(&driver);
+  }
+
+  module_init(alsa_card_mychip_init)
+  module_exit(alsa_card_mychip_exit)
+
+  EXPORT_NO_SYMBOLS; /* for old kernels only */
+]]>
+          </programlisting>
+        </example>
+      </para>
+    </section>
+
+    <section id="pci-resource-some-haftas">
+      <title>Some Hafta's</title>
+      <para>
+        The allocation of PCI resources is done in the
+      <function>probe()</function> function, and usually an extra
+      <function>xxx_create()</function> function is written for this
+      purpose.
+      </para>
+
+      <para>
+        In the case of PCI devices, you first have to call
+      the <function>pci_enable_device()</function> function before
+      allocating resources. Also, you need to set the proper PCI DMA
+      mask to limit the accessed I/O range. In some cases, you might
+      need to call <function>pci_set_master()</function> function,
+      too.
+      </para>
+
+      <para>
+        Suppose the 28bit mask, and the code to be added would be like:
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  err = pci_enable_device(pci);
+  if (err < 0)
+          return err;
+  if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 ||
+      pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) {
+          printk(KERN_ERR "error to set 28bit mask DMA\n");
+          pci_disable_device(pci);
+          return -ENXIO;
+  }
+  
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+    </section>
+
+    <section id="pci-resource-resource-allocation">
+      <title>Resource Allocation</title>
+      <para>
+        The allocation of I/O ports and irqs is done via standard kernel
+      functions. Unlike ALSA ver.0.5.x., there are no helpers for
+      that. And these resources must be released in the destructor
+      function (see below). Also, on ALSA 0.9.x, you don't need to
+      allocate (pseudo-)DMA for PCI like in ALSA 0.5.x.
+      </para>
+
+      <para>
+        Now assume that the PCI device has an I/O port with 8 bytes
+        and an interrupt. Then struct <structname>mychip</structname> will have the
+        following fields:
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct mychip {
+          struct snd_card *card;
+
+          unsigned long port;
+          int irq;
+  };
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        For an I/O port (and also a memory region), you need to have
+      the resource pointer for the standard resource management. For
+      an irq, you have to keep only the irq number (integer). But you
+      need to initialize this number as -1 before actual allocation,
+      since irq 0 is valid. The port address and its resource pointer
+      can be initialized as null by
+      <function>kzalloc()</function> automatically, so you
+      don't have to take care of resetting them. 
+      </para>
+
+      <para>
+        The allocation of an I/O port is done like this:
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  err = pci_request_regions(pci, "My Chip");
+  if (err < 0) { 
+          kfree(chip);
+          pci_disable_device(pci);
+          return err;
+  }
+  chip->port = pci_resource_start(pci, 0);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        <!-- obsolete -->
+        It will reserve the I/O port region of 8 bytes of the given
+      PCI device. The returned value, chip-&gt;res_port, is allocated
+      via <function>kmalloc()</function> by
+      <function>request_region()</function>. The pointer must be
+      released via <function>kfree()</function>, but there is a
+      problem with this. This issue will be explained later.
+      </para>
+
+      <para>
+        The allocation of an interrupt source is done like this:
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  if (request_irq(pci->irq, snd_mychip_interrupt,
+                  IRQF_SHARED, "My Chip", chip)) {
+          printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
+          snd_mychip_free(chip);
+          return -EBUSY;
+  }
+  chip->irq = pci->irq;
+]]>
+          </programlisting>
+        </informalexample>
+
+        where <function>snd_mychip_interrupt()</function> is the
+      interrupt handler defined <link
+      linkend="pcm-interface-interrupt-handler"><citetitle>later</citetitle></link>.
+      Note that chip-&gt;irq should be defined
+      only when <function>request_irq()</function> succeeded.
+      </para>
+
+      <para>
+      On the PCI bus, interrupts can be shared. Thus,
+      <constant>IRQF_SHARED</constant> is used as the interrupt flag of
+      <function>request_irq()</function>. 
+      </para>
+
+      <para>
+        The last argument of <function>request_irq()</function> is the
+      data pointer passed to the interrupt handler. Usually, the
+      chip-specific record is used for that, but you can use what you
+      like, too. 
+      </para>
+
+      <para>
+        I won't give details about the interrupt handler at this
+        point, but at least its appearance can be explained now. The
+        interrupt handler looks usually like the following: 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
+  {
+          struct mychip *chip = dev_id;
+          ....
+          return IRQ_HANDLED;
+  }
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        Now let's write the corresponding destructor for the resources
+      above. The role of destructor is simple: disable the hardware
+      (if already activated) and release the resources. So far, we
+      have no hardware part, so the disabling code is not written here. 
+      </para>
+
+      <para>
+        To release the resources, the <quote>check-and-release</quote>
+        method is a safer way. For the interrupt, do like this: 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  if (chip->irq >= 0)
+          free_irq(chip->irq, chip);
+]]>
+          </programlisting>
+        </informalexample>
+
+        Since the irq number can start from 0, you should initialize
+        chip-&gt;irq with a negative value (e.g. -1), so that you can
+        check the validity of the irq number as above.
+      </para>
+
+      <para>
+        When you requested I/O ports or memory regions via
+	<function>pci_request_region()</function> or
+	<function>pci_request_regions()</function> like in this example,
+	release the resource(s) using the corresponding function,
+	<function>pci_release_region()</function> or
+	<function>pci_release_regions()</function>.
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  pci_release_regions(chip->pci);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+	When you requested manually via <function>request_region()</function>
+	or <function>request_mem_region</function>, you can release it via
+	<function>release_resource()</function>.  Suppose that you keep
+	the resource pointer returned from <function>request_region()</function>
+	in chip-&gt;res_port, the release procedure looks like:
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  release_and_free_resource(chip->res_port);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+      Don't forget to call <function>pci_disable_device()</function>
+      before the end.
+      </para>
+
+      <para>
+        And finally, release the chip-specific record.
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  kfree(chip);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+      Again, remember that you cannot
+      use the <parameter>__devexit</parameter> prefix for this destructor. 
+      </para>
+
+      <para>
+      We didn't implement the hardware disabling part in the above.
+      If you need to do this, please note that the destructor may be
+      called even before the initialization of the chip is completed.
+      It would be better to have a flag to skip hardware disabling
+      if the hardware was not initialized yet.
+      </para>
+
+      <para>
+      When the chip-data is assigned to the card using
+      <function>snd_device_new()</function> with
+      <constant>SNDRV_DEV_LOWLELVEL</constant> , its destructor is 
+      called at the last.  That is, it is assured that all other
+      components like PCMs and controls have already been released.
+      You don't have to stop PCMs, etc. explicitly, but just
+      call low-level hardware stopping.
+      </para>
+
+      <para>
+        The management of a memory-mapped region is almost as same as
+        the management of an I/O port. You'll need three fields like
+        the following: 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct mychip {
+          ....
+          unsigned long iobase_phys;
+          void __iomem *iobase_virt;
+  };
+]]>
+          </programlisting>
+        </informalexample>
+
+        and the allocation would be like below:
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  if ((err = pci_request_regions(pci, "My Chip")) < 0) {
+          kfree(chip);
+          return err;
+  }
+  chip->iobase_phys = pci_resource_start(pci, 0);
+  chip->iobase_virt = ioremap_nocache(chip->iobase_phys,
+                                      pci_resource_len(pci, 0));
+]]>
+          </programlisting>
+        </informalexample>
+        
+        and the corresponding destructor would be:
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static int snd_mychip_free(struct mychip *chip)
+  {
+          ....
+          if (chip->iobase_virt)
+                  iounmap(chip->iobase_virt);
+          ....
+          pci_release_regions(chip->pci);
+          ....
+  }
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+    </section>
+
+    <section id="pci-resource-device-struct">
+      <title>Registration of Device Struct</title>
+      <para>
+	At some point, typically after calling <function>snd_device_new()</function>,
+	you need to register the struct <structname>device</structname> of the chip
+	you're handling for udev and co.  ALSA provides a macro for compatibility with
+	older kernels.  Simply call like the following:
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  snd_card_set_dev(card, &pci->dev);
+]]>
+          </programlisting>
+        </informalexample>
+	so that it stores the PCI's device pointer to the card.  This will be
+	referred by ALSA core functions later when the devices are registered.
+      </para>
+      <para>
+	In the case of non-PCI, pass the proper device struct pointer of the BUS
+	instead.  (In the case of legacy ISA without PnP, you don't have to do
+	anything.)
+      </para>
+    </section>
+
+    <section id="pci-resource-entries">
+      <title>PCI Entries</title>
+      <para>
+        So far, so good. Let's finish the missing PCI
+      stuff. At first, we need a
+      <structname>pci_device_id</structname> table for this
+      chipset. It's a table of PCI vendor/device ID number, and some
+      masks. 
+      </para>
+
+      <para>
+        For example,
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static struct pci_device_id snd_mychip_ids[] = {
+          { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
+            PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
+          ....
+          { 0, }
+  };
+  MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        The first and second fields of
+      the <structname>pci_device_id</structname> structure are the vendor and
+      device IDs. If you have no reason to filter the matching
+      devices, you can leave the remaining fields as above. The last
+      field of the <structname>pci_device_id</structname> struct contains
+      private data for this entry. You can specify any value here, for
+      example, to define specific operations for supported device IDs.
+      Such an example is found in the intel8x0 driver. 
+      </para>
+
+      <para>
+        The last entry of this list is the terminator. You must
+      specify this all-zero entry. 
+      </para>
+
+      <para>
+        Then, prepare the <structname>pci_driver</structname> record:
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static struct pci_driver driver = {
+          .name = "My Own Chip",
+          .id_table = snd_mychip_ids,
+          .probe = snd_mychip_probe,
+          .remove = __devexit_p(snd_mychip_remove),
+  };
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        The <structfield>probe</structfield> and
+      <structfield>remove</structfield> functions have already
+      been defined in the previous sections.
+      The <structfield>remove</structfield> function should
+      be defined with the 
+      <function>__devexit_p()</function> macro, so that it's not
+      defined for built-in (and non-hot-pluggable) case. The
+      <structfield>name</structfield> 
+      field is the name string of this device. Note that you must not
+      use a slash <quote>/</quote> in this string. 
+      </para>
+
+      <para>
+        And at last, the module entries:
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static int __init alsa_card_mychip_init(void)
+  {
+          return pci_register_driver(&driver);
+  }
+
+  static void __exit alsa_card_mychip_exit(void)
+  {
+          pci_unregister_driver(&driver);
+  }
+
+  module_init(alsa_card_mychip_init)
+  module_exit(alsa_card_mychip_exit)
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        Note that these module entries are tagged with
+      <parameter>__init</parameter> and 
+      <parameter>__exit</parameter> prefixes, not
+      <parameter>__devinit</parameter> nor
+      <parameter>__devexit</parameter>.
+      </para>
+
+      <para>
+        Oh, one thing was forgotten. If you have no exported symbols,
+        you need to declare it in 2.2 or 2.4 kernels (it's not necessary in 2.6 kernels).
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  EXPORT_NO_SYMBOLS;
+]]>
+          </programlisting>
+        </informalexample>
+
+        That's all!
+      </para>
+    </section>
+  </chapter>
+
+
+<!-- ****************************************************** -->
+<!-- PCM Interface  -->
+<!-- ****************************************************** -->
+  <chapter id="pcm-interface">
+    <title>PCM Interface</title>
+
+    <section id="pcm-interface-general">
+      <title>General</title>
+      <para>
+        The PCM middle layer of ALSA is quite powerful and it is only
+      necessary for each driver to implement the low-level functions
+      to access its hardware.
+      </para>
+
+      <para>
+        For accessing to the PCM layer, you need to include
+      <filename>&lt;sound/pcm.h&gt;</filename> first. In addition,
+      <filename>&lt;sound/pcm_params.h&gt;</filename> might be needed
+      if you access to some functions related with hw_param. 
+      </para>
+
+      <para>
+        Each card device can have up to four pcm instances. A pcm
+      instance corresponds to a pcm device file. The limitation of
+      number of instances comes only from the available bit size of
+      the Linux's device numbers. Once when 64bit device number is
+      used, we'll have more pcm instances available. 
+      </para>
+
+      <para>
+        A pcm instance consists of pcm playback and capture streams,
+      and each pcm stream consists of one or more pcm substreams. Some
+      soundcards support multiple playback functions. For example,
+      emu10k1 has a PCM playback of 32 stereo substreams. In this case, at
+      each open, a free substream is (usually) automatically chosen
+      and opened. Meanwhile, when only one substream exists and it was
+      already opened, the successful open will either block
+      or error with <constant>EAGAIN</constant> according to the
+      file open mode. But you don't have to care about such details in your
+      driver. The PCM middle layer will take care of such work.
+      </para>
+    </section>
+
+    <section id="pcm-interface-example">
+      <title>Full Code Example</title>
+      <para>
+      The example code below does not include any hardware access
+      routines but shows only the skeleton, how to build up the PCM
+      interfaces.
+
+        <example>
+          <title>PCM Example Code</title>
+          <programlisting>
+<![CDATA[
+  #include <sound/pcm.h>
+  ....
+
+  /* hardware definition */
+  static struct snd_pcm_hardware snd_mychip_playback_hw = {
+          .info = (SNDRV_PCM_INFO_MMAP |
+                   SNDRV_PCM_INFO_INTERLEAVED |
+                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
+                   SNDRV_PCM_INFO_MMAP_VALID),
+          .formats =          SNDRV_PCM_FMTBIT_S16_LE,
+          .rates =            SNDRV_PCM_RATE_8000_48000,
+          .rate_min =         8000,
+          .rate_max =         48000,
+          .channels_min =     2,
+          .channels_max =     2,
+          .buffer_bytes_max = 32768,
+          .period_bytes_min = 4096,
+          .period_bytes_max = 32768,
+          .periods_min =      1,
+          .periods_max =      1024,
+  };
+
+  /* hardware definition */
+  static struct snd_pcm_hardware snd_mychip_capture_hw = {
+          .info = (SNDRV_PCM_INFO_MMAP |
+                   SNDRV_PCM_INFO_INTERLEAVED |
+                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
+                   SNDRV_PCM_INFO_MMAP_VALID),
+          .formats =          SNDRV_PCM_FMTBIT_S16_LE,
+          .rates =            SNDRV_PCM_RATE_8000_48000,
+          .rate_min =         8000,
+          .rate_max =         48000,
+          .channels_min =     2,
+          .channels_max =     2,
+          .buffer_bytes_max = 32768,
+          .period_bytes_min = 4096,
+          .period_bytes_max = 32768,
+          .periods_min =      1,
+          .periods_max =      1024,
+  };
+
+  /* open callback */
+  static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
+  {
+          struct mychip *chip = snd_pcm_substream_chip(substream);
+          struct snd_pcm_runtime *runtime = substream->runtime;
+
+          runtime->hw = snd_mychip_playback_hw;
+          /* more hardware-initialization will be done here */
+          ....
+          return 0;
+  }
+
+  /* close callback */
+  static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
+  {
+          struct mychip *chip = snd_pcm_substream_chip(substream);
+          /* the hardware-specific codes will be here */
+          ....
+          return 0;
+
+  }
+
+  /* open callback */
+  static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
+  {
+          struct mychip *chip = snd_pcm_substream_chip(substream);
+          struct snd_pcm_runtime *runtime = substream->runtime;
+
+          runtime->hw = snd_mychip_capture_hw;
+          /* more hardware-initialization will be done here */
+          ....
+          return 0;
+  }
+
+  /* close callback */
+  static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
+  {
+          struct mychip *chip = snd_pcm_substream_chip(substream);
+          /* the hardware-specific codes will be here */
+          ....
+          return 0;
+
+  }
+
+  /* hw_params callback */
+  static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
+                               struct snd_pcm_hw_params *hw_params)
+  {
+          return snd_pcm_lib_malloc_pages(substream,
+                                     params_buffer_bytes(hw_params));
+  }
+
+  /* hw_free callback */
+  static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
+  {
+          return snd_pcm_lib_free_pages(substream);
+  }
+
+  /* prepare callback */
+  static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
+  {
+          struct mychip *chip = snd_pcm_substream_chip(substream);
+          struct snd_pcm_runtime *runtime = substream->runtime;
+
+          /* set up the hardware with the current configuration
+           * for example...
+           */
+          mychip_set_sample_format(chip, runtime->format);
+          mychip_set_sample_rate(chip, runtime->rate);
+          mychip_set_channels(chip, runtime->channels);
+          mychip_set_dma_setup(chip, runtime->dma_addr,
+                               chip->buffer_size,
+                               chip->period_size);
+          return 0;
+  }
+
+  /* trigger callback */
+  static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
+                                    int cmd)
+  {
+          switch (cmd) {
+          case SNDRV_PCM_TRIGGER_START:
+                  /* do something to start the PCM engine */
+                  ....
+                  break;
+          case SNDRV_PCM_TRIGGER_STOP:
+                  /* do something to stop the PCM engine */
+                  ....
+                  break;
+          default:
+                  return -EINVAL;
+          }
+  }
+
+  /* pointer callback */
+  static snd_pcm_uframes_t
+  snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
+  {
+          struct mychip *chip = snd_pcm_substream_chip(substream);
+          unsigned int current_ptr;
+
+          /* get the current hardware pointer */
+          current_ptr = mychip_get_hw_pointer(chip);
+          return current_ptr;
+  }
+
+  /* operators */
+  static struct snd_pcm_ops snd_mychip_playback_ops = {
+          .open =        snd_mychip_playback_open,
+          .close =       snd_mychip_playback_close,
+          .ioctl =       snd_pcm_lib_ioctl,
+          .hw_params =   snd_mychip_pcm_hw_params,
+          .hw_free =     snd_mychip_pcm_hw_free,
+          .prepare =     snd_mychip_pcm_prepare,
+          .trigger =     snd_mychip_pcm_trigger,
+          .pointer =     snd_mychip_pcm_pointer,
+  };
+
+  /* operators */
+  static struct snd_pcm_ops snd_mychip_capture_ops = {
+          .open =        snd_mychip_capture_open,
+          .close =       snd_mychip_capture_close,
+          .ioctl =       snd_pcm_lib_ioctl,
+          .hw_params =   snd_mychip_pcm_hw_params,
+          .hw_free =     snd_mychip_pcm_hw_free,
+          .prepare =     snd_mychip_pcm_prepare,
+          .trigger =     snd_mychip_pcm_trigger,
+          .pointer =     snd_mychip_pcm_pointer,
+  };
+
+  /*
+   *  definitions of capture are omitted here...
+   */
+
+  /* create a pcm device */
+  static int __devinit snd_mychip_new_pcm(struct mychip *chip)
+  {
+          struct snd_pcm *pcm;
+          int err;
+
+          err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
+          if (err < 0) 
+                  return err;
+          pcm->private_data = chip;
+          strcpy(pcm->name, "My Chip");
+          chip->pcm = pcm;
+          /* set operators */
+          snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
+                          &snd_mychip_playback_ops);
+          snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
+                          &snd_mychip_capture_ops);
+          /* pre-allocation of buffers */
+          /* NOTE: this may fail */
+          snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
+                                                snd_dma_pci_data(chip->pci),
+                                                64*1024, 64*1024);
+          return 0;
+  }
+]]>
+          </programlisting>
+        </example>
+      </para>
+    </section>
+
+    <section id="pcm-interface-constructor">
+      <title>Constructor</title>
+      <para>
+        A pcm instance is allocated by the <function>snd_pcm_new()</function>
+      function. It would be better to create a constructor for pcm,
+      namely, 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static int __devinit snd_mychip_new_pcm(struct mychip *chip)
+  {
+          struct snd_pcm *pcm;
+          int err;
+
+          err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
+          if (err < 0) 
+                  return err;
+          pcm->private_data = chip;
+          strcpy(pcm->name, "My Chip");
+          chip->pcm = pcm;
+	  ....
+          return 0;
+  }
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        The <function>snd_pcm_new()</function> function takes four
+      arguments. The first argument is the card pointer to which this
+      pcm is assigned, and the second is the ID string. 
+      </para>
+
+      <para>
+        The third argument (<parameter>index</parameter>, 0 in the
+      above) is the index of this new pcm. It begins from zero. If
+      you create more than one pcm instances, specify the
+      different numbers in this argument. For example,
+      <parameter>index</parameter> = 1 for the second PCM device.  
+      </para>
+
+      <para>
+        The fourth and fifth arguments are the number of substreams
+      for playback and capture, respectively. Here 1 is used for
+      both arguments. When no playback or capture substreams are available,
+      pass 0 to the corresponding argument.
+      </para>
+
+      <para>
+        If a chip supports multiple playbacks or captures, you can
+      specify more numbers, but they must be handled properly in
+      open/close, etc. callbacks.  When you need to know which
+      substream you are referring to, then it can be obtained from
+      struct <structname>snd_pcm_substream</structname> data passed to each callback
+      as follows: 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct snd_pcm_substream *substream;
+  int index = substream->number;
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        After the pcm is created, you need to set operators for each
+        pcm stream. 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
+                  &snd_mychip_playback_ops);
+  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
+                  &snd_mychip_capture_ops);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        The operators are defined typically like this:
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static struct snd_pcm_ops snd_mychip_playback_ops = {
+          .open =        snd_mychip_pcm_open,
+          .close =       snd_mychip_pcm_close,
+          .ioctl =       snd_pcm_lib_ioctl,
+          .hw_params =   snd_mychip_pcm_hw_params,
+          .hw_free =     snd_mychip_pcm_hw_free,
+          .prepare =     snd_mychip_pcm_prepare,
+          .trigger =     snd_mychip_pcm_trigger,
+          .pointer =     snd_mychip_pcm_pointer,
+  };
+]]>
+          </programlisting>
+        </informalexample>
+
+        All the callbacks are described in the
+        <link linkend="pcm-interface-operators"><citetitle>
+        Operators</citetitle></link> subsection.
+      </para>
+
+      <para>
+        After setting the operators, you probably will want to
+        pre-allocate the buffer. For the pre-allocation, simply call
+        the following: 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
+                                        snd_dma_pci_data(chip->pci),
+                                        64*1024, 64*1024);
+]]>
+          </programlisting>
+        </informalexample>
+
+        It will allocate a buffer up to 64kB as default.
+      Buffer management details will be described in the later section <link
+      linkend="buffer-and-memory"><citetitle>Buffer and Memory
+      Management</citetitle></link>. 
+      </para>
+
+      <para>
+        Additionally, you can set some extra information for this pcm
+        in pcm-&gt;info_flags.
+        The available values are defined as
+        <constant>SNDRV_PCM_INFO_XXX</constant> in
+        <filename>&lt;sound/asound.h&gt;</filename>, which is used for
+        the hardware definition (described later). When your soundchip
+        supports only half-duplex, specify like this: 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+    </section>
+
+    <section id="pcm-interface-destructor">
+      <title>... And the Destructor?</title>
+      <para>
+        The destructor for a pcm instance is not always
+      necessary. Since the pcm device will be released by the middle
+      layer code automatically, you don't have to call the destructor
+      explicitly.
+      </para>
+
+      <para>
+        The destructor would be necessary if you created
+        special records internally and needed to release them. In such a
+        case, set the destructor function to
+        pcm-&gt;private_free: 
+
+        <example>
+          <title>PCM Instance with a Destructor</title>
+          <programlisting>
+<![CDATA[
+  static void mychip_pcm_free(struct snd_pcm *pcm)
+  {
+          struct mychip *chip = snd_pcm_chip(pcm);
+          /* free your own data */
+          kfree(chip->my_private_pcm_data);
+          /* do what you like else */
+          ....
+  }
+
+  static int __devinit snd_mychip_new_pcm(struct mychip *chip)
+  {
+          struct snd_pcm *pcm;
+          ....
+          /* allocate your own data */
+          chip->my_private_pcm_data = kmalloc(...);
+          /* set the destructor */
+          pcm->private_data = chip;
+          pcm->private_free = mychip_pcm_free;
+          ....
+  }
+]]>
+          </programlisting>
+        </example>
+      </para>
+    </section>
+
+    <section id="pcm-interface-runtime">
+      <title>Runtime Pointer - The Chest of PCM Information</title>
+	<para>
+	  When the PCM substream is opened, a PCM runtime instance is
+	allocated and assigned to the substream. This pointer is
+	accessible via <constant>substream-&gt;runtime</constant>.
+	This runtime pointer holds most information you need
+	to control the PCM: the copy of hw_params and sw_params configurations, the buffer
+	pointers, mmap records, spinlocks, etc.
+	</para>
+
+	<para>
+	The definition of runtime instance is found in
+	<filename>&lt;sound/pcm.h&gt;</filename>.  Here are
+       the contents of this file:
+          <informalexample>
+            <programlisting>
+<![CDATA[
+struct _snd_pcm_runtime {
+	/* -- Status -- */
+	struct snd_pcm_substream *trigger_master;
+	snd_timestamp_t trigger_tstamp;	/* trigger timestamp */
+	int overrange;
+	snd_pcm_uframes_t avail_max;
+	snd_pcm_uframes_t hw_ptr_base;	/* Position at buffer restart */
+	snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
+
+	/* -- HW params -- */
+	snd_pcm_access_t access;	/* access mode */
+	snd_pcm_format_t format;	/* SNDRV_PCM_FORMAT_* */
+	snd_pcm_subformat_t subformat;	/* subformat */
+	unsigned int rate;		/* rate in Hz */
+	unsigned int channels;		/* channels */
+	snd_pcm_uframes_t period_size;	/* period size */
+	unsigned int periods;		/* periods */
+	snd_pcm_uframes_t buffer_size;	/* buffer size */
+	unsigned int tick_time;		/* tick time */
+	snd_pcm_uframes_t min_align;	/* Min alignment for the format */
+	size_t byte_align;
+	unsigned int frame_bits;
+	unsigned int sample_bits;
+	unsigned int info;
+	unsigned int rate_num;
+	unsigned int rate_den;
+
+	/* -- SW params -- */
+	struct timespec tstamp_mode;	/* mmap timestamp is updated */
+  	unsigned int period_step;
+	unsigned int sleep_min;		/* min ticks to sleep */
+	snd_pcm_uframes_t start_threshold;
+	snd_pcm_uframes_t stop_threshold;
+	snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
+						noise is nearest than this */
+	snd_pcm_uframes_t silence_size;	/* Silence filling size */
+	snd_pcm_uframes_t boundary;	/* pointers wrap point */
+
+	snd_pcm_uframes_t silenced_start;
+	snd_pcm_uframes_t silenced_size;
+
+	snd_pcm_sync_id_t sync;		/* hardware synchronization ID */
+
+	/* -- mmap -- */
+	volatile struct snd_pcm_mmap_status *status;
+	volatile struct snd_pcm_mmap_control *control;
+	atomic_t mmap_count;
+
+	/* -- locking / scheduling -- */
+	spinlock_t lock;
+	wait_queue_head_t sleep;
+	struct timer_list tick_timer;
+	struct fasync_struct *fasync;
+
+	/* -- private section -- */
+	void *private_data;
+	void (*private_free)(struct snd_pcm_runtime *runtime);
+
+	/* -- hardware description -- */
+	struct snd_pcm_hardware hw;
+	struct snd_pcm_hw_constraints hw_constraints;
+
+	/* -- interrupt callbacks -- */
+	void (*transfer_ack_begin)(struct snd_pcm_substream *substream);
+	void (*transfer_ack_end)(struct snd_pcm_substream *substream);
+
+	/* -- timer -- */
+	unsigned int timer_resolution;	/* timer resolution */
+
+	/* -- DMA -- */           
+	unsigned char *dma_area;	/* DMA area */
+	dma_addr_t dma_addr;		/* physical bus address (not accessible from main CPU) */
+	size_t dma_bytes;		/* size of DMA area */
+
+	struct snd_dma_buffer *dma_buffer_p;	/* allocated buffer */
+
+#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
+	/* -- OSS things -- */
+	struct snd_pcm_oss_runtime oss;
+#endif
+};
+]]>
+            </programlisting>
+          </informalexample>
+	</para>
+
+	<para>
+	  For the operators (callbacks) of each sound driver, most of
+	these records are supposed to be read-only.  Only the PCM
+	middle-layer changes / updates them.  The exceptions are
+	the hardware description (hw), interrupt callbacks
+	(transfer_ack_xxx), DMA buffer information, and the private
+	data.  Besides, if you use the standard buffer allocation
+	method via <function>snd_pcm_lib_malloc_pages()</function>,
+	you don't need to set the DMA buffer information by yourself.
+	</para>
+
+	<para>
+	In the sections below, important records are explained.
+	</para>
+
+	<section id="pcm-interface-runtime-hw">
+	<title>Hardware Description</title>
+	<para>
+	  The hardware descriptor (struct <structname>snd_pcm_hardware</structname>)
+	contains the definitions of the fundamental hardware
+	configuration.  Above all, you'll need to define this in
+	<link linkend="pcm-interface-operators-open-callback"><citetitle>
+	the open callback</citetitle></link>.
+	Note that the runtime instance holds the copy of the
+	descriptor, not the pointer to the existing descriptor.  That
+	is, in the open callback, you can modify the copied descriptor
+	(<constant>runtime-&gt;hw</constant>) as you need.  For example, if the maximum
+	number of channels is 1 only on some chip models, you can
+	still use the same hardware descriptor and change the
+	channels_max later:
+          <informalexample>
+            <programlisting>
+<![CDATA[
+          struct snd_pcm_runtime *runtime = substream->runtime;
+          ...
+          runtime->hw = snd_mychip_playback_hw; /* common definition */
+          if (chip->model == VERY_OLD_ONE)
+                  runtime->hw.channels_max = 1;
+]]>
+            </programlisting>
+          </informalexample>
+	</para>
+
+	<para>
+	  Typically, you'll have a hardware descriptor as below:
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  static struct snd_pcm_hardware snd_mychip_playback_hw = {
+          .info = (SNDRV_PCM_INFO_MMAP |
+                   SNDRV_PCM_INFO_INTERLEAVED |
+                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
+                   SNDRV_PCM_INFO_MMAP_VALID),
+          .formats =          SNDRV_PCM_FMTBIT_S16_LE,
+          .rates =            SNDRV_PCM_RATE_8000_48000,
+          .rate_min =         8000,
+          .rate_max =         48000,
+          .channels_min =     2,
+          .channels_max =     2,
+          .buffer_bytes_max = 32768,
+          .period_bytes_min = 4096,
+          .period_bytes_max = 32768,
+          .periods_min =      1,
+          .periods_max =      1024,
+  };
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+
+        <para>
+	<itemizedlist>
+	<listitem><para>
+          The <structfield>info</structfield> field contains the type and
+        capabilities of this pcm. The bit flags are defined in
+        <filename>&lt;sound/asound.h&gt;</filename> as
+        <constant>SNDRV_PCM_INFO_XXX</constant>. Here, at least, you
+        have to specify whether the mmap is supported and which
+        interleaved format is supported.
+        When the is supported, add the
+        <constant>SNDRV_PCM_INFO_MMAP</constant> flag here. When the
+        hardware supports the interleaved or the non-interleaved
+        formats, <constant>SNDRV_PCM_INFO_INTERLEAVED</constant> or
+        <constant>SNDRV_PCM_INFO_NONINTERLEAVED</constant> flag must
+        be set, respectively. If both are supported, you can set both,
+        too. 
+        </para>
+
+        <para>
+          In the above example, <constant>MMAP_VALID</constant> and
+        <constant>BLOCK_TRANSFER</constant> are specified for the OSS mmap
+        mode. Usually both are set. Of course,
+        <constant>MMAP_VALID</constant> is set only if the mmap is
+        really supported. 
+        </para>
+
+        <para>
+          The other possible flags are
+        <constant>SNDRV_PCM_INFO_PAUSE</constant> and
+        <constant>SNDRV_PCM_INFO_RESUME</constant>. The
+        <constant>PAUSE</constant> bit means that the pcm supports the
+        <quote>pause</quote> operation, while the
+        <constant>RESUME</constant> bit means that the pcm supports
+        the full <quote>suspend/resume</quote> operation.
+	If the <constant>PAUSE</constant> flag is set,
+	the <structfield>trigger</structfield> callback below
+        must handle the corresponding (pause push/release) commands.
+	The suspend/resume trigger commands can be defined even without
+	the <constant>RESUME</constant> flag.  See <link
+	linkend="power-management"><citetitle>
+	Power Management</citetitle></link> section for details.
+        </para>
+
+	<para>
+	  When the PCM substreams can be synchronized (typically,
+	synchronized start/stop of a playback and a capture streams),
+	you can give <constant>SNDRV_PCM_INFO_SYNC_START</constant>,
+	too.  In this case, you'll need to check the linked-list of
+	PCM substreams in the trigger callback.  This will be
+	described in the later section.
+	</para>
+	</listitem>
+
+	<listitem>
+        <para>
+          <structfield>formats</structfield> field contains the bit-flags
+        of supported formats (<constant>SNDRV_PCM_FMTBIT_XXX</constant>).
+        If the hardware supports more than one format, give all or'ed
+        bits.  In the example above, the signed 16bit little-endian
+        format is specified.
+        </para>
+	</listitem>
+
+	<listitem>
+        <para>
+        <structfield>rates</structfield> field contains the bit-flags of
+        supported rates (<constant>SNDRV_PCM_RATE_XXX</constant>).
+        When the chip supports continuous rates, pass
+        <constant>CONTINUOUS</constant> bit additionally.
+        The pre-defined rate bits are provided only for typical
+	rates. If your chip supports unconventional rates, you need to add
+        the <constant>KNOT</constant> bit and set up the hardware
+        constraint manually (explained later).
+        </para>
+	</listitem>
+
+	<listitem>
+	<para>
+	<structfield>rate_min</structfield> and
+	<structfield>rate_max</structfield> define the minimum and
+	maximum sample rate.  This should correspond somehow to
+	<structfield>rates</structfield> bits.
+	</para>
+	</listitem>
+
+	<listitem>
+	<para>
+	<structfield>channel_min</structfield> and
+	<structfield>channel_max</structfield> 
+	define, as you might already expected, the minimum and maximum
+	number of channels.
+	</para>
+	</listitem>
+
+	<listitem>
+	<para>
+	<structfield>buffer_bytes_max</structfield> defines the
+	maximum buffer size in bytes.  There is no
+	<structfield>buffer_bytes_min</structfield> field, since
+	it can be calculated from the minimum period size and the
+	minimum number of periods.
+	Meanwhile, <structfield>period_bytes_min</structfield> and
+	define the minimum and maximum size of the period in bytes.
+	<structfield>periods_max</structfield> and
+	<structfield>periods_min</structfield> define the maximum and
+	minimum number of periods in the buffer.
+        </para>
+
+	<para>
+	The <quote>period</quote> is a term that corresponds to
+	a fragment in the OSS world. The period defines the size at
+	which a PCM interrupt is generated. This size strongly
+	depends on the hardware. 
+	Generally, the smaller period size will give you more
+	interrupts, that is, more controls. 
+	In the case of capture, this size defines the input latency.
+	On the other hand, the whole buffer size defines the
+	output latency for the playback direction.
+	</para>
+	</listitem>
+
+	<listitem>
+	<para>
+	There is also a field <structfield>fifo_size</structfield>.
+	This specifies the size of the hardware FIFO, but currently it
+	is neither used in the driver nor in the alsa-lib.  So, you
+	can ignore this field.
+	</para>
+	</listitem>
+	</itemizedlist>
+	</para>
+	</section>
+
+	<section id="pcm-interface-runtime-config">
+	<title>PCM Configurations</title>
+	<para>
+	Ok, let's go back again to the PCM runtime records.
+	The most frequently referred records in the runtime instance are
+	the PCM configurations.
+	The PCM configurations are stored in the runtime instance
+	after the application sends <type>hw_params</type> data via
+	alsa-lib.  There are many fields copied from hw_params and
+	sw_params structs.  For example,
+	<structfield>format</structfield> holds the format type
+	chosen by the application.  This field contains the enum value
+	<constant>SNDRV_PCM_FORMAT_XXX</constant>.
+	</para>
+
+	<para>
+	One thing to be noted is that the configured buffer and period
+	sizes are stored in <quote>frames</quote> in the runtime.
+        In the ALSA world, 1 frame = channels * samples-size.
+	For conversion between frames and bytes, you can use the
+	<function>frames_to_bytes()</function> and
+          <function>bytes_to_frames()</function> helper functions. 
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  period_bytes = frames_to_bytes(runtime, runtime->period_size);
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+
+	<para>
+	Also, many software parameters (sw_params) are
+	stored in frames, too.  Please check the type of the field.
+	<type>snd_pcm_uframes_t</type> is for the frames as unsigned
+	integer while <type>snd_pcm_sframes_t</type> is for the frames
+	as signed integer.
+	</para>
+	</section>
+
+	<section id="pcm-interface-runtime-dma">
+	<title>DMA Buffer Information</title>
+	<para>
+	The DMA buffer is defined by the following four fields,
+	<structfield>dma_area</structfield>,
+	<structfield>dma_addr</structfield>,
+	<structfield>dma_bytes</structfield> and
+	<structfield>dma_private</structfield>.
+	The <structfield>dma_area</structfield> holds the buffer
+	pointer (the logical address).  You can call
+	<function>memcpy</function> from/to 
+	this pointer.  Meanwhile, <structfield>dma_addr</structfield>
+	holds the physical address of the buffer.  This field is
+	specified only when the buffer is a linear buffer.
+	<structfield>dma_bytes</structfield> holds the size of buffer
+	in bytes.  <structfield>dma_private</structfield> is used for
+	the ALSA DMA allocator.
+	</para>
+
+	<para>
+	If you use a standard ALSA function,
+	<function>snd_pcm_lib_malloc_pages()</function>, for
+	allocating the buffer, these fields are set by the ALSA middle
+	layer, and you should <emphasis>not</emphasis> change them by
+	yourself.  You can read them but not write them.
+	On the other hand, if you want to allocate the buffer by
+	yourself, you'll need to manage it in hw_params callback.
+	At least, <structfield>dma_bytes</structfield> is mandatory.
+	<structfield>dma_area</structfield> is necessary when the
+	buffer is mmapped.  If your driver doesn't support mmap, this
+	field is not necessary.  <structfield>dma_addr</structfield>
+	is also optional.  You can use
+	<structfield>dma_private</structfield> as you like, too.
+	</para>
+	</section>
+
+	<section id="pcm-interface-runtime-status">
+	<title>Running Status</title>
+	<para>
+	The running status can be referred via <constant>runtime-&gt;status</constant>.
+	This is the pointer to the struct <structname>snd_pcm_mmap_status</structname>
+	record.  For example, you can get the current DMA hardware
+	pointer via <constant>runtime-&gt;status-&gt;hw_ptr</constant>.
+	</para>
+
+	<para>
+	The DMA application pointer can be referred via
+	<constant>runtime-&gt;control</constant>, which points to the
+	struct <structname>snd_pcm_mmap_control</structname> record.
+	However, accessing directly to this value is not recommended.
+	</para>
+	</section>
+
+	<section id="pcm-interface-runtime-private">
+	<title>Private Data</title> 
+	<para>
+	You can allocate a record for the substream and store it in
+	<constant>runtime-&gt;private_data</constant>.  Usually, this
+	is done in
+	<link linkend="pcm-interface-operators-open-callback"><citetitle>
+	the open callback</citetitle></link>.
+	Don't mix this with <constant>pcm-&gt;private_data</constant>.
+	The <constant>pcm-&gt;private_data</constant> usually points to the
+	chip instance assigned statically at the creation of PCM, while the 
+	<constant>runtime-&gt;private_data</constant> points to a dynamic
+	data structure created at the PCM open callback.
+
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  static int snd_xxx_open(struct snd_pcm_substream *substream)
+  {
+          struct my_pcm_data *data;
+          ....
+          data = kmalloc(sizeof(*data), GFP_KERNEL);
+          substream->runtime->private_data = data;
+          ....
+  }
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+
+        <para>
+          The allocated object must be released in
+	<link linkend="pcm-interface-operators-open-callback"><citetitle>
+	the close callback</citetitle></link>.
+        </para>
+	</section>
+
+	<section id="pcm-interface-runtime-intr">
+	<title>Interrupt Callbacks</title>
+	<para>
+	The field <structfield>transfer_ack_begin</structfield> and
+	<structfield>transfer_ack_end</structfield> are called at
+	the beginning and at the end of
+	<function>snd_pcm_period_elapsed()</function>, respectively. 
+	</para>
+	</section>
+
+    </section>
+
+    <section id="pcm-interface-operators">
+      <title>Operators</title>
+      <para>
+        OK, now let me give details about each pcm callback
+      (<parameter>ops</parameter>). In general, every callback must
+      return 0 if successful, or a negative error number
+      such as <constant>-EINVAL</constant>. To choose an appropriate
+      error number, it is advised to check what value other parts of
+      the kernel return when the same kind of request fails.
+      </para>
+
+      <para>
+        The callback function takes at least the argument with
+        <structname>snd_pcm_substream</structname> pointer. To retrieve
+        the chip record from the given substream instance, you can use the
+        following macro. 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  int xxx() {
+          struct mychip *chip = snd_pcm_substream_chip(substream);
+          ....
+  }
+]]>
+          </programlisting>
+        </informalexample>
+
+	The macro reads <constant>substream-&gt;private_data</constant>,
+	which is a copy of <constant>pcm-&gt;private_data</constant>.
+	You can override the former if you need to assign different data
+	records per PCM substream.  For example, the cmi8330 driver assigns
+	different private_data for playback and capture directions,
+	because it uses two different codecs (SB- and AD-compatible) for
+	different directions.
+      </para>
+
+      <section id="pcm-interface-operators-open-callback">
+        <title>open callback</title>
+        <para>
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  static int snd_xxx_open(struct snd_pcm_substream *substream);
+]]>
+            </programlisting>
+          </informalexample>
+
+          This is called when a pcm substream is opened.
+        </para>
+
+        <para>
+          At least, here you have to initialize the runtime-&gt;hw
+          record. Typically, this is done by like this: 
+
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  static int snd_xxx_open(struct snd_pcm_substream *substream)
+  {
+          struct mychip *chip = snd_pcm_substream_chip(substream);
+          struct snd_pcm_runtime *runtime = substream->runtime;
+
+          runtime->hw = snd_mychip_playback_hw;
+          return 0;
+  }
+]]>
+            </programlisting>
+          </informalexample>
+
+          where <parameter>snd_mychip_playback_hw</parameter> is the
+          pre-defined hardware description.
+	</para>
+
+	<para>
+	You can allocate a private data in this callback, as described
+	in <link linkend="pcm-interface-runtime-private"><citetitle>
+	Private Data</citetitle></link> section.
+	</para>
+
+	<para>
+	If the hardware configuration needs more constraints, set the
+	hardware constraints here, too.
+	See <link linkend="pcm-interface-constraints"><citetitle>
+	Constraints</citetitle></link> for more details.
+	</para>
+      </section>
+
+      <section id="pcm-interface-operators-close-callback">
+        <title>close callback</title>
+        <para>
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  static int snd_xxx_close(struct snd_pcm_substream *substream);
+]]>
+            </programlisting>
+          </informalexample>
+
+          Obviously, this is called when a pcm substream is closed.
+        </para>
+
+        <para>
+          Any private instance for a pcm substream allocated in the
+          open callback will be released here. 
+
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  static int snd_xxx_close(struct snd_pcm_substream *substream)
+  {
+          ....
+          kfree(substream->runtime->private_data);
+          ....
+  }
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+      </section>
+
+      <section id="pcm-interface-operators-ioctl-callback">
+        <title>ioctl callback</title>
+        <para>
+          This is used for any special call to pcm ioctls. But
+        usually you can pass a generic ioctl callback, 
+        <function>snd_pcm_lib_ioctl</function>.
+        </para>
+      </section>
+
+      <section id="pcm-interface-operators-hw-params-callback">
+        <title>hw_params callback</title>
+        <para>
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
+                               struct snd_pcm_hw_params *hw_params);
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+
+        <para>
+          This is called when the hardware parameter
+        (<structfield>hw_params</structfield>) is set
+        up by the application, 
+        that is, once when the buffer size, the period size, the
+        format, etc. are defined for the pcm substream. 
+        </para>
+
+        <para>
+          Many hardware setups should be done in this callback,
+        including the allocation of buffers. 
+        </para>
+
+        <para>
+          Parameters to be initialized are retrieved by
+          <function>params_xxx()</function> macros. To allocate
+          buffer, you can call a helper function, 
+
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
+]]>
+            </programlisting>
+          </informalexample>
+
+          <function>snd_pcm_lib_malloc_pages()</function> is available
+	  only when the DMA buffers have been pre-allocated.
+	  See the section <link
+	  linkend="buffer-and-memory-buffer-types"><citetitle>
+	  Buffer Types</citetitle></link> for more details.
+        </para>
+
+        <para>
+          Note that this and <structfield>prepare</structfield> callbacks
+        may be called multiple times per initialization.
+        For example, the OSS emulation may
+        call these callbacks at each change via its ioctl. 
+        </para>
+
+        <para>
+          Thus, you need to be careful not to allocate the same buffers
+        many times, which will lead to memory leaks!  Calling the
+        helper function above many times is OK. It will release the
+        previous buffer automatically when it was already allocated. 
+        </para>
+
+        <para>
+          Another note is that this callback is non-atomic
+        (schedulable). This is important, because the
+        <structfield>trigger</structfield> callback 
+        is atomic (non-schedulable). That is, mutexes or any
+        schedule-related functions are not available in
+        <structfield>trigger</structfield> callback.
+	Please see the subsection
+	<link linkend="pcm-interface-atomicity"><citetitle>
+	Atomicity</citetitle></link> for details.
+        </para>
+      </section>
+
+      <section id="pcm-interface-operators-hw-free-callback">
+        <title>hw_free callback</title>
+        <para>
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+
+        <para>
+          This is called to release the resources allocated via
+          <structfield>hw_params</structfield>. For example, releasing the
+          buffer via 
+          <function>snd_pcm_lib_malloc_pages()</function> is done by
+          calling the following: 
+
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  snd_pcm_lib_free_pages(substream);
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+
+        <para>
+          This function is always called before the close callback is called.
+          Also, the callback may be called multiple times, too.
+          Keep track whether the resource was already released. 
+        </para>
+      </section>
+
+      <section id="pcm-interface-operators-prepare-callback">
+       <title>prepare callback</title>
+        <para>
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  static int snd_xxx_prepare(struct snd_pcm_substream *substream);
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+
+        <para>
+          This callback is called when the pcm is
+        <quote>prepared</quote>. You can set the format type, sample
+        rate, etc. here. The difference from
+        <structfield>hw_params</structfield> is that the 
+        <structfield>prepare</structfield> callback will be called each
+        time 
+        <function>snd_pcm_prepare()</function> is called, i.e. when
+        recovering after underruns, etc. 
+        </para>
+
+        <para>
+	Note that this callback is now non-atomic.
+	You can use schedule-related functions safely in this callback.
+        </para>
+
+        <para>
+          In this and the following callbacks, you can refer to the
+        values via the runtime record,
+        substream-&gt;runtime.
+        For example, to get the current
+        rate, format or channels, access to
+        runtime-&gt;rate,
+        runtime-&gt;format or
+        runtime-&gt;channels, respectively. 
+        The physical address of the allocated buffer is set to
+	runtime-&gt;dma_area.  The buffer and period sizes are
+	in runtime-&gt;buffer_size and runtime-&gt;period_size,
+	respectively.
+        </para>
+
+        <para>
+          Be careful that this callback will be called many times at
+        each setup, too. 
+        </para>
+      </section>
+
+      <section id="pcm-interface-operators-trigger-callback">
+        <title>trigger callback</title>
+        <para>
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
+]]>
+            </programlisting>
+          </informalexample>
+
+          This is called when the pcm is started, stopped or paused.
+        </para>
+
+        <para>
+          Which action is specified in the second argument,
+          <constant>SNDRV_PCM_TRIGGER_XXX</constant> in
+          <filename>&lt;sound/pcm.h&gt;</filename>. At least,
+          the <constant>START</constant> and <constant>STOP</constant>
+          commands must be defined in this callback. 
+
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  switch (cmd) {
+  case SNDRV_PCM_TRIGGER_START:
+          /* do something to start the PCM engine */
+          break;
+  case SNDRV_PCM_TRIGGER_STOP:
+          /* do something to stop the PCM engine */
+          break;
+  default:
+          return -EINVAL;
+  }
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+
+        <para>
+          When the pcm supports the pause operation (given in the info
+        field of the hardware table), the <constant>PAUSE_PUSE</constant>
+        and <constant>PAUSE_RELEASE</constant> commands must be
+        handled here, too. The former is the command to pause the pcm,
+        and the latter to restart the pcm again. 
+        </para>
+
+        <para>
+          When the pcm supports the suspend/resume operation,
+	regardless of full or partial suspend/resume support,
+        the <constant>SUSPEND</constant> and <constant>RESUME</constant>
+        commands must be handled, too.
+        These commands are issued when the power-management status is
+        changed.  Obviously, the <constant>SUSPEND</constant> and
+        <constant>RESUME</constant> commands
+        suspend and resume the pcm substream, and usually, they
+        are identical to the <constant>STOP</constant> and
+        <constant>START</constant> commands, respectively.
+	  See the <link linkend="power-management"><citetitle>
+	Power Management</citetitle></link> section for details.
+        </para>
+
+        <para>
+          As mentioned, this callback is atomic.  You cannot call
+	  functions which may sleep.
+	  The trigger callback should be as minimal as possible,
+	  just really triggering the DMA.  The other stuff should be
+	  initialized hw_params and prepare callbacks properly
+	  beforehand.
+        </para>
+      </section>
+
+      <section id="pcm-interface-operators-pointer-callback">
+        <title>pointer callback</title>
+        <para>
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
+]]>
+            </programlisting>
+          </informalexample>
+
+          This callback is called when the PCM middle layer inquires
+        the current hardware position on the buffer. The position must
+        be returned in frames,
+        ranging from 0 to buffer_size - 1.
+        </para>
+
+        <para>
+          This is called usually from the buffer-update routine in the
+        pcm middle layer, which is invoked when
+        <function>snd_pcm_period_elapsed()</function> is called in the
+        interrupt routine. Then the pcm middle layer updates the
+        position and calculates the available space, and wakes up the
+        sleeping poll threads, etc. 
+        </para>
+
+        <para>
+          This callback is also atomic.
+        </para>
+      </section>
+
+      <section id="pcm-interface-operators-copy-silence">
+        <title>copy and silence callbacks</title>
+        <para>
+          These callbacks are not mandatory, and can be omitted in
+        most cases. These callbacks are used when the hardware buffer
+        cannot be in the normal memory space. Some chips have their
+        own buffer on the hardware which is not mappable. In such a
+        case, you have to transfer the data manually from the memory
+        buffer to the hardware buffer. Or, if the buffer is
+        non-contiguous on both physical and virtual memory spaces,
+        these callbacks must be defined, too. 
+        </para>
+
+        <para>
+          If these two callbacks are defined, copy and set-silence
+        operations are done by them. The detailed will be described in
+        the later section <link
+        linkend="buffer-and-memory"><citetitle>Buffer and Memory
+        Management</citetitle></link>. 
+        </para>
+      </section>
+
+      <section id="pcm-interface-operators-ack">
+        <title>ack callback</title>
+        <para>
+          This callback is also not mandatory. This callback is called
+        when the appl_ptr is updated in read or write operations.
+        Some drivers like emu10k1-fx and cs46xx need to track the
+	current appl_ptr for the internal buffer, and this callback
+	is useful only for such a purpose.
+	</para>
+	<para>
+	  This callback is atomic.
+	</para>
+      </section>
+
+      <section id="pcm-interface-operators-page-callback">
+        <title>page callback</title>
+
+        <para>
+          This callback is optional too. This callback is used
+        mainly for non-contiguous buffers. The mmap calls this
+        callback to get the page address. Some examples will be
+        explained in the later section <link
+        linkend="buffer-and-memory"><citetitle>Buffer and Memory
+        Management</citetitle></link>, too. 
+        </para>
+      </section>
+    </section>
+
+    <section id="pcm-interface-interrupt-handler">
+      <title>Interrupt Handler</title>
+      <para>
+        The rest of pcm stuff is the PCM interrupt handler. The
+      role of PCM interrupt handler in the sound driver is to update
+      the buffer position and to tell the PCM middle layer when the
+      buffer position goes across the prescribed period size. To
+      inform this, call the <function>snd_pcm_period_elapsed()</function>
+      function. 
+      </para>
+
+      <para>
+        There are several types of sound chips to generate the interrupts.
+      </para>
+
+      <section id="pcm-interface-interrupt-handler-boundary">
+        <title>Interrupts at the period (fragment) boundary</title>
+        <para>
+          This is the most frequently found type:  the hardware
+        generates an interrupt at each period boundary.
+	In this case, you can call
+        <function>snd_pcm_period_elapsed()</function> at each 
+        interrupt. 
+        </para>
+
+        <para>
+          <function>snd_pcm_period_elapsed()</function> takes the
+        substream pointer as its argument. Thus, you need to keep the
+        substream pointer accessible from the chip instance. For
+        example, define substream field in the chip record to hold the
+        current running substream pointer, and set the pointer value
+        at open callback (and reset at close callback). 
+        </para>
+
+        <para>
+          If you acquire a spinlock in the interrupt handler, and the
+        lock is used in other pcm callbacks, too, then you have to
+        release the lock before calling
+        <function>snd_pcm_period_elapsed()</function>, because
+        <function>snd_pcm_period_elapsed()</function> calls other pcm
+        callbacks inside. 
+        </para>
+
+        <para>
+          Typical code would be like:
+
+          <example>
+	    <title>Interrupt Handler Case #1</title>
+            <programlisting>
+<![CDATA[
+  static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
+  {
+          struct mychip *chip = dev_id;
+          spin_lock(&chip->lock);
+          ....
+          if (pcm_irq_invoked(chip)) {
+                  /* call updater, unlock before it */
+                  spin_unlock(&chip->lock);
+                  snd_pcm_period_elapsed(chip->substream);
+                  spin_lock(&chip->lock);
+                  /* acknowledge the interrupt if necessary */
+          }
+          ....
+          spin_unlock(&chip->lock);
+          return IRQ_HANDLED;
+  }
+]]>
+            </programlisting>
+          </example>
+        </para>
+      </section>
+
+      <section id="pcm-interface-interrupt-handler-timer">
+        <title>High frequency timer interrupts</title>
+        <para>
+	This happense when the hardware doesn't generate interrupts
+        at the period boundary but issues timer interrupts at a fixed
+        timer rate (e.g. es1968 or ymfpci drivers). 
+        In this case, you need to check the current hardware
+        position and accumulate the processed sample length at each
+        interrupt.  When the accumulated size exceeds the period
+        size, call 
+        <function>snd_pcm_period_elapsed()</function> and reset the
+        accumulator. 
+        </para>
+
+        <para>
+          Typical code would be like the following.
+
+          <example>
+	    <title>Interrupt Handler Case #2</title>
+            <programlisting>
+<![CDATA[
+  static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
+  {
+          struct mychip *chip = dev_id;
+          spin_lock(&chip->lock);
+          ....
+          if (pcm_irq_invoked(chip)) {
+                  unsigned int last_ptr, size;
+                  /* get the current hardware pointer (in frames) */
+                  last_ptr = get_hw_ptr(chip);
+                  /* calculate the processed frames since the
+                   * last update
+                   */
+                  if (last_ptr < chip->last_ptr)
+                          size = runtime->buffer_size + last_ptr 
+                                   - chip->last_ptr; 
+                  else
+                          size = last_ptr - chip->last_ptr;
+                  /* remember the last updated point */
+                  chip->last_ptr = last_ptr;
+                  /* accumulate the size */
+                  chip->size += size;
+                  /* over the period boundary? */
+                  if (chip->size >= runtime->period_size) {
+                          /* reset the accumulator */
+                          chip->size %= runtime->period_size;
+                          /* call updater */
+                          spin_unlock(&chip->lock);
+                          snd_pcm_period_elapsed(substream);
+                          spin_lock(&chip->lock);
+                  }
+                  /* acknowledge the interrupt if necessary */
+          }
+          ....
+          spin_unlock(&chip->lock);
+          return IRQ_HANDLED;
+  }
+]]>
+            </programlisting>
+          </example>
+        </para>
+      </section>
+
+      <section id="pcm-interface-interrupt-handler-both">
+        <title>On calling <function>snd_pcm_period_elapsed()</function></title>
+        <para>
+          In both cases, even if more than one period are elapsed, you
+        don't have to call
+        <function>snd_pcm_period_elapsed()</function> many times. Call
+        only once. And the pcm layer will check the current hardware
+        pointer and update to the latest status. 
+        </para>
+      </section>
+    </section>
+
+    <section id="pcm-interface-atomicity">
+      <title>Atomicity</title>
+      <para>
+      One of the most important (and thus difficult to debug) problems
+      in kernel programming are race conditions.
+      In the Linux kernel, they are usually avoided via spin-locks, mutexes
+      or semaphores.  In general, if a race condition can happen
+      in an interrupt handler, it has to be managed atomically, and you
+      have to use a spinlock to protect the critical session. If the
+      critical section is not in interrupt handler code and
+      if taking a relatively long time to execute is acceptable, you
+      should use mutexes or semaphores instead.
+      </para>
+
+      <para>
+      As already seen, some pcm callbacks are atomic and some are
+      not.  For example, the <parameter>hw_params</parameter> callback is
+      non-atomic, while <parameter>trigger</parameter> callback is
+      atomic.  This means, the latter is called already in a spinlock
+      held by the PCM middle layer. Please take this atomicity into
+      account when you choose a locking scheme in the callbacks.
+      </para>
+
+      <para>
+      In the atomic callbacks, you cannot use functions which may call
+      <function>schedule</function> or go to
+      <function>sleep</function>.  Semaphores and mutexes can sleep,
+      and hence they cannot be used inside the atomic callbacks
+      (e.g. <parameter>trigger</parameter> callback).
+      To implement some delay in such a callback, please use
+      <function>udelay()</function> or <function>mdelay()</function>.
+      </para>
+
+      <para>
+      All three atomic callbacks (trigger, pointer, and ack) are
+      called with local interrupts disabled.
+      </para>
+
+    </section>
+    <section id="pcm-interface-constraints">
+      <title>Constraints</title>
+      <para>
+        If your chip supports unconventional sample rates, or only the
+      limited samples, you need to set a constraint for the
+      condition. 
+      </para>
+
+      <para>
+        For example, in order to restrict the sample rates in the some
+        supported values, use
+	<function>snd_pcm_hw_constraint_list()</function>.
+	You need to call this function in the open callback.
+
+        <example>
+	  <title>Example of Hardware Constraints</title>
+          <programlisting>
+<![CDATA[
+  static unsigned int rates[] =
+          {4000, 10000, 22050, 44100};
+  static struct snd_pcm_hw_constraint_list constraints_rates = {
+          .count = ARRAY_SIZE(rates),
+          .list = rates,
+          .mask = 0,
+  };
+
+  static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
+  {
+          int err;
+          ....
+          err = snd_pcm_hw_constraint_list(substream->runtime, 0,
+                                           SNDRV_PCM_HW_PARAM_RATE,
+                                           &constraints_rates);
+          if (err < 0)
+                  return err;
+          ....
+  }
+]]>
+          </programlisting>
+        </example>
+      </para>
+
+      <para>
+        There are many different constraints.
+        Look at <filename>sound/pcm.h</filename> for a complete list.
+        You can even define your own constraint rules.
+        For example, let's suppose my_chip can manage a substream of 1 channel
+        if and only if the format is S16_LE, otherwise it supports any format
+        specified in the <structname>snd_pcm_hardware</structname> structure (or in any
+        other constraint_list). You can build a rule like this:
+
+        <example>
+	  <title>Example of Hardware Constraints for Channels</title>
+	  <programlisting>
+<![CDATA[
+  static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
+                                        struct snd_pcm_hw_rule *rule)
+  {
+          struct snd_interval *c = hw_param_interval(params,
+                SNDRV_PCM_HW_PARAM_CHANNELS);
+          struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
+          struct snd_mask fmt;
+
+          snd_mask_any(&fmt);    /* Init the struct */
+          if (c->min < 2) {
+                  fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
+                  return snd_mask_refine(f, &fmt);
+          }
+          return 0;
+  }
+]]>
+          </programlisting>
+        </example>
+      </para>
+ 
+      <para>
+        Then you need to call this function to add your rule:
+
+       <informalexample>
+	 <programlisting>
+<![CDATA[
+  snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
+                      hw_rule_channels_by_format, 0, SNDRV_PCM_HW_PARAM_FORMAT,
+                      -1);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        The rule function is called when an application sets the number of
+        channels. But an application can set the format before the number of
+        channels. Thus you also need to define the inverse rule:
+
+       <example>
+	 <title>Example of Hardware Constraints for Channels</title>
+	 <programlisting>
+<![CDATA[
+  static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
+                                        struct snd_pcm_hw_rule *rule)
+  {
+          struct snd_interval *c = hw_param_interval(params,
+                        SNDRV_PCM_HW_PARAM_CHANNELS);
+          struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
+          struct snd_interval ch;
+
+          snd_interval_any(&ch);
+          if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {
+                  ch.min = ch.max = 1;
+                  ch.integer = 1;
+                  return snd_interval_refine(c, &ch);
+          }
+          return 0;
+  }
+]]>
+          </programlisting>
+        </example>
+      </para>
+
+      <para>
+      ...and in the open callback:
+       <informalexample>
+	 <programlisting>
+<![CDATA[
+  snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
+                      hw_rule_format_by_channels, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
+                      -1);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        I won't give more details here, rather I
+        would like to say, <quote>Luke, use the source.</quote>
+      </para>
+    </section>
+
+  </chapter>
+
+
+<!-- ****************************************************** -->
+<!-- Control Interface  -->
+<!-- ****************************************************** -->
+  <chapter id="control-interface">
+    <title>Control Interface</title>
+
+    <section id="control-interface-general">
+      <title>General</title>
+      <para>
+        The control interface is used widely for many switches,
+      sliders, etc. which are accessed from user-space. Its most
+      important use is the mixer interface. In other words, since ALSA
+      0.9.x, all the mixer stuff is implemented on the control kernel API.
+      </para>
+
+      <para>
+        ALSA has a well-defined AC97 control module. If your chip
+      supports only the AC97 and nothing else, you can skip this
+      section. 
+      </para>
+
+      <para>
+        The control API is defined in
+      <filename>&lt;sound/control.h&gt;</filename>.
+      Include this file if you want to add your own controls.
+      </para>
+    </section>
+
+    <section id="control-interface-definition">
+      <title>Definition of Controls</title>
+      <para>
+        To create a new control, you need to define the
+	following three
+      callbacks: <structfield>info</structfield>,
+      <structfield>get</structfield> and
+      <structfield>put</structfield>. Then, define a
+      struct <structname>snd_kcontrol_new</structname> record, such as: 
+
+        <example>
+	  <title>Definition of a Control</title>
+          <programlisting>
+<![CDATA[
+  static struct snd_kcontrol_new my_control __devinitdata = {
+          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
+          .name = "PCM Playback Switch",
+          .index = 0,
+          .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
+          .private_value = 0xffff,
+          .info = my_control_info,
+          .get = my_control_get,
+          .put = my_control_put
+  };
+]]>
+          </programlisting>
+        </example>
+      </para>
+
+      <para>
+        Most likely the control is created via
+      <function>snd_ctl_new1()</function>, and in such a case, you can
+      add the <parameter>__devinitdata</parameter> prefix to the
+      definition as above. 
+      </para>
+
+      <para>
+        The <structfield>iface</structfield> field specifies the control
+      type, <constant>SNDRV_CTL_ELEM_IFACE_XXX</constant>, which
+      is usually <constant>MIXER</constant>.
+      Use <constant>CARD</constant> for global controls that are not
+      logically part of the mixer.
+      If the control is closely associated with some specific device on
+      the sound card, use <constant>HWDEP</constant>,
+      <constant>PCM</constant>, <constant>RAWMIDI</constant>,
+      <constant>TIMER</constant>, or <constant>SEQUENCER</constant>, and
+      specify the device number with the
+      <structfield>device</structfield> and
+      <structfield>subdevice</structfield> fields.
+      </para>
+
+      <para>
+        The <structfield>name</structfield> is the name identifier
+      string. Since ALSA 0.9.x, the control name is very important,
+      because its role is classified from its name. There are
+      pre-defined standard control names. The details are described in
+      the <link linkend="control-interface-control-names"><citetitle>
+      Control Names</citetitle></link> subsection.
+      </para>
+
+      <para>
+        The <structfield>index</structfield> field holds the index number
+      of this control. If there are several different controls with
+      the same name, they can be distinguished by the index
+      number. This is the case when 
+      several codecs exist on the card. If the index is zero, you can
+      omit the definition above. 
+      </para>
+
+      <para>
+        The <structfield>access</structfield> field contains the access
+      type of this control. Give the combination of bit masks,
+      <constant>SNDRV_CTL_ELEM_ACCESS_XXX</constant>, there.
+      The details will be explained in
+      the <link linkend="control-interface-access-flags"><citetitle>
+      Access Flags</citetitle></link> subsection.
+      </para>
+
+      <para>
+        The <structfield>private_value</structfield> field contains
+      an arbitrary long integer value for this record. When using
+      the generic <structfield>info</structfield>,
+      <structfield>get</structfield> and
+      <structfield>put</structfield> callbacks, you can pass a value 
+      through this field. If several small numbers are necessary, you can
+      combine them in bitwise. Or, it's possible to give a pointer
+      (casted to unsigned long) of some record to this field, too. 
+      </para>
+
+      <para>
+      The <structfield>tlv</structfield> field can be used to provide
+      metadata about the control; see the
+      <link linkend="control-interface-tlv">
+      <citetitle>Metadata</citetitle></link> subsection.
+      </para>
+
+      <para>
+        The other three are
+	<link linkend="control-interface-callbacks"><citetitle>
+	callback functions</citetitle></link>.
+      </para>
+    </section>
+
+    <section id="control-interface-control-names">
+      <title>Control Names</title>
+      <para>
+        There are some standards to define the control names. A
+      control is usually defined from the three parts as
+      <quote>SOURCE DIRECTION FUNCTION</quote>. 
+      </para>
+
+      <para>
+        The first, <constant>SOURCE</constant>, specifies the source
+      of the control, and is a string such as <quote>Master</quote>,
+      <quote>PCM</quote>, <quote>CD</quote> and
+      <quote>Line</quote>. There are many pre-defined sources. 
+      </para>
+
+      <para>
+        The second, <constant>DIRECTION</constant>, is one of the
+      following strings according to the direction of the control:
+      <quote>Playback</quote>, <quote>Capture</quote>, <quote>Bypass
+      Playback</quote> and <quote>Bypass Capture</quote>. Or, it can
+      be omitted, meaning both playback and capture directions. 
+      </para>
+
+      <para>
+        The third, <constant>FUNCTION</constant>, is one of the
+      following strings according to the function of the control:
+      <quote>Switch</quote>, <quote>Volume</quote> and
+      <quote>Route</quote>. 
+      </para>
+
+      <para>
+        The example of control names are, thus, <quote>Master Capture
+      Switch</quote> or <quote>PCM Playback Volume</quote>. 
+      </para>
+
+      <para>
+        There are some exceptions:
+      </para>
+
+      <section id="control-interface-control-names-global">
+        <title>Global capture and playback</title>
+        <para>
+          <quote>Capture Source</quote>, <quote>Capture Switch</quote>
+        and <quote>Capture Volume</quote> are used for the global
+        capture (input) source, switch and volume. Similarly,
+        <quote>Playback Switch</quote> and <quote>Playback
+        Volume</quote> are used for the global output gain switch and
+        volume. 
+        </para>
+      </section>
+
+      <section id="control-interface-control-names-tone">
+        <title>Tone-controls</title>
+        <para>
+          tone-control switch and volumes are specified like
+        <quote>Tone Control - XXX</quote>, e.g. <quote>Tone Control -
+        Switch</quote>, <quote>Tone Control - Bass</quote>,
+        <quote>Tone Control - Center</quote>.  
+        </para>
+      </section>
+
+      <section id="control-interface-control-names-3d">
+        <title>3D controls</title>
+        <para>
+          3D-control switches and volumes are specified like <quote>3D
+        Control - XXX</quote>, e.g. <quote>3D Control -
+        Switch</quote>, <quote>3D Control - Center</quote>, <quote>3D
+        Control - Space</quote>. 
+        </para>
+      </section>
+
+      <section id="control-interface-control-names-mic">
+        <title>Mic boost</title>
+        <para>
+          Mic-boost switch is set as <quote>Mic Boost</quote> or
+        <quote>Mic Boost (6dB)</quote>. 
+        </para>
+
+        <para>
+          More precise information can be found in
+        <filename>Documentation/sound/alsa/ControlNames.txt</filename>.
+        </para>
+      </section>
+    </section>
+
+    <section id="control-interface-access-flags">
+      <title>Access Flags</title>
+
+      <para>
+      The access flag is the bitmask which specifies the access type
+      of the given control.  The default access type is
+      <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE</constant>, 
+      which means both read and write are allowed to this control.
+      When the access flag is omitted (i.e. = 0), it is
+      considered as <constant>READWRITE</constant> access as default. 
+      </para>
+
+      <para>
+      When the control is read-only, pass
+      <constant>SNDRV_CTL_ELEM_ACCESS_READ</constant> instead.
+      In this case, you don't have to define
+      the <structfield>put</structfield> callback.
+      Similarly, when the control is write-only (although it's a rare
+      case), you can use the <constant>WRITE</constant> flag instead, and
+      you don't need the <structfield>get</structfield> callback.
+      </para>
+
+      <para>
+      If the control value changes frequently (e.g. the VU meter),
+      <constant>VOLATILE</constant> flag should be given.  This means
+      that the control may be changed without
+      <link linkend="control-interface-change-notification"><citetitle>
+      notification</citetitle></link>. Applications should poll such
+      a control constantly.
+      </para>
+
+      <para>
+      When the control is inactive, set
+      the <constant>INACTIVE</constant> flag, too.
+      There are <constant>LOCK</constant> and
+      <constant>OWNER</constant> flags to change the write
+      permissions.
+      </para>
+
+    </section>
+
+    <section id="control-interface-callbacks">
+      <title>Callbacks</title>
+
+      <section id="control-interface-callbacks-info">
+        <title>info callback</title>
+        <para>
+          The <structfield>info</structfield> callback is used to get
+        detailed information on this control. This must store the
+        values of the given struct <structname>snd_ctl_elem_info</structname>
+        object. For example, for a boolean control with a single
+        element: 
+
+          <example>
+	    <title>Example of info callback</title>
+            <programlisting>
+<![CDATA[
+  static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol,
+                          struct snd_ctl_elem_info *uinfo)
+  {
+          uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
+          uinfo->count = 1;
+          uinfo->value.integer.min = 0;
+          uinfo->value.integer.max = 1;
+          return 0;
+  }
+]]>
+            </programlisting>
+          </example>
+        </para>
+
+        <para>
+          The <structfield>type</structfield> field specifies the type
+        of the control. There are <constant>BOOLEAN</constant>,
+        <constant>INTEGER</constant>, <constant>ENUMERATED</constant>,
+        <constant>BYTES</constant>, <constant>IEC958</constant> and
+        <constant>INTEGER64</constant>. The
+        <structfield>count</structfield> field specifies the 
+        number of elements in this control. For example, a stereo
+        volume would have count = 2. The
+        <structfield>value</structfield> field is a union, and 
+        the values stored are depending on the type. The boolean and
+        integer types are identical. 
+        </para>
+
+        <para>
+          The enumerated type is a bit different from others.  You'll
+          need to set the string for the currently given item index. 
+
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
+                          struct snd_ctl_elem_info *uinfo)
+  {
+          static char *texts[4] = {
+                  "First", "Second", "Third", "Fourth"
+          };
+          uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
+          uinfo->count = 1;
+          uinfo->value.enumerated.items = 4;
+          if (uinfo->value.enumerated.item > 3)
+                  uinfo->value.enumerated.item = 3;
+          strcpy(uinfo->value.enumerated.name,
+                 texts[uinfo->value.enumerated.item]);
+          return 0;
+  }
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+
+        <para>
+	  Some common info callbacks are available for your convenience:
+	<function>snd_ctl_boolean_mono_info()</function> and
+	<function>snd_ctl_boolean_stereo_info()</function>.
+	Obviously, the former is an info callback for a mono channel
+	boolean item, just like <function>snd_myctl_mono_info</function>
+	above, and the latter is for a stereo channel boolean item.
+	</para>
+
+      </section>
+
+      <section id="control-interface-callbacks-get">
+        <title>get callback</title>
+
+        <para>
+          This callback is used to read the current value of the
+        control and to return to user-space. 
+        </para>
+
+        <para>
+          For example,
+
+          <example>
+	    <title>Example of get callback</title>
+            <programlisting>
+<![CDATA[
+  static int snd_myctl_get(struct snd_kcontrol *kcontrol,
+                           struct snd_ctl_elem_value *ucontrol)
+  {
+          struct mychip *chip = snd_kcontrol_chip(kcontrol);
+          ucontrol->value.integer.value[0] = get_some_value(chip);
+          return 0;
+  }
+]]>
+            </programlisting>
+          </example>
+        </para>
+
+        <para>
+	The <structfield>value</structfield> field depends on 
+        the type of control as well as on the info callback.  For example,
+	the sb driver uses this field to store the register offset,
+        the bit-shift and the bit-mask.  The
+        <structfield>private_value</structfield> field is set as follows:
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  .private_value = reg | (shift << 16) | (mask << 24)
+]]>
+            </programlisting>
+          </informalexample>
+	and is retrieved in callbacks like
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
+                                    struct snd_ctl_elem_value *ucontrol)
+  {
+          int reg = kcontrol->private_value & 0xff;
+          int shift = (kcontrol->private_value >> 16) & 0xff;
+          int mask = (kcontrol->private_value >> 24) & 0xff;
+          ....
+  }
+]]>
+            </programlisting>
+          </informalexample>
+	</para>
+
+	<para>
+	In the <structfield>get</structfield> callback,
+	you have to fill all the elements if the
+        control has more than one elements,
+        i.e. <structfield>count</structfield> &gt; 1.
+	In the example above, we filled only one element
+        (<structfield>value.integer.value[0]</structfield>) since it's
+        assumed as <structfield>count</structfield> = 1.
+        </para>
+      </section>
+
+      <section id="control-interface-callbacks-put">
+        <title>put callback</title>
+
+        <para>
+          This callback is used to write a value from user-space.
+        </para>
+
+        <para>
+          For example,
+
+          <example>
+	    <title>Example of put callback</title>
+            <programlisting>
+<![CDATA[
+  static int snd_myctl_put(struct snd_kcontrol *kcontrol,
+                           struct snd_ctl_elem_value *ucontrol)
+  {
+          struct mychip *chip = snd_kcontrol_chip(kcontrol);
+          int changed = 0;
+          if (chip->current_value !=
+               ucontrol->value.integer.value[0]) {
+                  change_current_value(chip,
+                              ucontrol->value.integer.value[0]);
+                  changed = 1;
+          }
+          return changed;
+  }
+]]>
+            </programlisting>
+          </example>
+
+          As seen above, you have to return 1 if the value is
+        changed. If the value is not changed, return 0 instead. 
+	If any fatal error happens, return a negative error code as
+        usual.
+        </para>
+
+        <para>
+	As in the <structfield>get</structfield> callback,
+	when the control has more than one elements,
+	all elements must be evaluated in this callback, too.
+        </para>
+      </section>
+
+      <section id="control-interface-callbacks-all">
+        <title>Callbacks are not atomic</title>
+        <para>
+          All these three callbacks are basically not atomic.
+        </para>
+      </section>
+    </section>
+
+    <section id="control-interface-constructor">
+      <title>Constructor</title>
+      <para>
+        When everything is ready, finally we can create a new
+      control. To create a control, there are two functions to be
+      called, <function>snd_ctl_new1()</function> and
+      <function>snd_ctl_add()</function>. 
+      </para>
+
+      <para>
+        In the simplest way, you can do like this:
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip));
+  if (err < 0)
+          return err;
+]]>
+          </programlisting>
+        </informalexample>
+
+        where <parameter>my_control</parameter> is the
+      struct <structname>snd_kcontrol_new</structname> object defined above, and chip
+      is the object pointer to be passed to
+      kcontrol-&gt;private_data 
+      which can be referred to in callbacks. 
+      </para>
+
+      <para>
+        <function>snd_ctl_new1()</function> allocates a new
+      <structname>snd_kcontrol</structname> instance (that's why the definition
+      of <parameter>my_control</parameter> can be with
+      the <parameter>__devinitdata</parameter> 
+      prefix), and <function>snd_ctl_add</function> assigns the given
+      control component to the card. 
+      </para>
+    </section>
+
+    <section id="control-interface-change-notification">
+      <title>Change Notification</title>
+      <para>
+        If you need to change and update a control in the interrupt
+      routine, you can call <function>snd_ctl_notify()</function>. For
+      example, 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
+]]>
+          </programlisting>
+        </informalexample>
+
+        This function takes the card pointer, the event-mask, and the
+      control id pointer for the notification. The event-mask
+      specifies the types of notification, for example, in the above
+      example, the change of control values is notified.
+      The id pointer is the pointer of struct <structname>snd_ctl_elem_id</structname>
+      to be notified.
+      You can find some examples in <filename>es1938.c</filename> or
+      <filename>es1968.c</filename> for hardware volume interrupts. 
+      </para>
+    </section>
+
+    <section id="control-interface-tlv">
+      <title>Metadata</title>
+      <para>
+      To provide information about the dB values of a mixer control, use
+      on of the <constant>DECLARE_TLV_xxx</constant> macros from
+      <filename>&lt;sound/tlv.h&gt;</filename> to define a variable
+      containing this information, set the<structfield>tlv.p
+      </structfield> field to point to this variable, and include the
+      <constant>SNDRV_CTL_ELEM_ACCESS_TLV_READ</constant> flag in the
+      <structfield>access</structfield> field; like this:
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  static DECLARE_TLV_DB_SCALE(db_scale_my_control, -4050, 150, 0);
+
+  static struct snd_kcontrol_new my_control __devinitdata = {
+          ...
+          .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
+                    SNDRV_CTL_ELEM_ACCESS_TLV_READ,
+          ...
+          .tlv.p = db_scale_my_control,
+  };
+]]>
+        </programlisting>
+      </informalexample>
+      </para>
+
+      <para>
+      The <function>DECLARE_TLV_DB_SCALE</function> macro defines
+      information about a mixer control where each step in the control's
+      value changes the dB value by a constant dB amount.
+      The first parameter is the name of the variable to be defined.
+      The second parameter is the minimum value, in units of 0.01 dB.
+      The third parameter is the step size, in units of 0.01 dB.
+      Set the fourth parameter to 1 if the minimum value actually mutes
+      the control.
+      </para>
+
+      <para>
+      The <function>DECLARE_TLV_DB_LINEAR</function> macro defines
+      information about a mixer control where the control's value affects
+      the output linearly.
+      The first parameter is the name of the variable to be defined.
+      The second parameter is the minimum value, in units of 0.01 dB.
+      The third parameter is the maximum value, in units of 0.01 dB.
+      If the minimum value mutes the control, set the second parameter to
+      <constant>TLV_DB_GAIN_MUTE</constant>.
+      </para>
+    </section>
+
+  </chapter>
+
+
+<!-- ****************************************************** -->
+<!-- API for AC97 Codec  -->
+<!-- ****************************************************** -->
+  <chapter id="api-ac97">
+    <title>API for AC97 Codec</title>
+
+    <section>
+      <title>General</title>
+      <para>
+        The ALSA AC97 codec layer is a well-defined one, and you don't
+      have to write much code to control it. Only low-level control
+      routines are necessary. The AC97 codec API is defined in
+      <filename>&lt;sound/ac97_codec.h&gt;</filename>. 
+      </para>
+    </section>
+
+    <section id="api-ac97-example">
+      <title>Full Code Example</title>
+      <para>
+          <example>
+	    <title>Example of AC97 Interface</title>
+            <programlisting>
+<![CDATA[
+  struct mychip {
+          ....
+          struct snd_ac97 *ac97;
+          ....
+  };
+
+  static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
+                                             unsigned short reg)
+  {
+          struct mychip *chip = ac97->private_data;
+          ....
+          /* read a register value here from the codec */
+          return the_register_value;
+  }
+
+  static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
+                                   unsigned short reg, unsigned short val)
+  {
+          struct mychip *chip = ac97->private_data;
+          ....
+          /* write the given register value to the codec */
+  }
+
+  static int snd_mychip_ac97(struct mychip *chip)
+  {
+          struct snd_ac97_bus *bus;
+          struct snd_ac97_template ac97;
+          int err;
+          static struct snd_ac97_bus_ops ops = {
+                  .write = snd_mychip_ac97_write,
+                  .read = snd_mychip_ac97_read,
+          };
+
+          err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus);
+          if (err < 0)
+                  return err;
+          memset(&ac97, 0, sizeof(ac97));
+          ac97.private_data = chip;
+          return snd_ac97_mixer(bus, &ac97, &chip->ac97);
+  }
+
+]]>
+          </programlisting>
+        </example>
+      </para>
+    </section>
+
+    <section id="api-ac97-constructor">
+      <title>Constructor</title>
+      <para>
+        To create an ac97 instance, first call <function>snd_ac97_bus</function>
+      with an <type>ac97_bus_ops_t</type> record with callback functions.
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct snd_ac97_bus *bus;
+  static struct snd_ac97_bus_ops ops = {
+        .write = snd_mychip_ac97_write,
+        .read = snd_mychip_ac97_read,
+  };
+
+  snd_ac97_bus(card, 0, &ops, NULL, &pbus);
+]]>
+          </programlisting>
+        </informalexample>
+
+      The bus record is shared among all belonging ac97 instances.
+      </para>
+
+      <para>
+      And then call <function>snd_ac97_mixer()</function> with an
+      struct <structname>snd_ac97_template</structname>
+      record together with the bus pointer created above.
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct snd_ac97_template ac97;
+  int err;
+
+  memset(&ac97, 0, sizeof(ac97));
+  ac97.private_data = chip;
+  snd_ac97_mixer(bus, &ac97, &chip->ac97);
+]]>
+          </programlisting>
+        </informalexample>
+
+        where chip-&gt;ac97 is a pointer to a newly created
+        <type>ac97_t</type> instance.
+        In this case, the chip pointer is set as the private data, so that
+        the read/write callback functions can refer to this chip instance.
+        This instance is not necessarily stored in the chip
+	record.  If you need to change the register values from the
+        driver, or need the suspend/resume of ac97 codecs, keep this
+        pointer to pass to the corresponding functions.
+      </para>
+    </section>
+
+    <section id="api-ac97-callbacks">
+      <title>Callbacks</title>
+      <para>
+        The standard callbacks are <structfield>read</structfield> and
+      <structfield>write</structfield>. Obviously they 
+      correspond to the functions for read and write accesses to the
+      hardware low-level codes. 
+      </para>
+
+      <para>
+        The <structfield>read</structfield> callback returns the
+        register value specified in the argument. 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
+                                             unsigned short reg)
+  {
+          struct mychip *chip = ac97->private_data;
+          ....
+          return the_register_value;
+  }
+]]>
+          </programlisting>
+        </informalexample>
+
+        Here, the chip can be cast from ac97-&gt;private_data.
+      </para>
+
+      <para>
+        Meanwhile, the <structfield>write</structfield> callback is
+        used to set the register value. 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
+                       unsigned short reg, unsigned short val)
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+      These callbacks are non-atomic like the control API callbacks.
+      </para>
+
+      <para>
+        There are also other callbacks:
+      <structfield>reset</structfield>,
+      <structfield>wait</structfield> and
+      <structfield>init</structfield>. 
+      </para>
+
+      <para>
+        The <structfield>reset</structfield> callback is used to reset
+      the codec. If the chip requires a special kind of reset, you can
+      define this callback. 
+      </para>
+
+      <para>
+        The <structfield>wait</structfield> callback is used to
+      add some waiting time in the standard initialization of the codec. If the
+      chip requires the extra waiting time, define this callback. 
+      </para>
+
+      <para>
+        The <structfield>init</structfield> callback is used for
+      additional initialization of the codec.
+      </para>
+    </section>
+
+    <section id="api-ac97-updating-registers">
+      <title>Updating Registers in The Driver</title>
+      <para>
+        If you need to access to the codec from the driver, you can
+      call the following functions:
+      <function>snd_ac97_write()</function>,
+      <function>snd_ac97_read()</function>,
+      <function>snd_ac97_update()</function> and
+      <function>snd_ac97_update_bits()</function>. 
+      </para>
+
+      <para>
+        Both <function>snd_ac97_write()</function> and
+        <function>snd_ac97_update()</function> functions are used to
+        set a value to the given register
+        (<constant>AC97_XXX</constant>). The difference between them is
+        that <function>snd_ac97_update()</function> doesn't write a
+        value if the given value has been already set, while
+        <function>snd_ac97_write()</function> always rewrites the
+        value. 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  snd_ac97_write(ac97, AC97_MASTER, 0x8080);
+  snd_ac97_update(ac97, AC97_MASTER, 0x8080);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        <function>snd_ac97_read()</function> is used to read the value
+        of the given register. For example, 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  value = snd_ac97_read(ac97, AC97_MASTER);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        <function>snd_ac97_update_bits()</function> is used to update
+        some bits in the given register.  
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  snd_ac97_update_bits(ac97, reg, mask, value);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        Also, there is a function to change the sample rate (of a
+        given register such as
+        <constant>AC97_PCM_FRONT_DAC_RATE</constant>) when VRA or
+        DRA is supported by the codec:
+        <function>snd_ac97_set_rate()</function>. 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        The following registers are available to set the rate:
+      <constant>AC97_PCM_MIC_ADC_RATE</constant>,
+      <constant>AC97_PCM_FRONT_DAC_RATE</constant>,
+      <constant>AC97_PCM_LR_ADC_RATE</constant>,
+      <constant>AC97_SPDIF</constant>. When
+      <constant>AC97_SPDIF</constant> is specified, the register is
+      not really changed but the corresponding IEC958 status bits will
+      be updated. 
+      </para>
+    </section>
+
+    <section id="api-ac97-clock-adjustment">
+      <title>Clock Adjustment</title>
+      <para>
+        In some chips, the clock of the codec isn't 48000 but using a
+      PCI clock (to save a quartz!). In this case, change the field
+      bus-&gt;clock to the corresponding
+      value. For example, intel8x0 
+      and es1968 drivers have their own function to read from the clock.
+      </para>
+    </section>
+
+    <section id="api-ac97-proc-files">
+      <title>Proc Files</title>
+      <para>
+        The ALSA AC97 interface will create a proc file such as
+      <filename>/proc/asound/card0/codec97#0/ac97#0-0</filename> and
+      <filename>ac97#0-0+regs</filename>. You can refer to these files to
+      see the current status and registers of the codec. 
+      </para>
+    </section>
+
+    <section id="api-ac97-multiple-codecs">
+      <title>Multiple Codecs</title>
+      <para>
+        When there are several codecs on the same card, you need to
+      call <function>snd_ac97_mixer()</function> multiple times with
+      ac97.num=1 or greater. The <structfield>num</structfield> field
+      specifies the codec number. 
+      </para>
+
+      <para>
+        If you set up multiple codecs, you either need to write
+      different callbacks for each codec or check
+      ac97-&gt;num in the callback routines. 
+      </para>
+    </section>
+
+  </chapter>
+
+
+<!-- ****************************************************** -->
+<!-- MIDI (MPU401-UART) Interface  -->
+<!-- ****************************************************** -->
+  <chapter id="midi-interface">
+    <title>MIDI (MPU401-UART) Interface</title>
+
+    <section id="midi-interface-general">
+      <title>General</title>
+      <para>
+        Many soundcards have built-in MIDI (MPU401-UART)
+      interfaces. When the soundcard supports the standard MPU401-UART
+      interface, most likely you can use the ALSA MPU401-UART API. The
+      MPU401-UART API is defined in
+      <filename>&lt;sound/mpu401.h&gt;</filename>. 
+      </para>
+
+      <para>
+        Some soundchips have a similar but slightly different
+      implementation of mpu401 stuff. For example, emu10k1 has its own
+      mpu401 routines. 
+      </para>
+    </section>
+
+    <section id="midi-interface-constructor">
+      <title>Constructor</title>
+      <para>
+        To create a rawmidi object, call
+      <function>snd_mpu401_uart_new()</function>. 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct snd_rawmidi *rmidi;
+  snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags,
+                      irq, irq_flags, &rmidi);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        The first argument is the card pointer, and the second is the
+      index of this component. You can create up to 8 rawmidi
+      devices. 
+      </para>
+
+      <para>
+        The third argument is the type of the hardware,
+      <constant>MPU401_HW_XXX</constant>. If it's not a special one,
+      you can use <constant>MPU401_HW_MPU401</constant>. 
+      </para>
+
+      <para>
+        The 4th argument is the I/O port address. Many
+      backward-compatible MPU401 have an I/O port such as 0x330. Or, it
+      might be a part of its own PCI I/O region. It depends on the
+      chip design. 
+      </para>
+
+      <para>
+	The 5th argument is a bitflag for additional information.
+        When the I/O port address above is part of the PCI I/O
+      region, the MPU401 I/O port might have been already allocated
+      (reserved) by the driver itself. In such a case, pass a bit flag
+      <constant>MPU401_INFO_INTEGRATED</constant>,
+      and the mpu401-uart layer will allocate the I/O ports by itself. 
+      </para>
+
+	<para>
+	When the controller supports only the input or output MIDI stream,
+	pass the <constant>MPU401_INFO_INPUT</constant> or
+	<constant>MPU401_INFO_OUTPUT</constant> bitflag, respectively.
+	Then the rawmidi instance is created as a single stream.
+	</para>
+
+	<para>
+	<constant>MPU401_INFO_MMIO</constant> bitflag is used to change
+	the access method to MMIO (via readb and writeb) instead of
+	iob and outb. In this case, you have to pass the iomapped address
+	to <function>snd_mpu401_uart_new()</function>.
+	</para>
+
+	<para>
+	When <constant>MPU401_INFO_TX_IRQ</constant> is set, the output
+	stream isn't checked in the default interrupt handler.  The driver
+	needs to call <function>snd_mpu401_uart_interrupt_tx()</function>
+	by itself to start processing the output stream in the irq handler.
+	</para>
+
+      <para>
+        Usually, the port address corresponds to the command port and
+        port + 1 corresponds to the data port. If not, you may change
+        the <structfield>cport</structfield> field of
+        struct <structname>snd_mpu401</structname> manually 
+        afterward. However, <structname>snd_mpu401</structname> pointer is not
+        returned explicitly by
+        <function>snd_mpu401_uart_new()</function>. You need to cast
+        rmidi-&gt;private_data to
+        <structname>snd_mpu401</structname> explicitly, 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct snd_mpu401 *mpu;
+  mpu = rmidi->private_data;
+]]>
+          </programlisting>
+        </informalexample>
+
+        and reset the cport as you like:
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  mpu->cport = my_own_control_port;
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        The 6th argument specifies the irq number for UART. If the irq
+      is already allocated, pass 0 to the 7th argument
+      (<parameter>irq_flags</parameter>). Otherwise, pass the flags
+      for irq allocation 
+      (<constant>SA_XXX</constant> bits) to it, and the irq will be
+      reserved by the mpu401-uart layer. If the card doesn't generate
+      UART interrupts, pass -1 as the irq number. Then a timer
+      interrupt will be invoked for polling. 
+      </para>
+    </section>
+
+    <section id="midi-interface-interrupt-handler">
+      <title>Interrupt Handler</title>
+      <para>
+        When the interrupt is allocated in
+      <function>snd_mpu401_uart_new()</function>, the private
+      interrupt handler is used, hence you don't have anything else to do
+      than creating the mpu401 stuff. Otherwise, you have to call
+      <function>snd_mpu401_uart_interrupt()</function> explicitly when
+      a UART interrupt is invoked and checked in your own interrupt
+      handler.  
+      </para>
+
+      <para>
+        In this case, you need to pass the private_data of the
+        returned rawmidi object from
+        <function>snd_mpu401_uart_new()</function> as the second
+        argument of <function>snd_mpu401_uart_interrupt()</function>. 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+    </section>
+
+  </chapter>
+
+
+<!-- ****************************************************** -->
+<!-- RawMIDI Interface  -->
+<!-- ****************************************************** -->
+  <chapter id="rawmidi-interface">
+    <title>RawMIDI Interface</title>
+
+    <section id="rawmidi-interface-overview">
+      <title>Overview</title>
+
+      <para>
+      The raw MIDI interface is used for hardware MIDI ports that can
+      be accessed as a byte stream.  It is not used for synthesizer
+      chips that do not directly understand MIDI.
+      </para>
+
+      <para>
+      ALSA handles file and buffer management.  All you have to do is
+      to write some code to move data between the buffer and the
+      hardware.
+      </para>
+
+      <para>
+      The rawmidi API is defined in
+      <filename>&lt;sound/rawmidi.h&gt;</filename>.
+      </para>
+    </section>
+
+    <section id="rawmidi-interface-constructor">
+      <title>Constructor</title>
+
+      <para>
+      To create a rawmidi device, call the
+      <function>snd_rawmidi_new</function> function:
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct snd_rawmidi *rmidi;
+  err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
+  if (err < 0)
+          return err;
+  rmidi->private_data = chip;
+  strcpy(rmidi->name, "My MIDI");
+  rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
+                      SNDRV_RAWMIDI_INFO_INPUT |
+                      SNDRV_RAWMIDI_INFO_DUPLEX;
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+      The first argument is the card pointer, the second argument is
+      the ID string.
+      </para>
+
+      <para>
+      The third argument is the index of this component.  You can
+      create up to 8 rawmidi devices.
+      </para>
+
+      <para>
+      The fourth and fifth arguments are the number of output and
+      input substreams, respectively, of this device (a substream is
+      the equivalent of a MIDI port).
+      </para>
+
+      <para>
+      Set the <structfield>info_flags</structfield> field to specify
+      the capabilities of the device.
+      Set <constant>SNDRV_RAWMIDI_INFO_OUTPUT</constant> if there is
+      at least one output port,
+      <constant>SNDRV_RAWMIDI_INFO_INPUT</constant> if there is at
+      least one input port,
+      and <constant>SNDRV_RAWMIDI_INFO_DUPLEX</constant> if the device
+      can handle output and input at the same time.
+      </para>
+
+      <para>
+      After the rawmidi device is created, you need to set the
+      operators (callbacks) for each substream.  There are helper
+      functions to set the operators for all the substreams of a device:
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
+  snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+      The operators are usually defined like this:
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static struct snd_rawmidi_ops snd_mymidi_output_ops = {
+          .open =    snd_mymidi_output_open,
+          .close =   snd_mymidi_output_close,
+          .trigger = snd_mymidi_output_trigger,
+  };
+]]>
+          </programlisting>
+        </informalexample>
+      These callbacks are explained in the <link
+      linkend="rawmidi-interface-callbacks"><citetitle>Callbacks</citetitle></link>
+      section.
+      </para>
+
+      <para>
+      If there are more than one substream, you should give a
+      unique name to each of them:
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct snd_rawmidi_substream *substream;
+  list_for_each_entry(substream,
+                      &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams,
+                      list {
+          sprintf(substream->name, "My MIDI Port %d", substream->number + 1);
+  }
+  /* same for SNDRV_RAWMIDI_STREAM_INPUT */
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+    </section>
+
+    <section id="rawmidi-interface-callbacks">
+      <title>Callbacks</title>
+
+      <para>
+      In all the callbacks, the private data that you've set for the
+      rawmidi device can be accessed as
+      substream-&gt;rmidi-&gt;private_data.
+      <!-- <code> isn't available before DocBook 4.3 -->
+      </para>
+
+      <para>
+      If there is more than one port, your callbacks can determine the
+      port index from the struct snd_rawmidi_substream data passed to each
+      callback:
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct snd_rawmidi_substream *substream;
+  int index = substream->number;
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <section id="rawmidi-interface-op-open">
+      <title><function>open</function> callback</title>
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static int snd_xxx_open(struct snd_rawmidi_substream *substream);
+]]>
+          </programlisting>
+        </informalexample>
+
+        <para>
+        This is called when a substream is opened.
+        You can initialize the hardware here, but you shouldn't
+        start transmitting/receiving data yet.
+        </para>
+      </section>
+
+      <section id="rawmidi-interface-op-close">
+      <title><function>close</function> callback</title>
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static int snd_xxx_close(struct snd_rawmidi_substream *substream);
+]]>
+          </programlisting>
+        </informalexample>
+
+        <para>
+        Guess what.
+        </para>
+
+        <para>
+        The <function>open</function> and <function>close</function>
+        callbacks of a rawmidi device are serialized with a mutex,
+        and can sleep.
+        </para>
+      </section>
+
+      <section id="rawmidi-interface-op-trigger-out">
+      <title><function>trigger</function> callback for output
+      substreams</title>
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
+]]>
+          </programlisting>
+        </informalexample>
+
+        <para>
+        This is called with a nonzero <parameter>up</parameter>
+        parameter when there is some data in the substream buffer that
+        must be transmitted.
+        </para>
+
+        <para>
+        To read data from the buffer, call
+        <function>snd_rawmidi_transmit_peek</function>.  It will
+        return the number of bytes that have been read; this will be
+        less than the number of bytes requested when there are no more
+        data in the buffer.
+        After the data have been transmitted successfully, call
+        <function>snd_rawmidi_transmit_ack</function> to remove the
+        data from the substream buffer:
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  unsigned char data;
+  while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
+          if (snd_mychip_try_to_transmit(data))
+                  snd_rawmidi_transmit_ack(substream, 1);
+          else
+                  break; /* hardware FIFO full */
+  }
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+
+        <para>
+        If you know beforehand that the hardware will accept data, you
+        can use the <function>snd_rawmidi_transmit</function> function
+        which reads some data and removes them from the buffer at once:
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  while (snd_mychip_transmit_possible()) {
+          unsigned char data;
+          if (snd_rawmidi_transmit(substream, &data, 1) != 1)
+                  break; /* no more data */
+          snd_mychip_transmit(data);
+  }
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+
+        <para>
+        If you know beforehand how many bytes you can accept, you can
+        use a buffer size greater than one with the
+        <function>snd_rawmidi_transmit*</function> functions.
+        </para>
+
+        <para>
+        The <function>trigger</function> callback must not sleep.  If
+        the hardware FIFO is full before the substream buffer has been
+        emptied, you have to continue transmitting data later, either
+        in an interrupt handler, or with a timer if the hardware
+        doesn't have a MIDI transmit interrupt.
+        </para>
+
+        <para>
+        The <function>trigger</function> callback is called with a
+        zero <parameter>up</parameter> parameter when the transmission
+        of data should be aborted.
+        </para>
+      </section>
+
+      <section id="rawmidi-interface-op-trigger-in">
+      <title><function>trigger</function> callback for input
+      substreams</title>
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
+]]>
+          </programlisting>
+        </informalexample>
+
+        <para>
+        This is called with a nonzero <parameter>up</parameter>
+        parameter to enable receiving data, or with a zero
+        <parameter>up</parameter> parameter do disable receiving data.
+        </para>
+
+        <para>
+        The <function>trigger</function> callback must not sleep; the
+        actual reading of data from the device is usually done in an
+        interrupt handler.
+        </para>
+
+        <para>
+        When data reception is enabled, your interrupt handler should
+        call <function>snd_rawmidi_receive</function> for all received
+        data:
+          <informalexample>
+            <programlisting>
+<![CDATA[
+  void snd_mychip_midi_interrupt(...)
+  {
+          while (mychip_midi_available()) {
+                  unsigned char data;
+                  data = mychip_midi_read();
+                  snd_rawmidi_receive(substream, &data, 1);
+          }
+  }
+]]>
+            </programlisting>
+          </informalexample>
+        </para>
+      </section>
+
+      <section id="rawmidi-interface-op-drain">
+      <title><function>drain</function> callback</title>
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
+]]>
+          </programlisting>
+        </informalexample>
+
+        <para>
+        This is only used with output substreams.  This function should wait
+        until all data read from the substream buffer have been transmitted.
+        This ensures that the device can be closed and the driver unloaded
+        without losing data.
+        </para>
+
+        <para>
+        This callback is optional. If you do not set
+        <structfield>drain</structfield> in the struct snd_rawmidi_ops
+        structure, ALSA will simply wait for 50&nbsp;milliseconds
+        instead.
+        </para>
+      </section>
+    </section>
+
+  </chapter>
+
+
+<!-- ****************************************************** -->
+<!-- Miscellaneous Devices  -->
+<!-- ****************************************************** -->
+  <chapter id="misc-devices">
+    <title>Miscellaneous Devices</title>
+
+    <section id="misc-devices-opl3">
+      <title>FM OPL3</title>
+      <para>
+        The FM OPL3 is still used in many chips (mainly for backward
+      compatibility). ALSA has a nice OPL3 FM control layer, too. The
+      OPL3 API is defined in
+      <filename>&lt;sound/opl3.h&gt;</filename>. 
+      </para>
+
+      <para>
+        FM registers can be directly accessed through the direct-FM API,
+      defined in <filename>&lt;sound/asound_fm.h&gt;</filename>. In
+      ALSA native mode, FM registers are accessed through
+      the Hardware-Dependant Device direct-FM extension API, whereas in
+      OSS compatible mode, FM registers can be accessed with the OSS
+      direct-FM compatible API in <filename>/dev/dmfmX</filename> device. 
+      </para>
+
+      <para>
+        To create the OPL3 component, you have two functions to
+        call. The first one is a constructor for the <type>opl3_t</type>
+        instance. 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct snd_opl3 *opl3;
+  snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
+                  integrated, &opl3);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        The first argument is the card pointer, the second one is the
+      left port address, and the third is the right port address. In
+      most cases, the right port is placed at the left port + 2. 
+      </para>
+
+      <para>
+        The fourth argument is the hardware type.
+      </para>
+
+      <para>
+        When the left and right ports have been already allocated by
+      the card driver, pass non-zero to the fifth argument
+      (<parameter>integrated</parameter>). Otherwise, the opl3 module will
+      allocate the specified ports by itself. 
+      </para>
+
+      <para>
+        When the accessing the hardware requires special method
+        instead of the standard I/O access, you can create opl3 instance
+        separately with <function>snd_opl3_new()</function>.
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct snd_opl3 *opl3;
+  snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+	Then set <structfield>command</structfield>,
+	<structfield>private_data</structfield> and
+	<structfield>private_free</structfield> for the private
+	access function, the private data and the destructor.
+	The l_port and r_port are not necessarily set.  Only the
+	command must be set properly.  You can retrieve the data
+	from the opl3-&gt;private_data field.
+      </para>
+
+      <para>
+	After creating the opl3 instance via <function>snd_opl3_new()</function>,
+	call <function>snd_opl3_init()</function> to initialize the chip to the
+	proper state. Note that <function>snd_opl3_create()</function> always
+	calls it internally.
+      </para>
+
+      <para>
+        If the opl3 instance is created successfully, then create a
+        hwdep device for this opl3. 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct snd_hwdep *opl3hwdep;
+  snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        The first argument is the <type>opl3_t</type> instance you
+      created, and the second is the index number, usually 0. 
+      </para>
+
+      <para>
+        The third argument is the index-offset for the sequencer
+      client assigned to the OPL3 port. When there is an MPU401-UART,
+      give 1 for here (UART always takes 0). 
+      </para>
+    </section>
+
+    <section id="misc-devices-hardware-dependent">
+      <title>Hardware-Dependent Devices</title>
+      <para>
+        Some chips need user-space access for special
+      controls or for loading the micro code. In such a case, you can
+      create a hwdep (hardware-dependent) device. The hwdep API is
+      defined in <filename>&lt;sound/hwdep.h&gt;</filename>. You can
+      find examples in opl3 driver or
+      <filename>isa/sb/sb16_csp.c</filename>. 
+      </para>
+
+      <para>
+        The creation of the <type>hwdep</type> instance is done via
+        <function>snd_hwdep_new()</function>. 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct snd_hwdep *hw;
+  snd_hwdep_new(card, "My HWDEP", 0, &hw);
+]]>
+          </programlisting>
+        </informalexample>
+
+        where the third argument is the index number.
+      </para>
+
+      <para>
+        You can then pass any pointer value to the
+        <parameter>private_data</parameter>.
+        If you assign a private data, you should define the
+        destructor, too. The destructor function is set in
+        the <structfield>private_free</structfield> field.  
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
+  hw->private_data = p;
+  hw->private_free = mydata_free;
+]]>
+          </programlisting>
+        </informalexample>
+
+        and the implementation of the destructor would be:
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static void mydata_free(struct snd_hwdep *hw)
+  {
+          struct mydata *p = hw->private_data;
+          kfree(p);
+  }
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        The arbitrary file operations can be defined for this
+        instance. The file operators are defined in
+        the <parameter>ops</parameter> table. For example, assume that
+        this chip needs an ioctl. 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  hw->ops.open = mydata_open;
+  hw->ops.ioctl = mydata_ioctl;
+  hw->ops.release = mydata_release;
+]]>
+          </programlisting>
+        </informalexample>
+
+        And implement the callback functions as you like.
+      </para>
+    </section>
+
+    <section id="misc-devices-IEC958">
+      <title>IEC958 (S/PDIF)</title>
+      <para>
+        Usually the controls for IEC958 devices are implemented via
+      the control interface. There is a macro to compose a name string for
+      IEC958 controls, <function>SNDRV_CTL_NAME_IEC958()</function>
+      defined in <filename>&lt;include/asound.h&gt;</filename>.  
+      </para>
+
+      <para>
+        There are some standard controls for IEC958 status bits. These
+      controls use the type <type>SNDRV_CTL_ELEM_TYPE_IEC958</type>,
+      and the size of element is fixed as 4 bytes array
+      (value.iec958.status[x]). For the <structfield>info</structfield>
+      callback, you don't specify 
+      the value field for this type (the count field must be set,
+      though). 
+      </para>
+
+      <para>
+        <quote>IEC958 Playback Con Mask</quote> is used to return the
+      bit-mask for the IEC958 status bits of consumer mode. Similarly,
+      <quote>IEC958 Playback Pro Mask</quote> returns the bitmask for
+      professional mode. They are read-only controls, and are defined
+      as MIXER controls (iface =
+      <constant>SNDRV_CTL_ELEM_IFACE_MIXER</constant>).  
+      </para>
+
+      <para>
+        Meanwhile, <quote>IEC958 Playback Default</quote> control is
+      defined for getting and setting the current default IEC958
+      bits. Note that this one is usually defined as a PCM control
+      (iface = <constant>SNDRV_CTL_ELEM_IFACE_PCM</constant>),
+      although in some places it's defined as a MIXER control. 
+      </para>
+
+      <para>
+        In addition, you can define the control switches to
+      enable/disable or to set the raw bit mode. The implementation
+      will depend on the chip, but the control should be named as
+      <quote>IEC958 xxx</quote>, preferably using
+      the <function>SNDRV_CTL_NAME_IEC958()</function> macro. 
+      </para>
+
+      <para>
+        You can find several cases, for example,
+      <filename>pci/emu10k1</filename>,
+      <filename>pci/ice1712</filename>, or
+      <filename>pci/cmipci.c</filename>.  
+      </para>
+    </section>
+
+  </chapter>
+
+
+<!-- ****************************************************** -->
+<!-- Buffer and Memory Management  -->
+<!-- ****************************************************** -->
+  <chapter id="buffer-and-memory">
+    <title>Buffer and Memory Management</title>
+
+    <section id="buffer-and-memory-buffer-types">
+      <title>Buffer Types</title>
+      <para>
+        ALSA provides several different buffer allocation functions
+      depending on the bus and the architecture. All these have a
+      consistent API. The allocation of physically-contiguous pages is
+      done via 
+      <function>snd_malloc_xxx_pages()</function> function, where xxx
+      is the bus type. 
+      </para>
+
+      <para>
+        The allocation of pages with fallback is
+      <function>snd_malloc_xxx_pages_fallback()</function>. This
+      function tries to allocate the specified pages but if the pages
+      are not available, it tries to reduce the page sizes until
+      enough space is found.
+      </para>
+
+      <para>
+      The release the pages, call
+      <function>snd_free_xxx_pages()</function> function. 
+      </para>
+
+      <para>
+      Usually, ALSA drivers try to allocate and reserve
+       a large contiguous physical space
+       at the time the module is loaded for the later use.
+       This is called <quote>pre-allocation</quote>.
+       As already written, you can call the following function at 
+       pcm instance construction time (in the case of PCI bus). 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
+                                        snd_dma_pci_data(pci), size, max);
+]]>
+          </programlisting>
+        </informalexample>
+
+        where <parameter>size</parameter> is the byte size to be
+      pre-allocated and the <parameter>max</parameter> is the maximum
+      size to be changed via the <filename>prealloc</filename> proc file.
+      The allocator will try to get an area as large as possible
+      within the given size. 
+      </para>
+
+      <para>
+      The second argument (type) and the third argument (device pointer)
+      are dependent on the bus.
+      In the case of the ISA bus, pass <function>snd_dma_isa_data()</function>
+      as the third argument with <constant>SNDRV_DMA_TYPE_DEV</constant> type.
+      For the continuous buffer unrelated to the bus can be pre-allocated
+      with <constant>SNDRV_DMA_TYPE_CONTINUOUS</constant> type and the
+      <function>snd_dma_continuous_data(GFP_KERNEL)</function> device pointer,
+      where <constant>GFP_KERNEL</constant> is the kernel allocation flag to
+      use.
+      For the PCI scatter-gather buffers, use
+      <constant>SNDRV_DMA_TYPE_DEV_SG</constant> with
+      <function>snd_dma_pci_data(pci)</function>
+      (see the 
+          <link linkend="buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers
+          </citetitle></link> section).
+      </para>
+
+      <para>
+        Once the buffer is pre-allocated, you can use the
+        allocator in the <structfield>hw_params</structfield> callback: 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  snd_pcm_lib_malloc_pages(substream, size);
+]]>
+          </programlisting>
+        </informalexample>
+
+        Note that you have to pre-allocate to use this function.
+      </para>
+    </section>
+
+    <section id="buffer-and-memory-external-hardware">
+      <title>External Hardware Buffers</title>
+      <para>
+        Some chips have their own hardware buffers and the DMA
+      transfer from the host memory is not available. In such a case,
+      you need to either 1) copy/set the audio data directly to the
+      external hardware buffer, or 2) make an intermediate buffer and
+      copy/set the data from it to the external hardware buffer in
+      interrupts (or in tasklets, preferably).
+      </para>
+
+      <para>
+        The first case works fine if the external hardware buffer is large
+      enough.  This method doesn't need any extra buffers and thus is
+      more effective. You need to define the
+      <structfield>copy</structfield> and
+      <structfield>silence</structfield> callbacks for 
+      the data transfer. However, there is a drawback: it cannot
+      be mmapped. The examples are GUS's GF1 PCM or emu8000's
+      wavetable PCM. 
+      </para>
+
+      <para>
+        The second case allows for mmap on the buffer, although you have
+      to handle an interrupt or a tasklet to transfer the data
+      from the intermediate buffer to the hardware buffer. You can find an
+      example in the vxpocket driver. 
+      </para>
+
+      <para>
+        Another case is when the chip uses a PCI memory-map
+      region for the buffer instead of the host memory. In this case,
+      mmap is available only on certain architectures like the Intel one.
+      In non-mmap mode, the data cannot be transferred as in the normal
+      way. Thus you need to define the <structfield>copy</structfield> and
+      <structfield>silence</structfield> callbacks as well, 
+      as in the cases above. The examples are found in
+      <filename>rme32.c</filename> and <filename>rme96.c</filename>. 
+      </para>
+
+      <para>
+        The implementation of the <structfield>copy</structfield> and
+        <structfield>silence</structfield> callbacks depends upon 
+        whether the hardware supports interleaved or non-interleaved
+        samples. The <structfield>copy</structfield> callback is
+        defined like below, a bit 
+        differently depending whether the direction is playback or
+        capture: 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static int playback_copy(struct snd_pcm_substream *substream, int channel,
+               snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count);
+  static int capture_copy(struct snd_pcm_substream *substream, int channel,
+               snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        In the case of interleaved samples, the second argument
+      (<parameter>channel</parameter>) is not used. The third argument
+      (<parameter>pos</parameter>) points the 
+      current position offset in frames. 
+      </para>
+
+      <para>
+        The meaning of the fourth argument is different between
+      playback and capture. For playback, it holds the source data
+      pointer, and for capture, it's the destination data pointer. 
+      </para>
+
+      <para>
+        The last argument is the number of frames to be copied.
+      </para>
+
+      <para>
+        What you have to do in this callback is again different
+        between playback and capture directions. In the
+        playback case, you copy the given amount of data
+        (<parameter>count</parameter>) at the specified pointer
+        (<parameter>src</parameter>) to the specified offset
+        (<parameter>pos</parameter>) on the hardware buffer. When
+        coded like memcpy-like way, the copy would be like: 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src,
+            frames_to_bytes(runtime, count));
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        For the capture direction, you copy the given amount of
+        data (<parameter>count</parameter>) at the specified offset
+        (<parameter>pos</parameter>) on the hardware buffer to the
+        specified pointer (<parameter>dst</parameter>). 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos),
+            frames_to_bytes(runtime, count));
+]]>
+          </programlisting>
+        </informalexample>
+
+        Note that both the position and the amount of data are given
+      in frames. 
+      </para>
+
+      <para>
+        In the case of non-interleaved samples, the implementation
+      will be a bit more complicated. 
+      </para>
+
+      <para>
+        You need to check the channel argument, and if it's -1, copy
+      the whole channels. Otherwise, you have to copy only the
+      specified channel. Please check
+      <filename>isa/gus/gus_pcm.c</filename> as an example. 
+      </para>
+
+      <para>
+        The <structfield>silence</structfield> callback is also
+        implemented in a similar way. 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  static int silence(struct snd_pcm_substream *substream, int channel,
+                     snd_pcm_uframes_t pos, snd_pcm_uframes_t count);
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        The meanings of arguments are the same as in the
+      <structfield>copy</structfield> 
+      callback, although there is no <parameter>src/dst</parameter>
+      argument. In the case of interleaved samples, the channel
+      argument has no meaning, as well as on
+      <structfield>copy</structfield> callback.  
+      </para>
+
+      <para>
+        The role of <structfield>silence</structfield> callback is to
+        set the given amount 
+        (<parameter>count</parameter>) of silence data at the
+        specified offset (<parameter>pos</parameter>) on the hardware
+        buffer. Suppose that the data format is signed (that is, the
+        silent-data is 0), and the implementation using a memset-like
+        function would be like: 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0,
+            frames_to_bytes(runtime, count));
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        In the case of non-interleaved samples, again, the
+      implementation becomes a bit more complicated. See, for example,
+      <filename>isa/gus/gus_pcm.c</filename>. 
+      </para>
+    </section>
+
+    <section id="buffer-and-memory-non-contiguous">
+      <title>Non-Contiguous Buffers</title>
+      <para>
+        If your hardware supports the page table as in emu10k1 or the
+      buffer descriptors as in via82xx, you can use the scatter-gather
+      (SG) DMA. ALSA provides an interface for handling SG-buffers.
+      The API is provided in <filename>&lt;sound/pcm.h&gt;</filename>. 
+      </para>
+
+      <para>
+        For creating the SG-buffer handler, call
+        <function>snd_pcm_lib_preallocate_pages()</function> or
+        <function>snd_pcm_lib_preallocate_pages_for_all()</function>
+        with <constant>SNDRV_DMA_TYPE_DEV_SG</constant>
+	in the PCM constructor like other PCI pre-allocator.
+        You need to pass <function>snd_dma_pci_data(pci)</function>,
+        where pci is the struct <structname>pci_dev</structname> pointer
+        of the chip as well.
+        The <type>struct snd_sg_buf</type> instance is created as
+        substream-&gt;dma_private. You can cast
+        the pointer like: 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private;
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        Then call <function>snd_pcm_lib_malloc_pages()</function>
+      in the <structfield>hw_params</structfield> callback
+      as well as in the case of normal PCI buffer.
+      The SG-buffer handler will allocate the non-contiguous kernel
+      pages of the given size and map them onto the virtually contiguous
+      memory.  The virtual pointer is addressed in runtime-&gt;dma_area.
+      The physical address (runtime-&gt;dma_addr) is set to zero,
+      because the buffer is physically non-contigous.
+      The physical address table is set up in sgbuf-&gt;table.
+      You can get the physical address at a certain offset via
+      <function>snd_pcm_sgbuf_get_addr()</function>. 
+      </para>
+
+      <para>
+        When a SG-handler is used, you need to set
+      <function>snd_pcm_sgbuf_ops_page</function> as
+      the <structfield>page</structfield> callback.
+      (See <link linkend="pcm-interface-operators-page-callback">
+      <citetitle>page callback section</citetitle></link>.)
+      </para>
+
+      <para>
+        To release the data, call
+      <function>snd_pcm_lib_free_pages()</function> in the
+      <structfield>hw_free</structfield> callback as usual.
+      </para>
+    </section>
+
+    <section id="buffer-and-memory-vmalloced">
+      <title>Vmalloc'ed Buffers</title>
+      <para>
+        It's possible to use a buffer allocated via
+      <function>vmalloc</function>, for example, for an intermediate
+      buffer. Since the allocated pages are not contiguous, you need
+      to set the <structfield>page</structfield> callback to obtain
+      the physical address at every offset. 
+      </para>
+
+      <para>
+        The implementation of <structfield>page</structfield> callback
+        would be like this: 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  #include <linux/vmalloc.h>
+
+  /* get the physical page pointer on the given offset */
+  static struct page *mychip_page(struct snd_pcm_substream *substream,
+                                  unsigned long offset)
+  {
+          void *pageptr = substream->runtime->dma_area + offset;
+          return vmalloc_to_page(pageptr);
+  }
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+    </section>
+
+  </chapter>
+
+
+<!-- ****************************************************** -->
+<!-- Proc Interface  -->
+<!-- ****************************************************** -->
+  <chapter id="proc-interface">
+    <title>Proc Interface</title>
+    <para>
+      ALSA provides an easy interface for procfs. The proc files are
+      very useful for debugging. I recommend you set up proc files if
+      you write a driver and want to get a running status or register
+      dumps. The API is found in
+      <filename>&lt;sound/info.h&gt;</filename>. 
+    </para>
+
+    <para>
+      To create a proc file, call
+      <function>snd_card_proc_new()</function>. 
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  struct snd_info_entry *entry;
+  int err = snd_card_proc_new(card, "my-file", &entry);
+]]>
+        </programlisting>
+      </informalexample>
+
+      where the second argument specifies the name of the proc file to be
+    created. The above example will create a file
+    <filename>my-file</filename> under the card directory,
+    e.g. <filename>/proc/asound/card0/my-file</filename>. 
+    </para>
+
+    <para>
+    Like other components, the proc entry created via
+    <function>snd_card_proc_new()</function> will be registered and
+    released automatically in the card registration and release
+    functions.
+    </para>
+
+    <para>
+      When the creation is successful, the function stores a new
+    instance in the pointer given in the third argument.
+    It is initialized as a text proc file for read only.  To use
+    this proc file as a read-only text file as it is, set the read
+    callback with a private data via 
+     <function>snd_info_set_text_ops()</function>.
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  snd_info_set_text_ops(entry, chip, my_proc_read);
+]]>
+        </programlisting>
+      </informalexample>
+    
+    where the second argument (<parameter>chip</parameter>) is the
+    private data to be used in the callbacks. The third parameter
+    specifies the read buffer size and the fourth
+    (<parameter>my_proc_read</parameter>) is the callback function, which
+    is defined like
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  static void my_proc_read(struct snd_info_entry *entry,
+                           struct snd_info_buffer *buffer);
+]]>
+        </programlisting>
+      </informalexample>
+    
+    </para>
+
+    <para>
+    In the read callback, use <function>snd_iprintf()</function> for
+    output strings, which works just like normal
+    <function>printf()</function>.  For example,
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  static void my_proc_read(struct snd_info_entry *entry,
+                           struct snd_info_buffer *buffer)
+  {
+          struct my_chip *chip = entry->private_data;
+
+          snd_iprintf(buffer, "This is my chip!\n");
+          snd_iprintf(buffer, "Port = %ld\n", chip->port);
+  }
+]]>
+        </programlisting>
+      </informalexample>
+    </para>
+
+    <para>
+    The file permissions can be changed afterwards.  As default, it's
+    set as read only for all users.  If you want to add write
+    permission for the user (root as default), do as follows:
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+ entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
+]]>
+        </programlisting>
+      </informalexample>
+
+    and set the write buffer size and the callback
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  entry->c.text.write = my_proc_write;
+]]>
+        </programlisting>
+      </informalexample>
+    </para>
+
+    <para>
+      For the write callback, you can use
+    <function>snd_info_get_line()</function> to get a text line, and
+    <function>snd_info_get_str()</function> to retrieve a string from
+    the line. Some examples are found in
+    <filename>core/oss/mixer_oss.c</filename>, core/oss/and
+    <filename>pcm_oss.c</filename>. 
+    </para>
+
+    <para>
+      For a raw-data proc-file, set the attributes as follows:
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  static struct snd_info_entry_ops my_file_io_ops = {
+          .read = my_file_io_read,
+  };
+
+  entry->content = SNDRV_INFO_CONTENT_DATA;
+  entry->private_data = chip;
+  entry->c.ops = &my_file_io_ops;
+  entry->size = 4096;
+  entry->mode = S_IFREG | S_IRUGO;
+]]>
+        </programlisting>
+      </informalexample>
+    </para>
+
+    <para>
+      The callback is much more complicated than the text-file
+      version. You need to use a low-level I/O functions such as
+      <function>copy_from/to_user()</function> to transfer the
+      data.
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  static long my_file_io_read(struct snd_info_entry *entry,
+                              void *file_private_data,
+                              struct file *file,
+                              char *buf,
+                              unsigned long count,
+                              unsigned long pos)
+  {
+          long size = count;
+          if (pos + size > local_max_size)
+                  size = local_max_size - pos;
+          if (copy_to_user(buf, local_data + pos, size))
+                  return -EFAULT;
+          return size;
+  }
+]]>
+        </programlisting>
+      </informalexample>
+    </para>
+
+  </chapter>
+
+
+<!-- ****************************************************** -->
+<!-- Power Management  -->
+<!-- ****************************************************** -->
+  <chapter id="power-management">
+    <title>Power Management</title>
+    <para>
+      If the chip is supposed to work with suspend/resume
+      functions, you need to add power-management code to the
+      driver. The additional code for power-management should be
+      <function>ifdef</function>'ed with
+      <constant>CONFIG_PM</constant>. 
+    </para>
+
+	<para>
+	If the driver <emphasis>fully</emphasis> supports suspend/resume
+	that is, the device can be
+	properly resumed to its state when suspend was called,
+	you can set the <constant>SNDRV_PCM_INFO_RESUME</constant> flag
+	in the pcm info field.  Usually, this is possible when the
+	registers of the chip can be safely saved and restored to
+	RAM. If this is set, the trigger callback is called with
+	<constant>SNDRV_PCM_TRIGGER_RESUME</constant> after the resume
+	callback completes. 
+	</para>
+
+	<para>
+	Even if the driver doesn't support PM fully but 
+	partial suspend/resume is still possible, it's still worthy to
+	implement suspend/resume callbacks. In such a case, applications
+	would reset the status by calling
+	<function>snd_pcm_prepare()</function> and restart the stream
+	appropriately.  Hence, you can define suspend/resume callbacks
+	below but don't set <constant>SNDRV_PCM_INFO_RESUME</constant>
+	info flag to the PCM.
+	</para>
+	
+	<para>
+	Note that the trigger with SUSPEND can always be called when
+	<function>snd_pcm_suspend_all</function> is called,
+	regardless of the <constant>SNDRV_PCM_INFO_RESUME</constant> flag.
+	The <constant>RESUME</constant> flag affects only the behavior
+	of <function>snd_pcm_resume()</function>.
+	(Thus, in theory,
+	<constant>SNDRV_PCM_TRIGGER_RESUME</constant> isn't needed
+	to be handled in the trigger callback when no
+	<constant>SNDRV_PCM_INFO_RESUME</constant> flag is set.  But,
+	it's better to keep it for compatibility reasons.)
+	</para>
+    <para>
+      In the earlier version of ALSA drivers, a common
+      power-management layer was provided, but it has been removed.
+      The driver needs to define the suspend/resume hooks according to
+      the bus the device is connected to.  In the case of PCI drivers, the
+      callbacks look like below:
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  #ifdef CONFIG_PM
+  static int snd_my_suspend(struct pci_dev *pci, pm_message_t state)
+  {
+          .... /* do things for suspend */
+          return 0;
+  }
+  static int snd_my_resume(struct pci_dev *pci)
+  {
+          .... /* do things for suspend */
+          return 0;
+  }
+  #endif
+]]>
+        </programlisting>
+      </informalexample>
+    </para>
+
+    <para>
+      The scheme of the real suspend job is as follows.
+
+      <orderedlist>
+        <listitem><para>Retrieve the card and the chip data.</para></listitem>
+        <listitem><para>Call <function>snd_power_change_state()</function> with
+	  <constant>SNDRV_CTL_POWER_D3hot</constant> to change the
+	  power status.</para></listitem>
+        <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem>
+	<listitem><para>If AC97 codecs are used, call
+	<function>snd_ac97_suspend()</function> for each codec.</para></listitem>
+        <listitem><para>Save the register values if necessary.</para></listitem>
+        <listitem><para>Stop the hardware if necessary.</para></listitem>
+        <listitem><para>Disable the PCI device by calling
+	  <function>pci_disable_device()</function>.  Then, call
+          <function>pci_save_state()</function> at last.</para></listitem>
+      </orderedlist>
+    </para>
+
+    <para>
+      A typical code would be like:
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  static int mychip_suspend(struct pci_dev *pci, pm_message_t state)
+  {
+          /* (1) */
+          struct snd_card *card = pci_get_drvdata(pci);
+          struct mychip *chip = card->private_data;
+          /* (2) */
+          snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
+          /* (3) */
+          snd_pcm_suspend_all(chip->pcm);
+          /* (4) */
+          snd_ac97_suspend(chip->ac97);
+          /* (5) */
+          snd_mychip_save_registers(chip);
+          /* (6) */
+          snd_mychip_stop_hardware(chip);
+          /* (7) */
+          pci_disable_device(pci);
+          pci_save_state(pci);
+          return 0;
+  }
+]]>
+        </programlisting>
+      </informalexample>
+    </para>
+
+    <para>
+    The scheme of the real resume job is as follows.
+
+    <orderedlist>
+    <listitem><para>Retrieve the card and the chip data.</para></listitem>
+    <listitem><para>Set up PCI. First, call <function>pci_restore_state()</function>.
+    	Then enable the pci device again by calling <function>pci_enable_device()</function>.
+	Call <function>pci_set_master()</function> if necessary, too.</para></listitem>
+    <listitem><para>Re-initialize the chip.</para></listitem>
+    <listitem><para>Restore the saved registers if necessary.</para></listitem>
+    <listitem><para>Resume the mixer, e.g. calling
+    <function>snd_ac97_resume()</function>.</para></listitem>
+    <listitem><para>Restart the hardware (if any).</para></listitem>
+    <listitem><para>Call <function>snd_power_change_state()</function> with
+	<constant>SNDRV_CTL_POWER_D0</constant> to notify the processes.</para></listitem>
+    </orderedlist>
+    </para>
+
+    <para>
+    A typical code would be like:
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  static int mychip_resume(struct pci_dev *pci)
+  {
+          /* (1) */
+          struct snd_card *card = pci_get_drvdata(pci);
+          struct mychip *chip = card->private_data;
+          /* (2) */
+          pci_restore_state(pci);
+          pci_enable_device(pci);
+          pci_set_master(pci);
+          /* (3) */
+          snd_mychip_reinit_chip(chip);
+          /* (4) */
+          snd_mychip_restore_registers(chip);
+          /* (5) */
+          snd_ac97_resume(chip->ac97);
+          /* (6) */
+          snd_mychip_restart_chip(chip);
+          /* (7) */
+          snd_power_change_state(card, SNDRV_CTL_POWER_D0);
+          return 0;
+  }
+]]>
+        </programlisting>
+      </informalexample>
+    </para>
+
+    <para>
+	As shown in the above, it's better to save registers after
+	suspending the PCM operations via
+	<function>snd_pcm_suspend_all()</function> or
+	<function>snd_pcm_suspend()</function>.  It means that the PCM
+	streams are already stoppped when the register snapshot is
+	taken.  But, remember that you don't have to restart the PCM
+	stream in the resume callback. It'll be restarted via 
+	trigger call with <constant>SNDRV_PCM_TRIGGER_RESUME</constant>
+	when necessary.
+    </para>
+
+    <para>
+      OK, we have all callbacks now. Let's set them up. In the
+      initialization of the card, make sure that you can get the chip
+      data from the card instance, typically via
+      <structfield>private_data</structfield> field, in case you
+      created the chip data individually.
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  static int __devinit snd_mychip_probe(struct pci_dev *pci,
+                               const struct pci_device_id *pci_id)
+  {
+          ....
+          struct snd_card *card;
+          struct mychip *chip;
+          int err;
+          ....
+          err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
+          ....
+          chip = kzalloc(sizeof(*chip), GFP_KERNEL);
+          ....
+          card->private_data = chip;
+          ....
+  }
+]]>
+        </programlisting>
+      </informalexample>
+
+	When you created the chip data with
+	<function>snd_card_create()</function>, it's anyway accessible
+	via <structfield>private_data</structfield> field.
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  static int __devinit snd_mychip_probe(struct pci_dev *pci,
+                               const struct pci_device_id *pci_id)
+  {
+          ....
+          struct snd_card *card;
+          struct mychip *chip;
+          int err;
+          ....
+          err = snd_card_create(index[dev], id[dev], THIS_MODULE,
+                                sizeof(struct mychip), &card);
+          ....
+          chip = card->private_data;
+          ....
+  }
+]]>
+        </programlisting>
+      </informalexample>
+
+    </para>
+
+    <para>
+      If you need a space to save the registers, allocate the
+	buffer for it here, too, since it would be fatal
+    if you cannot allocate a memory in the suspend phase.
+    The allocated buffer should be released in the corresponding
+    destructor.
+    </para>
+
+    <para>
+      And next, set suspend/resume callbacks to the pci_driver.
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  static struct pci_driver driver = {
+          .name = "My Chip",
+          .id_table = snd_my_ids,
+          .probe = snd_my_probe,
+          .remove = __devexit_p(snd_my_remove),
+  #ifdef CONFIG_PM
+          .suspend = snd_my_suspend,
+          .resume = snd_my_resume,
+  #endif
+  };
+]]>
+        </programlisting>
+      </informalexample>
+    </para>
+
+  </chapter>
+
+
+<!-- ****************************************************** -->
+<!-- Module Parameters  -->
+<!-- ****************************************************** -->
+  <chapter id="module-parameters">
+    <title>Module Parameters</title>
+    <para>
+      There are standard module options for ALSA. At least, each
+      module should have the <parameter>index</parameter>,
+      <parameter>id</parameter> and <parameter>enable</parameter>
+      options. 
+    </para>
+
+    <para>
+      If the module supports multiple cards (usually up to
+      8 = <constant>SNDRV_CARDS</constant> cards), they should be
+      arrays. The default initial values are defined already as
+      constants for easier programming:
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
+  static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
+  static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
+]]>
+        </programlisting>
+      </informalexample>
+    </para>
+
+    <para>
+      If the module supports only a single card, they could be single
+    variables, instead.  <parameter>enable</parameter> option is not
+    always necessary in this case, but it would be better to have a
+    dummy option for compatibility.
+    </para>
+
+    <para>
+      The module parameters must be declared with the standard
+    <function>module_param()()</function>,
+    <function>module_param_array()()</function> and
+    <function>MODULE_PARM_DESC()</function> macros.
+    </para>
+
+    <para>
+      The typical coding would be like below:
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  #define CARD_NAME "My Chip"
+
+  module_param_array(index, int, NULL, 0444);
+  MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
+  module_param_array(id, charp, NULL, 0444);
+  MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
+  module_param_array(enable, bool, NULL, 0444);
+  MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
+]]>
+        </programlisting>
+      </informalexample>
+    </para>
+
+    <para>
+      Also, don't forget to define the module description, classes,
+      license and devices. Especially, the recent modprobe requires to
+      define the module license as GPL, etc., otherwise the system is
+      shown as <quote>tainted</quote>. 
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  MODULE_DESCRIPTION("My Chip");
+  MODULE_LICENSE("GPL");
+  MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}");
+]]>
+        </programlisting>
+      </informalexample>
+    </para>
+
+  </chapter>
+
+
+<!-- ****************************************************** -->
+<!-- How To Put Your Driver  -->
+<!-- ****************************************************** -->
+  <chapter id="how-to-put-your-driver">
+    <title>How To Put Your Driver Into ALSA Tree</title>
+	<section>
+	<title>General</title>
+	<para>
+	So far, you've learned how to write the driver codes.
+	And you might have a question now: how to put my own
+	driver into the ALSA driver tree?
+	Here (finally :) the standard procedure is described briefly.
+	</para>
+
+	<para>
+	Suppose that you create a new PCI driver for the card
+	<quote>xyz</quote>.  The card module name would be
+	snd-xyz.  The new driver is usually put into the alsa-driver
+	tree, <filename>alsa-driver/pci</filename> directory in
+	the case of PCI cards.
+	Then the driver is evaluated, audited and tested
+	by developers and users.  After a certain time, the driver
+	will go to the alsa-kernel tree (to the corresponding directory,
+	such as <filename>alsa-kernel/pci</filename>) and eventually
+ 	will be integrated into the Linux 2.6 tree (the directory would be
+	<filename>linux/sound/pci</filename>).
+	</para>
+
+	<para>
+	In the following sections, the driver code is supposed
+	to be put into alsa-driver tree. The two cases are covered:
+	a driver consisting of a single source file and one consisting
+	of several source files.
+	</para>
+	</section>
+
+	<section>
+	<title>Driver with A Single Source File</title>
+	<para>
+	<orderedlist>
+	<listitem>
+	<para>
+	Modify alsa-driver/pci/Makefile
+	</para>
+
+	<para>
+	Suppose you have a file xyz.c.  Add the following
+	two lines
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  snd-xyz-objs := xyz.o
+  obj-$(CONFIG_SND_XYZ) += snd-xyz.o
+]]>
+        </programlisting>
+      </informalexample>
+	</para>
+	</listitem>
+
+	<listitem>
+	<para>
+	Create the Kconfig entry
+	</para>
+
+	<para>
+	Add the new entry of Kconfig for your xyz driver.
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  config SND_XYZ
+          tristate "Foobar XYZ"
+          depends on SND
+          select SND_PCM
+          help
+            Say Y here to include support for Foobar XYZ soundcard.
+
+            To compile this driver as a module, choose M here: the module
+            will be called snd-xyz.
+]]>
+        </programlisting>
+      </informalexample>
+
+	the line, select SND_PCM, specifies that the driver xyz supports
+	PCM.  In addition to SND_PCM, the following components are
+	supported for select command:
+	SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
+	SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC.
+	Add the select command for each supported component.
+	</para>
+
+	<para>
+	Note that some selections imply the lowlevel selections.
+	For example, PCM includes TIMER, MPU401_UART includes RAWMIDI,
+	AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP.
+	You don't need to give the lowlevel selections again.
+	</para>
+
+	<para>
+	For the details of Kconfig script, refer to the kbuild
+	documentation.
+	</para>
+
+	</listitem>
+
+	<listitem>
+	<para>
+	Run cvscompile script to re-generate the configure script and
+	build the whole stuff again.
+	</para>
+	</listitem>
+	</orderedlist>
+	</para>
+	</section>
+
+	<section>
+	<title>Drivers with Several Source Files</title>
+	<para>
+	Suppose that the driver snd-xyz have several source files.
+	They are located in the new subdirectory,
+	pci/xyz.
+
+	<orderedlist>
+	<listitem>
+	<para>
+	Add a new directory (<filename>xyz</filename>) in
+	<filename>alsa-driver/pci/Makefile</filename> as below
+
+      <informalexample>
+        <programlisting>
+<![CDATA[
+  obj-$(CONFIG_SND) += xyz/
+]]>
+        </programlisting>
+      </informalexample>
+	</para>
+	</listitem>
+
+	<listitem>
+	<para>
+	Under the directory <filename>xyz</filename>, create a Makefile
+
+      <example>
+	<title>Sample Makefile for a driver xyz</title>
+        <programlisting>
+<![CDATA[
+  ifndef SND_TOPDIR
+  SND_TOPDIR=../..
+  endif
+
+  include $(SND_TOPDIR)/toplevel.config
+  include $(SND_TOPDIR)/Makefile.conf
+
+  snd-xyz-objs := xyz.o abc.o def.o
+
+  obj-$(CONFIG_SND_XYZ) += snd-xyz.o
+
+  include $(SND_TOPDIR)/Rules.make
+]]>
+        </programlisting>
+      </example>
+	</para>
+	</listitem>
+
+	<listitem>
+	<para>
+	Create the Kconfig entry
+	</para>
+
+	<para>
+	This procedure is as same as in the last section.
+	</para>
+	</listitem>
+
+	<listitem>
+	<para>
+	Run cvscompile script to re-generate the configure script and
+	build the whole stuff again.
+	</para>
+	</listitem>
+	</orderedlist>
+	</para>
+	</section>
+
+  </chapter>
+
+<!-- ****************************************************** -->
+<!-- Useful Functions  -->
+<!-- ****************************************************** -->
+  <chapter id="useful-functions">
+    <title>Useful Functions</title>
+
+    <section id="useful-functions-snd-printk">
+      <title><function>snd_printk()</function> and friends</title>
+      <para>
+        ALSA provides a verbose version of the
+      <function>printk()</function> function. If a kernel config
+      <constant>CONFIG_SND_VERBOSE_PRINTK</constant> is set, this
+      function prints the given message together with the file name
+      and the line of the caller. The <constant>KERN_XXX</constant>
+      prefix is processed as 
+      well as the original <function>printk()</function> does, so it's
+      recommended to add this prefix, e.g. 
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\n");
+]]>
+          </programlisting>
+        </informalexample>
+      </para>
+
+      <para>
+        There are also <function>printk()</function>'s for
+      debugging. <function>snd_printd()</function> can be used for
+      general debugging purposes. If
+      <constant>CONFIG_SND_DEBUG</constant> is set, this function is
+      compiled, and works just like
+      <function>snd_printk()</function>. If the ALSA is compiled
+      without the debugging flag, it's ignored. 
+      </para>
+
+      <para>
+        <function>snd_printdd()</function> is compiled in only when
+      <constant>CONFIG_SND_DEBUG_VERBOSE</constant> is set. Please note
+      that <constant>CONFIG_SND_DEBUG_VERBOSE</constant> is not set as default
+      even if you configure the alsa-driver with
+      <option>--with-debug=full</option> option. You need to give
+      explicitly <option>--with-debug=detect</option> option instead. 
+      </para>
+    </section>
+
+    <section id="useful-functions-snd-bug">
+      <title><function>snd_BUG()</function></title>
+      <para>
+        It shows the <computeroutput>BUG?</computeroutput> message and
+      stack trace as well as <function>snd_BUG_ON</function> at the point.
+      It's useful to show that a fatal error happens there. 
+      </para>
+      <para>
+	 When no debug flag is set, this macro is ignored. 
+      </para>
+    </section>
+
+    <section id="useful-functions-snd-bug-on">
+      <title><function>snd_BUG_ON()</function></title>
+      <para>
+        <function>snd_BUG_ON()</function> macro is similar with
+	<function>WARN_ON()</function> macro. For example,  
+
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  snd_BUG_ON(!pointer);
+]]>
+          </programlisting>
+        </informalexample>
+
+	or it can be used as the condition,
+        <informalexample>
+          <programlisting>
+<![CDATA[
+  if (snd_BUG_ON(non_zero_is_bug))
+          return -EINVAL;
+]]>
+          </programlisting>
+        </informalexample>
+
+      </para>
+
+      <para>
+        The macro takes an conditional expression to evaluate.
+	When <constant>CONFIG_SND_DEBUG</constant>, is set, the
+	expression is actually evaluated. If it's non-zero, it shows
+	the warning message such as
+	<computeroutput>BUG? (xxx)</computeroutput>
+	normally followed by stack trace.  It returns the evaluated
+	value.
+	When no <constant>CONFIG_SND_DEBUG</constant> is set, this
+	macro always returns zero.
+      </para>
+
+    </section>
+
+  </chapter>
+
+
+<!-- ****************************************************** -->
+<!-- Acknowledgments  -->
+<!-- ****************************************************** -->
+  <chapter id="acknowledgments">
+    <title>Acknowledgments</title>
+    <para>
+      I would like to thank Phil Kerr for his help for improvement and
+      corrections of this document. 
+    </para>
+    <para>
+    Kevin Conder reformatted the original plain-text to the
+    DocBook format.
+    </para>
+    <para>
+    Giuliano Pochini corrected typos and contributed the example codes
+    in the hardware constraints section.
+    </para>
+  </chapter>
+</book>

+ 2 - 2
Documentation/IO-mapping.txt

@@ -1,6 +1,6 @@
 [ NOTE: The virt_to_bus() and bus_to_virt() functions have been
-	superseded by the functionality provided by the PCI DMA
-	interface (see Documentation/DMA-mapping.txt).  They continue
+	superseded by the functionality provided by the PCI DMA interface
+	(see Documentation/PCI/PCI-DMA-mapping.txt).  They continue
 	to be documented below for historical purposes, but new code
 	must not use them. --davidm 00/12/12 ]
 

+ 1 - 1
Documentation/PCI/PCIEBUS-HOWTO.txt

@@ -93,7 +93,7 @@ the PCI Express Port Bus driver from loading a service driver.
 
 int pcie_port_service_register(struct pcie_port_service_driver *new)
 
-This API replaces the Linux Driver Model's pci_module_init API. A
+This API replaces the Linux Driver Model's pci_register_driver API. A
 service driver should always calls pcie_port_service_register at
 module init. Note that after service driver being loaded, calls
 such as pci_enable_device(dev) and pci_set_master(dev) are no longer

+ 12 - 0
Documentation/RCU/checklist.txt

@@ -298,3 +298,15 @@ over a rather long period of time, but improvements are always welcome!
 
 	Note that, rcu_assign_pointer() and rcu_dereference() relate to
 	SRCU just as they do to other forms of RCU.
+
+15.	The whole point of call_rcu(), synchronize_rcu(), and friends
+	is to wait until all pre-existing readers have finished before
+	carrying out some otherwise-destructive operation.  It is
+	therefore critically important to -first- remove any path
+	that readers can follow that could be affected by the
+	destructive operation, and -only- -then- invoke call_rcu(),
+	synchronize_rcu(), or friends.
+
+	Because these primitives only wait for pre-existing readers,
+	it is the caller's responsibility to guarantee safety to
+	any subsequent readers.

+ 6 - 5
Documentation/block/biodoc.txt

@@ -186,8 +186,9 @@ a virtual address mapping (unlike the earlier scheme of virtual address
 do not have a corresponding kernel virtual address space mapping) and
 low-memory pages.
 
-Note: Please refer to DMA-mapping.txt for a discussion on PCI high mem DMA
-aspects and mapping of scatter gather lists, and support for 64 bit PCI.
+Note: Please refer to Documentation/PCI/PCI-DMA-mapping.txt for a discussion
+on PCI high mem DMA aspects and mapping of scatter gather lists, and support
+for 64 bit PCI.
 
 Special handling is required only for cases where i/o needs to happen on
 pages at physical memory addresses beyond what the device can support. In these
@@ -953,14 +954,14 @@ elevator_allow_merge_fn		called whenever the block layer determines
 				results in some sort of conflict internally,
 				this hook allows it to do that.
 
-elevator_dispatch_fn		fills the dispatch queue with ready requests.
+elevator_dispatch_fn*		fills the dispatch queue with ready requests.
 				I/O schedulers are free to postpone requests by
 				not filling the dispatch queue unless @force
 				is non-zero.  Once dispatched, I/O schedulers
 				are not allowed to manipulate the requests -
 				they belong to generic dispatch queue.
 
-elevator_add_req_fn		called to add a new request into the scheduler
+elevator_add_req_fn*		called to add a new request into the scheduler
 
 elevator_queue_empty_fn		returns true if the merge queue is empty.
 				Drivers shouldn't use this, but rather check
@@ -990,7 +991,7 @@ elevator_activate_req_fn	Called when device driver first sees a request.
 elevator_deactivate_req_fn	Called when device driver decides to delay
 				a request by requeueing it.
 
-elevator_init_fn
+elevator_init_fn*
 elevator_exit_fn		Allocate and free any elevator specific storage
 				for a queue.
 

+ 63 - 0
Documentation/block/queue-sysfs.txt

@@ -0,0 +1,63 @@
+Queue sysfs files
+=================
+
+This text file will detail the queue files that are located in the sysfs tree
+for each block device. Note that stacked devices typically do not export
+any settings, since their queue merely functions are a remapping target.
+These files are the ones found in the /sys/block/xxx/queue/ directory.
+
+Files denoted with a RO postfix are readonly and the RW postfix means
+read-write.
+
+hw_sector_size (RO)
+-------------------
+This is the hardware sector size of the device, in bytes.
+
+max_hw_sectors_kb (RO)
+----------------------
+This is the maximum number of kilobytes supported in a single data transfer.
+
+max_sectors_kb (RW)
+-------------------
+This is the maximum number of kilobytes that the block layer will allow
+for a filesystem request. Must be smaller than or equal to the maximum
+size allowed by the hardware.
+
+nomerges (RW)
+-------------
+This enables the user to disable the lookup logic involved with IO merging
+requests in the block layer. Merging may still occur through a direct
+1-hit cache, since that comes for (almost) free. The IO scheduler will not
+waste cycles doing tree/hash lookups for merges if nomerges is 1. Defaults
+to 0, enabling all merges.
+
+nr_requests (RW)
+----------------
+This controls how many requests may be allocated in the block layer for
+read or write requests. Note that the total allocated number may be twice
+this amount, since it applies only to reads or writes (not the accumulated
+sum).
+
+read_ahead_kb (RW)
+------------------
+Maximum number of kilobytes to read-ahead for filesystems on this block
+device.
+
+rq_affinity (RW)
+----------------
+If this option is enabled, the block layer will migrate request completions
+to the CPU that originally submitted the request. For some workloads
+this provides a significant reduction in CPU cycles due to caching effects.
+
+scheduler (RW)
+--------------
+When read, this file will display the current and available IO schedulers
+for this block device. The currently active IO scheduler will be enclosed
+in [] brackets. Writing an IO scheduler name to this file will switch
+control of this block device to that new IO scheduler. Note that writing
+an IO scheduler name to this file will attempt to load that IO scheduler
+module, if it isn't already present in the system.
+
+
+
+Jens Axboe <jens.axboe@oracle.com>, February 2009

+ 0 - 6
Documentation/block/switching-sched.txt

@@ -35,9 +35,3 @@ noop anticipatory deadline [cfq]
 # echo anticipatory > /sys/block/hda/queue/scheduler
 # cat /sys/block/hda/queue/scheduler
 noop [anticipatory] deadline cfq
-
-Each io queue has a set of io scheduler tunables associated with it. These
-tunables control how the io scheduler works. You can find these entries
-in:
-
-/sys/block/<device>/queue/iosched

+ 2 - 4
Documentation/cgroups/cgroups.txt

@@ -252,10 +252,8 @@ cgroup file system directories.
 When a task is moved from one cgroup to another, it gets a new
 css_set pointer - if there's an already existing css_set with the
 desired collection of cgroups then that group is reused, else a new
-css_set is allocated. Note that the current implementation uses a
-linear search to locate an appropriate existing css_set, so isn't
-very efficient. A future version will use a hash table for better
-performance.
+css_set is allocated. The appropriate existing css_set is located by
+looking into a hash table.
 
 To allow access from a cgroup to the css_sets (and hence tasks)
 that comprise it, a set of cg_cgroup_link objects form a lattice;

+ 37 - 28
Documentation/cgroups/cpusets.txt

@@ -142,7 +142,7 @@ into the rest of the kernel, none in performance critical paths:
  - in fork and exit, to attach and detach a task from its cpuset.
  - in sched_setaffinity, to mask the requested CPUs by what's
    allowed in that tasks cpuset.
- - in sched.c migrate_all_tasks(), to keep migrating tasks within
+ - in sched.c migrate_live_tasks(), to keep migrating tasks within
    the CPUs allowed by their cpuset, if possible.
  - in the mbind and set_mempolicy system calls, to mask the requested
    Memory Nodes by what's allowed in that tasks cpuset.
@@ -175,6 +175,10 @@ files describing that cpuset:
  - mem_exclusive flag: is memory placement exclusive?
  - mem_hardwall flag:  is memory allocation hardwalled
  - memory_pressure: measure of how much paging pressure in cpuset
+ - memory_spread_page flag: if set, spread page cache evenly on allowed nodes
+ - memory_spread_slab flag: if set, spread slab cache evenly on allowed nodes
+ - sched_load_balance flag: if set, load balance within CPUs on that cpuset
+ - sched_relax_domain_level: the searching range when migrating tasks
 
 In addition, the root cpuset only has the following file:
  - memory_pressure_enabled flag: compute memory_pressure?
@@ -252,7 +256,7 @@ is causing.
 
 This is useful both on tightly managed systems running a wide mix of
 submitted jobs, which may choose to terminate or re-prioritize jobs that
-are trying to use more memory than allowed on the nodes assigned them,
+are trying to use more memory than allowed on the nodes assigned to them,
 and with tightly coupled, long running, massively parallel scientific
 computing jobs that will dramatically fail to meet required performance
 goals if they start to use more memory than allowed to them.
@@ -378,7 +382,7 @@ as cpusets and sched_setaffinity.
 The algorithmic cost of load balancing and its impact on key shared
 kernel data structures such as the task list increases more than
 linearly with the number of CPUs being balanced.  So the scheduler
-has support to  partition the systems CPUs into a number of sched
+has support to partition the systems CPUs into a number of sched
 domains such that it only load balances within each sched domain.
 Each sched domain covers some subset of the CPUs in the system;
 no two sched domains overlap; some CPUs might not be in any sched
@@ -485,17 +489,22 @@ of CPUs allowed to a cpuset having 'sched_load_balance' enabled.
 The internal kernel cpuset to scheduler interface passes from the
 cpuset code to the scheduler code a partition of the load balanced
 CPUs in the system. This partition is a set of subsets (represented
-as an array of cpumask_t) of CPUs, pairwise disjoint, that cover all
-the CPUs that must be load balanced.
-
-Whenever the 'sched_load_balance' flag changes, or CPUs come or go
-from a cpuset with this flag enabled, or a cpuset with this flag
-enabled is removed, the cpuset code builds a new such partition and
-passes it to the scheduler sched domain setup code, to have the sched
-domains rebuilt as necessary.
+as an array of struct cpumask) of CPUs, pairwise disjoint, that cover
+all the CPUs that must be load balanced.
+
+The cpuset code builds a new such partition and passes it to the
+scheduler sched domain setup code, to have the sched domains rebuilt
+as necessary, whenever:
+ - the 'sched_load_balance' flag of a cpuset with non-empty CPUs changes,
+ - or CPUs come or go from a cpuset with this flag enabled,
+ - or 'sched_relax_domain_level' value of a cpuset with non-empty CPUs
+   and with this flag enabled changes,
+ - or a cpuset with non-empty CPUs and with this flag enabled is removed,
+ - or a cpu is offlined/onlined.
 
 This partition exactly defines what sched domains the scheduler should
-setup - one sched domain for each element (cpumask_t) in the partition.
+setup - one sched domain for each element (struct cpumask) in the
+partition.
 
 The scheduler remembers the currently active sched domain partitions.
 When the scheduler routine partition_sched_domains() is invoked from
@@ -559,7 +568,7 @@ domain, the largest value among those is used.  Be careful, if one
 requests 0 and others are -1 then 0 is used.
 
 Note that modifying this file will have both good and bad effects,
-and whether it is acceptable or not will be depend on your situation.
+and whether it is acceptable or not depends on your situation.
 Don't modify this file if you are not sure.
 
 If your situation is:
@@ -600,19 +609,15 @@ to allocate a page of memory for that task.
 
 If a cpuset has its 'cpus' modified, then each task in that cpuset
 will have its allowed CPU placement changed immediately.  Similarly,
-if a tasks pid is written to a cpusets 'tasks' file, in either its
-current cpuset or another cpuset, then its allowed CPU placement is
-changed immediately.  If such a task had been bound to some subset
-of its cpuset using the sched_setaffinity() call, the task will be
-allowed to run on any CPU allowed in its new cpuset, negating the
-affect of the prior sched_setaffinity() call.
+if a tasks pid is written to another cpusets 'tasks' file, then its
+allowed CPU placement is changed immediately.  If such a task had been
+bound to some subset of its cpuset using the sched_setaffinity() call,
+the task will be allowed to run on any CPU allowed in its new cpuset,
+negating the effect of the prior sched_setaffinity() call.
 
 In summary, the memory placement of a task whose cpuset is changed is
 updated by the kernel, on the next allocation of a page for that task,
-but the processor placement is not updated, until that tasks pid is
-rewritten to the 'tasks' file of its cpuset.  This is done to avoid
-impacting the scheduler code in the kernel with a check for changes
-in a tasks processor placement.
+and the processor placement is updated immediately.
 
 Normally, once a page is allocated (given a physical page
 of main memory) then that page stays on whatever node it
@@ -681,10 +686,14 @@ and then start a subshell 'sh' in that cpuset:
   # The next line should display '/Charlie'
   cat /proc/self/cpuset
 
-In the future, a C library interface to cpusets will likely be
-available.  For now, the only way to query or modify cpusets is
-via the cpuset file system, using the various cd, mkdir, echo, cat,
-rmdir commands from the shell, or their equivalent from C.
+There are ways to query or modify cpusets:
+ - via the cpuset file system directly, using the various cd, mkdir, echo,
+   cat, rmdir commands from the shell, or their equivalent from C.
+ - via the C library libcpuset.
+ - via the C library libcgroup.
+   (http://sourceforge.net/proects/libcg/)
+ - via the python application cset.
+   (http://developer.novell.com/wiki/index.php/Cpuset)
 
 The sched_setaffinity calls can also be done at the shell prompt using
 SGI's runon or Robert Love's taskset.  The mbind and set_mempolicy
@@ -756,7 +765,7 @@ mount -t cpuset X /dev/cpuset
 
 is equivalent to
 
-mount -t cgroup -ocpuset X /dev/cpuset
+mount -t cgroup -ocpuset,noprefix X /dev/cpuset
 echo "/sbin/cpuset_release_agent" > /dev/cpuset/release_agent
 
 2.2 Adding/removing cpus

+ 22 - 2
Documentation/cgroups/memcg_test.txt

@@ -1,6 +1,6 @@
 Memory Resource Controller(Memcg)  Implementation Memo.
-Last Updated: 2008/12/15
-Base Kernel Version: based on 2.6.28-rc8-mm.
+Last Updated: 2009/1/19
+Base Kernel Version: based on 2.6.29-rc2.
 
 Because VM is getting complex (one of reasons is memcg...), memcg's behavior
 is complex. This is a document for memcg's internal behavior.
@@ -340,3 +340,23 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
 	# mount -t cgroup none /cgroup -t cpuset,memory,cpu,devices
 
 	and do task move, mkdir, rmdir etc...under this.
+
+ 9.7 swapoff.
+	Besides management of swap is one of complicated parts of memcg,
+	call path of swap-in at swapoff is not same as usual swap-in path..
+	It's worth to be tested explicitly.
+
+	For example, test like following is good.
+	(Shell-A)
+	# mount -t cgroup none /cgroup -t memory
+	# mkdir /cgroup/test
+	# echo 40M > /cgroup/test/memory.limit_in_bytes
+	# echo 0 > /cgroup/test/tasks
+	Run malloc(100M) program under this. You'll see 60M of swaps.
+	(Shell-B)
+	# move all tasks in /cgroup/test to /cgroup
+	# /sbin/swapoff -a
+	# rmdir /test/cgroup
+	# kill malloc task.
+
+	Of course, tmpfs v.s. swapoff test should be tested, too.

+ 2 - 4
Documentation/connector/cn_test.c

@@ -137,7 +137,7 @@ static void cn_test_timer_func(unsigned long __data)
 
 		memcpy(m + 1, data, m->len);
 
-		cn_netlink_send(m, 0, gfp_any());
+		cn_netlink_send(m, 0, GFP_ATOMIC);
 		kfree(m);
 	}
 
@@ -160,10 +160,8 @@ static int cn_test_init(void)
 		goto err_out;
 	}
 
-	init_timer(&cn_test_timer);
-	cn_test_timer.function = cn_test_timer_func;
+	setup_timer(&cn_test_timer, cn_test_timer_func, 0);
 	cn_test_timer.expires = jiffies + HZ;
-	cn_test_timer.data = 0;
 	add_timer(&cn_test_timer);
 
 	return 0;

+ 22 - 4
Documentation/cpu-freq/governors.txt

@@ -117,10 +117,28 @@ accessible parameters:
 sampling_rate: measured in uS (10^-6 seconds), this is how often you
 want the kernel to look at the CPU usage and to make decisions on
 what to do about the frequency.  Typically this is set to values of
-around '10000' or more.
-
-show_sampling_rate_(min|max): the minimum and maximum sampling rates
-available that you may set 'sampling_rate' to.
+around '10000' or more. It's default value is (cmp. with users-guide.txt):
+transition_latency * 1000
+The lowest value you can set is:
+transition_latency * 100 or it may get restricted to a value where it
+makes not sense for the kernel anymore to poll that often which depends
+on your HZ config variable (HZ=1000: max=20000us, HZ=250: max=5000).
+Be aware that transition latency is in ns and sampling_rate is in us, so you
+get the same sysfs value by default.
+Sampling rate should always get adjusted considering the transition latency
+To set the sampling rate 750 times as high as the transition latency
+in the bash (as said, 1000 is default), do:
+echo `$(($(cat cpuinfo_transition_latency) * 750 / 1000)) \
+    >ondemand/sampling_rate
+
+show_sampling_rate_(min|max): THIS INTERFACE IS DEPRECATED, DON'T USE IT.
+You can use wider ranges now and the general
+cpuinfo_transition_latency variable (cmp. with user-guide.txt) can be
+used to obtain exactly the same info:
+show_sampling_rate_min = transtition_latency * 500    / 1000
+show_sampling_rate_max = transtition_latency * 500000 / 1000
+(divided by 1000 is to illustrate that sampling rate is in us and
+transition latency is exported ns).
 
 up_threshold: defines what the average CPU usage between the samplings
 of 'sampling_rate' needs to be for the kernel to make a decision on

+ 12 - 16
Documentation/cpu-freq/user-guide.txt

@@ -152,6 +152,18 @@ cpuinfo_min_freq :		this file shows the minimum operating
 				frequency the processor can run at(in kHz) 
 cpuinfo_max_freq :		this file shows the maximum operating
 				frequency the processor can run at(in kHz) 
+cpuinfo_transition_latency	The time it takes on this CPU to
+				switch between two frequencies in nano
+				seconds. If unknown or known to be
+				that high that the driver does not
+				work with the ondemand governor, -1
+				(CPUFREQ_ETERNAL) will be returned.
+				Using this information can be useful
+				to choose an appropriate polling
+				frequency for a kernel governor or
+				userspace daemon. Make sure to not
+				switch the frequency too often
+				resulting in performance loss.
 scaling_driver :		this file shows what cpufreq driver is
 				used to set the frequency on this CPU
 
@@ -195,19 +207,3 @@ scaling_setspeed.		By "echoing" a new frequency into this
 				you can change the speed of the CPU,
 				but only within the limits of
 				scaling_min_freq and scaling_max_freq.
-				
-
-3.2 Deprecated Interfaces
--------------------------
-
-Depending on your kernel configuration, you might find the following 
-cpufreq-related files:
-/proc/cpufreq
-/proc/sys/cpu/*/speed
-/proc/sys/cpu/*/speed-min
-/proc/sys/cpu/*/speed-max
-
-These are files for deprecated interfaces to cpufreq, which offer far
-less functionality. Because of this, these interfaces aren't described
-here.
-

+ 0 - 1
Documentation/dontdiff

@@ -62,7 +62,6 @@ aic7*reg_print.c*
 aic7*seq.h*
 aicasm
 aicdb.h*
-asm
 asm-offsets.h
 asm_offsets.h
 autoconf.h*

+ 5 - 3
Documentation/driver-model/device.txt

@@ -127,9 +127,11 @@ void unlock_device(struct device * dev);
 Attributes
 ~~~~~~~~~~
 struct device_attribute {
-        struct attribute        attr;
-        ssize_t (*show)(struct device * dev, char * buf, size_t count, loff_t off);
-        ssize_t (*store)(struct device * dev, const char * buf, size_t count, loff_t off);
+	struct attribute	attr;
+	ssize_t (*show)(struct device *dev, struct device_attribute *attr,
+			char *buf);
+	ssize_t (*store)(struct device *dev, struct device_attribute *attr,
+			 const char *buf, size_t count);
 };
 
 Attributes of devices can be exported via drivers using a simple

+ 0 - 205
Documentation/dvb/README.flexcop

@@ -1,205 +0,0 @@
-This README escorted the skystar2-driver rewriting procedure. It describes the
-state of the new flexcop-driver set and some internals are written down here
-too.
-
-This document hopefully describes things about the flexcop and its
-device-offsprings. Goal was to write an easy-to-write and easy-to-read set of
-drivers based on the skystar2.c and other information.
-
-Remark: flexcop-pci.c was a copy of skystar2.c, but every line has been
-touched and rewritten.
-
-History & News
-==============
-  2005-04-01 - correct USB ISOC transfers (thanks to Vadim Catana)
-
-
-
-
-General coding processing
-=========================
-
-We should proceed as follows (as long as no one complains):
-
-0) Think before start writing code!
-
-1) rewriting the skystar2.c with the help of the flexcop register descriptions
-and splitting up the files to a pci-bus-part and a flexcop-part.
-The new driver will be called b2c2-flexcop-pci.ko/b2c2-flexcop-usb.ko for the
-device-specific part and b2c2-flexcop.ko for the common flexcop-functions.
-
-2) Search for errors in the leftover of flexcop-pci.c (compare with pluto2.c
-and other pci drivers)
-
-3) make some beautification (see 'Improvements when rewriting (refactoring) is
-done')
-
-4) Testing the new driver and maybe substitute the skystar2.c with it, to reach
-a wider tester audience.
-
-5) creating an usb-bus-part using the already written flexcop code for the pci
-card.
-
-Idea: create a kernel-object for the flexcop and export all important
-functions. This option saves kernel-memory, but maybe a lot of functions have
-to be exported to kernel namespace.
-
-
-Current situation
-=================
-
-0) Done :)
-1) Done (some minor issues left)
-2) Done
-3) Not ready yet, more information is necessary
-4) next to be done (see the table below)
-5) USB driver is working (yes, there are some minor issues)
-
-What seems to be ready?
------------------------
-
-1) Rewriting
-1a) i2c is cut off from the flexcop-pci.c and seems to work
-1b) moved tuner and demod stuff from flexcop-pci.c to flexcop-tuner-fe.c
-1c) moved lnb and diseqc stuff from flexcop-pci.c to flexcop-tuner-fe.c
-1e) eeprom (reading MAC address)
-1d) sram (no dynamic sll size detection (commented out) (using default as JJ told me))
-1f) misc. register accesses for reading parameters (e.g. resetting, revision)
-1g) pid/mac filter (flexcop-hw-filter.c)
-1i) dvb-stuff initialization in flexcop.c (done)
-1h) dma stuff (now just using the size-irq, instead of all-together, to be done)
-1j) remove flexcop initialization from flexcop-pci.c completely (done)
-1l) use a well working dma IRQ method (done, see 'Known bugs and problems and TODO')
-1k) cleanup flexcop-files (remove unused EXPORT_SYMBOLs, make static from
-non-static where possible, moved code to proper places)
-
-2) Search for errors in the leftover of flexcop-pci.c (partially done)
-5a) add MAC address reading
-5c) feeding of ISOC data to the software demux (format of the isochronous data
-and speed optimization, no real error) (thanks to Vadim Catana)
-
-What to do in the near future?
---------------------------------------
-(no special order here)
-
-5) USB driver
-5b) optimize isoc-transfer (submitting/killing isoc URBs when transfer is starting)
-
-Testing changes
----------------
-
-O             = item is working
-P             = item is partially working
-X             = item is not working
-N             = item does not apply here
-<empty field> = item need to be examined
-
-       | PCI                               | USB
-item   | mt352 | nxt2002 | stv0299 | mt312 | mt352 | nxt2002 | stv0299 | mt312
--------+-------+---------+---------+-------+-------+---------+---------+-------
-1a)    | O     |         |         |       | N     | N       | N       | N
-1b)    | O     |         |         |       |       |         | O       |
-1c)    | N     | N       |         |       | N     | N       | O       |
-1d)    |                 O                 |                 O
-1e)    |                 O                 |                 O
-1f)    |                                   P
-1g)    |                                   O
-1h)    |                 P                 |
-1i)    |                 O                 |                 N
-1j)    |                 O                 |                 N
-1l)    |                 O                 |                 N
-2)     |                 O                 |                 N
-5a)    |                 N                 |                 O
-5b)*   |                 N                 |
-5c)    |                 N                 |                 O
-
-* - not done yet
-
-Known bugs and problems and TODO
---------------------------------
-
-1g/h/l) when pid filtering is enabled on the pci card
-
-DMA usage currently:
-  The DMA is splitted in 2 equal-sized subbuffers. The Flexcop writes to first
-  address and triggers an IRQ when it's full and starts writing to the second
-  address. When the second address is full, the IRQ is triggered again, and
-  the flexcop writes to first address again, and so on.
-  The buffersize of each address is currently 640*188 bytes.
-
-  Problem is, when using hw-pid-filtering and doing some low-bandwidth
-  operation (like scanning) the buffers won't be filled enough to trigger
-  the IRQ. That's why:
-
-  When PID filtering is activated, the timer IRQ is used. Every 1.97 ms the IRQ
-  is triggered.  Is the current write address of DMA1 different to the one
-  during the last IRQ, then the data is passed to the demuxer.
-
-  There is an additional DMA-IRQ-method: packet count IRQ. This isn't
-  implemented correctly yet.
-
-  The solution is to disable HW PID filtering, but I don't know how the DVB
-  API software demux behaves on slow systems with 45MBit/s TS.
-
-Solved bugs :)
---------------
-1g) pid-filtering (somehow pid index 4 and 5 (EMM_PID and ECM_PID) aren't
-working)
-SOLUTION: also index 0 was affected, because net_translation is done for
-these indexes by default
-
-5b) isochronous transfer does only work in the first attempt (for the Sky2PC
-USB, Air2PC is working) SOLUTION: the flexcop was going asleep and never really
-woke up again (don't know if this need fixes, see
-flexcop-fe-tuner.c:flexcop_sleep)
-
-NEWS: when the driver is loaded and unloaded and loaded again (w/o doing
-anything in the while the driver is loaded the first time), no transfers take
-place anymore.
-
-Improvements when rewriting (refactoring) is done
-=================================================
-
-- split sleeping of the flexcop (misc_204.ACPI3_sig = 1;) from lnb_control
-  (enable sleeping for other demods than dvb-s)
-- add support for CableStar (stv0297 Microtune 203x/ALPS) (almost done, incompatibilities with the Nexus-CA)
-
-Debugging
----------
-- add verbose debugging to skystar2.c (dump the reg_dw_data) and compare it
-  with this flexcop, this is important, because i2c is now using the
-  flexcop_ibi_value union from flexcop-reg.h (do you have a better idea for
-  that, please tell us so).
-
-Everything which is identical in the following table, can be put into a common
-flexcop-module.
-
-		  PCI                  USB
--------------------------------------------------------------------------------
-Different:
-Register access:  accessing IO memory  USB control message
-I2C bus:          I2C bus of the FC    USB control message
-Data transfer:    DMA                  isochronous transfer
-EEPROM transfer:  through i2c bus      not clear yet
-
-Identical:
-Streaming:                 accessing registers
-PID Filtering:             accessing registers
-Sram destinations:         accessing registers
-Tuner/Demod:                     I2C bus
-DVB-stuff:            can be written for common use
-
-Acknowledgements (just for the rewriting part)
-================
-
-Bjarne Steinsbo thought a lot in the first place of the pci part for this code
-sharing idea.
-
-Andreas Oberritter for providing a recent PCI initialization template
-(pluto2.c).
-
-Boleslaw Ciesielski for pointing out a problem with firmware loader.
-
-Vadim Catana for correcting the USB transfer.
-
-comments, critics and ideas to linux-dvb@linuxtv.org.

+ 20 - 14
Documentation/dvb/technisat.txt

@@ -1,5 +1,5 @@
-How to set up the Technisat devices
-===================================
+How to set up the Technisat/B2C2 Flexcop devices
+================================================
 
 1) Find out what device you have
 ================================
@@ -16,54 +16,60 @@ DVB: registering frontend 0 (Conexant CX24123/CX24109)...
 
 If the Technisat is the only TV device in your box get rid of unnecessary modules and check this one:
 "Multimedia devices" => "Customise analog and hybrid tuner modules to build"
-In this directory uncheck every driver which is activated there.
+In this directory uncheck every driver which is activated there (except "Simple tuner support" for case 9 only).
 
 Then please activate:
 2a) Main module part:
 
 a.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters"
-b.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Technisat/B2C2 Air/Sky/Cable2PC PCI" in case of a PCI card OR
+b.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Technisat/B2C2 Air/Sky/Cable2PC PCI" in case of a PCI card
+OR
 c.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Technisat/B2C2 Air/Sky/Cable2PC USB" in case of an USB 1.1 adapter
 d.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Enable debug for the B2C2 FlexCop drivers"
 Notice: d.) is helpful for troubleshooting
 
 2b) Frontend module part:
 
-1.) Revision 2.3:
+1.) SkyStar DVB-S Revision 2.3:
 a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
 b.)"Multimedia devices" => "Customise DVB frontends" => "Zarlink VP310/MT312/ZL10313 based"
 
-2.) Revision 2.6:
+2.) SkyStar DVB-S Revision 2.6:
 a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
 b.)"Multimedia devices" => "Customise DVB frontends" => "ST STV0299 based"
 
-3.) Revision 2.7:
+3.) SkyStar DVB-S Revision 2.7:
 a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
 b.)"Multimedia devices" => "Customise DVB frontends" => "Samsung S5H1420 based"
 c.)"Multimedia devices" => "Customise DVB frontends" => "Integrant ITD1000 Zero IF tuner for DVB-S/DSS"
 d.)"Multimedia devices" => "Customise DVB frontends" => "ISL6421 SEC controller"
 
-4.) Revision 2.8:
+4.) SkyStar DVB-S Revision 2.8:
 a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
 b.)"Multimedia devices" => "Customise DVB frontends" => "Conexant CX24113/CX24128 tuner for DVB-S/DSS"
 c.)"Multimedia devices" => "Customise DVB frontends" => "Conexant CX24123 based"
 d.)"Multimedia devices" => "Customise DVB frontends" => "ISL6421 SEC controller"
 
-5.) DVB-T card:
+5.) AirStar DVB-T card:
 a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
 b.)"Multimedia devices" => "Customise DVB frontends" => "Zarlink MT352 based"
 
-6.) DVB-C card:
+6.) CableStar DVB-C card:
 a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
 b.)"Multimedia devices" => "Customise DVB frontends" => "ST STV0297 based"
 
-7.) ATSC card 1st generation:
+7.) AirStar ATSC card 1st generation:
 a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
 b.)"Multimedia devices" => "Customise DVB frontends" => "Broadcom BCM3510"
 
-8.) ATSC card 2nd generation:
+8.) AirStar ATSC card 2nd generation:
 a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
 b.)"Multimedia devices" => "Customise DVB frontends" => "NxtWave Communications NXT2002/NXT2004 based"
-c.)"Multimedia devices" => "Customise DVB frontends" => "LG Electronics LGDT3302/LGDT3303 based"
+c.)"Multimedia devices" => "Customise DVB frontends" => "Generic I2C PLL based tuners"
 
-Author: Uwe Bugla <uwe.bugla@gmx.de> December 2008
+9.) AirStar ATSC card 3rd generation:
+a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
+b.)"Multimedia devices" => "Customise DVB frontends" => "LG Electronics LGDT3302/LGDT3303 based"
+c.)"Multimedia devices" => "Customise analog and hybrid tuner modules to build" => "Simple tuner support"
+
+Author: Uwe Bugla <uwe.bugla@gmx.de> February 2009

+ 240 - 0
Documentation/dynamic-debug-howto.txt

@@ -0,0 +1,240 @@
+
+Introduction
+============
+
+This document describes how to use the dynamic debug (ddebug) feature.
+
+Dynamic debug is designed to allow you to dynamically enable/disable kernel
+code to obtain additional kernel information. Currently, if
+CONFIG_DYNAMIC_DEBUG is set, then all pr_debug()/dev_debug() calls can be
+dynamically enabled per-callsite.
+
+Dynamic debug has even more useful features:
+
+ * Simple query language allows turning on and off debugging statements by
+   matching any combination of:
+
+   - source filename
+   - function name
+   - line number (including ranges of line numbers)
+   - module name
+   - format string
+
+ * Provides a debugfs control file: <debugfs>/dynamic_debug/control which can be
+   read to display the complete list of known debug statements, to help guide you
+
+Controlling dynamic debug Behaviour
+===============================
+
+The behaviour of pr_debug()/dev_debug()s are controlled via writing to a
+control file in the 'debugfs' filesystem. Thus, you must first mount the debugfs
+filesystem, in order to make use of this feature. Subsequently, we refer to the
+control file as: <debugfs>/dynamic_debug/control. For example, if you want to
+enable printing from source file 'svcsock.c', line 1603 you simply do:
+
+nullarbor:~ # echo 'file svcsock.c line 1603 +p' >
+				<debugfs>/dynamic_debug/control
+
+If you make a mistake with the syntax, the write will fail thus:
+
+nullarbor:~ # echo 'file svcsock.c wtf 1 +p' >
+				<debugfs>/dynamic_debug/control
+-bash: echo: write error: Invalid argument
+
+Viewing Dynamic Debug Behaviour
+===========================
+
+You can view the currently configured behaviour of all the debug statements
+via:
+
+nullarbor:~ # cat <debugfs>/dynamic_debug/control
+# filename:lineno [module]function flags format
+/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:323 [svcxprt_rdma]svc_rdma_cleanup - "SVCRDMA Module Removed, deregister RPC RDMA transport\012"
+/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:341 [svcxprt_rdma]svc_rdma_init - "\011max_inline       : %d\012"
+/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:340 [svcxprt_rdma]svc_rdma_init - "\011sq_depth         : %d\012"
+/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:338 [svcxprt_rdma]svc_rdma_init - "\011max_requests     : %d\012"
+...
+
+
+You can also apply standard Unix text manipulation filters to this
+data, e.g.
+
+nullarbor:~ # grep -i rdma <debugfs>/dynamic_debug/control  | wc -l
+62
+
+nullarbor:~ # grep -i tcp <debugfs>/dynamic_debug/control | wc -l
+42
+
+Note in particular that the third column shows the enabled behaviour
+flags for each debug statement callsite (see below for definitions of the
+flags).  The default value, no extra behaviour enabled, is "-".  So
+you can view all the debug statement callsites with any non-default flags:
+
+nullarbor:~ # awk '$3 != "-"' <debugfs>/dynamic_debug/control
+# filename:lineno [module]function flags format
+/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svcsock.c:1603 [sunrpc]svc_send p "svc_process: st_sendto returned %d\012"
+
+
+Command Language Reference
+==========================
+
+At the lexical level, a command comprises a sequence of words separated
+by whitespace characters.  Note that newlines are treated as word
+separators and do *not* end a command or allow multiple commands to
+be done together.  So these are all equivalent:
+
+nullarbor:~ # echo -c 'file svcsock.c line 1603 +p' >
+				<debugfs>/dynamic_debug/control
+nullarbor:~ # echo -c '  file   svcsock.c     line  1603 +p  ' >
+				<debugfs>/dynamic_debug/control
+nullarbor:~ # echo -c 'file svcsock.c\nline 1603 +p' >
+				<debugfs>/dynamic_debug/control
+nullarbor:~ # echo -n 'file svcsock.c line 1603 +p' >
+				<debugfs>/dynamic_debug/control
+
+Commands are bounded by a write() system call.  If you want to do
+multiple commands you need to do a separate "echo" for each, like:
+
+nullarbor:~ # echo 'file svcsock.c line 1603 +p' > /proc/dprintk ;\
+> echo 'file svcsock.c line 1563 +p' > /proc/dprintk
+
+or even like:
+
+nullarbor:~ # (
+> echo 'file svcsock.c line 1603 +p' ;\
+> echo 'file svcsock.c line 1563 +p' ;\
+> ) > /proc/dprintk
+
+At the syntactical level, a command comprises a sequence of match
+specifications, followed by a flags change specification.
+
+command ::= match-spec* flags-spec
+
+The match-spec's are used to choose a subset of the known dprintk()
+callsites to which to apply the flags-spec.  Think of them as a query
+with implicit ANDs between each pair.  Note that an empty list of
+match-specs is possible, but is not very useful because it will not
+match any debug statement callsites.
+
+A match specification comprises a keyword, which controls the attribute
+of the callsite to be compared, and a value to compare against.  Possible
+keywords are:
+
+match-spec ::= 'func' string |
+	       'file' string |
+	       'module' string |
+	       'format' string |
+	       'line' line-range
+
+line-range ::= lineno |
+	       '-'lineno |
+	       lineno'-' |
+	       lineno'-'lineno
+// Note: line-range cannot contain space, e.g.
+// "1-30" is valid range but "1 - 30" is not.
+
+lineno ::= unsigned-int
+
+The meanings of each keyword are:
+
+func
+    The given string is compared against the function name
+    of each callsite.  Example:
+
+    func svc_tcp_accept
+
+file
+    The given string is compared against either the full
+    pathname or the basename of the source file of each
+    callsite.  Examples:
+
+    file svcsock.c
+    file /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svcsock.c
+
+module
+    The given string is compared against the module name
+    of each callsite.  The module name is the string as
+    seen in "lsmod", i.e. without the directory or the .ko
+    suffix and with '-' changed to '_'.  Examples:
+
+    module sunrpc
+    module nfsd
+
+format
+    The given string is searched for in the dynamic debug format
+    string.  Note that the string does not need to match the
+    entire format, only some part.  Whitespace and other
+    special characters can be escaped using C octal character
+    escape \ooo notation, e.g. the space character is \040.
+    Alternatively, the string can be enclosed in double quote
+    characters (") or single quote characters (').
+    Examples:
+
+    format svcrdma:	    // many of the NFS/RDMA server dprintks
+    format readahead	    // some dprintks in the readahead cache
+    format nfsd:\040SETATTR // one way to match a format with whitespace
+    format "nfsd: SETATTR"  // a neater way to match a format with whitespace
+    format 'nfsd: SETATTR'  // yet another way to match a format with whitespace
+
+line
+    The given line number or range of line numbers is compared
+    against the line number of each dprintk() callsite.  A single
+    line number matches the callsite line number exactly.  A
+    range of line numbers matches any callsite between the first
+    and last line number inclusive.  An empty first number means
+    the first line in the file, an empty line number means the
+    last number in the file.  Examples:
+
+    line 1603	    // exactly line 1603
+    line 1600-1605  // the six lines from line 1600 to line 1605
+    line -1605	    // the 1605 lines from line 1 to line 1605
+    line 1600-	    // all lines from line 1600 to the end of the file
+
+The flags specification comprises a change operation followed
+by one or more flag characters.  The change operation is one
+of the characters:
+
+-
+    remove the given flags
+
++
+    add the given flags
+
+=
+    set the flags to the given flags
+
+The flags are:
+
+p
+    Causes a printk() message to be emitted to dmesg
+
+Note the regexp ^[-+=][scp]+$ matches a flags specification.
+Note also that there is no convenient syntax to remove all
+the flags at once, you need to use "-psc".
+
+Examples
+========
+
+// enable the message at line 1603 of file svcsock.c
+nullarbor:~ # echo -n 'file svcsock.c line 1603 +p' >
+				<debugfs>/dynamic_debug/control
+
+// enable all the messages in file svcsock.c
+nullarbor:~ # echo -n 'file svcsock.c +p' >
+				<debugfs>/dynamic_debug/control
+
+// enable all the messages in the NFS server module
+nullarbor:~ # echo -n 'module nfsd +p' >
+				<debugfs>/dynamic_debug/control
+
+// enable all 12 messages in the function svc_process()
+nullarbor:~ # echo -n 'func svc_process +p' >
+				<debugfs>/dynamic_debug/control
+
+// disable all 12 messages in the function svc_process()
+nullarbor:~ # echo -n 'func svc_process -p' >
+				<debugfs>/dynamic_debug/control
+
+// enable messages for NFS calls READ, READLINK, READDIR and READDIR+.
+nullarbor:~ # echo -n 'format "nfsd: READ" +p' >
+				<debugfs>/dynamic_debug/control

+ 29 - 1
Documentation/feature-removal-schedule.txt

@@ -229,7 +229,9 @@ Who:	Jan Engelhardt <jengelh@computergmbh.de>
 ---------------------------
 
 What:	b43 support for firmware revision < 410
-When:	July 2008
+When:	The schedule was July 2008, but it was decided that we are going to keep the
+        code as long as there are no major maintanance headaches.
+	So it _could_ be removed _any_ time now, if it conflicts with something new.
 Why:	The support code for the old firmware hurts code readability/maintainability
 	and slightly hurts runtime performance. Bugfixes for the old firmware
 	are not provided by Broadcom anymore.
@@ -335,3 +337,29 @@ Why:	In 2.6.18 the Secmark concept was introduced to replace the "compat_net"
 	Secmark, it is time to deprecate the older mechanism and start the
 	process of removing the old code.
 Who:	Paul Moore <paul.moore@hp.com>
+---------------------------
+
+What:	sysfs ui for changing p4-clockmod parameters
+When:	September 2009
+Why:	See commits 129f8ae9b1b5be94517da76009ea956e89104ce8 and
+	e088e4c9cdb618675874becb91b2fd581ee707e6.
+	Removal is subject to fixing any remaining bugs in ACPI which may
+	cause the thermal throttling not to happen at the right time.
+Who:	Dave Jones <davej@redhat.com>, Matthew Garrett <mjg@redhat.com>
+
+-----------------------------
+
+What:	__do_IRQ all in one fits nothing interrupt handler
+When:	2.6.32
+Why:	__do_IRQ was kept for easy migration to the type flow handlers.
+	More than two years of migration time is enough.
+Who:	Thomas Gleixner <tglx@linutronix.de>
+
+-----------------------------
+
+What:	obsolete generic irq defines and typedefs
+When:	2.6.30
+Why:	The defines and typedefs (hw_interrupt_type, no_irq_type, irq_desc_t)
+	have been kept around for migration reasons. After more than two years
+	it's time to remove them finally
+Who:	Thomas Gleixner <tglx@linutronix.de>

+ 5 - 2
Documentation/filesystems/Locking

@@ -437,8 +437,11 @@ grab BKL for cases when we close a file that had been opened r/w, but that
 can and should be done using the internal locking with smaller critical areas).
 Current worst offender is ext2_get_block()...
 
-->fasync() is a mess. This area needs a big cleanup and that will probably
-affect locking.
+->fasync() is called without BKL protection, and is responsible for
+maintaining the FASYNC bit in filp->f_flags.  Most instances call
+fasync_helper(), which does that maintenance, so it's not normally
+something one needs to worry about.  Return values > 0 will be mapped to
+zero in the VFS layer.
 
 ->readdir() and ->ioctl() on directories must be changed. Ideally we would
 move ->readdir() to inode_operations and use a separate method for directory

+ 5 - 4
Documentation/filesystems/ext2.txt

@@ -373,10 +373,11 @@ Filesystem Resizing	http://ext2resize.sourceforge.net/
 Compression (*)		http://e2compr.sourceforge.net/
 
 Implementations for:
-Windows 95/98/NT/2000	http://uranus.it.swin.edu.au/~jn/linux/Explore2fs.htm
-Windows 95 (*)		http://www.yipton.demon.co.uk/content.html#FSDEXT2
+Windows 95/98/NT/2000	http://www.chrysocome.net/explore2fs
+Windows 95 (*)		http://www.yipton.net/content.html#FSDEXT2
 DOS client (*)		ftp://metalab.unc.edu/pub/Linux/system/filesystems/ext2/
-OS/2			http://perso.wanadoo.fr/matthieu.willm/ext2-os2/
-RISC OS client		ftp://ftp.barnet.ac.uk/pub/acorn/armlinux/iscafs/
+OS/2 (+)		ftp://metalab.unc.edu/pub/Linux/system/filesystems/ext2/
+RISC OS client		http://www.esw-heim.tu-clausthal.de/~marco/smorbrod/IscaFS/
 
 (*) no longer actively developed/supported (as of Apr 2001)
+(+) no longer actively developed/supported (as of Mar 2009)

+ 2 - 2
Documentation/filesystems/ext3.txt

@@ -198,5 +198,5 @@ kernel source:	<file:fs/ext3/>
 programs: 	http://e2fsprogs.sourceforge.net/
 		http://ext2resize.sourceforge.net
 
-useful links:	http://www-106.ibm.com/developerworks/linux/library/l-fs7/
-		http://www-106.ibm.com/developerworks/linux/library/l-fs8/
+useful links:	http://www.ibm.com/developerworks/library/l-fs7.html
+		http://www.ibm.com/developerworks/library/l-fs8.html

+ 2 - 2
Documentation/filesystems/nfs-rdma.txt

@@ -251,7 +251,7 @@ NFS/RDMA Setup
 
     Instruct the server to listen on the RDMA transport:
 
-    $ echo rdma 2050 > /proc/fs/nfsd/portlist
+    $ echo rdma 20049 > /proc/fs/nfsd/portlist
 
   - On the client system
 
@@ -263,7 +263,7 @@ NFS/RDMA Setup
     Regardless of how the client was built (module or built-in), use this
     command to mount the NFS/RDMA server:
 
-    $ mount -o rdma,port=2050 <IPoIB-server-name-or-address>:/<export> /mnt
+    $ mount -o rdma,port=20049 <IPoIB-server-name-or-address>:/<export> /mnt
 
     To verify that the mount is using RDMA, run "cat /proc/mounts" and check
     the "proto" field for the given mount.

+ 35 - 0
Documentation/filesystems/proc.txt

@@ -1478,6 +1478,13 @@ of problems on the network like duplicate address or bad checksums. Normally,
 this should be enabled, but if the problem persists the messages can be
 disabled.
 
+netdev_budget
+-------------
+
+Maximum number of packets taken from all interfaces in one polling cycle (NAPI
+poll). In one polling cycle interfaces which are registered to polling are
+probed in a round-robin manner. The limit of packets in one such probe can be
+set per-device via sysfs class/net/<device>/weight .
 
 netdev_max_backlog
 ------------------
@@ -2027,6 +2034,34 @@ increase the likelihood of this process being killed by the oom-killer.  Valid
 values are in the range -16 to +15, plus the special value -17, which disables
 oom-killing altogether for this process.
 
+The process to be killed in an out-of-memory situation is selected among all others
+based on its badness score. This value equals the original memory size of the process
+and is then updated according to its CPU time (utime + stime) and the
+run time (uptime - start time). The longer it runs the smaller is the score.
+Badness score is divided by the square root of the CPU time and then by
+the double square root of the run time.
+
+Swapped out tasks are killed first. Half of each child's memory size is added to
+the parent's score if they do not share the same memory. Thus forking servers
+are the prime candidates to be killed. Having only one 'hungry' child will make
+parent less preferable than the child.
+
+/proc/<pid>/oom_score shows process' current badness score.
+
+The following heuristics are then applied:
+ * if the task was reniced, its score doubles
+ * superuser or direct hardware access tasks (CAP_SYS_ADMIN, CAP_SYS_RESOURCE
+ 	or CAP_SYS_RAWIO) have their score divided by 4
+ * if oom condition happened in one cpuset and checked task does not belong
+ 	to it, its score is divided by 8
+ * the resulting score is multiplied by two to the power of oom_adj, i.e.
+	points <<= oom_adj when it is positive and
+	points >>= -(oom_adj) otherwise
+
+The task with the highest badness score is then selected and its children
+are killed, process itself will be killed in an OOM situation when it does
+not have children or some of them disabled oom like described above.
+
 2.13 /proc/<pid>/oom_score - Display current oom-killer score
 -------------------------------------------------------------
 

+ 1 - 1
Documentation/filesystems/squashfs.txt

@@ -22,7 +22,7 @@ Squashfs filesystem features versus Cramfs:
 
 				Squashfs		Cramfs
 
-Max filesystem size:		2^64			16 MiB
+Max filesystem size:		2^64			256 MiB
 Max file size:			~ 2 TiB			16 MiB
 Max files:			unlimited		unlimited
 Max directories:		unlimited		unlimited

+ 12 - 1
Documentation/filesystems/sysfs-pci.txt

@@ -9,6 +9,7 @@ that support it.  For example, a given bus might look like this:
      |   |-- class
      |   |-- config
      |   |-- device
+     |   |-- enable
      |   |-- irq
      |   |-- local_cpus
      |   |-- resource
@@ -32,6 +33,7 @@ files, each with their own function.
        class		   PCI class (ascii, ro)
        config		   PCI config space (binary, rw)
        device		   PCI device (ascii, ro)
+       enable	           Whether the device is enabled (ascii, rw)
        irq		   IRQ number (ascii, ro)
        local_cpus	   nearby CPU mask (cpumask, ro)
        resource		   PCI resource host addresses (ascii, ro)
@@ -57,10 +59,19 @@ used to do actual device programming from userspace.  Note that some platforms
 don't support mmapping of certain resources, so be sure to check the return
 value from any attempted mmap.
 
+The 'enable' file provides a counter that indicates how many times the device 
+has been enabled.  If the 'enable' file currently returns '4', and a '1' is
+echoed into it, it will then return '5'.  Echoing a '0' into it will decrease
+the count.  Even when it returns to 0, though, some of the initialisation
+may not be reversed.  
+
 The 'rom' file is special in that it provides read-only access to the device's
 ROM file, if available.  It's disabled by default, however, so applications
 should write the string "1" to the file to enable it before attempting a read
-call, and disable it following the access by writing "0" to the file.
+call, and disable it following the access by writing "0" to the file.  Note
+that the device must be enabled for a rom read to return data succesfully.
+In the event a driver is not bound to the device, it can be enabled using the
+'enable' file, documented above.
 
 Accessing legacy resources through sysfs
 ----------------------------------------

+ 28 - 22
Documentation/filesystems/sysfs.txt

@@ -2,8 +2,10 @@
 sysfs - _The_ filesystem for exporting kernel objects. 
 
 Patrick Mochel	<mochel@osdl.org>
+Mike Murphy <mamurph@cs.clemson.edu>
 
-10 January 2003
+Revised:    22 February 2009
+Original:   10 January 2003
 
 
 What it is:
@@ -64,12 +66,13 @@ An attribute definition is simply:
 
 struct attribute {
         char                    * name;
+        struct module		*owner;
         mode_t                  mode;
 };
 
 
-int sysfs_create_file(struct kobject * kobj, struct attribute * attr);
-void sysfs_remove_file(struct kobject * kobj, struct attribute * attr);
+int sysfs_create_file(struct kobject * kobj, const struct attribute * attr);
+void sysfs_remove_file(struct kobject * kobj, const struct attribute * attr);
 
 
 A bare attribute contains no means to read or write the value of the
@@ -80,9 +83,11 @@ a specific object type.
 For example, the driver model defines struct device_attribute like:
 
 struct device_attribute {
-        struct attribute        attr;
-        ssize_t (*show)(struct device * dev, char * buf);
-        ssize_t (*store)(struct device * dev, const char * buf);
+	struct attribute	attr;
+	ssize_t (*show)(struct device *dev, struct device_attribute *attr,
+			char *buf);
+	ssize_t (*store)(struct device *dev, struct device_attribute *attr,
+			 const char *buf, size_t count);
 };
 
 int device_create_file(struct device *, struct device_attribute *);
@@ -90,12 +95,8 @@ void device_remove_file(struct device *, struct device_attribute *);
 
 It also defines this helper for defining device attributes: 
 
-#define DEVICE_ATTR(_name, _mode, _show, _store)      \
-struct device_attribute dev_attr_##_name = {            \
-        .attr = {.name  = __stringify(_name) , .mode   = _mode },      \
-        .show   = _show,                                \
-        .store  = _store,                               \
-};
+#define DEVICE_ATTR(_name, _mode, _show, _store) \
+struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store)
 
 For example, declaring
 
@@ -107,9 +108,9 @@ static struct device_attribute dev_attr_foo = {
        .attr	= {
 		.name = "foo",
 		.mode = S_IWUSR | S_IRUGO,
+		.show = show_foo,
+		.store = store_foo,
 	},
-	.show = show_foo,
-	.store = store_foo,
 };
 
 
@@ -161,10 +162,12 @@ To read or write attributes, show() or store() methods must be
 specified when declaring the attribute. The method types should be as
 simple as those defined for device attributes:
 
-        ssize_t (*show)(struct device * dev, char * buf);
-        ssize_t (*store)(struct device * dev, const char * buf);
+ssize_t (*show)(struct device * dev, struct device_attribute * attr,
+                char * buf);
+ssize_t (*store)(struct device * dev, struct device_attribute * attr,
+                 const char * buf);
 
-IOW, they should take only an object and a buffer as parameters. 
+IOW, they should take only an object, an attribute, and a buffer as parameters.
 
 
 sysfs allocates a buffer of size (PAGE_SIZE) and passes it to the
@@ -299,14 +302,16 @@ The following interface layers currently exist in sysfs:
 Structure:
 
 struct device_attribute {
-        struct attribute        attr;
-        ssize_t (*show)(struct device * dev, char * buf);
-        ssize_t (*store)(struct device * dev, const char * buf);
+	struct attribute	attr;
+	ssize_t (*show)(struct device *dev, struct device_attribute *attr,
+			char *buf);
+	ssize_t (*store)(struct device *dev, struct device_attribute *attr,
+			 const char *buf, size_t count);
 };
 
 Declaring:
 
-DEVICE_ATTR(_name, _str, _mode, _show, _store);
+DEVICE_ATTR(_name, _mode, _show, _store);
 
 Creation/Removal:
 
@@ -342,7 +347,8 @@ Structure:
 struct driver_attribute {
         struct attribute        attr;
         ssize_t (*show)(struct device_driver *, char * buf);
-        ssize_t (*store)(struct device_driver *, const char * buf);
+        ssize_t (*store)(struct device_driver *, const char * buf,
+                         size_t count);
 };
 
 Declaring:

+ 0 - 7
Documentation/filesystems/ubifs.txt

@@ -79,13 +79,6 @@ Mount options
 
 (*) == default.
 
-norm_unmount (*)	commit on unmount; the journal is committed
-			when the file-system is unmounted so that the
-			next mount does not have to replay the journal
-			and it becomes very fast;
-fast_unmount		do not commit on unmount; this option makes
-			unmount faster, but the next mount slower
-			because of the need to replay the journal.
 bulk_read		read more in one go to take advantage of flash
 			media that read faster sequentially
 no_bulk_read (*)	do not bulk-read

+ 101 - 0
Documentation/hwmon/hpfall.c

@@ -0,0 +1,101 @@
+/* Disk protection for HP machines.
+ *
+ * Copyright 2008 Eric Piel
+ * Copyright 2009 Pavel Machek <pavel@suse.cz>
+ *
+ * GPLv2.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <unistd.h>
+#include <fcntl.h>
+#include <sys/stat.h>
+#include <sys/types.h>
+#include <string.h>
+#include <stdint.h>
+#include <errno.h>
+#include <signal.h>
+
+void write_int(char *path, int i)
+{
+	char buf[1024];
+	int fd = open(path, O_RDWR);
+	if (fd < 0) {
+		perror("open");
+		exit(1);
+	}
+	sprintf(buf, "%d", i);
+	if (write(fd, buf, strlen(buf)) != strlen(buf)) {
+		perror("write");
+		exit(1);
+	}
+	close(fd);
+}
+
+void set_led(int on)
+{
+	write_int("/sys/class/leds/hp::hddprotect/brightness", on);
+}
+
+void protect(int seconds)
+{
+	write_int("/sys/block/sda/device/unload_heads", seconds*1000);
+}
+
+int on_ac(void)
+{
+//	/sys/class/power_supply/AC0/online
+}
+
+int lid_open(void)
+{
+//	/proc/acpi/button/lid/LID/state
+}
+
+void ignore_me(void)
+{
+	protect(0);
+	set_led(0);
+
+}
+
+int main(int argc, char* argv[])
+{
+       int fd, ret;
+
+       fd = open("/dev/freefall", O_RDONLY);
+       if (fd < 0) {
+               perror("open");
+               return EXIT_FAILURE;
+       }
+
+	signal(SIGALRM, ignore_me);
+
+       for (;;) {
+	       unsigned char count;
+
+               ret = read(fd, &count, sizeof(count));
+	       alarm(0);
+	       if ((ret == -1) && (errno == EINTR)) {
+		       /* Alarm expired, time to unpark the heads */
+		       continue;
+	       }
+
+               if (ret != sizeof(count)) {
+                       perror("read");
+                       break;
+               }
+
+	       protect(21);
+	       set_led(1);
+	       if (1 || on_ac() || lid_open()) {
+		       alarm(2);
+	       } else {
+		       alarm(20);
+	       }
+       }
+
+       close(fd);
+       return EXIT_SUCCESS;
+}

+ 8 - 0
Documentation/hwmon/lis3lv02d

@@ -33,6 +33,14 @@ rate - reports the sampling rate of the accelerometer device in HZ
 This driver also provides an absolute input class device, allowing
 the laptop to act as a pinball machine-esque joystick.
 
+Another feature of the driver is misc device called "freefall" that
+acts similar to /dev/rtc and reacts on free-fall interrupts received
+from the device. It supports blocking operations, poll/select and
+fasync operation modes. You must read 1 bytes from the device.  The
+result is number of free-fall interrupts since the last successful
+read (or 255 if number of interrupts would not fit).
+
+
 Axes orientation
 ----------------
 

+ 10 - 0
Documentation/hwmon/lm90

@@ -42,6 +42,11 @@ Supported chips:
     Addresses scanned: I2C 0x4e
     Datasheet: Publicly available at the Maxim website
                http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3497
+  * Maxim MAX6648
+    Prefix: 'max6646'
+    Addresses scanned: I2C 0x4c
+    Datasheet: Publicly available at the Maxim website
+               http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3500
   * Maxim MAX6649
     Prefix: 'max6646'
     Addresses scanned: I2C 0x4c
@@ -74,6 +79,11 @@ Supported chips:
                            0x4c, 0x4d and 0x4e
     Datasheet: Publicly available at the Maxim website
                http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3370
+  * Maxim MAX6692
+    Prefix: 'max6646'
+    Addresses scanned: I2C 0x4c
+    Datasheet: Publicly available at the Maxim website
+               http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3500
 
 
 Author: Jean Delvare <khali@linux-fr.org>

+ 10 - 5
Documentation/ja_JP/stable_kernel_rules.txt

@@ -12,11 +12,11 @@ file at first.
 
 ==================================
 これは、
-linux-2.6.24/Documentation/stable_kernel_rules.txt
+linux-2.6.29/Documentation/stable_kernel_rules.txt
 の和訳です。
 
 翻訳団体: JF プロジェクト < http://www.linux.or.jp/JF/ >
-翻訳日: 2007/12/30
+翻訳日: 2009/1/14
 翻訳者: Tsugikazu Shibata <tshibata at ab dot jp dot nec dot com>
 校正者: 武井伸光さん、<takei at webmasters dot gr dot jp>
          かねこさん (Seiji Kaneko) <skaneko at a2 dot mbn dot or dot jp>
@@ -38,12 +38,15 @@ linux-2.6.24/Documentation/stable_kernel_rules.txt
  - ビルドエラー(CONFIG_BROKENになっているものを除く), oops, ハング、デー
    タ破壊、現実のセキュリティ問題、その他 "ああ、これはダメだね"という
    ようなものを修正しなければならない。短く言えば、重大な問題。
+ - 新しい device ID とクオークも受け入れられる。
  - どのように競合状態が発生するかの説明も一緒に書かれていない限り、
    "理論的には競合状態になる"ようなものは不可。
  - いかなる些細な修正も含めることはできない。(スペルの修正、空白のクリー
    ンアップなど)
- - 対応するサブシステムメンテナが受け入れたものでなければならない。
  - Documentation/SubmittingPatches の規則に従ったものでなければならない。
+ - パッチ自体か同等の修正が Linus のツリーに既に存在しなければならない。
+  Linus のツリーでのコミットID を -stable へのパッチ投稿の際に引用す
+   ること。
 
 -stable ツリーにパッチを送付する手続き-
 
@@ -52,8 +55,10 @@ linux-2.6.24/Documentation/stable_kernel_rules.txt
  - 送信者はパッチがキューに受け付けられた際には ACK を、却下された場合
    には NAK を受け取る。この反応は開発者たちのスケジュールによって、数
    日かかる場合がある。
- - もし受け取られたら、パッチは他の開発者たちのレビューのために
-   -stable キューに追加される。
+ - もし受け取られたら、パッチは他の開発者たちと関連するサブシステムの
+   メンテナーによるレビューのために -stable キューに追加される。
+ - パッチに stable@kernel.org のアドレスが付加されているときには、それ
+   が Linus のツリーに入る時に自動的に stable チームに email される。
  - セキュリティパッチはこのエイリアス (stable@kernel.org) に送られるべ
    きではなく、代わりに security@kernel.org のアドレスに送られる。
 

+ 15 - 14
Documentation/kbuild/kbuild.txt

@@ -3,7 +3,7 @@ Environment variables
 KCPPFLAGS
 --------------------------------------------------
 Additional options to pass when preprocessing. The preprocessing options
-will be used in all cases where kbuild do preprocessing including
+will be used in all cases where kbuild does preprocessing including
 building C files and assembler files.
 
 KAFLAGS
@@ -16,7 +16,7 @@ Additional options to the C compiler.
 
 KBUILD_VERBOSE
 --------------------------------------------------
-Set the kbuild verbosity. Can be assinged same values as "V=...".
+Set the kbuild verbosity. Can be assigned same values as "V=...".
 See make help for the full list.
 Setting "V=..." takes precedence over KBUILD_VERBOSE.
 
@@ -35,14 +35,14 @@ KBUILD_OUTPUT
 --------------------------------------------------
 Specify the output directory when building the kernel.
 The output directory can also be specificed using "O=...".
-Setting "O=..." takes precedence over KBUILD_OUTPUT
+Setting "O=..." takes precedence over KBUILD_OUTPUT.
 
 ARCH
 --------------------------------------------------
 Set ARCH to the architecture to be built.
 In most cases the name of the architecture is the same as the
 directory name found in the arch/ directory.
-But some architectures suach as x86 and sparc has aliases.
+But some architectures such as x86 and sparc have aliases.
 x86: i386 for 32 bit, x86_64 for 64 bit
 sparc: sparc for 32 bit, sparc64 for 64 bit
 
@@ -63,7 +63,7 @@ CF is often used on the command-line like this:
 INSTALL_PATH
 --------------------------------------------------
 INSTALL_PATH specifies where to place the updated kernel and system map
-images. Default is /boot, but you can set it to other values
+images. Default is /boot, but you can set it to other values.
 
 
 MODLIB
@@ -90,7 +90,7 @@ INSTALL_MOD_STRIP will used as the options to the strip command.
 
 INSTALL_FW_PATH
 --------------------------------------------------
-INSTALL_FW_PATH specify where to install the firmware blobs.
+INSTALL_FW_PATH specifies where to install the firmware blobs.
 The default value is:
 
     $(INSTALL_MOD_PATH)/lib/firmware
@@ -99,7 +99,7 @@ The value can be overridden in which case the default value is ignored.
 
 INSTALL_HDR_PATH
 --------------------------------------------------
-INSTALL_HDR_PATH specify where to install user space headers when
+INSTALL_HDR_PATH specifies where to install user space headers when
 executing "make headers_*".
 The default value is:
 
@@ -112,22 +112,23 @@ The value can be overridden in which case the default value is ignored.
 
 KBUILD_MODPOST_WARN
 --------------------------------------------------
-KBUILD_MODPOST_WARN can be set to avoid error out in case of undefined
-symbols in the final module linking stage.
+KBUILD_MODPOST_WARN can be set to avoid errors in case of undefined
+symbols in the final module linking stage. It changes such errors
+into warnings.
 
-KBUILD_MODPOST_FINAL
+KBUILD_MODPOST_NOFINAL
 --------------------------------------------------
 KBUILD_MODPOST_NOFINAL can be set to skip the final link of modules.
-This is solely usefull to speed up test compiles.
+This is solely useful to speed up test compiles.
 
 KBUILD_EXTRA_SYMBOLS
 --------------------------------------------------
-For modules use symbols from another modules.
+For modules that use symbols from other modules.
 See more details in modules.txt.
 
 ALLSOURCE_ARCHS
 --------------------------------------------------
-For tags/TAGS/cscope targets, you can specify more than one archs
-to be included in the databases, separated by blankspace. e.g.
+For tags/TAGS/cscope targets, you can specify more than one arch
+to be included in the databases, separated by blank space. E.g.:
 
     $ make ALLSOURCE_ARCHS="x86 mips arm" tags

+ 4 - 3
Documentation/kernel-doc-nano-HOWTO.txt

@@ -43,7 +43,8 @@ Only comments so marked will be considered by the kernel-doc scripts,
 and any comment so marked must be in kernel-doc format.  Do not use
 "/**" to be begin a comment block unless the comment block contains
 kernel-doc formatted comments.  The closing comment marker for
-kernel-doc comments can be either "*/" or "**/".
+kernel-doc comments can be either "*/" or "**/", but "*/" is
+preferred in the Linux kernel tree.
 
 Kernel-doc comments should be placed just before the function
 or data structure being described.
@@ -63,7 +64,7 @@ Example kernel-doc function comment:
  * comment lines.
  *
  * The longer description can have multiple paragraphs.
- **/
+ */
 
 The first line, with the short description, must be on a single line.
 
@@ -85,7 +86,7 @@ Example kernel-doc data structure comment.
  *		perhaps with more lines and words.
  *
  * Longer description of this structure.
- **/
+ */
 
 The kernel-doc function comments describe each parameter to the
 function, in order, with the @name lines.

+ 25 - 18
Documentation/kernel-parameters.txt

@@ -44,6 +44,7 @@ parameter is applicable:
 	FB	The frame buffer device is enabled.
 	HW	Appropriate hardware is enabled.
 	IA-64	IA-64 architecture is enabled.
+	IMA     Integrity measurement architecture is enabled.
 	IOSCHED	More than one I/O scheduler is enabled.
 	IP_PNP	IP DHCP, BOOTP, or RARP is enabled.
 	ISAPNP	ISA PnP code is enabled.
@@ -114,7 +115,7 @@ In addition, the following text indicates that the option:
 Parameters denoted with BOOT are actually interpreted by the boot
 loader, and have no meaning to the kernel directly.
 Do not modify the syntax of boot loader parameters without extreme
-need or coordination with <Documentation/x86/i386/boot.txt>.
+need or coordination with <Documentation/x86/boot.txt>.
 
 There are also arch-specific kernel-parameters not documented here.
 See for example <Documentation/x86/x86_64/boot-options.txt>.
@@ -134,7 +135,7 @@ and is between 256 and 4096 characters. It is defined in the file
 
 	acpi=		[HW,ACPI,X86-64,i386]
 			Advanced Configuration and Power Interface
-			Format: { force | off | ht | strict | noirq }
+			Format: { force | off | ht | strict | noirq | rsdt }
 			force -- enable ACPI if default was off
 			off -- disable ACPI if default was on
 			noirq -- do not use ACPI for IRQ routing
@@ -492,10 +493,12 @@ and is between 256 and 4096 characters. It is defined in the file
 			Default: 64
 
 	hpet=		[X86-32,HPET] option to control HPET usage
-			Format: { enable (default) | disable | force }
+			Format: { enable (default) | disable | force |
+				verbose }
 			disable: disable HPET and use PIT instead
 			force: allow force enabled of undocumented chips (ICH4,
 			VIA, nVidia)
+			verbose: show contents of HPET registers during setup
 
 	com20020=	[HW,NET] ARCnet - COM20020 chipset
 			Format:
@@ -577,9 +580,6 @@ and is between 256 and 4096 characters. It is defined in the file
 			a memory unit (amount[KMG]). See also
 			Documentation/kdump/kdump.txt for a example.
 
-	cs4232=		[HW,OSS]
-			Format: <io>,<irq>,<dma>,<dma2>,<mpuio>,<mpuirq>
-
 	cs89x0_dma=	[HW,NET]
 			Format: <dma>
 
@@ -732,10 +732,6 @@ and is between 256 and 4096 characters. It is defined in the file
 			Default value is 0.
 			Value can be changed at runtime via /selinux/enforce.
 
-	es1371=		[HW,OSS]
-			Format: <spdif>,[<nomix>,[<amplifier>]]
-			See also header of sound/oss/es1371.c.
-
 	ether=		[HW,NET] Ethernet cards parameters
 			This option is obsoleted by the "netdev=" option, which
 			has equivalent usage. See its documentation for details.
@@ -836,6 +832,9 @@ and is between 256 and 4096 characters. It is defined in the file
 
 	hvc_iucv=	[S390] Number of z/VM IUCV hypervisor console (HVC)
 			       terminal devices. Valid values: 0..8
+	hvc_iucv_allow=	[S390] Comma-separated list of z/VM user IDs.
+			       If specified, z/VM IUCV HVC accepts connections
+			       from listed z/VM user IDs only.
 
 	i8042.debug	[HW] Toggle i8042 debug mode
 	i8042.direct	[HW] Put keyboard port into non-translated mode
@@ -875,8 +874,10 @@ and is between 256 and 4096 characters. It is defined in the file
 	icn=		[HW,ISDN]
 			Format: <io>[,<membase>[,<icn_id>[,<icn_id2>]]]
 
-	ide=		[HW] (E)IDE subsystem
-			Format: ide=nodma or ide=doubler
+	ide-core.nodma=	[HW] (E)IDE subsystem
+			Format: =0.0 to prevent dma on hda, =0.1 hdb =1.0 hdc
+			.vlb_clock .pci_clock .noflush .noprobe .nowerr .cdrom
+			.chs .ignore_cable are additional options
 			See Documentation/ide/ide.txt.
 
 	idebus=		[HW] (E)IDE subsystem - VLB/PCI bus speed
@@ -907,6 +908,15 @@ and is between 256 and 4096 characters. It is defined in the file
 	ihash_entries=	[KNL]
 			Set number of hash buckets for inode cache.
 
+	ima_audit=	[IMA]
+			Format: { "0" | "1" }
+			0 -- integrity auditing messages. (Default)
+			1 -- enable informational integrity auditing messages.
+
+	ima_hash=	[IMA]
+			Formt: { "sha1" | "md5" }
+			default: "sha1"
+
 	in2000=		[HW,SCSI]
 			See header of drivers/scsi/in2000.c.
 
@@ -944,6 +954,8 @@ and is between 256 and 4096 characters. It is defined in the file
 
 
 	intel_iommu=	[DMAR] Intel IOMMU driver (DMAR) option
+		on
+			Enable intel iommu driver.
 		off
 			Disable intel iommu driver.
 		igfx_off [Default Off]
@@ -1819,11 +1831,6 @@ and is between 256 and 4096 characters. It is defined in the file
 			autoconfiguration.
 			Ranges are in pairs (memory base and size).
 
-	dynamic_printk	Enables pr_debug()/dev_dbg() calls if
-			CONFIG_DYNAMIC_PRINTK_DEBUG has been enabled.
-			These can also be switched on/off via
-			<debugfs>/dynamic_printk/modules
-
 	print-fatal-signals=
 			[KNL] debug: print fatal signals
 			print-fatal-signals=1: print segfault info to
@@ -2454,7 +2461,7 @@ and is between 256 and 4096 characters. It is defined in the file
 			See Documentation/fb/modedb.txt.
 
 	vga=		[BOOT,X86-32] Select a particular video mode
-			See Documentation/x86/i386/boot.txt and
+			See Documentation/x86/boot.txt and
 			Documentation/svga.txt.
 			Use vga=ask for menu.
 			This is actually a boot loader parameter; the value is

+ 22 - 3
Documentation/laptops/thinkpad-acpi.txt

@@ -1,7 +1,7 @@
 		     ThinkPad ACPI Extras Driver
 
-                            Version 0.21
-                           May 29th, 2008
+                            Version 0.22
+                        November 23rd,  2008
 
                Borislav Deianov <borislav@users.sf.net>
              Henrique de Moraes Holschuh <hmh@hmh.eng.br>
@@ -16,7 +16,8 @@ supported by the generic Linux ACPI drivers.
 This driver used to be named ibm-acpi until kernel 2.6.21 and release
 0.13-20070314.  It used to be in the drivers/acpi tree, but it was
 moved to the drivers/misc tree and renamed to thinkpad-acpi for kernel
-2.6.22, and release 0.14.
+2.6.22, and release 0.14.  It was moved to drivers/platform/x86 for
+kernel 2.6.29 and release 0.22.
 
 The driver is named "thinkpad-acpi".  In some places, like module
 names, "thinkpad_acpi" is used because of userspace issues.
@@ -1412,6 +1413,24 @@ Sysfs notes:
 	rfkill controller switch "tpacpi_wwan_sw": refer to
 	Documentation/rfkill.txt for details.
 
+EXPERIMENTAL: UWB
+-----------------
+
+This feature is marked EXPERIMENTAL because it has not been extensively
+tested and validated in various ThinkPad models yet.  The feature may not
+work as expected. USE WITH CAUTION! To use this feature, you need to supply
+the experimental=1 parameter when loading the module.
+
+sysfs rfkill class: switch "tpacpi_uwb_sw"
+
+This feature exports an rfkill controller for the UWB device, if one is
+present and enabled in the BIOS.
+
+Sysfs notes:
+
+	rfkill controller switch "tpacpi_uwb_sw": refer to
+	Documentation/rfkill.txt for details.
+
 Multiple Commands, Module Parameters
 ------------------------------------
 

+ 1 - 1
Documentation/lguest/Makefile

@@ -1,5 +1,5 @@
 # This creates the demonstration utility "lguest" which runs a Linux guest.
-CFLAGS:=-Wall -Wmissing-declarations -Wmissing-prototypes -O3 -I../../include -I../../arch/x86/include
+CFLAGS:=-Wall -Wmissing-declarations -Wmissing-prototypes -O3 -I../../include -I../../arch/x86/include -U_FORTIFY_SOURCE
 LDLIBS:=-lz
 
 all: lguest

BIN
Documentation/logo.gif


Файлын зөрүү хэтэрхий том тул дарагдсан байна
+ 1570 - 0
Documentation/logo.svg


+ 3 - 12
Documentation/logo.txt

@@ -1,13 +1,4 @@
-This is the full-colour version of the currently unofficial Linux logo
-("currently unofficial" just means that there has been no paperwork and
-that I have not really announced it yet).  It was created by Larry Ewing,
-and is freely usable as long as you acknowledge Larry as the original
-artist. 
-
-Note that there are black-and-white versions of this available that
-scale down to smaller sizes and are better for letterheads or whatever
-you want to use it for: for the full range of logos take a look at
-Larry's web-page:
-
-	http://www.isc.tamu.edu/~lewing/linux/
+Tux is taking a three month sabbatical to work as a barber, so Tuz is
+standing in.  He's taken pains to ensure you'll hardly notice.
 
+Image by Andrew McGown and Josh Bush.  Image is licensed CC BY-SA.

+ 6 - 19
Documentation/networking/alias.txt

@@ -2,13 +2,13 @@
 IP-Aliasing:
 ============
 
-IP-aliases are additional IP-addresses/masks hooked up to a base 
-interface by adding a colon and a string when running ifconfig. 
-This string is usually numeric, but this is not a must.
-
-IP-Aliases are avail if CONFIG_INET (`standard' IPv4 networking) 
-is configured in the kernel.
+IP-aliases are an obsolete way to manage multiple IP-addresses/masks
+per interface. Newer tools such as iproute2 support multiple
+address/prefixes per interface, but aliases are still supported
+for backwards compatibility.
 
+An alias is formed by adding a colon and a string when running ifconfig.
+This string is usually numeric, but this is not a must.
 
 o Alias creation.
   Alias creation is done by 'magic' interface naming: eg. to create a
@@ -38,16 +38,3 @@ o Relationship with main device
 
   If the base device is shut down the added aliases will be deleted 
   too.
-
-
-Contact
--------
-Please finger or e-mail me:
-   Juan Jose Ciarlante <jjciarla@raiz.uncu.edu.ar>
-
-Updated by Erik Schoenfelder <schoenfr@gaertner.DE>
-
-; local variables:
-; mode: indented-text
-; mode: auto-fill
-; end:

+ 2 - 1
Documentation/networking/dccp.txt

@@ -141,7 +141,8 @@ rx_ccid = 2
 	Default CCID for the receiver-sender half-connection; see tx_ccid.
 
 seq_window = 100
-	The initial sequence window (sec. 7.5.2).
+	The initial sequence window (sec. 7.5.2) of the sender. This influences
+	the local ackno validity and the remote seqno validity windows (7.5.1).
 
 tx_qlen = 5
 	The size of the transmit buffer in packets. A value of 0 corresponds

+ 81 - 67
Documentation/networking/ip-sysctl.txt

@@ -2,7 +2,7 @@
 
 ip_forward - BOOLEAN
 	0 - disabled (default)
-	not 0 - enabled 
+	not 0 - enabled
 
 	Forward Packets between interfaces.
 
@@ -36,49 +36,49 @@ rt_cache_rebuild_count - INTEGER
 IP Fragmentation:
 
 ipfrag_high_thresh - INTEGER
-	Maximum memory used to reassemble IP fragments. When 
+	Maximum memory used to reassemble IP fragments. When
 	ipfrag_high_thresh bytes of memory is allocated for this purpose,
 	the fragment handler will toss packets until ipfrag_low_thresh
 	is reached.
-	
+
 ipfrag_low_thresh - INTEGER
-	See ipfrag_high_thresh	
+	See ipfrag_high_thresh
 
 ipfrag_time - INTEGER
-	Time in seconds to keep an IP fragment in memory.	
+	Time in seconds to keep an IP fragment in memory.
 
 ipfrag_secret_interval - INTEGER
-	Regeneration interval (in seconds) of the hash secret (or lifetime 
+	Regeneration interval (in seconds) of the hash secret (or lifetime
 	for the hash secret) for IP fragments.
 	Default: 600
 
 ipfrag_max_dist - INTEGER
-	ipfrag_max_dist is a non-negative integer value which defines the 
-	maximum "disorder" which is allowed among fragments which share a 
-	common IP source address. Note that reordering of packets is 
-	not unusual, but if a large number of fragments arrive from a source 
-	IP address while a particular fragment queue remains incomplete, it 
-	probably indicates that one or more fragments belonging to that queue 
-	have been lost. When ipfrag_max_dist is positive, an additional check 
-	is done on fragments before they are added to a reassembly queue - if 
-	ipfrag_max_dist (or more) fragments have arrived from a particular IP 
-	address between additions to any IP fragment queue using that source 
-	address, it's presumed that one or more fragments in the queue are 
-	lost. The existing fragment queue will be dropped, and a new one 
+	ipfrag_max_dist is a non-negative integer value which defines the
+	maximum "disorder" which is allowed among fragments which share a
+	common IP source address. Note that reordering of packets is
+	not unusual, but if a large number of fragments arrive from a source
+	IP address while a particular fragment queue remains incomplete, it
+	probably indicates that one or more fragments belonging to that queue
+	have been lost. When ipfrag_max_dist is positive, an additional check
+	is done on fragments before they are added to a reassembly queue - if
+	ipfrag_max_dist (or more) fragments have arrived from a particular IP
+	address between additions to any IP fragment queue using that source
+	address, it's presumed that one or more fragments in the queue are
+	lost. The existing fragment queue will be dropped, and a new one
 	started. An ipfrag_max_dist value of zero disables this check.
 
 	Using a very small value, e.g. 1 or 2, for ipfrag_max_dist can
 	result in unnecessarily dropping fragment queues when normal
-	reordering of packets occurs, which could lead to poor application 
-	performance. Using a very large value, e.g. 50000, increases the 
-	likelihood of incorrectly reassembling IP fragments that originate 
+	reordering of packets occurs, which could lead to poor application
+	performance. Using a very large value, e.g. 50000, increases the
+	likelihood of incorrectly reassembling IP fragments that originate
 	from different IP datagrams, which could result in data corruption.
 	Default: 64
 
 INET peer storage:
 
 inet_peer_threshold - INTEGER
-	The approximate size of the storage.  Starting from this threshold	
+	The approximate size of the storage.  Starting from this threshold
 	entries will be thrown aggressively.  This threshold also determines
 	entries' time-to-live and time intervals between garbage collection
 	passes.  More entries, less time-to-live, less GC interval.
@@ -105,7 +105,7 @@ inet_peer_gc_maxtime - INTEGER
 	in effect under low (or absent) memory pressure on the pool.
 	Measured in seconds.
 
-TCP variables: 
+TCP variables:
 
 somaxconn - INTEGER
 	Limit of socket listen() backlog, known in userspace as SOMAXCONN.
@@ -310,7 +310,7 @@ tcp_orphan_retries - INTEGER
 
 tcp_reordering - INTEGER
 	Maximal reordering of packets in a TCP stream.
-	Default: 3	
+	Default: 3
 
 tcp_retrans_collapse - BOOLEAN
 	Bug-to-bug compatibility with some broken printers.
@@ -521,7 +521,7 @@ IP Variables:
 
 ip_local_port_range - 2 INTEGERS
 	Defines the local port range that is used by TCP and UDP to
-	choose the local port. The first number is the first, the 
+	choose the local port. The first number is the first, the
 	second the last local port number. Default value depends on
 	amount of memory available on the system:
 	> 128Mb 32768-61000
@@ -594,12 +594,12 @@ icmp_errors_use_inbound_ifaddr - BOOLEAN
 
 	If zero, icmp error messages are sent with the primary address of
 	the exiting interface.
- 
+
 	If non-zero, the message will be sent with the primary address of
 	the interface that received the packet that caused the icmp error.
 	This is the behaviour network many administrators will expect from
 	a router. And it can make debugging complicated network layouts
-	much easier. 
+	much easier.
 
 	Note that if no primary address exists for the interface selected,
 	then the primary address of the first non-loopback interface that
@@ -611,7 +611,7 @@ igmp_max_memberships - INTEGER
 	Change the maximum number of multicast groups we can subscribe to.
 	Default: 20
 
-conf/interface/*  changes special settings per interface (where "interface" is 
+conf/interface/*  changes special settings per interface (where "interface" is
 		  the name of your network interface)
 conf/all/*	  is special, changes the settings for all interfaces
 
@@ -625,11 +625,11 @@ log_martians - BOOLEAN
 accept_redirects - BOOLEAN
 	Accept ICMP redirect messages.
 	accept_redirects for the interface will be enabled if:
-	- both conf/{all,interface}/accept_redirects are TRUE in the case forwarding
-	  for the interface is enabled
+	- both conf/{all,interface}/accept_redirects are TRUE in the case
+	  forwarding for the interface is enabled
 	or
-	- at least one of conf/{all,interface}/accept_redirects is TRUE in the case
-	  forwarding for the interface is disabled
+	- at least one of conf/{all,interface}/accept_redirects is TRUE in the
+	  case forwarding for the interface is disabled
 	accept_redirects for the interface will be disabled otherwise
 	default TRUE (host)
 		FALSE (router)
@@ -640,8 +640,8 @@ forwarding - BOOLEAN
 mc_forwarding - BOOLEAN
 	Do multicast routing. The kernel needs to be compiled with CONFIG_MROUTE
 	and a multicast routing daemon is required.
-	conf/all/mc_forwarding must also be set to TRUE to enable multicast routing
-	for the interface
+	conf/all/mc_forwarding must also be set to TRUE to enable multicast
+	routing	for the interface
 
 medium_id - INTEGER
 	Integer value used to differentiate the devices by the medium they
@@ -649,7 +649,7 @@ medium_id - INTEGER
 	the broadcast packets are received only on one of them.
 	The default value 0 means that the device is the only interface
 	to its medium, value of -1 means that medium is not known.
-	
+
 	Currently, it is used to change the proxy_arp behavior:
 	the proxy_arp feature is enabled for packets forwarded between
 	two devices attached to different media.
@@ -699,16 +699,22 @@ accept_source_route - BOOLEAN
 	default TRUE (router)
 		FALSE (host)
 
-rp_filter - BOOLEAN
-	1 - do source validation by reversed path, as specified in RFC1812
-	    Recommended option for single homed hosts and stub network
-	    routers. Could cause troubles for complicated (not loop free)
-	    networks running a slow unreliable protocol (sort of RIP),
-	    or using static routes.
-
+rp_filter - INTEGER
 	0 - No source validation.
-
-	conf/all/rp_filter must also be set to TRUE to do source validation
+	1 - Strict mode as defined in RFC3704 Strict Reverse Path
+	    Each incoming packet is tested against the FIB and if the interface
+	    is not the best reverse path the packet check will fail.
+	    By default failed packets are discarded.
+	2 - Loose mode as defined in RFC3704 Loose Reverse Path
+	    Each incoming packet's source address is also tested against the FIB
+	    and if the source address is not reachable via any interface
+	    the packet check will fail.
+
+	Current recommended practice in RFC3704 is to enable strict mode
+	to prevent IP spoofing from DDos attacks. If using asymmetric routing
+	or other complicated routing, then loose mode is recommended.
+
+	conf/all/rp_filter must also be set to non-zero to do source validation
 	on the interface
 
 	Default value is 0. Note that some distributions enable it
@@ -782,6 +788,12 @@ arp_ignore - INTEGER
 	The max value from conf/{all,interface}/arp_ignore is used
 	when ARP request is received on the {interface}
 
+arp_notify - BOOLEAN
+	Define mode for notification of address and device changes.
+	0 - (default): do nothing
+	1 - Generate gratuitous arp replies when device is brought up
+	    or hardware address changes.
+
 arp_accept - BOOLEAN
 	Define behavior when gratuitous arp replies are received:
 	0 - drop gratuitous arp frames
@@ -823,7 +835,7 @@ apply to IPv6 [XXX?].
 
 bindv6only - BOOLEAN
 	Default value for IPV6_V6ONLY socket option,
-	which restricts use of the IPv6 socket to IPv6 communication 
+	which restricts use of the IPv6 socket to IPv6 communication
 	only.
 		TRUE: disable IPv4-mapped address feature
 		FALSE: enable IPv4-mapped address feature
@@ -833,19 +845,19 @@ bindv6only - BOOLEAN
 IPv6 Fragmentation:
 
 ip6frag_high_thresh - INTEGER
-	Maximum memory used to reassemble IPv6 fragments. When 
+	Maximum memory used to reassemble IPv6 fragments. When
 	ip6frag_high_thresh bytes of memory is allocated for this purpose,
 	the fragment handler will toss packets until ip6frag_low_thresh
 	is reached.
-	
+
 ip6frag_low_thresh - INTEGER
-	See ip6frag_high_thresh	
+	See ip6frag_high_thresh
 
 ip6frag_time - INTEGER
 	Time in seconds to keep an IPv6 fragment in memory.
 
 ip6frag_secret_interval - INTEGER
-	Regeneration interval (in seconds) of the hash secret (or lifetime 
+	Regeneration interval (in seconds) of the hash secret (or lifetime
 	for the hash secret) for IPv6 fragments.
 	Default: 600
 
@@ -854,17 +866,17 @@ conf/default/*:
 
 
 conf/all/*:
-	Change all the interface-specific settings.  
+	Change all the interface-specific settings.
 
 	[XXX:  Other special features than forwarding?]
 
 conf/all/forwarding - BOOLEAN
-	Enable global IPv6 forwarding between all interfaces.  
+	Enable global IPv6 forwarding between all interfaces.
 
-	IPv4 and IPv6 work differently here; e.g. netfilter must be used 
+	IPv4 and IPv6 work differently here; e.g. netfilter must be used
 	to control which interfaces may forward packets and which not.
 
-	This also sets all interfaces' Host/Router setting 
+	This also sets all interfaces' Host/Router setting
 	'forwarding' to the specified value.  See below for details.
 
 	This referred to as global forwarding.
@@ -875,12 +887,12 @@ proxy_ndp - BOOLEAN
 conf/interface/*:
 	Change special settings per interface.
 
-	The functional behaviour for certain settings is different 
+	The functional behaviour for certain settings is different
 	depending on whether local forwarding is enabled or not.
 
 accept_ra - BOOLEAN
 	Accept Router Advertisements; autoconfigure using them.
-	
+
 	Functional default: enabled if local forwarding is disabled.
 			    disabled if local forwarding is enabled.
 
@@ -926,7 +938,7 @@ accept_source_route - INTEGER
 	Default: 0
 
 autoconf - BOOLEAN
-	Autoconfigure addresses using Prefix Information in Router 
+	Autoconfigure addresses using Prefix Information in Router
 	Advertisements.
 
 	Functional default: enabled if accept_ra_pinfo is enabled.
@@ -935,11 +947,11 @@ autoconf - BOOLEAN
 dad_transmits - INTEGER
 	The amount of Duplicate Address Detection probes to send.
 	Default: 1
-	
+
 forwarding - BOOLEAN
-	Configure interface-specific Host/Router behaviour.  
+	Configure interface-specific Host/Router behaviour.
 
-	Note: It is recommended to have the same setting on all 
+	Note: It is recommended to have the same setting on all
 	interfaces; mixed router/host scenarios are rather uncommon.
 
 	FALSE:
@@ -948,13 +960,13 @@ forwarding - BOOLEAN
 
 	1. IsRouter flag is not set in Neighbour Advertisements.
 	2. Router Solicitations are being sent when necessary.
-	3. If accept_ra is TRUE (default), accept Router 
+	3. If accept_ra is TRUE (default), accept Router
 	   Advertisements (and do autoconfiguration).
 	4. If accept_redirects is TRUE (default), accept Redirects.
 
 	TRUE:
 
-	If local forwarding is enabled, Router behaviour is assumed. 
+	If local forwarding is enabled, Router behaviour is assumed.
 	This means exactly the reverse from the above:
 
 	1. IsRouter flag is set in Neighbour Advertisements.
@@ -989,7 +1001,7 @@ router_solicitation_interval - INTEGER
 	Default: 4
 
 router_solicitations - INTEGER
-	Number of Router Solicitations to send until assuming no 
+	Number of Router Solicitations to send until assuming no
 	routers are present.
 	Default: 3
 
@@ -1013,11 +1025,11 @@ temp_prefered_lft - INTEGER
 
 max_desync_factor - INTEGER
 	Maximum value for DESYNC_FACTOR, which is a random value
-	that ensures that clients don't synchronize with each 
+	that ensures that clients don't synchronize with each
 	other and generate new addresses at exactly the same time.
 	value is in seconds.
 	Default: 600
-	
+
 regen_max_retry - INTEGER
 	Number of attempts before give up attempting to generate
 	valid temporary addresses.
@@ -1025,13 +1037,15 @@ regen_max_retry - INTEGER
 
 max_addresses - INTEGER
 	Number of maximum addresses per interface.  0 disables limitation.
-	It is recommended not set too large value (or 0) because it would 
-	be too easy way to crash kernel to allow to create too much of 
+	It is recommended not set too large value (or 0) because it would
+	be too easy way to crash kernel to allow to create too much of
 	autoconfigured addresses.
 	Default: 16
 
 disable_ipv6 - BOOLEAN
-	Disable IPv6 operation.
+	Disable IPv6 operation.  If accept_dad is set to 2, this value
+	will be dynamically set to TRUE if DAD fails for the link-local
+	address.
 	Default: FALSE (enable IPv6 operation)
 
 accept_dad - INTEGER

+ 35 - 0
Documentation/networking/ipv6.txt

@@ -0,0 +1,35 @@
+
+Options for the ipv6 module are supplied as parameters at load time.
+
+Module options may be given as command line arguments to the insmod
+or modprobe command, but are usually specified in either the
+/etc/modules.conf or /etc/modprobe.conf configuration file, or in a
+distro-specific configuration file.
+
+The available ipv6 module parameters are listed below.  If a parameter
+is not specified the default value is used.
+
+The parameters are as follows:
+
+disable
+
+	Specifies whether to load the IPv6 module, but disable all
+	its functionality.  This might be used when another module
+	has a dependency on the IPv6 module being loaded, but no
+	IPv6 addresses or operations are desired.
+
+	The possible values and their effects are:
+
+	0
+		IPv6 is enabled.
+
+		This is the default value.
+
+	1
+		IPv6 is disabled.
+
+		No IPv6 addresses will be added to interfaces, and
+		it will not be possible to open an IPv6 socket.
+
+		A reboot is required to enable IPv6.
+

+ 199 - 0
Documentation/networking/ixgbe.txt

@@ -0,0 +1,199 @@
+Linux Base Driver for 10 Gigabit PCI Express Intel(R) Network Connection
+========================================================================
+
+March 10, 2009
+
+
+Contents
+========
+
+- In This Release
+- Identifying Your Adapter
+- Building and Installation
+- Additional Configurations
+- Support
+
+
+
+In This Release
+===============
+
+This file describes the ixgbe Linux Base Driver for the 10 Gigabit PCI
+Express Intel(R) Network Connection.  This driver includes support for
+Itanium(R)2-based systems.
+
+For questions related to hardware requirements, refer to the documentation
+supplied with your 10 Gigabit adapter.  All hardware requirements listed apply
+to use with Linux.
+
+The following features are available in this kernel:
+ - Native VLANs
+ - Channel Bonding (teaming)
+ - SNMP
+ - Generic Receive Offload
+ - Data Center Bridging
+
+Channel Bonding documentation can be found in the Linux kernel source:
+/Documentation/networking/bonding.txt
+
+Ethtool, lspci, and ifconfig can be used to display device and driver
+specific information.
+
+
+Identifying Your Adapter
+========================
+
+This driver supports devices based on the 82598 controller and the 82599
+controller.
+
+For specific information on identifying which adapter you have, please visit:
+
+    http://support.intel.com/support/network/sb/CS-008441.htm
+
+
+Building and Installation
+=========================
+
+select m for "Intel(R) 10GbE PCI Express adapters support" located at:
+      Location:
+        -> Device Drivers
+          -> Network device support (NETDEVICES [=y])
+            -> Ethernet (10000 Mbit) (NETDEV_10000 [=y])
+
+1. make modules & make modules_install
+
+2. Load the module:
+
+# modprobe ixgbe
+
+   The insmod command can be used if the full
+   path to the driver module is specified.  For example:
+
+     insmod /lib/modules/<KERNEL VERSION>/kernel/drivers/net/ixgbe/ixgbe.ko
+
+   With 2.6 based kernels also make sure that older ixgbe drivers are
+   removed from the kernel, before loading the new module:
+
+     rmmod ixgbe; modprobe ixgbe
+
+3. Assign an IP address to the interface by entering the following, where
+   x is the interface number:
+
+     ifconfig ethx <IP_address>
+
+4. Verify that the interface works. Enter the following, where <IP_address>
+   is the IP address for another machine on the same subnet as the interface
+   that is being tested:
+
+     ping  <IP_address>
+
+
+Additional Configurations
+=========================
+
+  Viewing Link Messages
+  ---------------------
+  Link messages will not be displayed to the console if the distribution is
+  restricting system messages. In order to see network driver link messages on
+  your console, set dmesg to eight by entering the following:
+
+       dmesg -n 8
+
+  NOTE: This setting is not saved across reboots.
+
+
+  Jumbo Frames
+  ------------
+  The driver supports Jumbo Frames for all adapters. Jumbo Frames support is
+  enabled by changing the MTU to a value larger than the default of 1500.
+  The maximum value for the MTU is 16110.  Use the ifconfig command to
+  increase the MTU size.  For example:
+
+        ifconfig ethx mtu 9000 up
+
+  The maximum MTU setting for Jumbo Frames is 16110.  This value coincides
+  with the maximum Jumbo Frames size of 16128.
+
+  Generic Receive Offload, aka GRO
+  --------------------------------
+  The driver supports the in-kernel software implementation of GRO.  GRO has
+  shown that by coalescing Rx traffic into larger chunks of data, CPU
+  utilization can be significantly reduced when under large Rx load.  GRO is an
+  evolution of the previously-used LRO interface.  GRO is able to coalesce
+  other protocols besides TCP.  It's also safe to use with configurations that
+  are problematic for LRO, namely bridging and iSCSI.
+
+  GRO is enabled by default in the driver.  Future versions of ethtool will
+  support disabling and re-enabling GRO on the fly.
+
+
+  Data Center Bridging, aka DCB
+  -----------------------------
+
+  DCB is a configuration Quality of Service implementation in hardware.
+  It uses the VLAN priority tag (802.1p) to filter traffic.  That means
+  that there are 8 different priorities that traffic can be filtered into.
+  It also enables priority flow control which can limit or eliminate the
+  number of dropped packets during network stress.  Bandwidth can be
+  allocated to each of these priorities, which is enforced at the hardware
+  level.
+
+  To enable DCB support in ixgbe, you must enable the DCB netlink layer to
+  allow the userspace tools (see below) to communicate with the driver.
+  This can be found in the kernel configuration here:
+
+        -> Networking support
+          -> Networking options
+            -> Data Center Bridging support
+
+  Once this is selected, DCB support must be selected for ixgbe.  This can
+  be found here:
+
+        -> Device Drivers
+          -> Network device support (NETDEVICES [=y])
+            -> Ethernet (10000 Mbit) (NETDEV_10000 [=y])
+              -> Intel(R) 10GbE PCI Express adapters support
+                -> Data Center Bridging (DCB) Support
+
+  After these options are selected, you must rebuild your kernel and your
+  modules.
+
+  In order to use DCB, userspace tools must be downloaded and installed.
+  The dcbd tools can be found at:
+
+        http://e1000.sf.net
+
+
+  Ethtool
+  -------
+  The driver utilizes the ethtool interface for driver configuration and
+  diagnostics, as well as displaying statistical information.  Ethtool
+  version 3.0 or later is required for this functionality.
+
+  The latest release of ethtool can be found from
+  http://sourceforge.net/projects/gkernel.
+
+
+  NAPI
+  ----
+
+  NAPI (Rx polling mode) is supported in the ixgbe driver.  NAPI is enabled
+  by default in the driver.
+
+  See www.cyberus.ca/~hadi/usenix-paper.tgz for more information on NAPI.
+
+
+Support
+=======
+
+For general information, go to the Intel support website at:
+
+    http://support.intel.com
+
+or the Intel Wired Networking project hosted by Sourceforge at:
+
+    http://e1000.sourceforge.net
+
+If an issue is identified with the released source code on the supported
+kernel with a supported adapter, email the specific information related
+to the issue to e1000-devel@lists.sf.net

+ 2 - 1
Documentation/networking/netconsole.txt

@@ -51,7 +51,8 @@ Built-in netconsole starts immediately after the TCP stack is
 initialized and attempts to bring up the supplied dev at the supplied
 address.
 
-The remote host can run either 'netcat -u -l -p <port>' or syslogd.
+The remote host can run either 'netcat -u -l -p <port>',
+'nc -l -u <port>' or syslogd.
 
 Dynamic reconfiguration:
 ========================

+ 356 - 0
Documentation/networking/rds.txt

@@ -0,0 +1,356 @@
+
+Overview
+========
+
+This readme tries to provide some background on the hows and whys of RDS,
+and will hopefully help you find your way around the code.
+
+In addition, please see this email about RDS origins:
+http://oss.oracle.com/pipermail/rds-devel/2007-November/000228.html
+
+RDS Architecture
+================
+
+RDS provides reliable, ordered datagram delivery by using a single
+reliable connection between any two nodes in the cluster. This allows
+applications to use a single socket to talk to any other process in the
+cluster - so in a cluster with N processes you need N sockets, in contrast
+to N*N if you use a connection-oriented socket transport like TCP.
+
+RDS is not Infiniband-specific; it was designed to support different
+transports.  The current implementation used to support RDS over TCP as well
+as IB. Work is in progress to support RDS over iWARP, and using DCE to
+guarantee no dropped packets on Ethernet, it may be possible to use RDS over
+UDP in the future.
+
+The high-level semantics of RDS from the application's point of view are
+
+ *	Addressing
+        RDS uses IPv4 addresses and 16bit port numbers to identify
+        the end point of a connection. All socket operations that involve
+        passing addresses between kernel and user space generally
+        use a struct sockaddr_in.
+
+        The fact that IPv4 addresses are used does not mean the underlying
+        transport has to be IP-based. In fact, RDS over IB uses a
+        reliable IB connection; the IP address is used exclusively to
+        locate the remote node's GID (by ARPing for the given IP).
+
+        The port space is entirely independent of UDP, TCP or any other
+        protocol.
+
+ *	Socket interface
+        RDS sockets work *mostly* as you would expect from a BSD
+        socket. The next section will cover the details. At any rate,
+        all I/O is performed through the standard BSD socket API.
+        Some additions like zerocopy support are implemented through
+        control messages, while other extensions use the getsockopt/
+        setsockopt calls.
+
+        Sockets must be bound before you can send or receive data.
+        This is needed because binding also selects a transport and
+        attaches it to the socket. Once bound, the transport assignment
+        does not change. RDS will tolerate IPs moving around (eg in
+        a active-active HA scenario), but only as long as the address
+        doesn't move to a different transport.
+
+ *	sysctls
+        RDS supports a number of sysctls in /proc/sys/net/rds
+
+
+Socket Interface
+================
+
+  AF_RDS, PF_RDS, SOL_RDS
+        These constants haven't been assigned yet, because RDS isn't in
+        mainline yet. Currently, the kernel module assigns some constant
+        and publishes it to user space through two sysctl files
+                /proc/sys/net/rds/pf_rds
+                /proc/sys/net/rds/sol_rds
+
+  fd = socket(PF_RDS, SOCK_SEQPACKET, 0);
+        This creates a new, unbound RDS socket.
+
+  setsockopt(SOL_SOCKET): send and receive buffer size
+        RDS honors the send and receive buffer size socket options.
+        You are not allowed to queue more than SO_SNDSIZE bytes to
+        a socket. A message is queued when sendmsg is called, and
+        it leaves the queue when the remote system acknowledges
+        its arrival.
+
+        The SO_RCVSIZE option controls the maximum receive queue length.
+        This is a soft limit rather than a hard limit - RDS will
+        continue to accept and queue incoming messages, even if that
+        takes the queue length over the limit. However, it will also
+        mark the port as "congested" and send a congestion update to
+        the source node. The source node is supposed to throttle any
+        processes sending to this congested port.
+
+  bind(fd, &sockaddr_in, ...)
+        This binds the socket to a local IP address and port, and a
+        transport.
+
+  sendmsg(fd, ...)
+        Sends a message to the indicated recipient. The kernel will
+        transparently establish the underlying reliable connection
+        if it isn't up yet.
+
+        An attempt to send a message that exceeds SO_SNDSIZE will
+        return with -EMSGSIZE
+
+        An attempt to send a message that would take the total number
+        of queued bytes over the SO_SNDSIZE threshold will return
+        EAGAIN.
+
+        An attempt to send a message to a destination that is marked
+        as "congested" will return ENOBUFS.
+
+  recvmsg(fd, ...)
+        Receives a message that was queued to this socket. The sockets
+        recv queue accounting is adjusted, and if the queue length
+        drops below SO_SNDSIZE, the port is marked uncongested, and
+        a congestion update is sent to all peers.
+
+        Applications can ask the RDS kernel module to receive
+        notifications via control messages (for instance, there is a
+        notification when a congestion update arrived, or when a RDMA
+        operation completes). These notifications are received through
+        the msg.msg_control buffer of struct msghdr. The format of the
+        messages is described in manpages.
+
+  poll(fd)
+        RDS supports the poll interface to allow the application
+        to implement async I/O.
+
+        POLLIN handling is pretty straightforward. When there's an
+        incoming message queued to the socket, or a pending notification,
+        we signal POLLIN.
+
+        POLLOUT is a little harder. Since you can essentially send
+        to any destination, RDS will always signal POLLOUT as long as
+        there's room on the send queue (ie the number of bytes queued
+        is less than the sendbuf size).
+
+        However, the kernel will refuse to accept messages to
+        a destination marked congested - in this case you will loop
+        forever if you rely on poll to tell you what to do.
+        This isn't a trivial problem, but applications can deal with
+        this - by using congestion notifications, and by checking for
+        ENOBUFS errors returned by sendmsg.
+
+  setsockopt(SOL_RDS, RDS_CANCEL_SENT_TO, &sockaddr_in)
+        This allows the application to discard all messages queued to a
+        specific destination on this particular socket.
+
+        This allows the application to cancel outstanding messages if
+        it detects a timeout. For instance, if it tried to send a message,
+        and the remote host is unreachable, RDS will keep trying forever.
+        The application may decide it's not worth it, and cancel the
+        operation. In this case, it would use RDS_CANCEL_SENT_TO to
+        nuke any pending messages.
+
+
+RDMA for RDS
+============
+
+  see rds-rdma(7) manpage (available in rds-tools)
+
+
+Congestion Notifications
+========================
+
+  see rds(7) manpage
+
+
+RDS Protocol
+============
+
+  Message header
+
+    The message header is a 'struct rds_header' (see rds.h):
+    Fields:
+      h_sequence:
+          per-packet sequence number
+      h_ack:
+          piggybacked acknowledgment of last packet received
+      h_len:
+          length of data, not including header
+      h_sport:
+          source port
+      h_dport:
+          destination port
+      h_flags:
+          CONG_BITMAP - this is a congestion update bitmap
+          ACK_REQUIRED - receiver must ack this packet
+          RETRANSMITTED - packet has previously been sent
+      h_credit:
+          indicate to other end of connection that
+          it has more credits available (i.e. there is
+          more send room)
+      h_padding[4]:
+          unused, for future use
+      h_csum:
+          header checksum
+      h_exthdr:
+          optional data can be passed here. This is currently used for
+          passing RDMA-related information.
+
+  ACK and retransmit handling
+
+      One might think that with reliable IB connections you wouldn't need
+      to ack messages that have been received.  The problem is that IB
+      hardware generates an ack message before it has DMAed the message
+      into memory.  This creates a potential message loss if the HCA is
+      disabled for any reason between when it sends the ack and before
+      the message is DMAed and processed.  This is only a potential issue
+      if another HCA is available for fail-over.
+
+      Sending an ack immediately would allow the sender to free the sent
+      message from their send queue quickly, but could cause excessive
+      traffic to be used for acks. RDS piggybacks acks on sent data
+      packets.  Ack-only packets are reduced by only allowing one to be
+      in flight at a time, and by the sender only asking for acks when
+      its send buffers start to fill up. All retransmissions are also
+      acked.
+
+  Flow Control
+
+      RDS's IB transport uses a credit-based mechanism to verify that
+      there is space in the peer's receive buffers for more data. This
+      eliminates the need for hardware retries on the connection.
+
+  Congestion
+
+      Messages waiting in the receive queue on the receiving socket
+      are accounted against the sockets SO_RCVBUF option value.  Only
+      the payload bytes in the message are accounted for.  If the
+      number of bytes queued equals or exceeds rcvbuf then the socket
+      is congested.  All sends attempted to this socket's address
+      should return block or return -EWOULDBLOCK.
+
+      Applications are expected to be reasonably tuned such that this
+      situation very rarely occurs.  An application encountering this
+      "back-pressure" is considered a bug.
+
+      This is implemented by having each node maintain bitmaps which
+      indicate which ports on bound addresses are congested.  As the
+      bitmap changes it is sent through all the connections which
+      terminate in the local address of the bitmap which changed.
+
+      The bitmaps are allocated as connections are brought up.  This
+      avoids allocation in the interrupt handling path which queues
+      sages on sockets.  The dense bitmaps let transports send the
+      entire bitmap on any bitmap change reasonably efficiently.  This
+      is much easier to implement than some finer-grained
+      communication of per-port congestion.  The sender does a very
+      inexpensive bit test to test if the port it's about to send to
+      is congested or not.
+
+
+RDS Transport Layer
+==================
+
+  As mentioned above, RDS is not IB-specific. Its code is divided
+  into a general RDS layer and a transport layer.
+
+  The general layer handles the socket API, congestion handling,
+  loopback, stats, usermem pinning, and the connection state machine.
+
+  The transport layer handles the details of the transport. The IB
+  transport, for example, handles all the queue pairs, work requests,
+  CM event handlers, and other Infiniband details.
+
+
+RDS Kernel Structures
+=====================
+
+  struct rds_message
+    aka possibly "rds_outgoing", the generic RDS layer copies data to
+    be sent and sets header fields as needed, based on the socket API.
+    This is then queued for the individual connection and sent by the
+    connection's transport.
+  struct rds_incoming
+    a generic struct referring to incoming data that can be handed from
+    the transport to the general code and queued by the general code
+    while the socket is awoken. It is then passed back to the transport
+    code to handle the actual copy-to-user.
+  struct rds_socket
+    per-socket information
+  struct rds_connection
+    per-connection information
+  struct rds_transport
+    pointers to transport-specific functions
+  struct rds_statistics
+    non-transport-specific statistics
+  struct rds_cong_map
+    wraps the raw congestion bitmap, contains rbnode, waitq, etc.
+
+Connection management
+=====================
+
+  Connections may be in UP, DOWN, CONNECTING, DISCONNECTING, and
+  ERROR states.
+
+  The first time an attempt is made by an RDS socket to send data to
+  a node, a connection is allocated and connected. That connection is
+  then maintained forever -- if there are transport errors, the
+  connection will be dropped and re-established.
+
+  Dropping a connection while packets are queued will cause queued or
+  partially-sent datagrams to be retransmitted when the connection is
+  re-established.
+
+
+The send path
+=============
+
+  rds_sendmsg()
+    struct rds_message built from incoming data
+    CMSGs parsed (e.g. RDMA ops)
+    transport connection alloced and connected if not already
+    rds_message placed on send queue
+    send worker awoken
+  rds_send_worker()
+    calls rds_send_xmit() until queue is empty
+  rds_send_xmit()
+    transmits congestion map if one is pending
+    may set ACK_REQUIRED
+    calls transport to send either non-RDMA or RDMA message
+    (RDMA ops never retransmitted)
+  rds_ib_xmit()
+    allocs work requests from send ring
+    adds any new send credits available to peer (h_credits)
+    maps the rds_message's sg list
+    piggybacks ack
+    populates work requests
+    post send to connection's queue pair
+
+The recv path
+=============
+
+  rds_ib_recv_cq_comp_handler()
+    looks at write completions
+    unmaps recv buffer from device
+    no errors, call rds_ib_process_recv()
+    refill recv ring
+  rds_ib_process_recv()
+    validate header checksum
+    copy header to rds_ib_incoming struct if start of a new datagram
+    add to ibinc's fraglist
+    if competed datagram:
+      update cong map if datagram was cong update
+      call rds_recv_incoming() otherwise
+      note if ack is required
+  rds_recv_incoming()
+    drop duplicate packets
+    respond to pings
+    find the sock associated with this datagram
+    add to sock queue
+    wake up sock
+    do some congestion calculations
+  rds_recvmsg
+    copy data into user iovec
+    handle CMSGs
+    return to application
+
+

+ 180 - 0
Documentation/networking/timestamping.txt

@@ -0,0 +1,180 @@
+The existing interfaces for getting network packages time stamped are:
+
+* SO_TIMESTAMP
+  Generate time stamp for each incoming packet using the (not necessarily
+  monotonous!) system time. Result is returned via recv_msg() in a
+  control message as timeval (usec resolution).
+
+* SO_TIMESTAMPNS
+  Same time stamping mechanism as SO_TIMESTAMP, but returns result as
+  timespec (nsec resolution).
+
+* IP_MULTICAST_LOOP + SO_TIMESTAMP[NS]
+  Only for multicasts: approximate send time stamp by receiving the looped
+  packet and using its receive time stamp.
+
+The following interface complements the existing ones: receive time
+stamps can be generated and returned for arbitrary packets and much
+closer to the point where the packet is really sent. Time stamps can
+be generated in software (as before) or in hardware (if the hardware
+has such a feature).
+
+SO_TIMESTAMPING:
+
+Instructs the socket layer which kind of information is wanted. The
+parameter is an integer with some of the following bits set. Setting
+other bits is an error and doesn't change the current state.
+
+SOF_TIMESTAMPING_TX_HARDWARE:  try to obtain send time stamp in hardware
+SOF_TIMESTAMPING_TX_SOFTWARE:  if SOF_TIMESTAMPING_TX_HARDWARE is off or
+                               fails, then do it in software
+SOF_TIMESTAMPING_RX_HARDWARE:  return the original, unmodified time stamp
+                               as generated by the hardware
+SOF_TIMESTAMPING_RX_SOFTWARE:  if SOF_TIMESTAMPING_RX_HARDWARE is off or
+                               fails, then do it in software
+SOF_TIMESTAMPING_RAW_HARDWARE: return original raw hardware time stamp
+SOF_TIMESTAMPING_SYS_HARDWARE: return hardware time stamp transformed to
+                               the system time base
+SOF_TIMESTAMPING_SOFTWARE:     return system time stamp generated in
+                               software
+
+SOF_TIMESTAMPING_TX/RX determine how time stamps are generated.
+SOF_TIMESTAMPING_RAW/SYS determine how they are reported in the
+following control message:
+    struct scm_timestamping {
+           struct timespec systime;
+           struct timespec hwtimetrans;
+           struct timespec hwtimeraw;
+    };
+
+recvmsg() can be used to get this control message for regular incoming
+packets. For send time stamps the outgoing packet is looped back to
+the socket's error queue with the send time stamp(s) attached. It can
+be received with recvmsg(flags=MSG_ERRQUEUE). The call returns the
+original outgoing packet data including all headers preprended down to
+and including the link layer, the scm_timestamping control message and
+a sock_extended_err control message with ee_errno==ENOMSG and
+ee_origin==SO_EE_ORIGIN_TIMESTAMPING. A socket with such a pending
+bounced packet is ready for reading as far as select() is concerned.
+If the outgoing packet has to be fragmented, then only the first
+fragment is time stamped and returned to the sending socket.
+
+All three values correspond to the same event in time, but were
+generated in different ways. Each of these values may be empty (= all
+zero), in which case no such value was available. If the application
+is not interested in some of these values, they can be left blank to
+avoid the potential overhead of calculating them.
+
+systime is the value of the system time at that moment. This
+corresponds to the value also returned via SO_TIMESTAMP[NS]. If the
+time stamp was generated by hardware, then this field is
+empty. Otherwise it is filled in if SOF_TIMESTAMPING_SOFTWARE is
+set.
+
+hwtimeraw is the original hardware time stamp. Filled in if
+SOF_TIMESTAMPING_RAW_HARDWARE is set. No assumptions about its
+relation to system time should be made.
+
+hwtimetrans is the hardware time stamp transformed so that it
+corresponds as good as possible to system time. This correlation is
+not perfect; as a consequence, sorting packets received via different
+NICs by their hwtimetrans may differ from the order in which they were
+received. hwtimetrans may be non-monotonic even for the same NIC.
+Filled in if SOF_TIMESTAMPING_SYS_HARDWARE is set. Requires support
+by the network device and will be empty without that support.
+
+
+SIOCSHWTSTAMP:
+
+Hardware time stamping must also be initialized for each device driver
+that is expected to do hardware time stamping. The parameter is:
+
+struct hwtstamp_config {
+    int flags;           /* no flags defined right now, must be zero */
+    int tx_type;         /* HWTSTAMP_TX_* */
+    int rx_filter;       /* HWTSTAMP_FILTER_* */
+};
+
+Desired behavior is passed into the kernel and to a specific device by
+calling ioctl(SIOCSHWTSTAMP) with a pointer to a struct ifreq whose
+ifr_data points to a struct hwtstamp_config. The tx_type and
+rx_filter are hints to the driver what it is expected to do. If
+the requested fine-grained filtering for incoming packets is not
+supported, the driver may time stamp more than just the requested types
+of packets.
+
+A driver which supports hardware time stamping shall update the struct
+with the actual, possibly more permissive configuration. If the
+requested packets cannot be time stamped, then nothing should be
+changed and ERANGE shall be returned (in contrast to EINVAL, which
+indicates that SIOCSHWTSTAMP is not supported at all).
+
+Only a processes with admin rights may change the configuration. User
+space is responsible to ensure that multiple processes don't interfere
+with each other and that the settings are reset.
+
+/* possible values for hwtstamp_config->tx_type */
+enum {
+	/*
+	 * no outgoing packet will need hardware time stamping;
+	 * should a packet arrive which asks for it, no hardware
+	 * time stamping will be done
+	 */
+	HWTSTAMP_TX_OFF,
+
+	/*
+	 * enables hardware time stamping for outgoing packets;
+	 * the sender of the packet decides which are to be
+	 * time stamped by setting SOF_TIMESTAMPING_TX_SOFTWARE
+	 * before sending the packet
+	 */
+	HWTSTAMP_TX_ON,
+};
+
+/* possible values for hwtstamp_config->rx_filter */
+enum {
+	/* time stamp no incoming packet at all */
+	HWTSTAMP_FILTER_NONE,
+
+	/* time stamp any incoming packet */
+	HWTSTAMP_FILTER_ALL,
+
+        /* return value: time stamp all packets requested plus some others */
+        HWTSTAMP_FILTER_SOME,
+
+	/* PTP v1, UDP, any kind of event packet */
+	HWTSTAMP_FILTER_PTP_V1_L4_EVENT,
+
+        ...
+};
+
+
+DEVICE IMPLEMENTATION
+
+A driver which supports hardware time stamping must support the
+SIOCSHWTSTAMP ioctl. Time stamps for received packets must be stored
+in the skb with skb_hwtstamp_set().
+
+Time stamps for outgoing packets are to be generated as follows:
+- In hard_start_xmit(), check if skb_hwtstamp_check_tx_hardware()
+  returns non-zero. If yes, then the driver is expected
+  to do hardware time stamping.
+- If this is possible for the skb and requested, then declare
+  that the driver is doing the time stamping by calling
+  skb_hwtstamp_tx_in_progress(). A driver not supporting
+  hardware time stamping doesn't do that. A driver must never
+  touch sk_buff::tstamp! It is used to store how time stamping
+  for an outgoing packets is to be done.
+- As soon as the driver has sent the packet and/or obtained a
+  hardware time stamp for it, it passes the time stamp back by
+  calling skb_hwtstamp_tx() with the original skb, the raw
+  hardware time stamp and a handle to the device (necessary
+  to convert the hardware time stamp to system time). If obtaining
+  the hardware time stamp somehow fails, then the driver should
+  not fall back to software time stamping. The rationale is that
+  this would occur at a later time in the processing pipeline
+  than other software time stamping and therefore could lead
+  to unexpected deltas between time stamps.
+- If the driver did not call skb_hwtstamp_tx_in_progress(), then
+  dev_hard_start_xmit() checks whether software time stamping
+  is wanted as fallback and potentially generates the time stamp.

+ 1 - 0
Documentation/networking/timestamping/.gitignore

@@ -0,0 +1 @@
+timestamping

+ 6 - 0
Documentation/networking/timestamping/Makefile

@@ -0,0 +1,6 @@
+CPPFLAGS = -I../../../include
+
+timestamping: timestamping.c
+
+clean:
+	rm -f timestamping

+ 533 - 0
Documentation/networking/timestamping/timestamping.c

@@ -0,0 +1,533 @@
+/*
+ * This program demonstrates how the various time stamping features in
+ * the Linux kernel work. It emulates the behavior of a PTP
+ * implementation in stand-alone master mode by sending PTPv1 Sync
+ * multicasts once every second. It looks for similar packets, but
+ * beyond that doesn't actually implement PTP.
+ *
+ * Outgoing packets are time stamped with SO_TIMESTAMPING with or
+ * without hardware support.
+ *
+ * Incoming packets are time stamped with SO_TIMESTAMPING with or
+ * without hardware support, SIOCGSTAMP[NS] (per-socket time stamp) and
+ * SO_TIMESTAMP[NS].
+ *
+ * Copyright (C) 2009 Intel Corporation.
+ * Author: Patrick Ohly <patrick.ohly@intel.com>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <errno.h>
+#include <string.h>
+
+#include <sys/time.h>
+#include <sys/socket.h>
+#include <sys/select.h>
+#include <sys/ioctl.h>
+#include <arpa/inet.h>
+#include <net/if.h>
+
+#include "asm/types.h"
+#include "linux/net_tstamp.h"
+#include "linux/errqueue.h"
+
+#ifndef SO_TIMESTAMPING
+# define SO_TIMESTAMPING         37
+# define SCM_TIMESTAMPING        SO_TIMESTAMPING
+#endif
+
+#ifndef SO_TIMESTAMPNS
+# define SO_TIMESTAMPNS 35
+#endif
+
+#ifndef SIOCGSTAMPNS
+# define SIOCGSTAMPNS 0x8907
+#endif
+
+#ifndef SIOCSHWTSTAMP
+# define SIOCSHWTSTAMP 0x89b0
+#endif
+
+static void usage(const char *error)
+{
+	if (error)
+		printf("invalid option: %s\n", error);
+	printf("timestamping interface option*\n\n"
+	       "Options:\n"
+	       "  IP_MULTICAST_LOOP - looping outgoing multicasts\n"
+	       "  SO_TIMESTAMP - normal software time stamping, ms resolution\n"
+	       "  SO_TIMESTAMPNS - more accurate software time stamping\n"
+	       "  SOF_TIMESTAMPING_TX_HARDWARE - hardware time stamping of outgoing packets\n"
+	       "  SOF_TIMESTAMPING_TX_SOFTWARE - software fallback for outgoing packets\n"
+	       "  SOF_TIMESTAMPING_RX_HARDWARE - hardware time stamping of incoming packets\n"
+	       "  SOF_TIMESTAMPING_RX_SOFTWARE - software fallback for incoming packets\n"
+	       "  SOF_TIMESTAMPING_SOFTWARE - request reporting of software time stamps\n"
+	       "  SOF_TIMESTAMPING_SYS_HARDWARE - request reporting of transformed HW time stamps\n"
+	       "  SOF_TIMESTAMPING_RAW_HARDWARE - request reporting of raw HW time stamps\n"
+	       "  SIOCGSTAMP - check last socket time stamp\n"
+	       "  SIOCGSTAMPNS - more accurate socket time stamp\n");
+	exit(1);
+}
+
+static void bail(const char *error)
+{
+	printf("%s: %s\n", error, strerror(errno));
+	exit(1);
+}
+
+static const unsigned char sync[] = {
+	0x00, 0x01, 0x00, 0x01,
+	0x5f, 0x44, 0x46, 0x4c,
+	0x54, 0x00, 0x00, 0x00,
+	0x00, 0x00, 0x00, 0x00,
+	0x00, 0x00, 0x00, 0x00,
+	0x01, 0x01,
+
+	/* fake uuid */
+	0x00, 0x01,
+	0x02, 0x03, 0x04, 0x05,
+
+	0x00, 0x01, 0x00, 0x37,
+	0x00, 0x00, 0x00, 0x08,
+	0x00, 0x00, 0x00, 0x00,
+	0x49, 0x05, 0xcd, 0x01,
+	0x29, 0xb1, 0x8d, 0xb0,
+	0x00, 0x00, 0x00, 0x00,
+	0x00, 0x01,
+
+	/* fake uuid */
+	0x00, 0x01,
+	0x02, 0x03, 0x04, 0x05,
+
+	0x00, 0x00, 0x00, 0x37,
+	0x00, 0x00, 0x00, 0x04,
+	0x44, 0x46, 0x4c, 0x54,
+	0x00, 0x00, 0xf0, 0x60,
+	0x00, 0x01, 0x00, 0x00,
+	0x00, 0x00, 0x00, 0x01,
+	0x00, 0x00, 0xf0, 0x60,
+	0x00, 0x00, 0x00, 0x00,
+	0x00, 0x00, 0x00, 0x04,
+	0x44, 0x46, 0x4c, 0x54,
+	0x00, 0x01,
+
+	/* fake uuid */
+	0x00, 0x01,
+	0x02, 0x03, 0x04, 0x05,
+
+	0x00, 0x00, 0x00, 0x00,
+	0x00, 0x00, 0x00, 0x00,
+	0x00, 0x00, 0x00, 0x00,
+	0x00, 0x00, 0x00, 0x00
+};
+
+static void sendpacket(int sock, struct sockaddr *addr, socklen_t addr_len)
+{
+	struct timeval now;
+	int res;
+
+	res = sendto(sock, sync, sizeof(sync), 0,
+		addr, addr_len);
+	gettimeofday(&now, 0);
+	if (res < 0)
+		printf("%s: %s\n", "send", strerror(errno));
+	else
+		printf("%ld.%06ld: sent %d bytes\n",
+		       (long)now.tv_sec, (long)now.tv_usec,
+		       res);
+}
+
+static void printpacket(struct msghdr *msg, int res,
+			char *data,
+			int sock, int recvmsg_flags,
+			int siocgstamp, int siocgstampns)
+{
+	struct sockaddr_in *from_addr = (struct sockaddr_in *)msg->msg_name;
+	struct cmsghdr *cmsg;
+	struct timeval tv;
+	struct timespec ts;
+	struct timeval now;
+
+	gettimeofday(&now, 0);
+
+	printf("%ld.%06ld: received %s data, %d bytes from %s, %d bytes control messages\n",
+	       (long)now.tv_sec, (long)now.tv_usec,
+	       (recvmsg_flags & MSG_ERRQUEUE) ? "error" : "regular",
+	       res,
+	       inet_ntoa(from_addr->sin_addr),
+	       msg->msg_controllen);
+	for (cmsg = CMSG_FIRSTHDR(msg);
+	     cmsg;
+	     cmsg = CMSG_NXTHDR(msg, cmsg)) {
+		printf("   cmsg len %d: ", cmsg->cmsg_len);
+		switch (cmsg->cmsg_level) {
+		case SOL_SOCKET:
+			printf("SOL_SOCKET ");
+			switch (cmsg->cmsg_type) {
+			case SO_TIMESTAMP: {
+				struct timeval *stamp =
+					(struct timeval *)CMSG_DATA(cmsg);
+				printf("SO_TIMESTAMP %ld.%06ld",
+				       (long)stamp->tv_sec,
+				       (long)stamp->tv_usec);
+				break;
+			}
+			case SO_TIMESTAMPNS: {
+				struct timespec *stamp =
+					(struct timespec *)CMSG_DATA(cmsg);
+				printf("SO_TIMESTAMPNS %ld.%09ld",
+				       (long)stamp->tv_sec,
+				       (long)stamp->tv_nsec);
+				break;
+			}
+			case SO_TIMESTAMPING: {
+				struct timespec *stamp =
+					(struct timespec *)CMSG_DATA(cmsg);
+				printf("SO_TIMESTAMPING ");
+				printf("SW %ld.%09ld ",
+				       (long)stamp->tv_sec,
+				       (long)stamp->tv_nsec);
+				stamp++;
+				printf("HW transformed %ld.%09ld ",
+				       (long)stamp->tv_sec,
+				       (long)stamp->tv_nsec);
+				stamp++;
+				printf("HW raw %ld.%09ld",
+				       (long)stamp->tv_sec,
+				       (long)stamp->tv_nsec);
+				break;
+			}
+			default:
+				printf("type %d", cmsg->cmsg_type);
+				break;
+			}
+			break;
+		case IPPROTO_IP:
+			printf("IPPROTO_IP ");
+			switch (cmsg->cmsg_type) {
+			case IP_RECVERR: {
+				struct sock_extended_err *err =
+					(struct sock_extended_err *)CMSG_DATA(cmsg);
+				printf("IP_RECVERR ee_errno '%s' ee_origin %d => %s",
+					strerror(err->ee_errno),
+					err->ee_origin,
+#ifdef SO_EE_ORIGIN_TIMESTAMPING
+					err->ee_origin == SO_EE_ORIGIN_TIMESTAMPING ?
+					"bounced packet" : "unexpected origin"
+#else
+					"probably SO_EE_ORIGIN_TIMESTAMPING"
+#endif
+					);
+				if (res < sizeof(sync))
+					printf(" => truncated data?!");
+				else if (!memcmp(sync, data + res - sizeof(sync),
+							sizeof(sync)))
+					printf(" => GOT OUR DATA BACK (HURRAY!)");
+				break;
+			}
+			case IP_PKTINFO: {
+				struct in_pktinfo *pktinfo =
+					(struct in_pktinfo *)CMSG_DATA(cmsg);
+				printf("IP_PKTINFO interface index %u",
+					pktinfo->ipi_ifindex);
+				break;
+			}
+			default:
+				printf("type %d", cmsg->cmsg_type);
+				break;
+			}
+			break;
+		default:
+			printf("level %d type %d",
+				cmsg->cmsg_level,
+				cmsg->cmsg_type);
+			break;
+		}
+		printf("\n");
+	}
+
+	if (siocgstamp) {
+		if (ioctl(sock, SIOCGSTAMP, &tv))
+			printf("   %s: %s\n", "SIOCGSTAMP", strerror(errno));
+		else
+			printf("SIOCGSTAMP %ld.%06ld\n",
+			       (long)tv.tv_sec,
+			       (long)tv.tv_usec);
+	}
+	if (siocgstampns) {
+		if (ioctl(sock, SIOCGSTAMPNS, &ts))
+			printf("   %s: %s\n", "SIOCGSTAMPNS", strerror(errno));
+		else
+			printf("SIOCGSTAMPNS %ld.%09ld\n",
+			       (long)ts.tv_sec,
+			       (long)ts.tv_nsec);
+	}
+}
+
+static void recvpacket(int sock, int recvmsg_flags,
+		       int siocgstamp, int siocgstampns)
+{
+	char data[256];
+	struct msghdr msg;
+	struct iovec entry;
+	struct sockaddr_in from_addr;
+	struct {
+		struct cmsghdr cm;
+		char control[512];
+	} control;
+	int res;
+
+	memset(&msg, 0, sizeof(msg));
+	msg.msg_iov = &entry;
+	msg.msg_iovlen = 1;
+	entry.iov_base = data;
+	entry.iov_len = sizeof(data);
+	msg.msg_name = (caddr_t)&from_addr;
+	msg.msg_namelen = sizeof(from_addr);
+	msg.msg_control = &control;
+	msg.msg_controllen = sizeof(control);
+
+	res = recvmsg(sock, &msg, recvmsg_flags|MSG_DONTWAIT);
+	if (res < 0) {
+		printf("%s %s: %s\n",
+		       "recvmsg",
+		       (recvmsg_flags & MSG_ERRQUEUE) ? "error" : "regular",
+		       strerror(errno));
+	} else {
+		printpacket(&msg, res, data,
+			    sock, recvmsg_flags,
+			    siocgstamp, siocgstampns);
+	}
+}
+
+int main(int argc, char **argv)
+{
+	int so_timestamping_flags = 0;
+	int so_timestamp = 0;
+	int so_timestampns = 0;
+	int siocgstamp = 0;
+	int siocgstampns = 0;
+	int ip_multicast_loop = 0;
+	char *interface;
+	int i;
+	int enabled = 1;
+	int sock;
+	struct ifreq device;
+	struct ifreq hwtstamp;
+	struct hwtstamp_config hwconfig, hwconfig_requested;
+	struct sockaddr_in addr;
+	struct ip_mreq imr;
+	struct in_addr iaddr;
+	int val;
+	socklen_t len;
+	struct timeval next;
+
+	if (argc < 2)
+		usage(0);
+	interface = argv[1];
+
+	for (i = 2; i < argc; i++) {
+		if (!strcasecmp(argv[i], "SO_TIMESTAMP"))
+			so_timestamp = 1;
+		else if (!strcasecmp(argv[i], "SO_TIMESTAMPNS"))
+			so_timestampns = 1;
+		else if (!strcasecmp(argv[i], "SIOCGSTAMP"))
+			siocgstamp = 1;
+		else if (!strcasecmp(argv[i], "SIOCGSTAMPNS"))
+			siocgstampns = 1;
+		else if (!strcasecmp(argv[i], "IP_MULTICAST_LOOP"))
+			ip_multicast_loop = 1;
+		else if (!strcasecmp(argv[i], "SOF_TIMESTAMPING_TX_HARDWARE"))
+			so_timestamping_flags |= SOF_TIMESTAMPING_TX_HARDWARE;
+		else if (!strcasecmp(argv[i], "SOF_TIMESTAMPING_TX_SOFTWARE"))
+			so_timestamping_flags |= SOF_TIMESTAMPING_TX_SOFTWARE;
+		else if (!strcasecmp(argv[i], "SOF_TIMESTAMPING_RX_HARDWARE"))
+			so_timestamping_flags |= SOF_TIMESTAMPING_RX_HARDWARE;
+		else if (!strcasecmp(argv[i], "SOF_TIMESTAMPING_RX_SOFTWARE"))
+			so_timestamping_flags |= SOF_TIMESTAMPING_RX_SOFTWARE;
+		else if (!strcasecmp(argv[i], "SOF_TIMESTAMPING_SOFTWARE"))
+			so_timestamping_flags |= SOF_TIMESTAMPING_SOFTWARE;
+		else if (!strcasecmp(argv[i], "SOF_TIMESTAMPING_SYS_HARDWARE"))
+			so_timestamping_flags |= SOF_TIMESTAMPING_SYS_HARDWARE;
+		else if (!strcasecmp(argv[i], "SOF_TIMESTAMPING_RAW_HARDWARE"))
+			so_timestamping_flags |= SOF_TIMESTAMPING_RAW_HARDWARE;
+		else
+			usage(argv[i]);
+	}
+
+	sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);
+	if (socket < 0)
+		bail("socket");
+
+	memset(&device, 0, sizeof(device));
+	strncpy(device.ifr_name, interface, sizeof(device.ifr_name));
+	if (ioctl(sock, SIOCGIFADDR, &device) < 0)
+		bail("getting interface IP address");
+
+	memset(&hwtstamp, 0, sizeof(hwtstamp));
+	strncpy(hwtstamp.ifr_name, interface, sizeof(hwtstamp.ifr_name));
+	hwtstamp.ifr_data = (void *)&hwconfig;
+	memset(&hwconfig, 0, sizeof(&hwconfig));
+	hwconfig.tx_type =
+		(so_timestamping_flags & SOF_TIMESTAMPING_TX_HARDWARE) ?
+		HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
+	hwconfig.rx_filter =
+		(so_timestamping_flags & SOF_TIMESTAMPING_RX_HARDWARE) ?
+		HWTSTAMP_FILTER_PTP_V1_L4_SYNC : HWTSTAMP_FILTER_NONE;
+	hwconfig_requested = hwconfig;
+	if (ioctl(sock, SIOCSHWTSTAMP, &hwtstamp) < 0) {
+		if ((errno == EINVAL || errno == ENOTSUP) &&
+		    hwconfig_requested.tx_type == HWTSTAMP_TX_OFF &&
+		    hwconfig_requested.rx_filter == HWTSTAMP_FILTER_NONE)
+			printf("SIOCSHWTSTAMP: disabling hardware time stamping not possible\n");
+		else
+			bail("SIOCSHWTSTAMP");
+	}
+	printf("SIOCSHWTSTAMP: tx_type %d requested, got %d; rx_filter %d requested, got %d\n",
+	       hwconfig_requested.tx_type, hwconfig.tx_type,
+	       hwconfig_requested.rx_filter, hwconfig.rx_filter);
+
+	/* bind to PTP port */
+	addr.sin_family = AF_INET;
+	addr.sin_addr.s_addr = htonl(INADDR_ANY);
+	addr.sin_port = htons(319 /* PTP event port */);
+	if (bind(sock,
+		 (struct sockaddr *)&addr,
+		 sizeof(struct sockaddr_in)) < 0)
+		bail("bind");
+
+	/* set multicast group for outgoing packets */
+	inet_aton("224.0.1.130", &iaddr); /* alternate PTP domain 1 */
+	addr.sin_addr = iaddr;
+	imr.imr_multiaddr.s_addr = iaddr.s_addr;
+	imr.imr_interface.s_addr =
+		((struct sockaddr_in *)&device.ifr_addr)->sin_addr.s_addr;
+	if (setsockopt(sock, IPPROTO_IP, IP_MULTICAST_IF,
+		       &imr.imr_interface.s_addr, sizeof(struct in_addr)) < 0)
+		bail("set multicast");
+
+	/* join multicast group, loop our own packet */
+	if (setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP,
+		       &imr, sizeof(struct ip_mreq)) < 0)
+		bail("join multicast group");
+
+	if (setsockopt(sock, IPPROTO_IP, IP_MULTICAST_LOOP,
+		       &ip_multicast_loop, sizeof(enabled)) < 0) {
+		bail("loop multicast");
+	}
+
+	/* set socket options for time stamping */
+	if (so_timestamp &&
+		setsockopt(sock, SOL_SOCKET, SO_TIMESTAMP,
+			   &enabled, sizeof(enabled)) < 0)
+		bail("setsockopt SO_TIMESTAMP");
+
+	if (so_timestampns &&
+		setsockopt(sock, SOL_SOCKET, SO_TIMESTAMPNS,
+			   &enabled, sizeof(enabled)) < 0)
+		bail("setsockopt SO_TIMESTAMPNS");
+
+	if (so_timestamping_flags &&
+		setsockopt(sock, SOL_SOCKET, SO_TIMESTAMPING,
+			   &so_timestamping_flags,
+			   sizeof(so_timestamping_flags)) < 0)
+		bail("setsockopt SO_TIMESTAMPING");
+
+	/* request IP_PKTINFO for debugging purposes */
+	if (setsockopt(sock, SOL_IP, IP_PKTINFO,
+		       &enabled, sizeof(enabled)) < 0)
+		printf("%s: %s\n", "setsockopt IP_PKTINFO", strerror(errno));
+
+	/* verify socket options */
+	len = sizeof(val);
+	if (getsockopt(sock, SOL_SOCKET, SO_TIMESTAMP, &val, &len) < 0)
+		printf("%s: %s\n", "getsockopt SO_TIMESTAMP", strerror(errno));
+	else
+		printf("SO_TIMESTAMP %d\n", val);
+
+	if (getsockopt(sock, SOL_SOCKET, SO_TIMESTAMPNS, &val, &len) < 0)
+		printf("%s: %s\n", "getsockopt SO_TIMESTAMPNS",
+		       strerror(errno));
+	else
+		printf("SO_TIMESTAMPNS %d\n", val);
+
+	if (getsockopt(sock, SOL_SOCKET, SO_TIMESTAMPING, &val, &len) < 0) {
+		printf("%s: %s\n", "getsockopt SO_TIMESTAMPING",
+		       strerror(errno));
+	} else {
+		printf("SO_TIMESTAMPING %d\n", val);
+		if (val != so_timestamping_flags)
+			printf("   not the expected value %d\n",
+			       so_timestamping_flags);
+	}
+
+	/* send packets forever every five seconds */
+	gettimeofday(&next, 0);
+	next.tv_sec = (next.tv_sec + 1) / 5 * 5;
+	next.tv_usec = 0;
+	while (1) {
+		struct timeval now;
+		struct timeval delta;
+		long delta_us;
+		int res;
+		fd_set readfs, errorfs;
+
+		gettimeofday(&now, 0);
+		delta_us = (long)(next.tv_sec - now.tv_sec) * 1000000 +
+			(long)(next.tv_usec - now.tv_usec);
+		if (delta_us > 0) {
+			/* continue waiting for timeout or data */
+			delta.tv_sec = delta_us / 1000000;
+			delta.tv_usec = delta_us % 1000000;
+
+			FD_ZERO(&readfs);
+			FD_ZERO(&errorfs);
+			FD_SET(sock, &readfs);
+			FD_SET(sock, &errorfs);
+			printf("%ld.%06ld: select %ldus\n",
+			       (long)now.tv_sec, (long)now.tv_usec,
+			       delta_us);
+			res = select(sock + 1, &readfs, 0, &errorfs, &delta);
+			gettimeofday(&now, 0);
+			printf("%ld.%06ld: select returned: %d, %s\n",
+			       (long)now.tv_sec, (long)now.tv_usec,
+			       res,
+			       res < 0 ? strerror(errno) : "success");
+			if (res > 0) {
+				if (FD_ISSET(sock, &readfs))
+					printf("ready for reading\n");
+				if (FD_ISSET(sock, &errorfs))
+					printf("has error\n");
+				recvpacket(sock, 0,
+					   siocgstamp,
+					   siocgstampns);
+				recvpacket(sock, MSG_ERRQUEUE,
+					   siocgstamp,
+					   siocgstampns);
+			}
+		} else {
+			/* write one packet */
+			sendpacket(sock,
+				   (struct sockaddr *)&addr,
+				   sizeof(addr));
+			next.tv_sec += 5;
+			continue;
+		}
+	}
+
+	return 0;
+}

+ 180 - 0
Documentation/powerpc/dts-bindings/fsl/mpc5200.txt

@@ -0,0 +1,180 @@
+MPC5200 Device Tree Bindings
+----------------------------
+
+(c) 2006-2009 Secret Lab Technologies Ltd
+Grant Likely <grant.likely@secretlab.ca>
+
+Naming conventions
+------------------
+For mpc5200 on-chip devices, the format for each compatible value is
+<chip>-<device>[-<mode>].  The OS should be able to match a device driver
+to the device based solely on the compatible value.  If two drivers
+match on the compatible list; the 'most compatible' driver should be
+selected.
+
+The split between the MPC5200 and the MPC5200B leaves a bit of a
+conundrum.  How should the compatible property be set up to provide
+maximum compatibility information; but still accurately describe the
+chip?  For the MPC5200; the answer is easy.  Most of the SoC devices
+originally appeared on the MPC5200.  Since they didn't exist anywhere
+else; the 5200 compatible properties will contain only one item;
+"fsl,mpc5200-<device>".
+
+The 5200B is almost the same as the 5200, but not quite.  It fixes
+silicon bugs and it adds a small number of enhancements.  Most of the
+devices either provide exactly the same interface as on the 5200.  A few
+devices have extra functions but still have a backwards compatible mode.
+To express this information as completely as possible, 5200B device trees
+should have two items in the compatible list:
+	compatible = "fsl,mpc5200b-<device>","fsl,mpc5200-<device>";
+
+It is *strongly* recommended that 5200B device trees follow this convention
+(instead of only listing the base mpc5200 item).
+
+ie. ethernet on mpc5200: compatible = "fsl,mpc5200-fec";
+    ethernet on mpc5200b: compatible = "fsl,mpc5200b-fec", "fsl,mpc5200-fec";
+
+Modal devices, like PSCs, also append the configured function to the
+end of the compatible field.  ie. A PSC in i2s mode would specify
+"fsl,mpc5200-psc-i2s", not "fsl,mpc5200-i2s".  This convention is chosen to
+avoid naming conflicts with non-psc devices providing the same
+function.  For example, "fsl,mpc5200-spi" and "fsl,mpc5200-psc-spi" describe
+the mpc5200 simple spi device and a PSC spi mode respectively.
+
+At the time of writing, exact chip may be either 'fsl,mpc5200' or
+'fsl,mpc5200b'.
+
+The soc node
+------------
+This node describes the on chip SOC peripherals.  Every mpc5200 based
+board will have this node, and as such there is a common naming
+convention for SOC devices.
+
+Required properties:
+name			description
+----			-----------
+ranges			Memory range of the internal memory mapped registers.
+			Should be <0 [baseaddr] 0xc000>
+reg			Should be <[baseaddr] 0x100>
+compatible		mpc5200: "fsl,mpc5200-immr"
+			mpc5200b: "fsl,mpc5200b-immr"
+system-frequency	'fsystem' frequency in Hz; XLB, IPB, USB and PCI
+			clocks are derived from the fsystem clock.
+bus-frequency		IPB bus frequency in Hz.  Clock rate
+			used by most of the soc devices.
+
+soc child nodes
+---------------
+Any on chip SOC devices available to Linux must appear as soc5200 child nodes.
+
+Note: The tables below show the value for the mpc5200.  A mpc5200b device
+tree should use the "fsl,mpc5200b-<device>","fsl,mpc5200-<device>" form.
+
+Required soc5200 child nodes:
+name				compatible		Description
+----				----------		-----------
+cdm@<addr>			fsl,mpc5200-cdm		Clock Distribution
+interrupt-controller@<addr>	fsl,mpc5200-pic		need an interrupt
+							controller to boot
+bestcomm@<addr>			fsl,mpc5200-bestcomm	Bestcomm DMA controller
+
+Recommended soc5200 child nodes; populate as needed for your board
+name		compatible		Description
+----		----------		-----------
+timer@<addr>	fsl,mpc5200-gpt		 General purpose timers
+gpio@<addr>	fsl,mpc5200-gpio	 MPC5200 simple gpio controller
+gpio@<addr>	fsl,mpc5200-gpio-wkup	 MPC5200 wakeup gpio controller
+rtc@<addr>	fsl,mpc5200-rtc		 Real time clock
+mscan@<addr>	fsl,mpc5200-mscan	 CAN bus controller
+pci@<addr>	fsl,mpc5200-pci		 PCI bridge
+serial@<addr>	fsl,mpc5200-psc-uart	 PSC in serial mode
+i2s@<addr>	fsl,mpc5200-psc-i2s	 PSC in i2s mode
+ac97@<addr>	fsl,mpc5200-psc-ac97	 PSC in ac97 mode
+spi@<addr>	fsl,mpc5200-psc-spi	 PSC in spi mode
+irda@<addr>	fsl,mpc5200-psc-irda	 PSC in IrDA mode
+spi@<addr>	fsl,mpc5200-spi		 MPC5200 spi device
+ethernet@<addr>	fsl,mpc5200-fec		 MPC5200 ethernet device
+ata@<addr>	fsl,mpc5200-ata		 IDE ATA interface
+i2c@<addr>	fsl,mpc5200-i2c		 I2C controller
+usb@<addr>	fsl,mpc5200-ohci,ohci-be USB controller
+xlb@<addr>	fsl,mpc5200-xlb		 XLB arbitrator
+
+fsl,mpc5200-gpt nodes
+---------------------
+On the mpc5200 and 5200b, GPT0 has a watchdog timer function.  If the board
+design supports the internal wdt, then the device node for GPT0 should
+include the empty property 'fsl,has-wdt'.
+
+An mpc5200-gpt can be used as a single line GPIO controller.  To do so,
+add the following properties to the gpt node:
+	gpio-controller;
+	#gpio-cells = <2>;
+When referencing the GPIO line from another node, the first cell must always
+be zero and the second cell represents the gpio flags and described in the
+gpio device tree binding.
+
+An mpc5200-gpt can be used as a single line edge sensitive interrupt
+controller.  To do so, add the following properties to the gpt node:
+	interrupt-controller;
+	#interrupt-cells = <1>;
+When referencing the IRQ line from another node, the cell represents the
+sense mode; 1 for edge rising, 2 for edge falling.
+
+fsl,mpc5200-psc nodes
+---------------------
+The PSCs should include a cell-index which is the index of the PSC in
+hardware.  cell-index is used to determine which shared SoC registers to
+use when setting up PSC clocking.  cell-index number starts at '0'.  ie:
+	PSC1 has 'cell-index = <0>'
+	PSC4 has 'cell-index = <3>'
+
+PSC in i2s mode:  The mpc5200 and mpc5200b PSCs are not compatible when in
+i2s mode.  An 'mpc5200b-psc-i2s' node cannot include 'mpc5200-psc-i2s' in the
+compatible field.
+
+
+fsl,mpc5200-gpio and fsl,mpc5200-gpio-wkup nodes
+------------------------------------------------
+Each GPIO controller node should have the empty property gpio-controller and
+#gpio-cells set to 2. First cell is the GPIO number which is interpreted
+according to the bit numbers in the GPIO control registers. The second cell
+is for flags which is currently unused.
+
+fsl,mpc5200-fec nodes
+---------------------
+The FEC node can specify one of the following properties to configure
+the MII link:
+- fsl,7-wire-mode - An empty property that specifies the link uses 7-wire
+                    mode instead of MII
+- current-speed   - Specifies that the MII should be configured for a fixed
+                    speed.  This property should contain two cells.  The
+                    first cell specifies the speed in Mbps and the second
+                    should be '0' for half duplex and '1' for full duplex
+- phy-handle      - Contains a phandle to an Ethernet PHY.
+
+Interrupt controller (fsl,mpc5200-pic) node
+-------------------------------------------
+The mpc5200 pic binding splits hardware IRQ numbers into two levels.  The
+split reflects the layout of the PIC hardware itself, which groups
+interrupts into one of three groups; CRIT, MAIN or PERP.  Also, the
+Bestcomm dma engine has it's own set of interrupt sources which are
+cascaded off of peripheral interrupt 0, which the driver interprets as a
+fourth group, SDMA.
+
+The interrupts property for device nodes using the mpc5200 pic consists
+of three cells; <L1 L2 level>
+
+    L1 := [CRIT=0, MAIN=1, PERP=2, SDMA=3]
+    L2 := interrupt number; directly mapped from the value in the
+          "ICTL PerStat, MainStat, CritStat Encoded Register"
+    level := [LEVEL_HIGH=0, EDGE_RISING=1, EDGE_FALLING=2, LEVEL_LOW=3]
+
+For external IRQs, use the following interrupt property values (how to
+specify external interrupts is a frequently asked question):
+External interrupts:
+	external irq0:	interrupts = <0 0 n>;
+	external irq1:	interrupts = <1 1 n>;
+	external irq2:	interrupts = <1 2 n>;
+	external irq3:	interrupts = <1 3 n>;
+'n' is sense (0: level high, 1: edge rising, 2: edge falling 3: level low)
+

+ 6 - 0
Documentation/powerpc/dts-bindings/fsl/tsec.txt

@@ -56,6 +56,12 @@ Properties:
     hardware.
   - fsl,magic-packet : If present, indicates that the hardware supports
     waking up via magic packet.
+  - bd-stash : If present, indicates that the hardware supports stashing
+    buffer descriptors in the L2.
+  - rx-stash-len : Denotes the number of bytes of a received buffer to stash
+    in the L2.
+  - rx-stash-idx : Denotes the index of the first byte from the received
+    buffer to stash in the L2.
 
 Example:
 	ethernet@24000 {

+ 0 - 277
Documentation/powerpc/mpc52xx-device-tree-bindings.txt

@@ -1,277 +0,0 @@
-MPC5200 Device Tree Bindings
-----------------------------
-
-(c) 2006-2007 Secret Lab Technologies Ltd
-Grant Likely <grant.likely at secretlab.ca>
-
-********** DRAFT ***********
-* WARNING: Do not depend on the stability of these bindings just yet.
-* The MPC5200 device tree conventions are still in flux
-* Keep an eye on the linuxppc-dev mailing list for more details
-********** DRAFT ***********
-
-I - Introduction
-================
-Boards supported by the arch/powerpc architecture require device tree be
-passed by the boot loader to the kernel at boot time.  The device tree
-describes what devices are present on the board and how they are
-connected.  The device tree can either be passed as a binary blob (as
-described in Documentation/powerpc/booting-without-of.txt), or passed
-by Open Firmware (IEEE 1275) compatible firmware using an OF compatible
-client interface API.
-
-This document specifies the requirements on the device-tree for mpc5200
-based boards.  These requirements are above and beyond the details
-specified in either the Open Firmware spec or booting-without-of.txt
-
-All new mpc5200-based boards are expected to match this document.  In
-cases where this document is not sufficient to support a new board port,
-this document should be updated as part of adding the new board support.
-
-II - Philosophy
-===============
-The core of this document is naming convention.  The whole point of
-defining this convention is to reduce or eliminate the number of
-special cases required to support a 5200 board.  If all 5200 boards
-follow the same convention, then generic 5200 support code will work
-rather than coding special cases for each new board.
-
-This section tries to capture the thought process behind why the naming
-convention is what it is.
-
-1.  names
----------
-There is strong convention/requirements already established for children
-of the root node.  'cpus' describes the processor cores, 'memory'
-describes memory, and 'chosen' provides boot configuration.  Other nodes
-are added to describe devices attached to the processor local bus.
-
-Following convention already established with other system-on-chip
-processors, 5200 device trees should use the name 'soc5200' for the
-parent node of on chip devices, and the root node should be its parent.
-
-Child nodes are typically named after the configured function.  ie.
-the FEC node is named 'ethernet', and a PSC in uart mode is named 'serial'.
-
-2. device_type property
------------------------
-similar to the node name convention above; the device_type reflects the
-configured function of a device.  ie. 'serial' for a uart and 'spi' for
-an spi controller.  However, while node names *should* reflect the
-configured function, device_type *must* match the configured function
-exactly.
-
-3. compatible property
-----------------------
-Since device_type isn't enough to match devices to drivers, there also
-needs to be a naming convention for the compatible property.  Compatible
-is an list of device descriptions sorted from specific to generic.  For
-the mpc5200, the required format for each compatible value is
-<chip>-<device>[-<mode>].  The OS should be able to match a device driver
-to the device based solely on the compatible value.  If two drivers
-match on the compatible list; the 'most compatible' driver should be
-selected.
-
-The split between the MPC5200 and the MPC5200B leaves a bit of a
-conundrum.  How should the compatible property be set up to provide
-maximum compatibility information; but still accurately describe the
-chip?  For the MPC5200; the answer is easy.  Most of the SoC devices
-originally appeared on the MPC5200.  Since they didn't exist anywhere
-else; the 5200 compatible properties will contain only one item;
-"mpc5200-<device>".
-
-The 5200B is almost the same as the 5200, but not quite.  It fixes
-silicon bugs and it adds a small number of enhancements.  Most of the
-devices either provide exactly the same interface as on the 5200.  A few
-devices have extra functions but still have a backwards compatible mode.
-To express this information as completely as possible, 5200B device trees
-should have two items in the compatible list;
-"mpc5200b-<device>\0mpc5200-<device>".  It is *strongly* recommended
-that 5200B device trees follow this convention (instead of only listing
-the base mpc5200 item).
-
-If another chip appear on the market with one of the mpc5200 SoC
-devices, then the compatible list should include mpc5200-<device>.
-
-ie. ethernet on mpc5200: compatible = "mpc5200-ethernet"
-    ethernet on mpc5200b: compatible = "mpc5200b-ethernet\0mpc5200-ethernet"
-
-Modal devices, like PSCs, also append the configured function to the
-end of the compatible field.  ie. A PSC in i2s mode would specify
-"mpc5200-psc-i2s", not "mpc5200-i2s".  This convention is chosen to
-avoid naming conflicts with non-psc devices providing the same
-function.  For example, "mpc5200-spi" and "mpc5200-psc-spi" describe
-the mpc5200 simple spi device and a PSC spi mode respectively.
-
-If the soc device is more generic and present on other SOCs, the
-compatible property can specify the more generic device type also.
-
-ie. mscan: compatible = "mpc5200-mscan\0fsl,mscan";
-
-At the time of writing, exact chip may be either 'mpc5200' or
-'mpc5200b'.
-
-Device drivers should always try to match as generically as possible.
-
-III - Structure
-===============
-The device tree for an mpc5200 board follows the structure defined in
-booting-without-of.txt with the following additional notes:
-
-0) the root node
-----------------
-Typical root description node; see booting-without-of
-
-1) The cpus node
-----------------
-The cpus node follows the basic layout described in booting-without-of.
-The bus-frequency property holds the XLB bus frequency
-The clock-frequency property holds the core frequency
-
-2) The memory node
-------------------
-Typical memory description node; see booting-without-of.
-
-3) The soc5200 node
--------------------
-This node describes the on chip SOC peripherals.  Every mpc5200 based
-board will have this node, and as such there is a common naming
-convention for SOC devices.
-
-Required properties:
-name			type		description
-----			----		-----------
-device_type		string		must be "soc"
-ranges			int		should be <0 baseaddr baseaddr+10000>
-reg			int		must be <baseaddr 10000>
-compatible		string		mpc5200: "mpc5200-soc"
-					mpc5200b: "mpc5200b-soc\0mpc5200-soc"
-system-frequency	int		Fsystem frequency; source of all
-					other clocks.
-bus-frequency		int		IPB bus frequency in HZ.  Clock rate
-					used by most of the soc devices.
-#interrupt-cells	int		must be <3>.
-
-Recommended properties:
-name			type		description
-----			----		-----------
-model			string		Exact model of the chip;
-					ie: model="fsl,mpc5200"
-revision		string		Silicon revision of chip
-					ie: revision="M08A"
-
-The 'model' and 'revision' properties are *strongly* recommended.  Having
-them presence acts as a bit of a safety net for working around as yet
-undiscovered bugs on one version of silicon.  For example, device drivers
-can use the model and revision properties to decide if a bug fix should
-be turned on.
-
-4) soc5200 child nodes
-----------------------
-Any on chip SOC devices available to Linux must appear as soc5200 child nodes.
-
-Note: The tables below show the value for the mpc5200.  A mpc5200b device
-tree should use the "mpc5200b-<device>\0mpc5200-<device> form.
-
-Required soc5200 child nodes:
-name		device_type		compatible	Description
-----		-----------		----------	-----------
-cdm@<addr>	cdm			mpc5200-cmd	Clock Distribution
-pic@<addr>	interrupt-controller	mpc5200-pic	need an interrupt
-							controller to boot
-bestcomm@<addr>	dma-controller		mpc5200-bestcomm 5200 pic also requires
-							 the bestcomm device
-
-Recommended soc5200 child nodes; populate as needed for your board
-name		device_type	compatible	  Description
-----		-----------	----------	  -----------
-gpt@<addr>	gpt		fsl,mpc5200-gpt	  General purpose timers
-gpt@<addr>	gpt		fsl,mpc5200-gpt-gpio	General purpose
-							timers in GPIO mode
-gpio@<addr>			fsl,mpc5200-gpio	MPC5200 simple gpio
-							controller
-gpio@<addr>			fsl,mpc5200-gpio-wkup	MPC5200 wakeup gpio
-							controller
-rtc@<addr>	rtc		mpc5200-rtc	  Real time clock
-mscan@<addr>	mscan		mpc5200-mscan	  CAN bus controller
-pci@<addr>	pci		mpc5200-pci	  PCI bridge
-serial@<addr>	serial		mpc5200-psc-uart  PSC in serial mode
-i2s@<addr>	sound		mpc5200-psc-i2s	  PSC in i2s mode
-ac97@<addr>	sound		mpc5200-psc-ac97  PSC in ac97 mode
-spi@<addr>	spi		mpc5200-psc-spi	  PSC in spi mode
-irda@<addr>	irda		mpc5200-psc-irda  PSC in IrDA mode
-spi@<addr>	spi		mpc5200-spi	  MPC5200 spi device
-ethernet@<addr>	network		mpc5200-fec	  MPC5200 ethernet device
-ata@<addr>	ata		mpc5200-ata	  IDE ATA interface
-i2c@<addr>	i2c		mpc5200-i2c	  I2C controller
-usb@<addr>	usb-ohci-be	mpc5200-ohci,ohci-be	USB controller
-xlb@<addr>	xlb		mpc5200-xlb	  XLB arbitrator
-
-Important child node properties
-name		type		description
-----		----		-----------
-cell-index	int		When multiple devices are present, is the
-				index of the device in the hardware (ie. There
-				are 6 PSC on the 5200 numbered PSC1 to PSC6)
-				    PSC1 has 'cell-index = <0>'
-				    PSC4 has 'cell-index = <3>'
-
-5) General Purpose Timer nodes (child of soc5200 node)
-On the mpc5200 and 5200b, GPT0 has a watchdog timer function.  If the board
-design supports the internal wdt, then the device node for GPT0 should
-include the empty property 'fsl,has-wdt'.
-
-6) PSC nodes (child of soc5200 node)
-PSC nodes can define the optional 'port-number' property to force assignment
-order of serial ports.  For example, PSC5 might be physically connected to
-the port labeled 'COM1' and PSC1 wired to 'COM1'.  In this case, PSC5 would
-have a "port-number = <0>" property, and PSC1 would have "port-number = <1>".
-
-PSC in i2s mode:  The mpc5200 and mpc5200b PSCs are not compatible when in
-i2s mode.  An 'mpc5200b-psc-i2s' node cannot include 'mpc5200-psc-i2s' in the
-compatible field.
-
-7) GPIO controller nodes
-Each GPIO controller node should have the empty property gpio-controller and
-#gpio-cells set to 2. First cell is the GPIO number which is interpreted
-according to the bit numbers in the GPIO control registers. The second cell
-is for flags which is currently unsused.
-
-8) FEC nodes
-The FEC node can specify one of the following properties to configure
-the MII link:
-"fsl,7-wire-mode" - An empty property that specifies the link uses 7-wire
-                    mode instead of MII
-"current-speed"   - Specifies that the MII should be configured for a fixed
-                    speed.  This property should contain two cells.  The
-                    first cell specifies the speed in Mbps and the second
-                    should be '0' for half duplex and '1' for full duplex
-"phy-handle"      - Contains a phandle to an Ethernet PHY.
-
-IV - Extra Notes
-================
-
-1. Interrupt mapping
---------------------
-The mpc5200 pic driver splits hardware IRQ numbers into two levels.  The
-split reflects the layout of the PIC hardware itself, which groups
-interrupts into one of three groups; CRIT, MAIN or PERP.  Also, the
-Bestcomm dma engine has it's own set of interrupt sources which are
-cascaded off of peripheral interrupt 0, which the driver interprets as a
-fourth group, SDMA.
-
-The interrupts property for device nodes using the mpc5200 pic consists
-of three cells; <L1 L2 level>
-
-    L1 := [CRIT=0, MAIN=1, PERP=2, SDMA=3]
-    L2 := interrupt number; directly mapped from the value in the
-          "ICTL PerStat, MainStat, CritStat Encoded Register"
-    level := [LEVEL_HIGH=0, EDGE_RISING=1, EDGE_FALLING=2, LEVEL_LOW=3]
-
-2. Shared registers
--------------------
-Some SoC devices share registers between them.  ie. the i2c devices use
-a single clock control register, and almost all device are affected by
-the port_config register.  Devices which need to manipulate shared regs
-should look to the parent SoC node.  The soc node is responsible
-for arbitrating all shared register access.

+ 0 - 2
Documentation/scheduler/00-INDEX

@@ -2,8 +2,6 @@
 	- this file.
 sched-arch.txt
 	- CPU Scheduler implementation hints for architecture specific code.
-sched-coding.txt
-	- reference for various scheduler-related methods in the O(1) scheduler.
 sched-design-CFS.txt
 	- goals, design and implementation of the Complete Fair Scheduler.
 sched-domains.txt

+ 0 - 126
Documentation/scheduler/sched-coding.txt

@@ -1,126 +0,0 @@
-     Reference for various scheduler-related methods in the O(1) scheduler
-		Robert Love <rml@tech9.net>, MontaVista Software
-
-
-Note most of these methods are local to kernel/sched.c - this is by design.
-The scheduler is meant to be self-contained and abstracted away.  This document
-is primarily for understanding the scheduler, not interfacing to it.  Some of
-the discussed interfaces, however, are general process/scheduling methods.
-They are typically defined in include/linux/sched.h.
-
-
-Main Scheduling Methods
------------------------
-
-void load_balance(runqueue_t *this_rq, int idle)
-	Attempts to pull tasks from one cpu to another to balance cpu usage,
-	if needed.  This method is called explicitly if the runqueues are
-	imbalanced or periodically by the timer tick.  Prior to calling,
-	the current runqueue must be locked and interrupts disabled.
-
-void schedule()
-	The main scheduling function.  Upon return, the highest priority
-	process will be active.
-
-
-Locking
--------
-
-Each runqueue has its own lock, rq->lock.  When multiple runqueues need
-to be locked, lock acquires must be ordered by ascending &runqueue value.
-
-A specific runqueue is locked via
-
-	task_rq_lock(task_t pid, unsigned long *flags)
-
-which disables preemption, disables interrupts, and locks the runqueue pid is
-running on.  Likewise,
-
-	task_rq_unlock(task_t pid, unsigned long *flags)
-
-unlocks the runqueue pid is running on, restores interrupts to their previous
-state, and reenables preemption.
-
-The routines
-
-	double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
-
-and
-
-	double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
-
-safely lock and unlock, respectively, the two specified runqueues.  They do
-not, however, disable and restore interrupts.  Users are required to do so
-manually before and after calls.
-
-
-Values
-------
-
-MAX_PRIO
-	The maximum priority of the system, stored in the task as task->prio.
-	Lower priorities are higher.  Normal (non-RT) priorities range from
-	MAX_RT_PRIO to (MAX_PRIO - 1).
-MAX_RT_PRIO
-	The maximum real-time priority of the system.  Valid RT priorities
-	range from 0 to (MAX_RT_PRIO - 1).
-MAX_USER_RT_PRIO
-	The maximum real-time priority that is exported to user-space.  Should
-	always be equal to or less than MAX_RT_PRIO.  Setting it less allows
-	kernel threads to have higher priorities than any user-space task.
-MIN_TIMESLICE
-MAX_TIMESLICE
-	Respectively, the minimum and maximum timeslices (quanta) of a process.
-
-Data
-----
-
-struct runqueue
-	The main per-CPU runqueue data structure.
-struct task_struct
-	The main per-process data structure.
-
-
-General Methods
----------------
-
-cpu_rq(cpu)
-	Returns the runqueue of the specified cpu.
-this_rq()
-	Returns the runqueue of the current cpu.
-task_rq(pid)
-	Returns the runqueue which holds the specified pid.
-cpu_curr(cpu)
-	Returns the task currently running on the given cpu.
-rt_task(pid)
-	Returns true if pid is real-time, false if not.
-
-
-Process Control Methods
------------------------
-
-void set_user_nice(task_t *p, long nice)
-	Sets the "nice" value of task p to the given value.
-int setscheduler(pid_t pid, int policy, struct sched_param *param)
-	Sets the scheduling policy and parameters for the given pid.
-int set_cpus_allowed(task_t *p, unsigned long new_mask)
-	Sets a given task's CPU affinity and migrates it to a proper cpu.
-	Callers must have a valid reference to the task and assure the
-	task not exit prematurely.  No locks can be held during the call.
-set_task_state(tsk, state_value)
-	Sets the given task's state to the given value.
-set_current_state(state_value)
-	Sets the current task's state to the given value.
-void set_tsk_need_resched(struct task_struct *tsk)
-	Sets need_resched in the given task.
-void clear_tsk_need_resched(struct task_struct *tsk)
-	Clears need_resched in the given task.
-void set_need_resched()
-	Sets need_resched in the current task.
-void clear_need_resched()
-	Clears need_resched in the current task.
-int need_resched()
-	Returns true if need_resched is set in the current task, false
-	otherwise.
-yield()
-	Place the current process at the end of the runqueue and call schedule.

+ 5 - 6
Documentation/scsi/cxgb3i.txt

@@ -4,7 +4,7 @@ Introduction
 ============
 
 The Chelsio T3 ASIC based Adapters (S310, S320, S302, S304, Mezz cards, etc.
-series of products) supports iSCSI acceleration and iSCSI Direct Data Placement
+series of products) support iSCSI acceleration and iSCSI Direct Data Placement
 (DDP) where the hardware handles the expensive byte touching operations, such
 as CRC computation and verification, and direct DMA to the final host memory
 destination:
@@ -31,9 +31,9 @@ destination:
 	  the TCP segments onto the wire. It handles TCP retransmission if
 	  needed.
 
-	  On receving, S3 h/w recovers the iSCSI PDU by reassembling TCP
+	  On receiving, S3 h/w recovers the iSCSI PDU by reassembling TCP
 	  segments, separating the header and data, calculating and verifying
-	  the digests, then forwards the header to the host. The payload data,
+	  the digests, then forwarding the header to the host. The payload data,
 	  if possible, will be directly placed into the pre-posted host DDP
 	  buffer. Otherwise, the payload data will be sent to the host too.
 
@@ -68,9 +68,8 @@ The following steps need to be taken to accelerates the open-iscsi initiator:
 	sure the ip address is unique in the network.
 
 3. edit /etc/iscsi/iscsid.conf
-   The default setting for MaxRecvDataSegmentLength (131072) is too big,
-   replace "node.conn[0].iscsi.MaxRecvDataSegmentLength" to be a value no
-   bigger than 15360 (for example 8192):
+   The default setting for MaxRecvDataSegmentLength (131072) is too big;
+   replace with a value no bigger than 15360 (for example 8192):
 
 	node.conn[0].iscsi.MaxRecvDataSegmentLength = 8192
 

+ 61 - 26
Documentation/sound/alsa/ALSA-Configuration.txt

@@ -346,6 +346,9 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
     sbirq	- IRQ # for CMI8330 chip (SB16)
     sbdma8	- 8bit DMA # for CMI8330 chip (SB16)
     sbdma16	- 16bit DMA # for CMI8330 chip (SB16)
+    fmport	- (optional) OPL3 I/O port
+    mpuport	- (optional) MPU401 I/O port
+    mpuirq	- (optional) MPU401 irq #
 
     This module supports multiple cards and autoprobe.
 
@@ -388,34 +391,11 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
 
     The power-management is supported.
     
-  Module snd-cs4232
-  -----------------
-
-    Module for sound cards based on CS4232/CS4232A ISA chips.
-
-    isapnp	- ISA PnP detection - 0 = disable, 1 = enable (default)
-
-    with isapnp=0, the following options are available:
-
-    port	- port # for CS4232 chip (PnP setup - 0x534)
-    cport	- control port # for CS4232 chip (PnP setup - 0x120,0x210,0xf00)
-    mpu_port	- port # for MPU-401 UART (PnP setup - 0x300), -1 = disable
-    fm_port	- FM port # for CS4232 chip (PnP setup - 0x388), -1 = disable
-    irq		- IRQ # for CS4232 chip (5,7,9,11,12,15)
-    mpu_irq	- IRQ # for MPU-401 UART (9,11,12,15)
-    dma1	- first DMA # for CS4232 chip (0,1,3)
-    dma2	- second DMA # for Yamaha CS4232 chip (0,1,3), -1 = disable
-    
-    This module supports multiple cards. This module does not support autoprobe
-    (if ISA PnP is not used) thus main port must be specified!!! Other ports are
-    optional.
-
-    The power-management is supported.
-    
   Module snd-cs4236
   -----------------
 
-    Module for sound cards based on CS4235/CS4236/CS4236B/CS4237B/
+    Module for sound cards based on CS4232/CS4232A,
+    	       	     	   	   CS4235/CS4236/CS4236B/CS4237B/
                                    CS4238B/CS4239 ISA chips.
 
     isapnp	- ISA PnP detection - 0 = disable, 1 = enable (default)
@@ -437,6 +417,9 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
 
     The power-management is supported.
 
+    This module is aliased as snd-cs4232 since it provides the old
+    snd-cs4232 functionality, too.
+
   Module snd-cs4281
   -----------------
 
@@ -606,6 +589,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
     Module for ESS AudioDrive ES-1688 and ES-688 sound cards.
 
     port	- port # for ES-1688 chip (0x220,0x240,0x260)
+    fm_port	- port # for OPL3 (option; share the same port as default)
     mpu_port	- port # for MPU-401 port (0x300,0x310,0x320,0x330), -1 = disable (default)
     irq		- IRQ # for ES-1688 chip (5,7,9,10)
     mpu_irq	- IRQ # for MPU-401 port (5,7,9,10)
@@ -757,6 +741,9 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
     model	- force the model name
     position_fix - Fix DMA pointer (0 = auto, 1 = use LPIB, 2 = POSBUF)
     probe_mask  - Bitmask to probe codecs (default = -1, meaning all slots)
+    		  When the bit 8 (0x100) is set, the lower 8 bits are used
+		  as the "fixed" codec slots; i.e. the driver probes the
+		  slots regardless what hardware reports back
     probe_only	- Only probing and no codec initialization (default=off);
 		  Useful to check the initial codec status for debugging
     bdl_pos_adj	- Specifies the DMA IRQ timing delay in samples.
@@ -1185,6 +1172,54 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
 
     This module supports multiple devices and PnP.
     
+  Module snd-msnd-classic
+  -----------------------
+
+    Module for Turtle Beach MultiSound Classic, Tahiti or Monterey
+    soundcards.
+
+    io		- Port # for msnd-classic card
+    irq		- IRQ # for msnd-classic card
+    mem		- Memory address (0xb0000, 0xc8000, 0xd0000, 0xd8000,
+		  0xe0000 or 0xe8000)
+    write_ndelay - enable write ndelay (default = 1)
+    calibrate_signal - calibrate signal (default = 0)
+    isapnp	- ISA PnP detection - 0 = disable, 1 = enable (default)
+    digital	- Digital daughterboard present (default = 0)
+    cfg		- Config port (0x250, 0x260 or 0x270) default = PnP
+    reset	- Reset all devices
+    mpu_io	- MPU401 I/O port
+    mpu_irq	- MPU401 irq#
+    ide_io0	- IDE port #0
+    ide_io1	- IDE port #1
+    ide_irq	- IDE irq#
+    joystick_io	- Joystick I/O port
+
+    The driver requires firmware files "turtlebeach/msndinit.bin" and
+    "turtlebeach/msndperm.bin" in the proper firmware directory.
+
+    See Documentation/sound/oss/MultiSound for important information
+    about this driver.  Note that it has been discontinued, but the 
+    Voyetra Turtle Beach knowledge base entry for it is still available
+    at
+	http://www.turtlebeach.com/site/kb_ftp/790.asp
+
+  Module snd-msnd-pinnacle
+  ------------------------
+
+    Module for Turtle Beach MultiSound Pinnacle/Fiji soundcards.
+
+    io		- Port # for pinnacle/fiji card
+    irq		- IRQ # for pinnalce/fiji card
+    mem		- Memory address (0xb0000, 0xc8000, 0xd0000, 0xd8000,
+		  0xe0000 or 0xe8000)
+    write_ndelay - enable write ndelay (default = 1)
+    calibrate_signal - calibrate signal (default = 0)
+    isapnp	- ISA PnP detection - 0 = disable, 1 = enable (default)
+
+    The driver requires firmware files "turtlebeach/pndspini.bin" and
+    "turtlebeach/pndsperm.bin" in the proper firmware directory.
+
   Module snd-mtpav
   ----------------
 
@@ -1824,7 +1859,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
   -------------------
 
     Module for sound cards based on the Asus AV100/AV200 chips,
-    i.e., Xonar D1, DX, D2, D2X and HDAV1.3 (Deluxe).
+    i.e., Xonar D1, DX, D2, D2X, HDAV1.3 (Deluxe), and Essence STX.
 
     This module supports autoprobe and multiple cards.
 

+ 0 - 100
Documentation/sound/alsa/DocBook/alsa-driver-api.tmpl

@@ -1,100 +0,0 @@
-<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V4.1//EN">
-
-<book>
-<?dbhtml filename="index.html">
-
-<!-- ****************************************************** -->
-<!-- Header  -->
-<!-- ****************************************************** -->
-  <bookinfo>
-    <title>The ALSA Driver API</title>
-
-    <legalnotice>
-    <para>
-    This document is free; you can redistribute it and/or modify it
-    under the terms of the GNU General Public License as published by
-    the Free Software Foundation; either version 2 of the License, or
-    (at your option) any later version. 
-    </para>
-
-    <para>
-    This document is distributed in the hope that it will be useful,
-    but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the
-    implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A
-    PARTICULAR PURPOSE</emphasis>. See the GNU General Public License
-    for more details.
-    </para>
-
-    <para>
-    You should have received a copy of the GNU General Public
-    License along with this program; if not, write to the Free
-    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
-    MA 02111-1307 USA
-    </para>
-    </legalnotice>
-
-  </bookinfo>
-
-  <chapter><title>Management of Cards and Devices</title>
-     <sect1><title>Card Management</title>
-!Esound/core/init.c
-     </sect1>
-     <sect1><title>Device Components</title>
-!Esound/core/device.c
-     </sect1>
-     <sect1><title>Module requests and Device File Entries</title>
-!Esound/core/sound.c
-     </sect1>
-     <sect1><title>Memory Management Helpers</title>
-!Esound/core/memory.c
-!Esound/core/memalloc.c
-     </sect1>
-  </chapter>
-  <chapter><title>PCM API</title>
-     <sect1><title>PCM Core</title>
-!Esound/core/pcm.c
-!Esound/core/pcm_lib.c
-!Esound/core/pcm_native.c
-     </sect1>
-     <sect1><title>PCM Format Helpers</title>
-!Esound/core/pcm_misc.c
-     </sect1>
-     <sect1><title>PCM Memory Management</title>
-!Esound/core/pcm_memory.c
-     </sect1>
-  </chapter>
-  <chapter><title>Control/Mixer API</title>
-     <sect1><title>General Control Interface</title>
-!Esound/core/control.c
-     </sect1>
-     <sect1><title>AC97 Codec API</title>
-!Esound/pci/ac97/ac97_codec.c
-!Esound/pci/ac97/ac97_pcm.c
-     </sect1>
-  </chapter>
-  <chapter><title>MIDI API</title>
-     <sect1><title>Raw MIDI API</title>
-!Esound/core/rawmidi.c
-     </sect1>
-     <sect1><title>MPU401-UART API</title>
-!Esound/drivers/mpu401/mpu401_uart.c
-     </sect1>
-  </chapter>
-  <chapter><title>Proc Info API</title>
-     <sect1><title>Proc Info Interface</title>
-!Esound/core/info.c
-     </sect1>
-  </chapter>
-  <chapter><title>Miscellaneous Functions</title>
-     <sect1><title>Hardware-Dependent Devices API</title>
-!Esound/core/hwdep.c
-     </sect1>
-     <sect1><title>ISA DMA Helpers</title>
-!Esound/core/isadma.c
-     </sect1>
-     <sect1><title>Other Helper Macros</title>
-!Iinclude/sound/core.h
-     </sect1>
-  </chapter>
-
-</book>

+ 0 - 6210
Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl

@@ -1,6210 +0,0 @@
-<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V4.1//EN">
-
-<book>
-<?dbhtml filename="index.html">
-
-<!-- ****************************************************** -->
-<!-- Header  -->
-<!-- ****************************************************** -->
-  <bookinfo>
-    <title>Writing an ALSA Driver</title>
-    <author>
-      <firstname>Takashi</firstname>
-      <surname>Iwai</surname>
-      <affiliation>
-        <address>
-          <email>tiwai@suse.de</email>
-        </address>
-      </affiliation>
-     </author>
-
-     <date>Oct 15, 2007</date>
-     <edition>0.3.7</edition>
-
-    <abstract>
-      <para>
-        This document describes how to write an ALSA (Advanced Linux
-        Sound Architecture) driver.
-      </para>
-    </abstract>
-
-    <legalnotice>
-    <para>
-    Copyright (c) 2002-2005  Takashi Iwai <email>tiwai@suse.de</email>
-    </para>
-
-    <para>
-    This document is free; you can redistribute it and/or modify it
-    under the terms of the GNU General Public License as published by
-    the Free Software Foundation; either version 2 of the License, or
-    (at your option) any later version. 
-    </para>
-
-    <para>
-    This document is distributed in the hope that it will be useful,
-    but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the
-    implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A
-    PARTICULAR PURPOSE</emphasis>. See the GNU General Public License
-    for more details.
-    </para>
-
-    <para>
-    You should have received a copy of the GNU General Public
-    License along with this program; if not, write to the Free
-    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
-    MA 02111-1307 USA
-    </para>
-    </legalnotice>
-
-  </bookinfo>
-
-<!-- ****************************************************** -->
-<!-- Preface  -->
-<!-- ****************************************************** -->
-  <preface id="preface">
-    <title>Preface</title>
-    <para>
-      This document describes how to write an
-      <ulink url="http://www.alsa-project.org/"><citetitle>
-      ALSA (Advanced Linux Sound Architecture)</citetitle></ulink>
-      driver. The document focuses mainly on PCI soundcards.
-      In the case of other device types, the API might
-      be different, too. However, at least the ALSA kernel API is
-      consistent, and therefore it would be still a bit help for
-      writing them.
-    </para>
-
-    <para>
-    This document targets people who already have enough
-    C language skills and have basic linux kernel programming
-    knowledge.  This document doesn't explain the general
-    topic of linux kernel coding and doesn't cover low-level
-    driver implementation details. It only describes
-    the standard way to write a PCI sound driver on ALSA.
-    </para>
-
-    <para>
-      If you are already familiar with the older ALSA ver.0.5.x API, you
-    can check the drivers such as <filename>sound/pci/es1938.c</filename> or
-    <filename>sound/pci/maestro3.c</filename> which have also almost the same
-    code-base in the ALSA 0.5.x tree, so you can compare the differences.
-    </para>
-
-    <para>
-      This document is still a draft version. Any feedback and
-    corrections, please!!
-    </para>
-  </preface>
-
-
-<!-- ****************************************************** -->
-<!-- File Tree Structure  -->
-<!-- ****************************************************** -->
-  <chapter id="file-tree">
-    <title>File Tree Structure</title>
-
-    <section id="file-tree-general">
-      <title>General</title>
-      <para>
-        The ALSA drivers are provided in two ways.
-      </para>
-
-      <para>
-        One is the trees provided as a tarball or via cvs from the
-      ALSA's ftp site, and another is the 2.6 (or later) Linux kernel
-      tree. To synchronize both, the ALSA driver tree is split into
-      two different trees: alsa-kernel and alsa-driver. The former
-      contains purely the source code for the Linux 2.6 (or later)
-      tree. This tree is designed only for compilation on 2.6 or
-      later environment. The latter, alsa-driver, contains many subtle
-      files for compiling ALSA drivers outside of the Linux kernel tree,
-      wrapper functions for older 2.2 and 2.4 kernels, to adapt the latest kernel API,
-      and additional drivers which are still in development or in
-      tests.  The drivers in alsa-driver tree will be moved to
-      alsa-kernel (and eventually to the 2.6 kernel tree) when they are
-      finished and confirmed to work fine.
-      </para>
-
-      <para>
-        The file tree structure of ALSA driver is depicted below. Both
-        alsa-kernel and alsa-driver have almost the same file
-        structure, except for <quote>core</quote> directory. It's
-        named as <quote>acore</quote> in alsa-driver tree. 
-
-        <example>
-          <title>ALSA File Tree Structure</title>
-          <literallayout>
-        sound
-                /core
-                        /oss
-                        /seq
-                                /oss
-                                /instr
-                /ioctl32
-                /include
-                /drivers
-                        /mpu401
-                        /opl3
-                /i2c
-                        /l3
-                /synth
-                        /emux
-                /pci
-                        /(cards)
-                /isa
-                        /(cards)
-                /arm
-                /ppc
-                /sparc
-                /usb
-                /pcmcia /(cards)
-                /oss
-          </literallayout>
-        </example>
-      </para>
-    </section>
-
-    <section id="file-tree-core-directory">
-      <title>core directory</title>
-      <para>
-        This directory contains the middle layer which is the heart
-      of ALSA drivers. In this directory, the native ALSA modules are
-      stored. The sub-directories contain different modules and are
-      dependent upon the kernel config. 
-      </para>
-
-      <section id="file-tree-core-directory-oss">
-        <title>core/oss</title>
-
-        <para>
-          The codes for PCM and mixer OSS emulation modules are stored
-        in this directory. The rawmidi OSS emulation is included in
-        the ALSA rawmidi code since it's quite small. The sequencer
-        code is stored in <filename>core/seq/oss</filename> directory (see
-        <link linkend="file-tree-core-directory-seq-oss"><citetitle>
-        below</citetitle></link>).
-        </para>
-      </section>
-
-      <section id="file-tree-core-directory-ioctl32">
-        <title>core/ioctl32</title>
-
-        <para>
-          This directory contains the 32bit-ioctl wrappers for 64bit
-        architectures such like x86-64, ppc64 and sparc64. For 32bit
-        and alpha architectures, these are not compiled. 
-        </para>
-      </section>
-
-      <section id="file-tree-core-directory-seq">
-        <title>core/seq</title>
-        <para>
-          This directory and its sub-directories are for the ALSA
-        sequencer. This directory contains the sequencer core and
-        primary sequencer modules such like snd-seq-midi,
-        snd-seq-virmidi, etc. They are compiled only when
-        <constant>CONFIG_SND_SEQUENCER</constant> is set in the kernel
-        config. 
-        </para>
-      </section>
-
-      <section id="file-tree-core-directory-seq-oss">
-        <title>core/seq/oss</title>
-        <para>
-          This contains the OSS sequencer emulation codes.
-        </para>
-      </section>
-
-      <section id="file-tree-core-directory-deq-instr">
-        <title>core/seq/instr</title>
-        <para>
-          This directory contains the modules for the sequencer
-        instrument layer. 
-        </para>
-      </section>
-    </section>
-
-    <section id="file-tree-include-directory">
-      <title>include directory</title>
-      <para>
-        This is the place for the public header files of ALSA drivers,
-      which are to be exported to user-space, or included by
-      several files at different directories. Basically, the private
-      header files should not be placed in this directory, but you may
-      still find files there, due to historical reasons :) 
-      </para>
-    </section>
-
-    <section id="file-tree-drivers-directory">
-      <title>drivers directory</title>
-      <para>
-        This directory contains code shared among different drivers
-      on different architectures.  They are hence supposed not to be
-      architecture-specific.
-      For example, the dummy pcm driver and the serial MIDI
-      driver are found in this directory. In the sub-directories,
-      there is code for components which are independent from
-      bus and cpu architectures. 
-      </para>
-
-      <section id="file-tree-drivers-directory-mpu401">
-        <title>drivers/mpu401</title>
-        <para>
-          The MPU401 and MPU401-UART modules are stored here.
-        </para>
-      </section>
-
-      <section id="file-tree-drivers-directory-opl3">
-        <title>drivers/opl3 and opl4</title>
-        <para>
-          The OPL3 and OPL4 FM-synth stuff is found here.
-        </para>
-      </section>
-    </section>
-
-    <section id="file-tree-i2c-directory">
-      <title>i2c directory</title>
-      <para>
-        This contains the ALSA i2c components.
-      </para>
-
-      <para>
-        Although there is a standard i2c layer on Linux, ALSA has its
-      own i2c code for some cards, because the soundcard needs only a
-      simple operation and the standard i2c API is too complicated for
-      such a purpose. 
-      </para>
-
-      <section id="file-tree-i2c-directory-l3">
-        <title>i2c/l3</title>
-        <para>
-          This is a sub-directory for ARM L3 i2c.
-        </para>
-      </section>
-    </section>
-
-    <section id="file-tree-synth-directory">
-        <title>synth directory</title>
-        <para>
-          This contains the synth middle-level modules.
-        </para>
-
-        <para>
-          So far, there is only Emu8000/Emu10k1 synth driver under
-        the <filename>synth/emux</filename> sub-directory. 
-        </para>
-    </section>
-
-    <section id="file-tree-pci-directory">
-      <title>pci directory</title>
-      <para>
-        This directory and its sub-directories hold the top-level card modules
-      for PCI soundcards and the code specific to the PCI BUS.
-      </para>
-
-      <para>
-        The drivers compiled from a single file are stored directly
-      in the pci directory, while the drivers with several source files are
-      stored on their own sub-directory (e.g. emu10k1, ice1712). 
-      </para>
-    </section>
-
-    <section id="file-tree-isa-directory">
-      <title>isa directory</title>
-      <para>
-        This directory and its sub-directories hold the top-level card modules
-      for ISA soundcards. 
-      </para>
-    </section>
-
-    <section id="file-tree-arm-ppc-sparc-directories">
-      <title>arm, ppc, and sparc directories</title>
-      <para>
-        They are used for top-level card modules which are
-      specific to one of these architectures. 
-      </para>
-    </section>
-
-    <section id="file-tree-usb-directory">
-      <title>usb directory</title>
-      <para>
-        This directory contains the USB-audio driver. In the latest version, the
-      USB MIDI driver is integrated in the usb-audio driver. 
-      </para>
-    </section>
-
-    <section id="file-tree-pcmcia-directory">
-      <title>pcmcia directory</title>
-      <para>
-        The PCMCIA, especially PCCard drivers will go here. CardBus
-      drivers will be in the pci directory, because their API is identical
-      to that of standard PCI cards. 
-      </para>
-    </section>
-
-    <section id="file-tree-oss-directory">
-      <title>oss directory</title>
-      <para>
-        The OSS/Lite source files are stored here in Linux 2.6 (or
-      later) tree. In the ALSA driver tarball, this directory is empty,
-      of course :) 
-      </para>
-    </section>
-  </chapter>
-
-
-<!-- ****************************************************** -->
-<!-- Basic Flow for PCI Drivers  -->
-<!-- ****************************************************** -->
-  <chapter id="basic-flow">
-    <title>Basic Flow for PCI Drivers</title>
-
-    <section id="basic-flow-outline">
-      <title>Outline</title>
-      <para>
-        The minimum flow for PCI soundcards is as follows:
-
-        <itemizedlist>
-          <listitem><para>define the PCI ID table (see the section
-          <link linkend="pci-resource-entries"><citetitle>PCI Entries
-          </citetitle></link>).</para></listitem> 
-          <listitem><para>create <function>probe()</function> callback.</para></listitem>
-          <listitem><para>create <function>remove()</function> callback.</para></listitem>
-          <listitem><para>create a <structname>pci_driver</structname> structure
-	  containing the three pointers above.</para></listitem>
-          <listitem><para>create an <function>init()</function> function just calling
-	  the <function>pci_register_driver()</function> to register the pci_driver table
-	  defined above.</para></listitem>
-          <listitem><para>create an <function>exit()</function> function to call
-	  the <function>pci_unregister_driver()</function> function.</para></listitem>
-        </itemizedlist>
-      </para>
-    </section>
-
-    <section id="basic-flow-example">
-      <title>Full Code Example</title>
-      <para>
-        The code example is shown below. Some parts are kept
-      unimplemented at this moment but will be filled in the
-      next sections. The numbers in the comment lines of the
-      <function>snd_mychip_probe()</function> function
-      refer to details explained in the following section. 
-
-        <example>
-          <title>Basic Flow for PCI Drivers - Example</title>
-          <programlisting>
-<![CDATA[
-  #include <linux/init.h>
-  #include <linux/pci.h>
-  #include <linux/slab.h>
-  #include <sound/core.h>
-  #include <sound/initval.h>
-
-  /* module parameters (see "Module Parameters") */
-  /* SNDRV_CARDS: maximum number of cards supported by this module */
-  static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
-  static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
-  static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
-
-  /* definition of the chip-specific record */
-  struct mychip {
-          struct snd_card *card;
-          /* the rest of the implementation will be in section
-           * "PCI Resource Management"
-           */
-  };
-
-  /* chip-specific destructor
-   * (see "PCI Resource Management")
-   */
-  static int snd_mychip_free(struct mychip *chip)
-  {
-          .... /* will be implemented later... */
-  }
-
-  /* component-destructor
-   * (see "Management of Cards and Components")
-   */
-  static int snd_mychip_dev_free(struct snd_device *device)
-  {
-          return snd_mychip_free(device->device_data);
-  }
-
-  /* chip-specific constructor
-   * (see "Management of Cards and Components")
-   */
-  static int __devinit snd_mychip_create(struct snd_card *card,
-                                         struct pci_dev *pci,
-                                         struct mychip **rchip)
-  {
-          struct mychip *chip;
-          int err;
-          static struct snd_device_ops ops = {
-                 .dev_free = snd_mychip_dev_free,
-          };
-
-          *rchip = NULL;
-
-          /* check PCI availability here
-           * (see "PCI Resource Management")
-           */
-          ....
-
-          /* allocate a chip-specific data with zero filled */
-          chip = kzalloc(sizeof(*chip), GFP_KERNEL);
-          if (chip == NULL)
-                  return -ENOMEM;
-
-          chip->card = card;
-
-          /* rest of initialization here; will be implemented
-           * later, see "PCI Resource Management"
-           */
-          ....
-
-          err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
-          if (err < 0) {
-                  snd_mychip_free(chip);
-                  return err;
-          }
-
-          snd_card_set_dev(card, &pci->dev);
-
-          *rchip = chip;
-          return 0;
-  }
-
-  /* constructor -- see "Constructor" sub-section */
-  static int __devinit snd_mychip_probe(struct pci_dev *pci,
-                               const struct pci_device_id *pci_id)
-  {
-          static int dev;
-          struct snd_card *card;
-          struct mychip *chip;
-          int err;
-
-          /* (1) */
-          if (dev >= SNDRV_CARDS)
-                  return -ENODEV;
-          if (!enable[dev]) {
-                  dev++;
-                  return -ENOENT;
-          }
-
-          /* (2) */
-          card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
-          if (card == NULL)
-                  return -ENOMEM;
-
-          /* (3) */
-          err = snd_mychip_create(card, pci, &chip);
-          if (err < 0) {
-                  snd_card_free(card);
-                  return err;
-          }
-
-          /* (4) */
-          strcpy(card->driver, "My Chip");
-          strcpy(card->shortname, "My Own Chip 123");
-          sprintf(card->longname, "%s at 0x%lx irq %i",
-                  card->shortname, chip->ioport, chip->irq);
-
-          /* (5) */
-          .... /* implemented later */
-
-          /* (6) */
-          err = snd_card_register(card);
-          if (err < 0) {
-                  snd_card_free(card);
-                  return err;
-          }
-
-          /* (7) */
-          pci_set_drvdata(pci, card);
-          dev++;
-          return 0;
-  }
-
-  /* destructor -- see the "Destructor" sub-section */
-  static void __devexit snd_mychip_remove(struct pci_dev *pci)
-  {
-          snd_card_free(pci_get_drvdata(pci));
-          pci_set_drvdata(pci, NULL);
-  }
-]]>
-          </programlisting>
-        </example>
-      </para>
-    </section>
-
-    <section id="basic-flow-constructor">
-      <title>Constructor</title>
-      <para>
-        The real constructor of PCI drivers is the <function>probe</function> callback.
-      The <function>probe</function> callback and other component-constructors which are called
-      from the <function>probe</function> callback should be defined with
-      the <parameter>__devinit</parameter> prefix. You 
-      cannot use the <parameter>__init</parameter> prefix for them,
-      because any PCI device could be a hotplug device. 
-      </para>
-
-      <para>
-        In the <function>probe</function> callback, the following scheme is often used.
-      </para>
-
-      <section id="basic-flow-constructor-device-index">
-        <title>1) Check and increment the device index.</title>
-        <para>
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  static int dev;
-  ....
-  if (dev >= SNDRV_CARDS)
-          return -ENODEV;
-  if (!enable[dev]) {
-          dev++;
-          return -ENOENT;
-  }
-]]>
-            </programlisting>
-          </informalexample>
-
-        where enable[dev] is the module option.
-        </para>
-
-        <para>
-          Each time the <function>probe</function> callback is called, check the
-        availability of the device. If not available, simply increment
-        the device index and returns. dev will be incremented also
-        later (<link
-        linkend="basic-flow-constructor-set-pci"><citetitle>step
-        7</citetitle></link>). 
-        </para>
-      </section>
-
-      <section id="basic-flow-constructor-create-card">
-        <title>2) Create a card instance</title>
-        <para>
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  struct snd_card *card;
-  ....
-  card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-
-        <para>
-          The details will be explained in the section
-          <link linkend="card-management-card-instance"><citetitle>
-          Management of Cards and Components</citetitle></link>.
-        </para>
-      </section>
-
-      <section id="basic-flow-constructor-create-main">
-        <title>3) Create a main component</title>
-        <para>
-          In this part, the PCI resources are allocated.
-
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  struct mychip *chip;
-  ....
-  err = snd_mychip_create(card, pci, &chip);
-  if (err < 0) {
-          snd_card_free(card);
-          return err;
-  }
-]]>
-            </programlisting>
-          </informalexample>
-
-          The details will be explained in the section <link
-        linkend="pci-resource"><citetitle>PCI Resource
-        Management</citetitle></link>.
-        </para>
-      </section>
-
-      <section id="basic-flow-constructor-main-component">
-        <title>4) Set the driver ID and name strings.</title>
-        <para>
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  strcpy(card->driver, "My Chip");
-  strcpy(card->shortname, "My Own Chip 123");
-  sprintf(card->longname, "%s at 0x%lx irq %i",
-          card->shortname, chip->ioport, chip->irq);
-]]>
-            </programlisting>
-          </informalexample>
-
-          The driver field holds the minimal ID string of the
-        chip. This is used by alsa-lib's configurator, so keep it
-        simple but unique. 
-          Even the same driver can have different driver IDs to
-        distinguish the functionality of each chip type. 
-        </para>
-
-        <para>
-          The shortname field is a string shown as more verbose
-        name. The longname field contains the information
-        shown in <filename>/proc/asound/cards</filename>. 
-        </para>
-      </section>
-
-      <section id="basic-flow-constructor-create-other">
-        <title>5) Create other components, such as mixer, MIDI, etc.</title>
-        <para>
-          Here you define the basic components such as
-          <link linkend="pcm-interface"><citetitle>PCM</citetitle></link>,
-          mixer (e.g. <link linkend="api-ac97"><citetitle>AC97</citetitle></link>),
-          MIDI (e.g. <link linkend="midi-interface"><citetitle>MPU-401</citetitle></link>),
-          and other interfaces.
-          Also, if you want a <link linkend="proc-interface"><citetitle>proc
-        file</citetitle></link>, define it here, too.
-        </para>
-      </section>
-
-      <section id="basic-flow-constructor-register-card">
-        <title>6) Register the card instance.</title>
-        <para>
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  err = snd_card_register(card);
-  if (err < 0) {
-          snd_card_free(card);
-          return err;
-  }
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-
-        <para>
-          Will be explained in the section <link
-        linkend="card-management-registration"><citetitle>Management
-        of Cards and Components</citetitle></link>, too. 
-        </para>
-      </section>
-
-      <section id="basic-flow-constructor-set-pci">
-        <title>7) Set the PCI driver data and return zero.</title>
-        <para>
-          <informalexample>
-            <programlisting>
-<![CDATA[
-        pci_set_drvdata(pci, card);
-        dev++;
-        return 0;
-]]>
-            </programlisting>
-          </informalexample>
-
-          In the above, the card record is stored. This pointer is
-        used in the remove callback and power-management
-        callbacks, too. 
-        </para>
-      </section>
-    </section>
-
-    <section id="basic-flow-destructor">
-      <title>Destructor</title>
-      <para>
-        The destructor, remove callback, simply releases the card
-      instance. Then the ALSA middle layer will release all the
-      attached components automatically. 
-      </para>
-
-      <para>
-        It would be typically like the following:
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static void __devexit snd_mychip_remove(struct pci_dev *pci)
-  {
-          snd_card_free(pci_get_drvdata(pci));
-          pci_set_drvdata(pci, NULL);
-  }
-]]>
-          </programlisting>
-        </informalexample>
-
-        The above code assumes that the card pointer is set to the PCI
-	driver data.
-      </para>
-    </section>
-
-    <section id="basic-flow-header-files">
-      <title>Header Files</title>
-      <para>
-        For the above example, at least the following include files
-      are necessary. 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  #include <linux/init.h>
-  #include <linux/pci.h>
-  #include <linux/slab.h>
-  #include <sound/core.h>
-  #include <sound/initval.h>
-]]>
-          </programlisting>
-        </informalexample>
-
-	where the last one is necessary only when module options are
-      defined in the source file.  If the code is split into several
-      files, the files without module options don't need them.
-      </para>
-
-      <para>
-        In addition to these headers, you'll need
-      <filename>&lt;linux/interrupt.h&gt;</filename> for interrupt
-      handling, and <filename>&lt;asm/io.h&gt;</filename> for I/O
-      access. If you use the <function>mdelay()</function> or
-      <function>udelay()</function> functions, you'll need to include
-      <filename>&lt;linux/delay.h&gt;</filename> too. 
-      </para>
-
-      <para>
-      The ALSA interfaces like the PCM and control APIs are defined in other
-      <filename>&lt;sound/xxx.h&gt;</filename> header files.
-      They have to be included after
-      <filename>&lt;sound/core.h&gt;</filename>.
-      </para>
-
-    </section>
-  </chapter>
-
-
-<!-- ****************************************************** -->
-<!-- Management of Cards and Components  -->
-<!-- ****************************************************** -->
-  <chapter id="card-management">
-    <title>Management of Cards and Components</title>
-
-    <section id="card-management-card-instance">
-      <title>Card Instance</title>
-      <para>
-      For each soundcard, a <quote>card</quote> record must be allocated.
-      </para>
-
-      <para>
-      A card record is the headquarters of the soundcard.  It manages
-      the whole list of devices (components) on the soundcard, such as
-      PCM, mixers, MIDI, synthesizer, and so on.  Also, the card
-      record holds the ID and the name strings of the card, manages
-      the root of proc files, and controls the power-management states
-      and hotplug disconnections.  The component list on the card
-      record is used to manage the correct release of resources at
-      destruction. 
-      </para>
-
-      <para>
-        As mentioned above, to create a card instance, call
-      <function>snd_card_new()</function>.
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct snd_card *card;
-  card = snd_card_new(index, id, module, extra_size);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        The function takes four arguments, the card-index number, the
-        id string, the module pointer (usually
-        <constant>THIS_MODULE</constant>),
-        and the size of extra-data space.  The last argument is used to
-        allocate card-&gt;private_data for the
-        chip-specific data.  Note that these data
-        are allocated by <function>snd_card_new()</function>.
-      </para>
-    </section>
-
-    <section id="card-management-component">
-      <title>Components</title>
-      <para>
-        After the card is created, you can attach the components
-      (devices) to the card instance. In an ALSA driver, a component is
-      represented as a struct <structname>snd_device</structname> object.
-      A component can be a PCM instance, a control interface, a raw
-      MIDI interface, etc.  Each such instance has one component
-      entry.
-      </para>
-
-      <para>
-        A component can be created via
-        <function>snd_device_new()</function> function. 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        This takes the card pointer, the device-level
-      (<constant>SNDRV_DEV_XXX</constant>), the data pointer, and the
-      callback pointers (<parameter>&amp;ops</parameter>). The
-      device-level defines the type of components and the order of
-      registration and de-registration.  For most components, the
-      device-level is already defined.  For a user-defined component,
-      you can use <constant>SNDRV_DEV_LOWLEVEL</constant>.
-      </para>
-
-      <para>
-      This function itself doesn't allocate the data space. The data
-      must be allocated manually beforehand, and its pointer is passed
-      as the argument. This pointer is used as the
-      (<parameter>chip</parameter> identifier in the above example)
-      for the instance. 
-      </para>
-
-      <para>
-        Each pre-defined ALSA component such as ac97 and pcm calls
-      <function>snd_device_new()</function> inside its
-      constructor. The destructor for each component is defined in the
-      callback pointers.  Hence, you don't need to take care of
-      calling a destructor for such a component.
-      </para>
-
-      <para>
-        If you wish to create your own component, you need to
-      set the destructor function to the dev_free callback in
-      the <parameter>ops</parameter>, so that it can be released
-      automatically via <function>snd_card_free()</function>.
-      The next example will show an implementation of chip-specific
-      data.
-      </para>
-    </section>
-
-    <section id="card-management-chip-specific">
-      <title>Chip-Specific Data</title>
-      <para>
-      Chip-specific information, e.g. the I/O port address, its
-      resource pointer, or the irq number, is stored in the
-      chip-specific record.
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct mychip {
-          ....
-  };
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        In general, there are two ways of allocating the chip record.
-      </para>
-
-      <section id="card-management-chip-specific-snd-card-new">
-        <title>1. Allocating via <function>snd_card_new()</function>.</title>
-        <para>
-          As mentioned above, you can pass the extra-data-length
-	  to the 4th argument of <function>snd_card_new()</function>, i.e.
-
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  card = snd_card_new(index[dev], id[dev], THIS_MODULE, sizeof(struct mychip));
-]]>
-            </programlisting>
-          </informalexample>
-
-          struct <structname>mychip</structname> is the type of the chip record.
-        </para>
-
-        <para>
-          In return, the allocated record can be accessed as
-
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  struct mychip *chip = card->private_data;
-]]>
-            </programlisting>
-          </informalexample>
-
-          With this method, you don't have to allocate twice.
-          The record is released together with the card instance.
-        </para>
-      </section>
-
-      <section id="card-management-chip-specific-allocate-extra">
-        <title>2. Allocating an extra device.</title>
-
-        <para>
-          After allocating a card instance via
-          <function>snd_card_new()</function> (with
-          <constant>NULL</constant> on the 4th arg), call
-          <function>kzalloc()</function>. 
-
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  struct snd_card *card;
-  struct mychip *chip;
-  card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL);
-  .....
-  chip = kzalloc(sizeof(*chip), GFP_KERNEL);
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-
-        <para>
-          The chip record should have the field to hold the card
-          pointer at least, 
-
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  struct mychip {
-          struct snd_card *card;
-          ....
-  };
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-
-        <para>
-          Then, set the card pointer in the returned chip instance.
-
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  chip->card = card;
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-
-        <para>
-          Next, initialize the fields, and register this chip
-          record as a low-level device with a specified
-          <parameter>ops</parameter>, 
-
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  static struct snd_device_ops ops = {
-          .dev_free =        snd_mychip_dev_free,
-  };
-  ....
-  snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
-]]>
-            </programlisting>
-          </informalexample>
-
-          <function>snd_mychip_dev_free()</function> is the
-        device-destructor function, which will call the real
-        destructor. 
-        </para>
-
-        <para>
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  static int snd_mychip_dev_free(struct snd_device *device)
-  {
-          return snd_mychip_free(device->device_data);
-  }
-]]>
-            </programlisting>
-          </informalexample>
-
-          where <function>snd_mychip_free()</function> is the real destructor.
-        </para>
-      </section>
-    </section>
-
-    <section id="card-management-registration">
-      <title>Registration and Release</title>
-      <para>
-        After all components are assigned, register the card instance
-      by calling <function>snd_card_register()</function>. Access
-      to the device files is enabled at this point. That is, before
-      <function>snd_card_register()</function> is called, the
-      components are safely inaccessible from external side. If this
-      call fails, exit the probe function after releasing the card via
-      <function>snd_card_free()</function>. 
-      </para>
-
-      <para>
-        For releasing the card instance, you can call simply
-      <function>snd_card_free()</function>. As mentioned earlier, all
-      components are released automatically by this call. 
-      </para>
-
-      <para>
-        As further notes, the destructors (both
-      <function>snd_mychip_dev_free</function> and
-      <function>snd_mychip_free</function>) cannot be defined with
-      the <parameter>__devexit</parameter> prefix, because they may be
-      called from the constructor, too, at the false path. 
-      </para>
-
-      <para>
-      For a device which allows hotplugging, you can use
-      <function>snd_card_free_when_closed</function>.  This one will
-      postpone the destruction until all devices are closed.
-      </para>
-
-    </section>
-
-  </chapter>
-
-
-<!-- ****************************************************** -->
-<!-- PCI Resource Management  -->
-<!-- ****************************************************** -->
-  <chapter id="pci-resource">
-    <title>PCI Resource Management</title>
-
-    <section id="pci-resource-example">
-      <title>Full Code Example</title>
-      <para>
-        In this section, we'll complete the chip-specific constructor,
-      destructor and PCI entries. Example code is shown first,
-      below. 
-
-        <example>
-          <title>PCI Resource Management Example</title>
-          <programlisting>
-<![CDATA[
-  struct mychip {
-          struct snd_card *card;
-          struct pci_dev *pci;
-
-          unsigned long port;
-          int irq;
-  };
-
-  static int snd_mychip_free(struct mychip *chip)
-  {
-          /* disable hardware here if any */
-          .... /* (not implemented in this document) */
-
-          /* release the irq */
-          if (chip->irq >= 0)
-                  free_irq(chip->irq, chip);
-          /* release the I/O ports & memory */
-          pci_release_regions(chip->pci);
-          /* disable the PCI entry */
-          pci_disable_device(chip->pci);
-          /* release the data */
-          kfree(chip);
-          return 0;
-  }
-
-  /* chip-specific constructor */
-  static int __devinit snd_mychip_create(struct snd_card *card,
-                                         struct pci_dev *pci,
-                                         struct mychip **rchip)
-  {
-          struct mychip *chip;
-          int err;
-          static struct snd_device_ops ops = {
-                 .dev_free = snd_mychip_dev_free,
-          };
-
-          *rchip = NULL;
-
-          /* initialize the PCI entry */
-          err = pci_enable_device(pci);
-          if (err < 0)
-                  return err;
-          /* check PCI availability (28bit DMA) */
-          if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 ||
-              pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) {
-                  printk(KERN_ERR "error to set 28bit mask DMA\n");
-                  pci_disable_device(pci);
-                  return -ENXIO;
-          }
-
-          chip = kzalloc(sizeof(*chip), GFP_KERNEL);
-          if (chip == NULL) {
-                  pci_disable_device(pci);
-                  return -ENOMEM;
-          }
-
-          /* initialize the stuff */
-          chip->card = card;
-          chip->pci = pci;
-          chip->irq = -1;
-
-          /* (1) PCI resource allocation */
-          err = pci_request_regions(pci, "My Chip");
-          if (err < 0) {
-                  kfree(chip);
-                  pci_disable_device(pci);
-                  return err;
-          }
-          chip->port = pci_resource_start(pci, 0);
-          if (request_irq(pci->irq, snd_mychip_interrupt,
-                          IRQF_SHARED, "My Chip", chip)) {
-                  printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
-                  snd_mychip_free(chip);
-                  return -EBUSY;
-          }
-          chip->irq = pci->irq;
-
-          /* (2) initialization of the chip hardware */
-          .... /*   (not implemented in this document) */
-
-          err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
-          if (err < 0) {
-                  snd_mychip_free(chip);
-                  return err;
-          }
-
-          snd_card_set_dev(card, &pci->dev);
-
-          *rchip = chip;
-          return 0;
-  }        
-
-  /* PCI IDs */
-  static struct pci_device_id snd_mychip_ids[] = {
-          { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
-            PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
-          ....
-          { 0, }
-  };
-  MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
-
-  /* pci_driver definition */
-  static struct pci_driver driver = {
-          .name = "My Own Chip",
-          .id_table = snd_mychip_ids,
-          .probe = snd_mychip_probe,
-          .remove = __devexit_p(snd_mychip_remove),
-  };
-
-  /* module initialization */
-  static int __init alsa_card_mychip_init(void)
-  {
-          return pci_register_driver(&driver);
-  }
-
-  /* module clean up */
-  static void __exit alsa_card_mychip_exit(void)
-  {
-          pci_unregister_driver(&driver);
-  }
-
-  module_init(alsa_card_mychip_init)
-  module_exit(alsa_card_mychip_exit)
-
-  EXPORT_NO_SYMBOLS; /* for old kernels only */
-]]>
-          </programlisting>
-        </example>
-      </para>
-    </section>
-
-    <section id="pci-resource-some-haftas">
-      <title>Some Hafta's</title>
-      <para>
-        The allocation of PCI resources is done in the
-      <function>probe()</function> function, and usually an extra
-      <function>xxx_create()</function> function is written for this
-      purpose.
-      </para>
-
-      <para>
-        In the case of PCI devices, you first have to call
-      the <function>pci_enable_device()</function> function before
-      allocating resources. Also, you need to set the proper PCI DMA
-      mask to limit the accessed I/O range. In some cases, you might
-      need to call <function>pci_set_master()</function> function,
-      too.
-      </para>
-
-      <para>
-        Suppose the 28bit mask, and the code to be added would be like:
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  err = pci_enable_device(pci);
-  if (err < 0)
-          return err;
-  if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 ||
-      pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) {
-          printk(KERN_ERR "error to set 28bit mask DMA\n");
-          pci_disable_device(pci);
-          return -ENXIO;
-  }
-  
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-    </section>
-
-    <section id="pci-resource-resource-allocation">
-      <title>Resource Allocation</title>
-      <para>
-        The allocation of I/O ports and irqs is done via standard kernel
-      functions. Unlike ALSA ver.0.5.x., there are no helpers for
-      that. And these resources must be released in the destructor
-      function (see below). Also, on ALSA 0.9.x, you don't need to
-      allocate (pseudo-)DMA for PCI like in ALSA 0.5.x.
-      </para>
-
-      <para>
-        Now assume that the PCI device has an I/O port with 8 bytes
-        and an interrupt. Then struct <structname>mychip</structname> will have the
-        following fields:
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct mychip {
-          struct snd_card *card;
-
-          unsigned long port;
-          int irq;
-  };
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        For an I/O port (and also a memory region), you need to have
-      the resource pointer for the standard resource management. For
-      an irq, you have to keep only the irq number (integer). But you
-      need to initialize this number as -1 before actual allocation,
-      since irq 0 is valid. The port address and its resource pointer
-      can be initialized as null by
-      <function>kzalloc()</function> automatically, so you
-      don't have to take care of resetting them. 
-      </para>
-
-      <para>
-        The allocation of an I/O port is done like this:
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  err = pci_request_regions(pci, "My Chip");
-  if (err < 0) { 
-          kfree(chip);
-          pci_disable_device(pci);
-          return err;
-  }
-  chip->port = pci_resource_start(pci, 0);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        <!-- obsolete -->
-        It will reserve the I/O port region of 8 bytes of the given
-      PCI device. The returned value, chip-&gt;res_port, is allocated
-      via <function>kmalloc()</function> by
-      <function>request_region()</function>. The pointer must be
-      released via <function>kfree()</function>, but there is a
-      problem with this. This issue will be explained later.
-      </para>
-
-      <para>
-        The allocation of an interrupt source is done like this:
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  if (request_irq(pci->irq, snd_mychip_interrupt,
-                  IRQF_SHARED, "My Chip", chip)) {
-          printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
-          snd_mychip_free(chip);
-          return -EBUSY;
-  }
-  chip->irq = pci->irq;
-]]>
-          </programlisting>
-        </informalexample>
-
-        where <function>snd_mychip_interrupt()</function> is the
-      interrupt handler defined <link
-      linkend="pcm-interface-interrupt-handler"><citetitle>later</citetitle></link>.
-      Note that chip-&gt;irq should be defined
-      only when <function>request_irq()</function> succeeded.
-      </para>
-
-      <para>
-      On the PCI bus, interrupts can be shared. Thus,
-      <constant>IRQF_SHARED</constant> is used as the interrupt flag of
-      <function>request_irq()</function>. 
-      </para>
-
-      <para>
-        The last argument of <function>request_irq()</function> is the
-      data pointer passed to the interrupt handler. Usually, the
-      chip-specific record is used for that, but you can use what you
-      like, too. 
-      </para>
-
-      <para>
-        I won't give details about the interrupt handler at this
-        point, but at least its appearance can be explained now. The
-        interrupt handler looks usually like the following: 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
-  {
-          struct mychip *chip = dev_id;
-          ....
-          return IRQ_HANDLED;
-  }
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        Now let's write the corresponding destructor for the resources
-      above. The role of destructor is simple: disable the hardware
-      (if already activated) and release the resources. So far, we
-      have no hardware part, so the disabling code is not written here. 
-      </para>
-
-      <para>
-        To release the resources, the <quote>check-and-release</quote>
-        method is a safer way. For the interrupt, do like this: 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  if (chip->irq >= 0)
-          free_irq(chip->irq, chip);
-]]>
-          </programlisting>
-        </informalexample>
-
-        Since the irq number can start from 0, you should initialize
-        chip-&gt;irq with a negative value (e.g. -1), so that you can
-        check the validity of the irq number as above.
-      </para>
-
-      <para>
-        When you requested I/O ports or memory regions via
-	<function>pci_request_region()</function> or
-	<function>pci_request_regions()</function> like in this example,
-	release the resource(s) using the corresponding function,
-	<function>pci_release_region()</function> or
-	<function>pci_release_regions()</function>.
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  pci_release_regions(chip->pci);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-	When you requested manually via <function>request_region()</function>
-	or <function>request_mem_region</function>, you can release it via
-	<function>release_resource()</function>.  Suppose that you keep
-	the resource pointer returned from <function>request_region()</function>
-	in chip-&gt;res_port, the release procedure looks like:
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  release_and_free_resource(chip->res_port);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-      Don't forget to call <function>pci_disable_device()</function>
-      before the end.
-      </para>
-
-      <para>
-        And finally, release the chip-specific record.
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  kfree(chip);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-      Again, remember that you cannot
-      use the <parameter>__devexit</parameter> prefix for this destructor. 
-      </para>
-
-      <para>
-      We didn't implement the hardware disabling part in the above.
-      If you need to do this, please note that the destructor may be
-      called even before the initialization of the chip is completed.
-      It would be better to have a flag to skip hardware disabling
-      if the hardware was not initialized yet.
-      </para>
-
-      <para>
-      When the chip-data is assigned to the card using
-      <function>snd_device_new()</function> with
-      <constant>SNDRV_DEV_LOWLELVEL</constant> , its destructor is 
-      called at the last.  That is, it is assured that all other
-      components like PCMs and controls have already been released.
-      You don't have to stop PCMs, etc. explicitly, but just
-      call low-level hardware stopping.
-      </para>
-
-      <para>
-        The management of a memory-mapped region is almost as same as
-        the management of an I/O port. You'll need three fields like
-        the following: 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct mychip {
-          ....
-          unsigned long iobase_phys;
-          void __iomem *iobase_virt;
-  };
-]]>
-          </programlisting>
-        </informalexample>
-
-        and the allocation would be like below:
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  if ((err = pci_request_regions(pci, "My Chip")) < 0) {
-          kfree(chip);
-          return err;
-  }
-  chip->iobase_phys = pci_resource_start(pci, 0);
-  chip->iobase_virt = ioremap_nocache(chip->iobase_phys,
-                                      pci_resource_len(pci, 0));
-]]>
-          </programlisting>
-        </informalexample>
-        
-        and the corresponding destructor would be:
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static int snd_mychip_free(struct mychip *chip)
-  {
-          ....
-          if (chip->iobase_virt)
-                  iounmap(chip->iobase_virt);
-          ....
-          pci_release_regions(chip->pci);
-          ....
-  }
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-    </section>
-
-    <section id="pci-resource-device-struct">
-      <title>Registration of Device Struct</title>
-      <para>
-	At some point, typically after calling <function>snd_device_new()</function>,
-	you need to register the struct <structname>device</structname> of the chip
-	you're handling for udev and co.  ALSA provides a macro for compatibility with
-	older kernels.  Simply call like the following:
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  snd_card_set_dev(card, &pci->dev);
-]]>
-          </programlisting>
-        </informalexample>
-	so that it stores the PCI's device pointer to the card.  This will be
-	referred by ALSA core functions later when the devices are registered.
-      </para>
-      <para>
-	In the case of non-PCI, pass the proper device struct pointer of the BUS
-	instead.  (In the case of legacy ISA without PnP, you don't have to do
-	anything.)
-      </para>
-    </section>
-
-    <section id="pci-resource-entries">
-      <title>PCI Entries</title>
-      <para>
-        So far, so good. Let's finish the missing PCI
-      stuff. At first, we need a
-      <structname>pci_device_id</structname> table for this
-      chipset. It's a table of PCI vendor/device ID number, and some
-      masks. 
-      </para>
-
-      <para>
-        For example,
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static struct pci_device_id snd_mychip_ids[] = {
-          { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
-            PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
-          ....
-          { 0, }
-  };
-  MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        The first and second fields of
-      the <structname>pci_device_id</structname> structure are the vendor and
-      device IDs. If you have no reason to filter the matching
-      devices, you can leave the remaining fields as above. The last
-      field of the <structname>pci_device_id</structname> struct contains
-      private data for this entry. You can specify any value here, for
-      example, to define specific operations for supported device IDs.
-      Such an example is found in the intel8x0 driver. 
-      </para>
-
-      <para>
-        The last entry of this list is the terminator. You must
-      specify this all-zero entry. 
-      </para>
-
-      <para>
-        Then, prepare the <structname>pci_driver</structname> record:
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static struct pci_driver driver = {
-          .name = "My Own Chip",
-          .id_table = snd_mychip_ids,
-          .probe = snd_mychip_probe,
-          .remove = __devexit_p(snd_mychip_remove),
-  };
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        The <structfield>probe</structfield> and
-      <structfield>remove</structfield> functions have already
-      been defined in the previous sections.
-      The <structfield>remove</structfield> function should
-      be defined with the 
-      <function>__devexit_p()</function> macro, so that it's not
-      defined for built-in (and non-hot-pluggable) case. The
-      <structfield>name</structfield> 
-      field is the name string of this device. Note that you must not
-      use a slash <quote>/</quote> in this string. 
-      </para>
-
-      <para>
-        And at last, the module entries:
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static int __init alsa_card_mychip_init(void)
-  {
-          return pci_register_driver(&driver);
-  }
-
-  static void __exit alsa_card_mychip_exit(void)
-  {
-          pci_unregister_driver(&driver);
-  }
-
-  module_init(alsa_card_mychip_init)
-  module_exit(alsa_card_mychip_exit)
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        Note that these module entries are tagged with
-      <parameter>__init</parameter> and 
-      <parameter>__exit</parameter> prefixes, not
-      <parameter>__devinit</parameter> nor
-      <parameter>__devexit</parameter>.
-      </para>
-
-      <para>
-        Oh, one thing was forgotten. If you have no exported symbols,
-        you need to declare it in 2.2 or 2.4 kernels (it's not necessary in 2.6 kernels).
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  EXPORT_NO_SYMBOLS;
-]]>
-          </programlisting>
-        </informalexample>
-
-        That's all!
-      </para>
-    </section>
-  </chapter>
-
-
-<!-- ****************************************************** -->
-<!-- PCM Interface  -->
-<!-- ****************************************************** -->
-  <chapter id="pcm-interface">
-    <title>PCM Interface</title>
-
-    <section id="pcm-interface-general">
-      <title>General</title>
-      <para>
-        The PCM middle layer of ALSA is quite powerful and it is only
-      necessary for each driver to implement the low-level functions
-      to access its hardware.
-      </para>
-
-      <para>
-        For accessing to the PCM layer, you need to include
-      <filename>&lt;sound/pcm.h&gt;</filename> first. In addition,
-      <filename>&lt;sound/pcm_params.h&gt;</filename> might be needed
-      if you access to some functions related with hw_param. 
-      </para>
-
-      <para>
-        Each card device can have up to four pcm instances. A pcm
-      instance corresponds to a pcm device file. The limitation of
-      number of instances comes only from the available bit size of
-      the Linux's device numbers. Once when 64bit device number is
-      used, we'll have more pcm instances available. 
-      </para>
-
-      <para>
-        A pcm instance consists of pcm playback and capture streams,
-      and each pcm stream consists of one or more pcm substreams. Some
-      soundcards support multiple playback functions. For example,
-      emu10k1 has a PCM playback of 32 stereo substreams. In this case, at
-      each open, a free substream is (usually) automatically chosen
-      and opened. Meanwhile, when only one substream exists and it was
-      already opened, the successful open will either block
-      or error with <constant>EAGAIN</constant> according to the
-      file open mode. But you don't have to care about such details in your
-      driver. The PCM middle layer will take care of such work.
-      </para>
-    </section>
-
-    <section id="pcm-interface-example">
-      <title>Full Code Example</title>
-      <para>
-      The example code below does not include any hardware access
-      routines but shows only the skeleton, how to build up the PCM
-      interfaces.
-
-        <example>
-          <title>PCM Example Code</title>
-          <programlisting>
-<![CDATA[
-  #include <sound/pcm.h>
-  ....
-
-  /* hardware definition */
-  static struct snd_pcm_hardware snd_mychip_playback_hw = {
-          .info = (SNDRV_PCM_INFO_MMAP |
-                   SNDRV_PCM_INFO_INTERLEAVED |
-                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
-                   SNDRV_PCM_INFO_MMAP_VALID),
-          .formats =          SNDRV_PCM_FMTBIT_S16_LE,
-          .rates =            SNDRV_PCM_RATE_8000_48000,
-          .rate_min =         8000,
-          .rate_max =         48000,
-          .channels_min =     2,
-          .channels_max =     2,
-          .buffer_bytes_max = 32768,
-          .period_bytes_min = 4096,
-          .period_bytes_max = 32768,
-          .periods_min =      1,
-          .periods_max =      1024,
-  };
-
-  /* hardware definition */
-  static struct snd_pcm_hardware snd_mychip_capture_hw = {
-          .info = (SNDRV_PCM_INFO_MMAP |
-                   SNDRV_PCM_INFO_INTERLEAVED |
-                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
-                   SNDRV_PCM_INFO_MMAP_VALID),
-          .formats =          SNDRV_PCM_FMTBIT_S16_LE,
-          .rates =            SNDRV_PCM_RATE_8000_48000,
-          .rate_min =         8000,
-          .rate_max =         48000,
-          .channels_min =     2,
-          .channels_max =     2,
-          .buffer_bytes_max = 32768,
-          .period_bytes_min = 4096,
-          .period_bytes_max = 32768,
-          .periods_min =      1,
-          .periods_max =      1024,
-  };
-
-  /* open callback */
-  static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
-  {
-          struct mychip *chip = snd_pcm_substream_chip(substream);
-          struct snd_pcm_runtime *runtime = substream->runtime;
-
-          runtime->hw = snd_mychip_playback_hw;
-          /* more hardware-initialization will be done here */
-          ....
-          return 0;
-  }
-
-  /* close callback */
-  static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
-  {
-          struct mychip *chip = snd_pcm_substream_chip(substream);
-          /* the hardware-specific codes will be here */
-          ....
-          return 0;
-
-  }
-
-  /* open callback */
-  static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
-  {
-          struct mychip *chip = snd_pcm_substream_chip(substream);
-          struct snd_pcm_runtime *runtime = substream->runtime;
-
-          runtime->hw = snd_mychip_capture_hw;
-          /* more hardware-initialization will be done here */
-          ....
-          return 0;
-  }
-
-  /* close callback */
-  static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
-  {
-          struct mychip *chip = snd_pcm_substream_chip(substream);
-          /* the hardware-specific codes will be here */
-          ....
-          return 0;
-
-  }
-
-  /* hw_params callback */
-  static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
-                               struct snd_pcm_hw_params *hw_params)
-  {
-          return snd_pcm_lib_malloc_pages(substream,
-                                     params_buffer_bytes(hw_params));
-  }
-
-  /* hw_free callback */
-  static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
-  {
-          return snd_pcm_lib_free_pages(substream);
-  }
-
-  /* prepare callback */
-  static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
-  {
-          struct mychip *chip = snd_pcm_substream_chip(substream);
-          struct snd_pcm_runtime *runtime = substream->runtime;
-
-          /* set up the hardware with the current configuration
-           * for example...
-           */
-          mychip_set_sample_format(chip, runtime->format);
-          mychip_set_sample_rate(chip, runtime->rate);
-          mychip_set_channels(chip, runtime->channels);
-          mychip_set_dma_setup(chip, runtime->dma_addr,
-                               chip->buffer_size,
-                               chip->period_size);
-          return 0;
-  }
-
-  /* trigger callback */
-  static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
-                                    int cmd)
-  {
-          switch (cmd) {
-          case SNDRV_PCM_TRIGGER_START:
-                  /* do something to start the PCM engine */
-                  ....
-                  break;
-          case SNDRV_PCM_TRIGGER_STOP:
-                  /* do something to stop the PCM engine */
-                  ....
-                  break;
-          default:
-                  return -EINVAL;
-          }
-  }
-
-  /* pointer callback */
-  static snd_pcm_uframes_t
-  snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
-  {
-          struct mychip *chip = snd_pcm_substream_chip(substream);
-          unsigned int current_ptr;
-
-          /* get the current hardware pointer */
-          current_ptr = mychip_get_hw_pointer(chip);
-          return current_ptr;
-  }
-
-  /* operators */
-  static struct snd_pcm_ops snd_mychip_playback_ops = {
-          .open =        snd_mychip_playback_open,
-          .close =       snd_mychip_playback_close,
-          .ioctl =       snd_pcm_lib_ioctl,
-          .hw_params =   snd_mychip_pcm_hw_params,
-          .hw_free =     snd_mychip_pcm_hw_free,
-          .prepare =     snd_mychip_pcm_prepare,
-          .trigger =     snd_mychip_pcm_trigger,
-          .pointer =     snd_mychip_pcm_pointer,
-  };
-
-  /* operators */
-  static struct snd_pcm_ops snd_mychip_capture_ops = {
-          .open =        snd_mychip_capture_open,
-          .close =       snd_mychip_capture_close,
-          .ioctl =       snd_pcm_lib_ioctl,
-          .hw_params =   snd_mychip_pcm_hw_params,
-          .hw_free =     snd_mychip_pcm_hw_free,
-          .prepare =     snd_mychip_pcm_prepare,
-          .trigger =     snd_mychip_pcm_trigger,
-          .pointer =     snd_mychip_pcm_pointer,
-  };
-
-  /*
-   *  definitions of capture are omitted here...
-   */
-
-  /* create a pcm device */
-  static int __devinit snd_mychip_new_pcm(struct mychip *chip)
-  {
-          struct snd_pcm *pcm;
-          int err;
-
-          err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
-          if (err < 0) 
-                  return err;
-          pcm->private_data = chip;
-          strcpy(pcm->name, "My Chip");
-          chip->pcm = pcm;
-          /* set operators */
-          snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
-                          &snd_mychip_playback_ops);
-          snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
-                          &snd_mychip_capture_ops);
-          /* pre-allocation of buffers */
-          /* NOTE: this may fail */
-          snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
-                                                snd_dma_pci_data(chip->pci),
-                                                64*1024, 64*1024);
-          return 0;
-  }
-]]>
-          </programlisting>
-        </example>
-      </para>
-    </section>
-
-    <section id="pcm-interface-constructor">
-      <title>Constructor</title>
-      <para>
-        A pcm instance is allocated by the <function>snd_pcm_new()</function>
-      function. It would be better to create a constructor for pcm,
-      namely, 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static int __devinit snd_mychip_new_pcm(struct mychip *chip)
-  {
-          struct snd_pcm *pcm;
-          int err;
-
-          err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
-          if (err < 0) 
-                  return err;
-          pcm->private_data = chip;
-          strcpy(pcm->name, "My Chip");
-          chip->pcm = pcm;
-	  ....
-          return 0;
-  }
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        The <function>snd_pcm_new()</function> function takes four
-      arguments. The first argument is the card pointer to which this
-      pcm is assigned, and the second is the ID string. 
-      </para>
-
-      <para>
-        The third argument (<parameter>index</parameter>, 0 in the
-      above) is the index of this new pcm. It begins from zero. If
-      you create more than one pcm instances, specify the
-      different numbers in this argument. For example,
-      <parameter>index</parameter> = 1 for the second PCM device.  
-      </para>
-
-      <para>
-        The fourth and fifth arguments are the number of substreams
-      for playback and capture, respectively. Here 1 is used for
-      both arguments. When no playback or capture substreams are available,
-      pass 0 to the corresponding argument.
-      </para>
-
-      <para>
-        If a chip supports multiple playbacks or captures, you can
-      specify more numbers, but they must be handled properly in
-      open/close, etc. callbacks.  When you need to know which
-      substream you are referring to, then it can be obtained from
-      struct <structname>snd_pcm_substream</structname> data passed to each callback
-      as follows: 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct snd_pcm_substream *substream;
-  int index = substream->number;
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        After the pcm is created, you need to set operators for each
-        pcm stream. 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
-                  &snd_mychip_playback_ops);
-  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
-                  &snd_mychip_capture_ops);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        The operators are defined typically like this:
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static struct snd_pcm_ops snd_mychip_playback_ops = {
-          .open =        snd_mychip_pcm_open,
-          .close =       snd_mychip_pcm_close,
-          .ioctl =       snd_pcm_lib_ioctl,
-          .hw_params =   snd_mychip_pcm_hw_params,
-          .hw_free =     snd_mychip_pcm_hw_free,
-          .prepare =     snd_mychip_pcm_prepare,
-          .trigger =     snd_mychip_pcm_trigger,
-          .pointer =     snd_mychip_pcm_pointer,
-  };
-]]>
-          </programlisting>
-        </informalexample>
-
-        All the callbacks are described in the
-        <link linkend="pcm-interface-operators"><citetitle>
-        Operators</citetitle></link> subsection.
-      </para>
-
-      <para>
-        After setting the operators, you probably will want to
-        pre-allocate the buffer. For the pre-allocation, simply call
-        the following: 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
-                                        snd_dma_pci_data(chip->pci),
-                                        64*1024, 64*1024);
-]]>
-          </programlisting>
-        </informalexample>
-
-        It will allocate a buffer up to 64kB as default.
-      Buffer management details will be described in the later section <link
-      linkend="buffer-and-memory"><citetitle>Buffer and Memory
-      Management</citetitle></link>. 
-      </para>
-
-      <para>
-        Additionally, you can set some extra information for this pcm
-        in pcm-&gt;info_flags.
-        The available values are defined as
-        <constant>SNDRV_PCM_INFO_XXX</constant> in
-        <filename>&lt;sound/asound.h&gt;</filename>, which is used for
-        the hardware definition (described later). When your soundchip
-        supports only half-duplex, specify like this: 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-    </section>
-
-    <section id="pcm-interface-destructor">
-      <title>... And the Destructor?</title>
-      <para>
-        The destructor for a pcm instance is not always
-      necessary. Since the pcm device will be released by the middle
-      layer code automatically, you don't have to call the destructor
-      explicitly.
-      </para>
-
-      <para>
-        The destructor would be necessary if you created
-        special records internally and needed to release them. In such a
-        case, set the destructor function to
-        pcm-&gt;private_free: 
-
-        <example>
-          <title>PCM Instance with a Destructor</title>
-          <programlisting>
-<![CDATA[
-  static void mychip_pcm_free(struct snd_pcm *pcm)
-  {
-          struct mychip *chip = snd_pcm_chip(pcm);
-          /* free your own data */
-          kfree(chip->my_private_pcm_data);
-          /* do what you like else */
-          ....
-  }
-
-  static int __devinit snd_mychip_new_pcm(struct mychip *chip)
-  {
-          struct snd_pcm *pcm;
-          ....
-          /* allocate your own data */
-          chip->my_private_pcm_data = kmalloc(...);
-          /* set the destructor */
-          pcm->private_data = chip;
-          pcm->private_free = mychip_pcm_free;
-          ....
-  }
-]]>
-          </programlisting>
-        </example>
-      </para>
-    </section>
-
-    <section id="pcm-interface-runtime">
-      <title>Runtime Pointer - The Chest of PCM Information</title>
-	<para>
-	  When the PCM substream is opened, a PCM runtime instance is
-	allocated and assigned to the substream. This pointer is
-	accessible via <constant>substream-&gt;runtime</constant>.
-	This runtime pointer holds most information you need
-	to control the PCM: the copy of hw_params and sw_params configurations, the buffer
-	pointers, mmap records, spinlocks, etc.
-	</para>
-
-	<para>
-	The definition of runtime instance is found in
-	<filename>&lt;sound/pcm.h&gt;</filename>.  Here are
-       the contents of this file:
-          <informalexample>
-            <programlisting>
-<![CDATA[
-struct _snd_pcm_runtime {
-	/* -- Status -- */
-	struct snd_pcm_substream *trigger_master;
-	snd_timestamp_t trigger_tstamp;	/* trigger timestamp */
-	int overrange;
-	snd_pcm_uframes_t avail_max;
-	snd_pcm_uframes_t hw_ptr_base;	/* Position at buffer restart */
-	snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
-
-	/* -- HW params -- */
-	snd_pcm_access_t access;	/* access mode */
-	snd_pcm_format_t format;	/* SNDRV_PCM_FORMAT_* */
-	snd_pcm_subformat_t subformat;	/* subformat */
-	unsigned int rate;		/* rate in Hz */
-	unsigned int channels;		/* channels */
-	snd_pcm_uframes_t period_size;	/* period size */
-	unsigned int periods;		/* periods */
-	snd_pcm_uframes_t buffer_size;	/* buffer size */
-	unsigned int tick_time;		/* tick time */
-	snd_pcm_uframes_t min_align;	/* Min alignment for the format */
-	size_t byte_align;
-	unsigned int frame_bits;
-	unsigned int sample_bits;
-	unsigned int info;
-	unsigned int rate_num;
-	unsigned int rate_den;
-
-	/* -- SW params -- */
-	struct timespec tstamp_mode;	/* mmap timestamp is updated */
-  	unsigned int period_step;
-	unsigned int sleep_min;		/* min ticks to sleep */
-	snd_pcm_uframes_t start_threshold;
-	snd_pcm_uframes_t stop_threshold;
-	snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
-						noise is nearest than this */
-	snd_pcm_uframes_t silence_size;	/* Silence filling size */
-	snd_pcm_uframes_t boundary;	/* pointers wrap point */
-
-	snd_pcm_uframes_t silenced_start;
-	snd_pcm_uframes_t silenced_size;
-
-	snd_pcm_sync_id_t sync;		/* hardware synchronization ID */
-
-	/* -- mmap -- */
-	volatile struct snd_pcm_mmap_status *status;
-	volatile struct snd_pcm_mmap_control *control;
-	atomic_t mmap_count;
-
-	/* -- locking / scheduling -- */
-	spinlock_t lock;
-	wait_queue_head_t sleep;
-	struct timer_list tick_timer;
-	struct fasync_struct *fasync;
-
-	/* -- private section -- */
-	void *private_data;
-	void (*private_free)(struct snd_pcm_runtime *runtime);
-
-	/* -- hardware description -- */
-	struct snd_pcm_hardware hw;
-	struct snd_pcm_hw_constraints hw_constraints;
-
-	/* -- interrupt callbacks -- */
-	void (*transfer_ack_begin)(struct snd_pcm_substream *substream);
-	void (*transfer_ack_end)(struct snd_pcm_substream *substream);
-
-	/* -- timer -- */
-	unsigned int timer_resolution;	/* timer resolution */
-
-	/* -- DMA -- */           
-	unsigned char *dma_area;	/* DMA area */
-	dma_addr_t dma_addr;		/* physical bus address (not accessible from main CPU) */
-	size_t dma_bytes;		/* size of DMA area */
-
-	struct snd_dma_buffer *dma_buffer_p;	/* allocated buffer */
-
-#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
-	/* -- OSS things -- */
-	struct snd_pcm_oss_runtime oss;
-#endif
-};
-]]>
-            </programlisting>
-          </informalexample>
-	</para>
-
-	<para>
-	  For the operators (callbacks) of each sound driver, most of
-	these records are supposed to be read-only.  Only the PCM
-	middle-layer changes / updates them.  The exceptions are
-	the hardware description (hw), interrupt callbacks
-	(transfer_ack_xxx), DMA buffer information, and the private
-	data.  Besides, if you use the standard buffer allocation
-	method via <function>snd_pcm_lib_malloc_pages()</function>,
-	you don't need to set the DMA buffer information by yourself.
-	</para>
-
-	<para>
-	In the sections below, important records are explained.
-	</para>
-
-	<section id="pcm-interface-runtime-hw">
-	<title>Hardware Description</title>
-	<para>
-	  The hardware descriptor (struct <structname>snd_pcm_hardware</structname>)
-	contains the definitions of the fundamental hardware
-	configuration.  Above all, you'll need to define this in
-	<link linkend="pcm-interface-operators-open-callback"><citetitle>
-	the open callback</citetitle></link>.
-	Note that the runtime instance holds the copy of the
-	descriptor, not the pointer to the existing descriptor.  That
-	is, in the open callback, you can modify the copied descriptor
-	(<constant>runtime-&gt;hw</constant>) as you need.  For example, if the maximum
-	number of channels is 1 only on some chip models, you can
-	still use the same hardware descriptor and change the
-	channels_max later:
-          <informalexample>
-            <programlisting>
-<![CDATA[
-          struct snd_pcm_runtime *runtime = substream->runtime;
-          ...
-          runtime->hw = snd_mychip_playback_hw; /* common definition */
-          if (chip->model == VERY_OLD_ONE)
-                  runtime->hw.channels_max = 1;
-]]>
-            </programlisting>
-          </informalexample>
-	</para>
-
-	<para>
-	  Typically, you'll have a hardware descriptor as below:
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  static struct snd_pcm_hardware snd_mychip_playback_hw = {
-          .info = (SNDRV_PCM_INFO_MMAP |
-                   SNDRV_PCM_INFO_INTERLEAVED |
-                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
-                   SNDRV_PCM_INFO_MMAP_VALID),
-          .formats =          SNDRV_PCM_FMTBIT_S16_LE,
-          .rates =            SNDRV_PCM_RATE_8000_48000,
-          .rate_min =         8000,
-          .rate_max =         48000,
-          .channels_min =     2,
-          .channels_max =     2,
-          .buffer_bytes_max = 32768,
-          .period_bytes_min = 4096,
-          .period_bytes_max = 32768,
-          .periods_min =      1,
-          .periods_max =      1024,
-  };
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-
-        <para>
-	<itemizedlist>
-	<listitem><para>
-          The <structfield>info</structfield> field contains the type and
-        capabilities of this pcm. The bit flags are defined in
-        <filename>&lt;sound/asound.h&gt;</filename> as
-        <constant>SNDRV_PCM_INFO_XXX</constant>. Here, at least, you
-        have to specify whether the mmap is supported and which
-        interleaved format is supported.
-        When the is supported, add the
-        <constant>SNDRV_PCM_INFO_MMAP</constant> flag here. When the
-        hardware supports the interleaved or the non-interleaved
-        formats, <constant>SNDRV_PCM_INFO_INTERLEAVED</constant> or
-        <constant>SNDRV_PCM_INFO_NONINTERLEAVED</constant> flag must
-        be set, respectively. If both are supported, you can set both,
-        too. 
-        </para>
-
-        <para>
-          In the above example, <constant>MMAP_VALID</constant> and
-        <constant>BLOCK_TRANSFER</constant> are specified for the OSS mmap
-        mode. Usually both are set. Of course,
-        <constant>MMAP_VALID</constant> is set only if the mmap is
-        really supported. 
-        </para>
-
-        <para>
-          The other possible flags are
-        <constant>SNDRV_PCM_INFO_PAUSE</constant> and
-        <constant>SNDRV_PCM_INFO_RESUME</constant>. The
-        <constant>PAUSE</constant> bit means that the pcm supports the
-        <quote>pause</quote> operation, while the
-        <constant>RESUME</constant> bit means that the pcm supports
-        the full <quote>suspend/resume</quote> operation.
-	If the <constant>PAUSE</constant> flag is set,
-	the <structfield>trigger</structfield> callback below
-        must handle the corresponding (pause push/release) commands.
-	The suspend/resume trigger commands can be defined even without
-	the <constant>RESUME</constant> flag.  See <link
-	linkend="power-management"><citetitle>
-	Power Management</citetitle></link> section for details.
-        </para>
-
-	<para>
-	  When the PCM substreams can be synchronized (typically,
-	synchronized start/stop of a playback and a capture streams),
-	you can give <constant>SNDRV_PCM_INFO_SYNC_START</constant>,
-	too.  In this case, you'll need to check the linked-list of
-	PCM substreams in the trigger callback.  This will be
-	described in the later section.
-	</para>
-	</listitem>
-
-	<listitem>
-        <para>
-          <structfield>formats</structfield> field contains the bit-flags
-        of supported formats (<constant>SNDRV_PCM_FMTBIT_XXX</constant>).
-        If the hardware supports more than one format, give all or'ed
-        bits.  In the example above, the signed 16bit little-endian
-        format is specified.
-        </para>
-	</listitem>
-
-	<listitem>
-        <para>
-        <structfield>rates</structfield> field contains the bit-flags of
-        supported rates (<constant>SNDRV_PCM_RATE_XXX</constant>).
-        When the chip supports continuous rates, pass
-        <constant>CONTINUOUS</constant> bit additionally.
-        The pre-defined rate bits are provided only for typical
-	rates. If your chip supports unconventional rates, you need to add
-        the <constant>KNOT</constant> bit and set up the hardware
-        constraint manually (explained later).
-        </para>
-	</listitem>
-
-	<listitem>
-	<para>
-	<structfield>rate_min</structfield> and
-	<structfield>rate_max</structfield> define the minimum and
-	maximum sample rate.  This should correspond somehow to
-	<structfield>rates</structfield> bits.
-	</para>
-	</listitem>
-
-	<listitem>
-	<para>
-	<structfield>channel_min</structfield> and
-	<structfield>channel_max</structfield> 
-	define, as you might already expected, the minimum and maximum
-	number of channels.
-	</para>
-	</listitem>
-
-	<listitem>
-	<para>
-	<structfield>buffer_bytes_max</structfield> defines the
-	maximum buffer size in bytes.  There is no
-	<structfield>buffer_bytes_min</structfield> field, since
-	it can be calculated from the minimum period size and the
-	minimum number of periods.
-	Meanwhile, <structfield>period_bytes_min</structfield> and
-	define the minimum and maximum size of the period in bytes.
-	<structfield>periods_max</structfield> and
-	<structfield>periods_min</structfield> define the maximum and
-	minimum number of periods in the buffer.
-        </para>
-
-	<para>
-	The <quote>period</quote> is a term that corresponds to
-	a fragment in the OSS world. The period defines the size at
-	which a PCM interrupt is generated. This size strongly
-	depends on the hardware. 
-	Generally, the smaller period size will give you more
-	interrupts, that is, more controls. 
-	In the case of capture, this size defines the input latency.
-	On the other hand, the whole buffer size defines the
-	output latency for the playback direction.
-	</para>
-	</listitem>
-
-	<listitem>
-	<para>
-	There is also a field <structfield>fifo_size</structfield>.
-	This specifies the size of the hardware FIFO, but currently it
-	is neither used in the driver nor in the alsa-lib.  So, you
-	can ignore this field.
-	</para>
-	</listitem>
-	</itemizedlist>
-	</para>
-	</section>
-
-	<section id="pcm-interface-runtime-config">
-	<title>PCM Configurations</title>
-	<para>
-	Ok, let's go back again to the PCM runtime records.
-	The most frequently referred records in the runtime instance are
-	the PCM configurations.
-	The PCM configurations are stored in the runtime instance
-	after the application sends <type>hw_params</type> data via
-	alsa-lib.  There are many fields copied from hw_params and
-	sw_params structs.  For example,
-	<structfield>format</structfield> holds the format type
-	chosen by the application.  This field contains the enum value
-	<constant>SNDRV_PCM_FORMAT_XXX</constant>.
-	</para>
-
-	<para>
-	One thing to be noted is that the configured buffer and period
-	sizes are stored in <quote>frames</quote> in the runtime.
-        In the ALSA world, 1 frame = channels * samples-size.
-	For conversion between frames and bytes, you can use the
-	<function>frames_to_bytes()</function> and
-          <function>bytes_to_frames()</function> helper functions. 
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  period_bytes = frames_to_bytes(runtime, runtime->period_size);
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-
-	<para>
-	Also, many software parameters (sw_params) are
-	stored in frames, too.  Please check the type of the field.
-	<type>snd_pcm_uframes_t</type> is for the frames as unsigned
-	integer while <type>snd_pcm_sframes_t</type> is for the frames
-	as signed integer.
-	</para>
-	</section>
-
-	<section id="pcm-interface-runtime-dma">
-	<title>DMA Buffer Information</title>
-	<para>
-	The DMA buffer is defined by the following four fields,
-	<structfield>dma_area</structfield>,
-	<structfield>dma_addr</structfield>,
-	<structfield>dma_bytes</structfield> and
-	<structfield>dma_private</structfield>.
-	The <structfield>dma_area</structfield> holds the buffer
-	pointer (the logical address).  You can call
-	<function>memcpy</function> from/to 
-	this pointer.  Meanwhile, <structfield>dma_addr</structfield>
-	holds the physical address of the buffer.  This field is
-	specified only when the buffer is a linear buffer.
-	<structfield>dma_bytes</structfield> holds the size of buffer
-	in bytes.  <structfield>dma_private</structfield> is used for
-	the ALSA DMA allocator.
-	</para>
-
-	<para>
-	If you use a standard ALSA function,
-	<function>snd_pcm_lib_malloc_pages()</function>, for
-	allocating the buffer, these fields are set by the ALSA middle
-	layer, and you should <emphasis>not</emphasis> change them by
-	yourself.  You can read them but not write them.
-	On the other hand, if you want to allocate the buffer by
-	yourself, you'll need to manage it in hw_params callback.
-	At least, <structfield>dma_bytes</structfield> is mandatory.
-	<structfield>dma_area</structfield> is necessary when the
-	buffer is mmapped.  If your driver doesn't support mmap, this
-	field is not necessary.  <structfield>dma_addr</structfield>
-	is also optional.  You can use
-	<structfield>dma_private</structfield> as you like, too.
-	</para>
-	</section>
-
-	<section id="pcm-interface-runtime-status">
-	<title>Running Status</title>
-	<para>
-	The running status can be referred via <constant>runtime-&gt;status</constant>.
-	This is the pointer to the struct <structname>snd_pcm_mmap_status</structname>
-	record.  For example, you can get the current DMA hardware
-	pointer via <constant>runtime-&gt;status-&gt;hw_ptr</constant>.
-	</para>
-
-	<para>
-	The DMA application pointer can be referred via
-	<constant>runtime-&gt;control</constant>, which points to the
-	struct <structname>snd_pcm_mmap_control</structname> record.
-	However, accessing directly to this value is not recommended.
-	</para>
-	</section>
-
-	<section id="pcm-interface-runtime-private">
-	<title>Private Data</title> 
-	<para>
-	You can allocate a record for the substream and store it in
-	<constant>runtime-&gt;private_data</constant>.  Usually, this
-	is done in
-	<link linkend="pcm-interface-operators-open-callback"><citetitle>
-	the open callback</citetitle></link>.
-	Don't mix this with <constant>pcm-&gt;private_data</constant>.
-	The <constant>pcm-&gt;private_data</constant> usually points to the
-	chip instance assigned statically at the creation of PCM, while the 
-	<constant>runtime-&gt;private_data</constant> points to a dynamic
-	data structure created at the PCM open callback.
-
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  static int snd_xxx_open(struct snd_pcm_substream *substream)
-  {
-          struct my_pcm_data *data;
-          ....
-          data = kmalloc(sizeof(*data), GFP_KERNEL);
-          substream->runtime->private_data = data;
-          ....
-  }
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-
-        <para>
-          The allocated object must be released in
-	<link linkend="pcm-interface-operators-open-callback"><citetitle>
-	the close callback</citetitle></link>.
-        </para>
-	</section>
-
-	<section id="pcm-interface-runtime-intr">
-	<title>Interrupt Callbacks</title>
-	<para>
-	The field <structfield>transfer_ack_begin</structfield> and
-	<structfield>transfer_ack_end</structfield> are called at
-	the beginning and at the end of
-	<function>snd_pcm_period_elapsed()</function>, respectively. 
-	</para>
-	</section>
-
-    </section>
-
-    <section id="pcm-interface-operators">
-      <title>Operators</title>
-      <para>
-        OK, now let me give details about each pcm callback
-      (<parameter>ops</parameter>). In general, every callback must
-      return 0 if successful, or a negative error number
-      such as <constant>-EINVAL</constant>. To choose an appropriate
-      error number, it is advised to check what value other parts of
-      the kernel return when the same kind of request fails.
-      </para>
-
-      <para>
-        The callback function takes at least the argument with
-        <structname>snd_pcm_substream</structname> pointer. To retrieve
-        the chip record from the given substream instance, you can use the
-        following macro. 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  int xxx() {
-          struct mychip *chip = snd_pcm_substream_chip(substream);
-          ....
-  }
-]]>
-          </programlisting>
-        </informalexample>
-
-	The macro reads <constant>substream-&gt;private_data</constant>,
-	which is a copy of <constant>pcm-&gt;private_data</constant>.
-	You can override the former if you need to assign different data
-	records per PCM substream.  For example, the cmi8330 driver assigns
-	different private_data for playback and capture directions,
-	because it uses two different codecs (SB- and AD-compatible) for
-	different directions.
-      </para>
-
-      <section id="pcm-interface-operators-open-callback">
-        <title>open callback</title>
-        <para>
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  static int snd_xxx_open(struct snd_pcm_substream *substream);
-]]>
-            </programlisting>
-          </informalexample>
-
-          This is called when a pcm substream is opened.
-        </para>
-
-        <para>
-          At least, here you have to initialize the runtime-&gt;hw
-          record. Typically, this is done by like this: 
-
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  static int snd_xxx_open(struct snd_pcm_substream *substream)
-  {
-          struct mychip *chip = snd_pcm_substream_chip(substream);
-          struct snd_pcm_runtime *runtime = substream->runtime;
-
-          runtime->hw = snd_mychip_playback_hw;
-          return 0;
-  }
-]]>
-            </programlisting>
-          </informalexample>
-
-          where <parameter>snd_mychip_playback_hw</parameter> is the
-          pre-defined hardware description.
-	</para>
-
-	<para>
-	You can allocate a private data in this callback, as described
-	in <link linkend="pcm-interface-runtime-private"><citetitle>
-	Private Data</citetitle></link> section.
-	</para>
-
-	<para>
-	If the hardware configuration needs more constraints, set the
-	hardware constraints here, too.
-	See <link linkend="pcm-interface-constraints"><citetitle>
-	Constraints</citetitle></link> for more details.
-	</para>
-      </section>
-
-      <section id="pcm-interface-operators-close-callback">
-        <title>close callback</title>
-        <para>
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  static int snd_xxx_close(struct snd_pcm_substream *substream);
-]]>
-            </programlisting>
-          </informalexample>
-
-          Obviously, this is called when a pcm substream is closed.
-        </para>
-
-        <para>
-          Any private instance for a pcm substream allocated in the
-          open callback will be released here. 
-
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  static int snd_xxx_close(struct snd_pcm_substream *substream)
-  {
-          ....
-          kfree(substream->runtime->private_data);
-          ....
-  }
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-      </section>
-
-      <section id="pcm-interface-operators-ioctl-callback">
-        <title>ioctl callback</title>
-        <para>
-          This is used for any special call to pcm ioctls. But
-        usually you can pass a generic ioctl callback, 
-        <function>snd_pcm_lib_ioctl</function>.
-        </para>
-      </section>
-
-      <section id="pcm-interface-operators-hw-params-callback">
-        <title>hw_params callback</title>
-        <para>
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
-                               struct snd_pcm_hw_params *hw_params);
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-
-        <para>
-          This is called when the hardware parameter
-        (<structfield>hw_params</structfield>) is set
-        up by the application, 
-        that is, once when the buffer size, the period size, the
-        format, etc. are defined for the pcm substream. 
-        </para>
-
-        <para>
-          Many hardware setups should be done in this callback,
-        including the allocation of buffers. 
-        </para>
-
-        <para>
-          Parameters to be initialized are retrieved by
-          <function>params_xxx()</function> macros. To allocate
-          buffer, you can call a helper function, 
-
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
-]]>
-            </programlisting>
-          </informalexample>
-
-          <function>snd_pcm_lib_malloc_pages()</function> is available
-	  only when the DMA buffers have been pre-allocated.
-	  See the section <link
-	  linkend="buffer-and-memory-buffer-types"><citetitle>
-	  Buffer Types</citetitle></link> for more details.
-        </para>
-
-        <para>
-          Note that this and <structfield>prepare</structfield> callbacks
-        may be called multiple times per initialization.
-        For example, the OSS emulation may
-        call these callbacks at each change via its ioctl. 
-        </para>
-
-        <para>
-          Thus, you need to be careful not to allocate the same buffers
-        many times, which will lead to memory leaks!  Calling the
-        helper function above many times is OK. It will release the
-        previous buffer automatically when it was already allocated. 
-        </para>
-
-        <para>
-          Another note is that this callback is non-atomic
-        (schedulable). This is important, because the
-        <structfield>trigger</structfield> callback 
-        is atomic (non-schedulable). That is, mutexes or any
-        schedule-related functions are not available in
-        <structfield>trigger</structfield> callback.
-	Please see the subsection
-	<link linkend="pcm-interface-atomicity"><citetitle>
-	Atomicity</citetitle></link> for details.
-        </para>
-      </section>
-
-      <section id="pcm-interface-operators-hw-free-callback">
-        <title>hw_free callback</title>
-        <para>
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-
-        <para>
-          This is called to release the resources allocated via
-          <structfield>hw_params</structfield>. For example, releasing the
-          buffer via 
-          <function>snd_pcm_lib_malloc_pages()</function> is done by
-          calling the following: 
-
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  snd_pcm_lib_free_pages(substream);
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-
-        <para>
-          This function is always called before the close callback is called.
-          Also, the callback may be called multiple times, too.
-          Keep track whether the resource was already released. 
-        </para>
-      </section>
-
-      <section id="pcm-interface-operators-prepare-callback">
-       <title>prepare callback</title>
-        <para>
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  static int snd_xxx_prepare(struct snd_pcm_substream *substream);
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-
-        <para>
-          This callback is called when the pcm is
-        <quote>prepared</quote>. You can set the format type, sample
-        rate, etc. here. The difference from
-        <structfield>hw_params</structfield> is that the 
-        <structfield>prepare</structfield> callback will be called each
-        time 
-        <function>snd_pcm_prepare()</function> is called, i.e. when
-        recovering after underruns, etc. 
-        </para>
-
-        <para>
-	Note that this callback is now non-atomic.
-	You can use schedule-related functions safely in this callback.
-        </para>
-
-        <para>
-          In this and the following callbacks, you can refer to the
-        values via the runtime record,
-        substream-&gt;runtime.
-        For example, to get the current
-        rate, format or channels, access to
-        runtime-&gt;rate,
-        runtime-&gt;format or
-        runtime-&gt;channels, respectively. 
-        The physical address of the allocated buffer is set to
-	runtime-&gt;dma_area.  The buffer and period sizes are
-	in runtime-&gt;buffer_size and runtime-&gt;period_size,
-	respectively.
-        </para>
-
-        <para>
-          Be careful that this callback will be called many times at
-        each setup, too. 
-        </para>
-      </section>
-
-      <section id="pcm-interface-operators-trigger-callback">
-        <title>trigger callback</title>
-        <para>
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
-]]>
-            </programlisting>
-          </informalexample>
-
-          This is called when the pcm is started, stopped or paused.
-        </para>
-
-        <para>
-          Which action is specified in the second argument,
-          <constant>SNDRV_PCM_TRIGGER_XXX</constant> in
-          <filename>&lt;sound/pcm.h&gt;</filename>. At least,
-          the <constant>START</constant> and <constant>STOP</constant>
-          commands must be defined in this callback. 
-
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  switch (cmd) {
-  case SNDRV_PCM_TRIGGER_START:
-          /* do something to start the PCM engine */
-          break;
-  case SNDRV_PCM_TRIGGER_STOP:
-          /* do something to stop the PCM engine */
-          break;
-  default:
-          return -EINVAL;
-  }
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-
-        <para>
-          When the pcm supports the pause operation (given in the info
-        field of the hardware table), the <constant>PAUSE_PUSE</constant>
-        and <constant>PAUSE_RELEASE</constant> commands must be
-        handled here, too. The former is the command to pause the pcm,
-        and the latter to restart the pcm again. 
-        </para>
-
-        <para>
-          When the pcm supports the suspend/resume operation,
-	regardless of full or partial suspend/resume support,
-        the <constant>SUSPEND</constant> and <constant>RESUME</constant>
-        commands must be handled, too.
-        These commands are issued when the power-management status is
-        changed.  Obviously, the <constant>SUSPEND</constant> and
-        <constant>RESUME</constant> commands
-        suspend and resume the pcm substream, and usually, they
-        are identical to the <constant>STOP</constant> and
-        <constant>START</constant> commands, respectively.
-	  See the <link linkend="power-management"><citetitle>
-	Power Management</citetitle></link> section for details.
-        </para>
-
-        <para>
-          As mentioned, this callback is atomic.  You cannot call
-	  functions which may sleep.
-	  The trigger callback should be as minimal as possible,
-	  just really triggering the DMA.  The other stuff should be
-	  initialized hw_params and prepare callbacks properly
-	  beforehand.
-        </para>
-      </section>
-
-      <section id="pcm-interface-operators-pointer-callback">
-        <title>pointer callback</title>
-        <para>
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
-]]>
-            </programlisting>
-          </informalexample>
-
-          This callback is called when the PCM middle layer inquires
-        the current hardware position on the buffer. The position must
-        be returned in frames,
-        ranging from 0 to buffer_size - 1.
-        </para>
-
-        <para>
-          This is called usually from the buffer-update routine in the
-        pcm middle layer, which is invoked when
-        <function>snd_pcm_period_elapsed()</function> is called in the
-        interrupt routine. Then the pcm middle layer updates the
-        position and calculates the available space, and wakes up the
-        sleeping poll threads, etc. 
-        </para>
-
-        <para>
-          This callback is also atomic.
-        </para>
-      </section>
-
-      <section id="pcm-interface-operators-copy-silence">
-        <title>copy and silence callbacks</title>
-        <para>
-          These callbacks are not mandatory, and can be omitted in
-        most cases. These callbacks are used when the hardware buffer
-        cannot be in the normal memory space. Some chips have their
-        own buffer on the hardware which is not mappable. In such a
-        case, you have to transfer the data manually from the memory
-        buffer to the hardware buffer. Or, if the buffer is
-        non-contiguous on both physical and virtual memory spaces,
-        these callbacks must be defined, too. 
-        </para>
-
-        <para>
-          If these two callbacks are defined, copy and set-silence
-        operations are done by them. The detailed will be described in
-        the later section <link
-        linkend="buffer-and-memory"><citetitle>Buffer and Memory
-        Management</citetitle></link>. 
-        </para>
-      </section>
-
-      <section id="pcm-interface-operators-ack">
-        <title>ack callback</title>
-        <para>
-          This callback is also not mandatory. This callback is called
-        when the appl_ptr is updated in read or write operations.
-        Some drivers like emu10k1-fx and cs46xx need to track the
-	current appl_ptr for the internal buffer, and this callback
-	is useful only for such a purpose.
-	</para>
-	<para>
-	  This callback is atomic.
-	</para>
-      </section>
-
-      <section id="pcm-interface-operators-page-callback">
-        <title>page callback</title>
-
-        <para>
-          This callback is optional too. This callback is used
-        mainly for non-contiguous buffers. The mmap calls this
-        callback to get the page address. Some examples will be
-        explained in the later section <link
-        linkend="buffer-and-memory"><citetitle>Buffer and Memory
-        Management</citetitle></link>, too. 
-        </para>
-      </section>
-    </section>
-
-    <section id="pcm-interface-interrupt-handler">
-      <title>Interrupt Handler</title>
-      <para>
-        The rest of pcm stuff is the PCM interrupt handler. The
-      role of PCM interrupt handler in the sound driver is to update
-      the buffer position and to tell the PCM middle layer when the
-      buffer position goes across the prescribed period size. To
-      inform this, call the <function>snd_pcm_period_elapsed()</function>
-      function. 
-      </para>
-
-      <para>
-        There are several types of sound chips to generate the interrupts.
-      </para>
-
-      <section id="pcm-interface-interrupt-handler-boundary">
-        <title>Interrupts at the period (fragment) boundary</title>
-        <para>
-          This is the most frequently found type:  the hardware
-        generates an interrupt at each period boundary.
-	In this case, you can call
-        <function>snd_pcm_period_elapsed()</function> at each 
-        interrupt. 
-        </para>
-
-        <para>
-          <function>snd_pcm_period_elapsed()</function> takes the
-        substream pointer as its argument. Thus, you need to keep the
-        substream pointer accessible from the chip instance. For
-        example, define substream field in the chip record to hold the
-        current running substream pointer, and set the pointer value
-        at open callback (and reset at close callback). 
-        </para>
-
-        <para>
-          If you acquire a spinlock in the interrupt handler, and the
-        lock is used in other pcm callbacks, too, then you have to
-        release the lock before calling
-        <function>snd_pcm_period_elapsed()</function>, because
-        <function>snd_pcm_period_elapsed()</function> calls other pcm
-        callbacks inside. 
-        </para>
-
-        <para>
-          Typical code would be like:
-
-          <example>
-	    <title>Interrupt Handler Case #1</title>
-            <programlisting>
-<![CDATA[
-  static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
-  {
-          struct mychip *chip = dev_id;
-          spin_lock(&chip->lock);
-          ....
-          if (pcm_irq_invoked(chip)) {
-                  /* call updater, unlock before it */
-                  spin_unlock(&chip->lock);
-                  snd_pcm_period_elapsed(chip->substream);
-                  spin_lock(&chip->lock);
-                  /* acknowledge the interrupt if necessary */
-          }
-          ....
-          spin_unlock(&chip->lock);
-          return IRQ_HANDLED;
-  }
-]]>
-            </programlisting>
-          </example>
-        </para>
-      </section>
-
-      <section id="pcm-interface-interrupt-handler-timer">
-        <title>High frequency timer interrupts</title>
-        <para>
-	This happense when the hardware doesn't generate interrupts
-        at the period boundary but issues timer interrupts at a fixed
-        timer rate (e.g. es1968 or ymfpci drivers). 
-        In this case, you need to check the current hardware
-        position and accumulate the processed sample length at each
-        interrupt.  When the accumulated size exceeds the period
-        size, call 
-        <function>snd_pcm_period_elapsed()</function> and reset the
-        accumulator. 
-        </para>
-
-        <para>
-          Typical code would be like the following.
-
-          <example>
-	    <title>Interrupt Handler Case #2</title>
-            <programlisting>
-<![CDATA[
-  static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
-  {
-          struct mychip *chip = dev_id;
-          spin_lock(&chip->lock);
-          ....
-          if (pcm_irq_invoked(chip)) {
-                  unsigned int last_ptr, size;
-                  /* get the current hardware pointer (in frames) */
-                  last_ptr = get_hw_ptr(chip);
-                  /* calculate the processed frames since the
-                   * last update
-                   */
-                  if (last_ptr < chip->last_ptr)
-                          size = runtime->buffer_size + last_ptr 
-                                   - chip->last_ptr; 
-                  else
-                          size = last_ptr - chip->last_ptr;
-                  /* remember the last updated point */
-                  chip->last_ptr = last_ptr;
-                  /* accumulate the size */
-                  chip->size += size;
-                  /* over the period boundary? */
-                  if (chip->size >= runtime->period_size) {
-                          /* reset the accumulator */
-                          chip->size %= runtime->period_size;
-                          /* call updater */
-                          spin_unlock(&chip->lock);
-                          snd_pcm_period_elapsed(substream);
-                          spin_lock(&chip->lock);
-                  }
-                  /* acknowledge the interrupt if necessary */
-          }
-          ....
-          spin_unlock(&chip->lock);
-          return IRQ_HANDLED;
-  }
-]]>
-            </programlisting>
-          </example>
-        </para>
-      </section>
-
-      <section id="pcm-interface-interrupt-handler-both">
-        <title>On calling <function>snd_pcm_period_elapsed()</function></title>
-        <para>
-          In both cases, even if more than one period are elapsed, you
-        don't have to call
-        <function>snd_pcm_period_elapsed()</function> many times. Call
-        only once. And the pcm layer will check the current hardware
-        pointer and update to the latest status. 
-        </para>
-      </section>
-    </section>
-
-    <section id="pcm-interface-atomicity">
-      <title>Atomicity</title>
-      <para>
-      One of the most important (and thus difficult to debug) problems
-      in kernel programming are race conditions.
-      In the Linux kernel, they are usually avoided via spin-locks, mutexes
-      or semaphores.  In general, if a race condition can happen
-      in an interrupt handler, it has to be managed atomically, and you
-      have to use a spinlock to protect the critical session. If the
-      critical section is not in interrupt handler code and
-      if taking a relatively long time to execute is acceptable, you
-      should use mutexes or semaphores instead.
-      </para>
-
-      <para>
-      As already seen, some pcm callbacks are atomic and some are
-      not.  For example, the <parameter>hw_params</parameter> callback is
-      non-atomic, while <parameter>trigger</parameter> callback is
-      atomic.  This means, the latter is called already in a spinlock
-      held by the PCM middle layer. Please take this atomicity into
-      account when you choose a locking scheme in the callbacks.
-      </para>
-
-      <para>
-      In the atomic callbacks, you cannot use functions which may call
-      <function>schedule</function> or go to
-      <function>sleep</function>.  Semaphores and mutexes can sleep,
-      and hence they cannot be used inside the atomic callbacks
-      (e.g. <parameter>trigger</parameter> callback).
-      To implement some delay in such a callback, please use
-      <function>udelay()</function> or <function>mdelay()</function>.
-      </para>
-
-      <para>
-      All three atomic callbacks (trigger, pointer, and ack) are
-      called with local interrupts disabled.
-      </para>
-
-    </section>
-    <section id="pcm-interface-constraints">
-      <title>Constraints</title>
-      <para>
-        If your chip supports unconventional sample rates, or only the
-      limited samples, you need to set a constraint for the
-      condition. 
-      </para>
-
-      <para>
-        For example, in order to restrict the sample rates in the some
-        supported values, use
-	<function>snd_pcm_hw_constraint_list()</function>.
-	You need to call this function in the open callback.
-
-        <example>
-	  <title>Example of Hardware Constraints</title>
-          <programlisting>
-<![CDATA[
-  static unsigned int rates[] =
-          {4000, 10000, 22050, 44100};
-  static struct snd_pcm_hw_constraint_list constraints_rates = {
-          .count = ARRAY_SIZE(rates),
-          .list = rates,
-          .mask = 0,
-  };
-
-  static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
-  {
-          int err;
-          ....
-          err = snd_pcm_hw_constraint_list(substream->runtime, 0,
-                                           SNDRV_PCM_HW_PARAM_RATE,
-                                           &constraints_rates);
-          if (err < 0)
-                  return err;
-          ....
-  }
-]]>
-          </programlisting>
-        </example>
-      </para>
-
-      <para>
-        There are many different constraints.
-        Look at <filename>sound/pcm.h</filename> for a complete list.
-        You can even define your own constraint rules.
-        For example, let's suppose my_chip can manage a substream of 1 channel
-        if and only if the format is S16_LE, otherwise it supports any format
-        specified in the <structname>snd_pcm_hardware</structname> structure (or in any
-        other constraint_list). You can build a rule like this:
-
-        <example>
-	  <title>Example of Hardware Constraints for Channels</title>
-	  <programlisting>
-<![CDATA[
-  static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
-                                        struct snd_pcm_hw_rule *rule)
-  {
-          struct snd_interval *c = hw_param_interval(params,
-                SNDRV_PCM_HW_PARAM_CHANNELS);
-          struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
-          struct snd_mask fmt;
-
-          snd_mask_any(&fmt);    /* Init the struct */
-          if (c->min < 2) {
-                  fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
-                  return snd_mask_refine(f, &fmt);
-          }
-          return 0;
-  }
-]]>
-          </programlisting>
-        </example>
-      </para>
- 
-      <para>
-        Then you need to call this function to add your rule:
-
-       <informalexample>
-	 <programlisting>
-<![CDATA[
-  snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
-                      hw_rule_channels_by_format, 0, SNDRV_PCM_HW_PARAM_FORMAT,
-                      -1);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        The rule function is called when an application sets the number of
-        channels. But an application can set the format before the number of
-        channels. Thus you also need to define the inverse rule:
-
-       <example>
-	 <title>Example of Hardware Constraints for Channels</title>
-	 <programlisting>
-<![CDATA[
-  static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
-                                        struct snd_pcm_hw_rule *rule)
-  {
-          struct snd_interval *c = hw_param_interval(params,
-                        SNDRV_PCM_HW_PARAM_CHANNELS);
-          struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
-          struct snd_interval ch;
-
-          snd_interval_any(&ch);
-          if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {
-                  ch.min = ch.max = 1;
-                  ch.integer = 1;
-                  return snd_interval_refine(c, &ch);
-          }
-          return 0;
-  }
-]]>
-          </programlisting>
-        </example>
-      </para>
-
-      <para>
-      ...and in the open callback:
-       <informalexample>
-	 <programlisting>
-<![CDATA[
-  snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
-                      hw_rule_format_by_channels, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
-                      -1);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        I won't give more details here, rather I
-        would like to say, <quote>Luke, use the source.</quote>
-      </para>
-    </section>
-
-  </chapter>
-
-
-<!-- ****************************************************** -->
-<!-- Control Interface  -->
-<!-- ****************************************************** -->
-  <chapter id="control-interface">
-    <title>Control Interface</title>
-
-    <section id="control-interface-general">
-      <title>General</title>
-      <para>
-        The control interface is used widely for many switches,
-      sliders, etc. which are accessed from user-space. Its most
-      important use is the mixer interface. In other words, since ALSA
-      0.9.x, all the mixer stuff is implemented on the control kernel API.
-      </para>
-
-      <para>
-        ALSA has a well-defined AC97 control module. If your chip
-      supports only the AC97 and nothing else, you can skip this
-      section. 
-      </para>
-
-      <para>
-        The control API is defined in
-      <filename>&lt;sound/control.h&gt;</filename>.
-      Include this file if you want to add your own controls.
-      </para>
-    </section>
-
-    <section id="control-interface-definition">
-      <title>Definition of Controls</title>
-      <para>
-        To create a new control, you need to define the
-	following three
-      callbacks: <structfield>info</structfield>,
-      <structfield>get</structfield> and
-      <structfield>put</structfield>. Then, define a
-      struct <structname>snd_kcontrol_new</structname> record, such as: 
-
-        <example>
-	  <title>Definition of a Control</title>
-          <programlisting>
-<![CDATA[
-  static struct snd_kcontrol_new my_control __devinitdata = {
-          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
-          .name = "PCM Playback Switch",
-          .index = 0,
-          .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
-          .private_value = 0xffff,
-          .info = my_control_info,
-          .get = my_control_get,
-          .put = my_control_put
-  };
-]]>
-          </programlisting>
-        </example>
-      </para>
-
-      <para>
-        Most likely the control is created via
-      <function>snd_ctl_new1()</function>, and in such a case, you can
-      add the <parameter>__devinitdata</parameter> prefix to the
-      definition as above. 
-      </para>
-
-      <para>
-        The <structfield>iface</structfield> field specifies the control
-      type, <constant>SNDRV_CTL_ELEM_IFACE_XXX</constant>, which
-      is usually <constant>MIXER</constant>.
-      Use <constant>CARD</constant> for global controls that are not
-      logically part of the mixer.
-      If the control is closely associated with some specific device on
-      the sound card, use <constant>HWDEP</constant>,
-      <constant>PCM</constant>, <constant>RAWMIDI</constant>,
-      <constant>TIMER</constant>, or <constant>SEQUENCER</constant>, and
-      specify the device number with the
-      <structfield>device</structfield> and
-      <structfield>subdevice</structfield> fields.
-      </para>
-
-      <para>
-        The <structfield>name</structfield> is the name identifier
-      string. Since ALSA 0.9.x, the control name is very important,
-      because its role is classified from its name. There are
-      pre-defined standard control names. The details are described in
-      the <link linkend="control-interface-control-names"><citetitle>
-      Control Names</citetitle></link> subsection.
-      </para>
-
-      <para>
-        The <structfield>index</structfield> field holds the index number
-      of this control. If there are several different controls with
-      the same name, they can be distinguished by the index
-      number. This is the case when 
-      several codecs exist on the card. If the index is zero, you can
-      omit the definition above. 
-      </para>
-
-      <para>
-        The <structfield>access</structfield> field contains the access
-      type of this control. Give the combination of bit masks,
-      <constant>SNDRV_CTL_ELEM_ACCESS_XXX</constant>, there.
-      The details will be explained in
-      the <link linkend="control-interface-access-flags"><citetitle>
-      Access Flags</citetitle></link> subsection.
-      </para>
-
-      <para>
-        The <structfield>private_value</structfield> field contains
-      an arbitrary long integer value for this record. When using
-      the generic <structfield>info</structfield>,
-      <structfield>get</structfield> and
-      <structfield>put</structfield> callbacks, you can pass a value 
-      through this field. If several small numbers are necessary, you can
-      combine them in bitwise. Or, it's possible to give a pointer
-      (casted to unsigned long) of some record to this field, too. 
-      </para>
-
-      <para>
-      The <structfield>tlv</structfield> field can be used to provide
-      metadata about the control; see the
-      <link linkend="control-interface-tlv">
-      <citetitle>Metadata</citetitle></link> subsection.
-      </para>
-
-      <para>
-        The other three are
-	<link linkend="control-interface-callbacks"><citetitle>
-	callback functions</citetitle></link>.
-      </para>
-    </section>
-
-    <section id="control-interface-control-names">
-      <title>Control Names</title>
-      <para>
-        There are some standards to define the control names. A
-      control is usually defined from the three parts as
-      <quote>SOURCE DIRECTION FUNCTION</quote>. 
-      </para>
-
-      <para>
-        The first, <constant>SOURCE</constant>, specifies the source
-      of the control, and is a string such as <quote>Master</quote>,
-      <quote>PCM</quote>, <quote>CD</quote> and
-      <quote>Line</quote>. There are many pre-defined sources. 
-      </para>
-
-      <para>
-        The second, <constant>DIRECTION</constant>, is one of the
-      following strings according to the direction of the control:
-      <quote>Playback</quote>, <quote>Capture</quote>, <quote>Bypass
-      Playback</quote> and <quote>Bypass Capture</quote>. Or, it can
-      be omitted, meaning both playback and capture directions. 
-      </para>
-
-      <para>
-        The third, <constant>FUNCTION</constant>, is one of the
-      following strings according to the function of the control:
-      <quote>Switch</quote>, <quote>Volume</quote> and
-      <quote>Route</quote>. 
-      </para>
-
-      <para>
-        The example of control names are, thus, <quote>Master Capture
-      Switch</quote> or <quote>PCM Playback Volume</quote>. 
-      </para>
-
-      <para>
-        There are some exceptions:
-      </para>
-
-      <section id="control-interface-control-names-global">
-        <title>Global capture and playback</title>
-        <para>
-          <quote>Capture Source</quote>, <quote>Capture Switch</quote>
-        and <quote>Capture Volume</quote> are used for the global
-        capture (input) source, switch and volume. Similarly,
-        <quote>Playback Switch</quote> and <quote>Playback
-        Volume</quote> are used for the global output gain switch and
-        volume. 
-        </para>
-      </section>
-
-      <section id="control-interface-control-names-tone">
-        <title>Tone-controls</title>
-        <para>
-          tone-control switch and volumes are specified like
-        <quote>Tone Control - XXX</quote>, e.g. <quote>Tone Control -
-        Switch</quote>, <quote>Tone Control - Bass</quote>,
-        <quote>Tone Control - Center</quote>.  
-        </para>
-      </section>
-
-      <section id="control-interface-control-names-3d">
-        <title>3D controls</title>
-        <para>
-          3D-control switches and volumes are specified like <quote>3D
-        Control - XXX</quote>, e.g. <quote>3D Control -
-        Switch</quote>, <quote>3D Control - Center</quote>, <quote>3D
-        Control - Space</quote>. 
-        </para>
-      </section>
-
-      <section id="control-interface-control-names-mic">
-        <title>Mic boost</title>
-        <para>
-          Mic-boost switch is set as <quote>Mic Boost</quote> or
-        <quote>Mic Boost (6dB)</quote>. 
-        </para>
-
-        <para>
-          More precise information can be found in
-        <filename>Documentation/sound/alsa/ControlNames.txt</filename>.
-        </para>
-      </section>
-    </section>
-
-    <section id="control-interface-access-flags">
-      <title>Access Flags</title>
-
-      <para>
-      The access flag is the bitmask which specifies the access type
-      of the given control.  The default access type is
-      <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE</constant>, 
-      which means both read and write are allowed to this control.
-      When the access flag is omitted (i.e. = 0), it is
-      considered as <constant>READWRITE</constant> access as default. 
-      </para>
-
-      <para>
-      When the control is read-only, pass
-      <constant>SNDRV_CTL_ELEM_ACCESS_READ</constant> instead.
-      In this case, you don't have to define
-      the <structfield>put</structfield> callback.
-      Similarly, when the control is write-only (although it's a rare
-      case), you can use the <constant>WRITE</constant> flag instead, and
-      you don't need the <structfield>get</structfield> callback.
-      </para>
-
-      <para>
-      If the control value changes frequently (e.g. the VU meter),
-      <constant>VOLATILE</constant> flag should be given.  This means
-      that the control may be changed without
-      <link linkend="control-interface-change-notification"><citetitle>
-      notification</citetitle></link>. Applications should poll such
-      a control constantly.
-      </para>
-
-      <para>
-      When the control is inactive, set
-      the <constant>INACTIVE</constant> flag, too.
-      There are <constant>LOCK</constant> and
-      <constant>OWNER</constant> flags to change the write
-      permissions.
-      </para>
-
-    </section>
-
-    <section id="control-interface-callbacks">
-      <title>Callbacks</title>
-
-      <section id="control-interface-callbacks-info">
-        <title>info callback</title>
-        <para>
-          The <structfield>info</structfield> callback is used to get
-        detailed information on this control. This must store the
-        values of the given struct <structname>snd_ctl_elem_info</structname>
-        object. For example, for a boolean control with a single
-        element: 
-
-          <example>
-	    <title>Example of info callback</title>
-            <programlisting>
-<![CDATA[
-  static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol,
-                          struct snd_ctl_elem_info *uinfo)
-  {
-          uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
-          uinfo->count = 1;
-          uinfo->value.integer.min = 0;
-          uinfo->value.integer.max = 1;
-          return 0;
-  }
-]]>
-            </programlisting>
-          </example>
-        </para>
-
-        <para>
-          The <structfield>type</structfield> field specifies the type
-        of the control. There are <constant>BOOLEAN</constant>,
-        <constant>INTEGER</constant>, <constant>ENUMERATED</constant>,
-        <constant>BYTES</constant>, <constant>IEC958</constant> and
-        <constant>INTEGER64</constant>. The
-        <structfield>count</structfield> field specifies the 
-        number of elements in this control. For example, a stereo
-        volume would have count = 2. The
-        <structfield>value</structfield> field is a union, and 
-        the values stored are depending on the type. The boolean and
-        integer types are identical. 
-        </para>
-
-        <para>
-          The enumerated type is a bit different from others.  You'll
-          need to set the string for the currently given item index. 
-
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
-                          struct snd_ctl_elem_info *uinfo)
-  {
-          static char *texts[4] = {
-                  "First", "Second", "Third", "Fourth"
-          };
-          uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
-          uinfo->count = 1;
-          uinfo->value.enumerated.items = 4;
-          if (uinfo->value.enumerated.item > 3)
-                  uinfo->value.enumerated.item = 3;
-          strcpy(uinfo->value.enumerated.name,
-                 texts[uinfo->value.enumerated.item]);
-          return 0;
-  }
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-
-        <para>
-	  Some common info callbacks are available for your convenience:
-	<function>snd_ctl_boolean_mono_info()</function> and
-	<function>snd_ctl_boolean_stereo_info()</function>.
-	Obviously, the former is an info callback for a mono channel
-	boolean item, just like <function>snd_myctl_mono_info</function>
-	above, and the latter is for a stereo channel boolean item.
-	</para>
-
-      </section>
-
-      <section id="control-interface-callbacks-get">
-        <title>get callback</title>
-
-        <para>
-          This callback is used to read the current value of the
-        control and to return to user-space. 
-        </para>
-
-        <para>
-          For example,
-
-          <example>
-	    <title>Example of get callback</title>
-            <programlisting>
-<![CDATA[
-  static int snd_myctl_get(struct snd_kcontrol *kcontrol,
-                           struct snd_ctl_elem_value *ucontrol)
-  {
-          struct mychip *chip = snd_kcontrol_chip(kcontrol);
-          ucontrol->value.integer.value[0] = get_some_value(chip);
-          return 0;
-  }
-]]>
-            </programlisting>
-          </example>
-        </para>
-
-        <para>
-	The <structfield>value</structfield> field depends on 
-        the type of control as well as on the info callback.  For example,
-	the sb driver uses this field to store the register offset,
-        the bit-shift and the bit-mask.  The
-        <structfield>private_value</structfield> field is set as follows:
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  .private_value = reg | (shift << 16) | (mask << 24)
-]]>
-            </programlisting>
-          </informalexample>
-	and is retrieved in callbacks like
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
-                                    struct snd_ctl_elem_value *ucontrol)
-  {
-          int reg = kcontrol->private_value & 0xff;
-          int shift = (kcontrol->private_value >> 16) & 0xff;
-          int mask = (kcontrol->private_value >> 24) & 0xff;
-          ....
-  }
-]]>
-            </programlisting>
-          </informalexample>
-	</para>
-
-	<para>
-	In the <structfield>get</structfield> callback,
-	you have to fill all the elements if the
-        control has more than one elements,
-        i.e. <structfield>count</structfield> &gt; 1.
-	In the example above, we filled only one element
-        (<structfield>value.integer.value[0]</structfield>) since it's
-        assumed as <structfield>count</structfield> = 1.
-        </para>
-      </section>
-
-      <section id="control-interface-callbacks-put">
-        <title>put callback</title>
-
-        <para>
-          This callback is used to write a value from user-space.
-        </para>
-
-        <para>
-          For example,
-
-          <example>
-	    <title>Example of put callback</title>
-            <programlisting>
-<![CDATA[
-  static int snd_myctl_put(struct snd_kcontrol *kcontrol,
-                           struct snd_ctl_elem_value *ucontrol)
-  {
-          struct mychip *chip = snd_kcontrol_chip(kcontrol);
-          int changed = 0;
-          if (chip->current_value !=
-               ucontrol->value.integer.value[0]) {
-                  change_current_value(chip,
-                              ucontrol->value.integer.value[0]);
-                  changed = 1;
-          }
-          return changed;
-  }
-]]>
-            </programlisting>
-          </example>
-
-          As seen above, you have to return 1 if the value is
-        changed. If the value is not changed, return 0 instead. 
-	If any fatal error happens, return a negative error code as
-        usual.
-        </para>
-
-        <para>
-	As in the <structfield>get</structfield> callback,
-	when the control has more than one elements,
-	all elements must be evaluated in this callback, too.
-        </para>
-      </section>
-
-      <section id="control-interface-callbacks-all">
-        <title>Callbacks are not atomic</title>
-        <para>
-          All these three callbacks are basically not atomic.
-        </para>
-      </section>
-    </section>
-
-    <section id="control-interface-constructor">
-      <title>Constructor</title>
-      <para>
-        When everything is ready, finally we can create a new
-      control. To create a control, there are two functions to be
-      called, <function>snd_ctl_new1()</function> and
-      <function>snd_ctl_add()</function>. 
-      </para>
-
-      <para>
-        In the simplest way, you can do like this:
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip));
-  if (err < 0)
-          return err;
-]]>
-          </programlisting>
-        </informalexample>
-
-        where <parameter>my_control</parameter> is the
-      struct <structname>snd_kcontrol_new</structname> object defined above, and chip
-      is the object pointer to be passed to
-      kcontrol-&gt;private_data 
-      which can be referred to in callbacks. 
-      </para>
-
-      <para>
-        <function>snd_ctl_new1()</function> allocates a new
-      <structname>snd_kcontrol</structname> instance (that's why the definition
-      of <parameter>my_control</parameter> can be with
-      the <parameter>__devinitdata</parameter> 
-      prefix), and <function>snd_ctl_add</function> assigns the given
-      control component to the card. 
-      </para>
-    </section>
-
-    <section id="control-interface-change-notification">
-      <title>Change Notification</title>
-      <para>
-        If you need to change and update a control in the interrupt
-      routine, you can call <function>snd_ctl_notify()</function>. For
-      example, 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
-]]>
-          </programlisting>
-        </informalexample>
-
-        This function takes the card pointer, the event-mask, and the
-      control id pointer for the notification. The event-mask
-      specifies the types of notification, for example, in the above
-      example, the change of control values is notified.
-      The id pointer is the pointer of struct <structname>snd_ctl_elem_id</structname>
-      to be notified.
-      You can find some examples in <filename>es1938.c</filename> or
-      <filename>es1968.c</filename> for hardware volume interrupts. 
-      </para>
-    </section>
-
-    <section id="control-interface-tlv">
-      <title>Metadata</title>
-      <para>
-      To provide information about the dB values of a mixer control, use
-      on of the <constant>DECLARE_TLV_xxx</constant> macros from
-      <filename>&lt;sound/tlv.h&gt;</filename> to define a variable
-      containing this information, set the<structfield>tlv.p
-      </structfield> field to point to this variable, and include the
-      <constant>SNDRV_CTL_ELEM_ACCESS_TLV_READ</constant> flag in the
-      <structfield>access</structfield> field; like this:
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  static DECLARE_TLV_DB_SCALE(db_scale_my_control, -4050, 150, 0);
-
-  static struct snd_kcontrol_new my_control __devinitdata = {
-          ...
-          .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
-                    SNDRV_CTL_ELEM_ACCESS_TLV_READ,
-          ...
-          .tlv.p = db_scale_my_control,
-  };
-]]>
-        </programlisting>
-      </informalexample>
-      </para>
-
-      <para>
-      The <function>DECLARE_TLV_DB_SCALE</function> macro defines
-      information about a mixer control where each step in the control's
-      value changes the dB value by a constant dB amount.
-      The first parameter is the name of the variable to be defined.
-      The second parameter is the minimum value, in units of 0.01 dB.
-      The third parameter is the step size, in units of 0.01 dB.
-      Set the fourth parameter to 1 if the minimum value actually mutes
-      the control.
-      </para>
-
-      <para>
-      The <function>DECLARE_TLV_DB_LINEAR</function> macro defines
-      information about a mixer control where the control's value affects
-      the output linearly.
-      The first parameter is the name of the variable to be defined.
-      The second parameter is the minimum value, in units of 0.01 dB.
-      The third parameter is the maximum value, in units of 0.01 dB.
-      If the minimum value mutes the control, set the second parameter to
-      <constant>TLV_DB_GAIN_MUTE</constant>.
-      </para>
-    </section>
-
-  </chapter>
-
-
-<!-- ****************************************************** -->
-<!-- API for AC97 Codec  -->
-<!-- ****************************************************** -->
-  <chapter id="api-ac97">
-    <title>API for AC97 Codec</title>
-
-    <section>
-      <title>General</title>
-      <para>
-        The ALSA AC97 codec layer is a well-defined one, and you don't
-      have to write much code to control it. Only low-level control
-      routines are necessary. The AC97 codec API is defined in
-      <filename>&lt;sound/ac97_codec.h&gt;</filename>. 
-      </para>
-    </section>
-
-    <section id="api-ac97-example">
-      <title>Full Code Example</title>
-      <para>
-          <example>
-	    <title>Example of AC97 Interface</title>
-            <programlisting>
-<![CDATA[
-  struct mychip {
-          ....
-          struct snd_ac97 *ac97;
-          ....
-  };
-
-  static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
-                                             unsigned short reg)
-  {
-          struct mychip *chip = ac97->private_data;
-          ....
-          /* read a register value here from the codec */
-          return the_register_value;
-  }
-
-  static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
-                                   unsigned short reg, unsigned short val)
-  {
-          struct mychip *chip = ac97->private_data;
-          ....
-          /* write the given register value to the codec */
-  }
-
-  static int snd_mychip_ac97(struct mychip *chip)
-  {
-          struct snd_ac97_bus *bus;
-          struct snd_ac97_template ac97;
-          int err;
-          static struct snd_ac97_bus_ops ops = {
-                  .write = snd_mychip_ac97_write,
-                  .read = snd_mychip_ac97_read,
-          };
-
-          err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus);
-          if (err < 0)
-                  return err;
-          memset(&ac97, 0, sizeof(ac97));
-          ac97.private_data = chip;
-          return snd_ac97_mixer(bus, &ac97, &chip->ac97);
-  }
-
-]]>
-          </programlisting>
-        </example>
-      </para>
-    </section>
-
-    <section id="api-ac97-constructor">
-      <title>Constructor</title>
-      <para>
-        To create an ac97 instance, first call <function>snd_ac97_bus</function>
-      with an <type>ac97_bus_ops_t</type> record with callback functions.
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct snd_ac97_bus *bus;
-  static struct snd_ac97_bus_ops ops = {
-        .write = snd_mychip_ac97_write,
-        .read = snd_mychip_ac97_read,
-  };
-
-  snd_ac97_bus(card, 0, &ops, NULL, &pbus);
-]]>
-          </programlisting>
-        </informalexample>
-
-      The bus record is shared among all belonging ac97 instances.
-      </para>
-
-      <para>
-      And then call <function>snd_ac97_mixer()</function> with an
-      struct <structname>snd_ac97_template</structname>
-      record together with the bus pointer created above.
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct snd_ac97_template ac97;
-  int err;
-
-  memset(&ac97, 0, sizeof(ac97));
-  ac97.private_data = chip;
-  snd_ac97_mixer(bus, &ac97, &chip->ac97);
-]]>
-          </programlisting>
-        </informalexample>
-
-        where chip-&gt;ac97 is a pointer to a newly created
-        <type>ac97_t</type> instance.
-        In this case, the chip pointer is set as the private data, so that
-        the read/write callback functions can refer to this chip instance.
-        This instance is not necessarily stored in the chip
-	record.  If you need to change the register values from the
-        driver, or need the suspend/resume of ac97 codecs, keep this
-        pointer to pass to the corresponding functions.
-      </para>
-    </section>
-
-    <section id="api-ac97-callbacks">
-      <title>Callbacks</title>
-      <para>
-        The standard callbacks are <structfield>read</structfield> and
-      <structfield>write</structfield>. Obviously they 
-      correspond to the functions for read and write accesses to the
-      hardware low-level codes. 
-      </para>
-
-      <para>
-        The <structfield>read</structfield> callback returns the
-        register value specified in the argument. 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
-                                             unsigned short reg)
-  {
-          struct mychip *chip = ac97->private_data;
-          ....
-          return the_register_value;
-  }
-]]>
-          </programlisting>
-        </informalexample>
-
-        Here, the chip can be cast from ac97-&gt;private_data.
-      </para>
-
-      <para>
-        Meanwhile, the <structfield>write</structfield> callback is
-        used to set the register value. 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
-                       unsigned short reg, unsigned short val)
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-      These callbacks are non-atomic like the control API callbacks.
-      </para>
-
-      <para>
-        There are also other callbacks:
-      <structfield>reset</structfield>,
-      <structfield>wait</structfield> and
-      <structfield>init</structfield>. 
-      </para>
-
-      <para>
-        The <structfield>reset</structfield> callback is used to reset
-      the codec. If the chip requires a special kind of reset, you can
-      define this callback. 
-      </para>
-
-      <para>
-        The <structfield>wait</structfield> callback is used to
-      add some waiting time in the standard initialization of the codec. If the
-      chip requires the extra waiting time, define this callback. 
-      </para>
-
-      <para>
-        The <structfield>init</structfield> callback is used for
-      additional initialization of the codec.
-      </para>
-    </section>
-
-    <section id="api-ac97-updating-registers">
-      <title>Updating Registers in The Driver</title>
-      <para>
-        If you need to access to the codec from the driver, you can
-      call the following functions:
-      <function>snd_ac97_write()</function>,
-      <function>snd_ac97_read()</function>,
-      <function>snd_ac97_update()</function> and
-      <function>snd_ac97_update_bits()</function>. 
-      </para>
-
-      <para>
-        Both <function>snd_ac97_write()</function> and
-        <function>snd_ac97_update()</function> functions are used to
-        set a value to the given register
-        (<constant>AC97_XXX</constant>). The difference between them is
-        that <function>snd_ac97_update()</function> doesn't write a
-        value if the given value has been already set, while
-        <function>snd_ac97_write()</function> always rewrites the
-        value. 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  snd_ac97_write(ac97, AC97_MASTER, 0x8080);
-  snd_ac97_update(ac97, AC97_MASTER, 0x8080);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        <function>snd_ac97_read()</function> is used to read the value
-        of the given register. For example, 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  value = snd_ac97_read(ac97, AC97_MASTER);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        <function>snd_ac97_update_bits()</function> is used to update
-        some bits in the given register.  
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  snd_ac97_update_bits(ac97, reg, mask, value);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        Also, there is a function to change the sample rate (of a
-        given register such as
-        <constant>AC97_PCM_FRONT_DAC_RATE</constant>) when VRA or
-        DRA is supported by the codec:
-        <function>snd_ac97_set_rate()</function>. 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        The following registers are available to set the rate:
-      <constant>AC97_PCM_MIC_ADC_RATE</constant>,
-      <constant>AC97_PCM_FRONT_DAC_RATE</constant>,
-      <constant>AC97_PCM_LR_ADC_RATE</constant>,
-      <constant>AC97_SPDIF</constant>. When
-      <constant>AC97_SPDIF</constant> is specified, the register is
-      not really changed but the corresponding IEC958 status bits will
-      be updated. 
-      </para>
-    </section>
-
-    <section id="api-ac97-clock-adjustment">
-      <title>Clock Adjustment</title>
-      <para>
-        In some chips, the clock of the codec isn't 48000 but using a
-      PCI clock (to save a quartz!). In this case, change the field
-      bus-&gt;clock to the corresponding
-      value. For example, intel8x0 
-      and es1968 drivers have their own function to read from the clock.
-      </para>
-    </section>
-
-    <section id="api-ac97-proc-files">
-      <title>Proc Files</title>
-      <para>
-        The ALSA AC97 interface will create a proc file such as
-      <filename>/proc/asound/card0/codec97#0/ac97#0-0</filename> and
-      <filename>ac97#0-0+regs</filename>. You can refer to these files to
-      see the current status and registers of the codec. 
-      </para>
-    </section>
-
-    <section id="api-ac97-multiple-codecs">
-      <title>Multiple Codecs</title>
-      <para>
-        When there are several codecs on the same card, you need to
-      call <function>snd_ac97_mixer()</function> multiple times with
-      ac97.num=1 or greater. The <structfield>num</structfield> field
-      specifies the codec number. 
-      </para>
-
-      <para>
-        If you set up multiple codecs, you either need to write
-      different callbacks for each codec or check
-      ac97-&gt;num in the callback routines. 
-      </para>
-    </section>
-
-  </chapter>
-
-
-<!-- ****************************************************** -->
-<!-- MIDI (MPU401-UART) Interface  -->
-<!-- ****************************************************** -->
-  <chapter id="midi-interface">
-    <title>MIDI (MPU401-UART) Interface</title>
-
-    <section id="midi-interface-general">
-      <title>General</title>
-      <para>
-        Many soundcards have built-in MIDI (MPU401-UART)
-      interfaces. When the soundcard supports the standard MPU401-UART
-      interface, most likely you can use the ALSA MPU401-UART API. The
-      MPU401-UART API is defined in
-      <filename>&lt;sound/mpu401.h&gt;</filename>. 
-      </para>
-
-      <para>
-        Some soundchips have a similar but slightly different
-      implementation of mpu401 stuff. For example, emu10k1 has its own
-      mpu401 routines. 
-      </para>
-    </section>
-
-    <section id="midi-interface-constructor">
-      <title>Constructor</title>
-      <para>
-        To create a rawmidi object, call
-      <function>snd_mpu401_uart_new()</function>. 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct snd_rawmidi *rmidi;
-  snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags,
-                      irq, irq_flags, &rmidi);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        The first argument is the card pointer, and the second is the
-      index of this component. You can create up to 8 rawmidi
-      devices. 
-      </para>
-
-      <para>
-        The third argument is the type of the hardware,
-      <constant>MPU401_HW_XXX</constant>. If it's not a special one,
-      you can use <constant>MPU401_HW_MPU401</constant>. 
-      </para>
-
-      <para>
-        The 4th argument is the I/O port address. Many
-      backward-compatible MPU401 have an I/O port such as 0x330. Or, it
-      might be a part of its own PCI I/O region. It depends on the
-      chip design. 
-      </para>
-
-      <para>
-	The 5th argument is a bitflag for additional information.
-        When the I/O port address above is part of the PCI I/O
-      region, the MPU401 I/O port might have been already allocated
-      (reserved) by the driver itself. In such a case, pass a bit flag
-      <constant>MPU401_INFO_INTEGRATED</constant>,
-      and the mpu401-uart layer will allocate the I/O ports by itself. 
-      </para>
-
-	<para>
-	When the controller supports only the input or output MIDI stream,
-	pass the <constant>MPU401_INFO_INPUT</constant> or
-	<constant>MPU401_INFO_OUTPUT</constant> bitflag, respectively.
-	Then the rawmidi instance is created as a single stream.
-	</para>
-
-	<para>
-	<constant>MPU401_INFO_MMIO</constant> bitflag is used to change
-	the access method to MMIO (via readb and writeb) instead of
-	iob and outb. In this case, you have to pass the iomapped address
-	to <function>snd_mpu401_uart_new()</function>.
-	</para>
-
-	<para>
-	When <constant>MPU401_INFO_TX_IRQ</constant> is set, the output
-	stream isn't checked in the default interrupt handler.  The driver
-	needs to call <function>snd_mpu401_uart_interrupt_tx()</function>
-	by itself to start processing the output stream in the irq handler.
-	</para>
-
-      <para>
-        Usually, the port address corresponds to the command port and
-        port + 1 corresponds to the data port. If not, you may change
-        the <structfield>cport</structfield> field of
-        struct <structname>snd_mpu401</structname> manually 
-        afterward. However, <structname>snd_mpu401</structname> pointer is not
-        returned explicitly by
-        <function>snd_mpu401_uart_new()</function>. You need to cast
-        rmidi-&gt;private_data to
-        <structname>snd_mpu401</structname> explicitly, 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct snd_mpu401 *mpu;
-  mpu = rmidi->private_data;
-]]>
-          </programlisting>
-        </informalexample>
-
-        and reset the cport as you like:
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  mpu->cport = my_own_control_port;
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        The 6th argument specifies the irq number for UART. If the irq
-      is already allocated, pass 0 to the 7th argument
-      (<parameter>irq_flags</parameter>). Otherwise, pass the flags
-      for irq allocation 
-      (<constant>SA_XXX</constant> bits) to it, and the irq will be
-      reserved by the mpu401-uart layer. If the card doesn't generate
-      UART interrupts, pass -1 as the irq number. Then a timer
-      interrupt will be invoked for polling. 
-      </para>
-    </section>
-
-    <section id="midi-interface-interrupt-handler">
-      <title>Interrupt Handler</title>
-      <para>
-        When the interrupt is allocated in
-      <function>snd_mpu401_uart_new()</function>, the private
-      interrupt handler is used, hence you don't have anything else to do
-      than creating the mpu401 stuff. Otherwise, you have to call
-      <function>snd_mpu401_uart_interrupt()</function> explicitly when
-      a UART interrupt is invoked and checked in your own interrupt
-      handler.  
-      </para>
-
-      <para>
-        In this case, you need to pass the private_data of the
-        returned rawmidi object from
-        <function>snd_mpu401_uart_new()</function> as the second
-        argument of <function>snd_mpu401_uart_interrupt()</function>. 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-    </section>
-
-  </chapter>
-
-
-<!-- ****************************************************** -->
-<!-- RawMIDI Interface  -->
-<!-- ****************************************************** -->
-  <chapter id="rawmidi-interface">
-    <title>RawMIDI Interface</title>
-
-    <section id="rawmidi-interface-overview">
-      <title>Overview</title>
-
-      <para>
-      The raw MIDI interface is used for hardware MIDI ports that can
-      be accessed as a byte stream.  It is not used for synthesizer
-      chips that do not directly understand MIDI.
-      </para>
-
-      <para>
-      ALSA handles file and buffer management.  All you have to do is
-      to write some code to move data between the buffer and the
-      hardware.
-      </para>
-
-      <para>
-      The rawmidi API is defined in
-      <filename>&lt;sound/rawmidi.h&gt;</filename>.
-      </para>
-    </section>
-
-    <section id="rawmidi-interface-constructor">
-      <title>Constructor</title>
-
-      <para>
-      To create a rawmidi device, call the
-      <function>snd_rawmidi_new</function> function:
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct snd_rawmidi *rmidi;
-  err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
-  if (err < 0)
-          return err;
-  rmidi->private_data = chip;
-  strcpy(rmidi->name, "My MIDI");
-  rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
-                      SNDRV_RAWMIDI_INFO_INPUT |
-                      SNDRV_RAWMIDI_INFO_DUPLEX;
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-      The first argument is the card pointer, the second argument is
-      the ID string.
-      </para>
-
-      <para>
-      The third argument is the index of this component.  You can
-      create up to 8 rawmidi devices.
-      </para>
-
-      <para>
-      The fourth and fifth arguments are the number of output and
-      input substreams, respectively, of this device (a substream is
-      the equivalent of a MIDI port).
-      </para>
-
-      <para>
-      Set the <structfield>info_flags</structfield> field to specify
-      the capabilities of the device.
-      Set <constant>SNDRV_RAWMIDI_INFO_OUTPUT</constant> if there is
-      at least one output port,
-      <constant>SNDRV_RAWMIDI_INFO_INPUT</constant> if there is at
-      least one input port,
-      and <constant>SNDRV_RAWMIDI_INFO_DUPLEX</constant> if the device
-      can handle output and input at the same time.
-      </para>
-
-      <para>
-      After the rawmidi device is created, you need to set the
-      operators (callbacks) for each substream.  There are helper
-      functions to set the operators for all the substreams of a device:
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
-  snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-      The operators are usually defined like this:
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static struct snd_rawmidi_ops snd_mymidi_output_ops = {
-          .open =    snd_mymidi_output_open,
-          .close =   snd_mymidi_output_close,
-          .trigger = snd_mymidi_output_trigger,
-  };
-]]>
-          </programlisting>
-        </informalexample>
-      These callbacks are explained in the <link
-      linkend="rawmidi-interface-callbacks"><citetitle>Callbacks</citetitle></link>
-      section.
-      </para>
-
-      <para>
-      If there are more than one substream, you should give a
-      unique name to each of them:
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct snd_rawmidi_substream *substream;
-  list_for_each_entry(substream,
-                      &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams,
-                      list {
-          sprintf(substream->name, "My MIDI Port %d", substream->number + 1);
-  }
-  /* same for SNDRV_RAWMIDI_STREAM_INPUT */
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-    </section>
-
-    <section id="rawmidi-interface-callbacks">
-      <title>Callbacks</title>
-
-      <para>
-      In all the callbacks, the private data that you've set for the
-      rawmidi device can be accessed as
-      substream-&gt;rmidi-&gt;private_data.
-      <!-- <code> isn't available before DocBook 4.3 -->
-      </para>
-
-      <para>
-      If there is more than one port, your callbacks can determine the
-      port index from the struct snd_rawmidi_substream data passed to each
-      callback:
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct snd_rawmidi_substream *substream;
-  int index = substream->number;
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <section id="rawmidi-interface-op-open">
-      <title><function>open</function> callback</title>
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static int snd_xxx_open(struct snd_rawmidi_substream *substream);
-]]>
-          </programlisting>
-        </informalexample>
-
-        <para>
-        This is called when a substream is opened.
-        You can initialize the hardware here, but you shouldn't
-        start transmitting/receiving data yet.
-        </para>
-      </section>
-
-      <section id="rawmidi-interface-op-close">
-      <title><function>close</function> callback</title>
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static int snd_xxx_close(struct snd_rawmidi_substream *substream);
-]]>
-          </programlisting>
-        </informalexample>
-
-        <para>
-        Guess what.
-        </para>
-
-        <para>
-        The <function>open</function> and <function>close</function>
-        callbacks of a rawmidi device are serialized with a mutex,
-        and can sleep.
-        </para>
-      </section>
-
-      <section id="rawmidi-interface-op-trigger-out">
-      <title><function>trigger</function> callback for output
-      substreams</title>
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
-]]>
-          </programlisting>
-        </informalexample>
-
-        <para>
-        This is called with a nonzero <parameter>up</parameter>
-        parameter when there is some data in the substream buffer that
-        must be transmitted.
-        </para>
-
-        <para>
-        To read data from the buffer, call
-        <function>snd_rawmidi_transmit_peek</function>.  It will
-        return the number of bytes that have been read; this will be
-        less than the number of bytes requested when there are no more
-        data in the buffer.
-        After the data have been transmitted successfully, call
-        <function>snd_rawmidi_transmit_ack</function> to remove the
-        data from the substream buffer:
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  unsigned char data;
-  while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
-          if (snd_mychip_try_to_transmit(data))
-                  snd_rawmidi_transmit_ack(substream, 1);
-          else
-                  break; /* hardware FIFO full */
-  }
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-
-        <para>
-        If you know beforehand that the hardware will accept data, you
-        can use the <function>snd_rawmidi_transmit</function> function
-        which reads some data and removes them from the buffer at once:
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  while (snd_mychip_transmit_possible()) {
-          unsigned char data;
-          if (snd_rawmidi_transmit(substream, &data, 1) != 1)
-                  break; /* no more data */
-          snd_mychip_transmit(data);
-  }
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-
-        <para>
-        If you know beforehand how many bytes you can accept, you can
-        use a buffer size greater than one with the
-        <function>snd_rawmidi_transmit*</function> functions.
-        </para>
-
-        <para>
-        The <function>trigger</function> callback must not sleep.  If
-        the hardware FIFO is full before the substream buffer has been
-        emptied, you have to continue transmitting data later, either
-        in an interrupt handler, or with a timer if the hardware
-        doesn't have a MIDI transmit interrupt.
-        </para>
-
-        <para>
-        The <function>trigger</function> callback is called with a
-        zero <parameter>up</parameter> parameter when the transmission
-        of data should be aborted.
-        </para>
-      </section>
-
-      <section id="rawmidi-interface-op-trigger-in">
-      <title><function>trigger</function> callback for input
-      substreams</title>
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
-]]>
-          </programlisting>
-        </informalexample>
-
-        <para>
-        This is called with a nonzero <parameter>up</parameter>
-        parameter to enable receiving data, or with a zero
-        <parameter>up</parameter> parameter do disable receiving data.
-        </para>
-
-        <para>
-        The <function>trigger</function> callback must not sleep; the
-        actual reading of data from the device is usually done in an
-        interrupt handler.
-        </para>
-
-        <para>
-        When data reception is enabled, your interrupt handler should
-        call <function>snd_rawmidi_receive</function> for all received
-        data:
-          <informalexample>
-            <programlisting>
-<![CDATA[
-  void snd_mychip_midi_interrupt(...)
-  {
-          while (mychip_midi_available()) {
-                  unsigned char data;
-                  data = mychip_midi_read();
-                  snd_rawmidi_receive(substream, &data, 1);
-          }
-  }
-]]>
-            </programlisting>
-          </informalexample>
-        </para>
-      </section>
-
-      <section id="rawmidi-interface-op-drain">
-      <title><function>drain</function> callback</title>
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
-]]>
-          </programlisting>
-        </informalexample>
-
-        <para>
-        This is only used with output substreams.  This function should wait
-        until all data read from the substream buffer have been transmitted.
-        This ensures that the device can be closed and the driver unloaded
-        without losing data.
-        </para>
-
-        <para>
-        This callback is optional. If you do not set
-        <structfield>drain</structfield> in the struct snd_rawmidi_ops
-        structure, ALSA will simply wait for 50&nbsp;milliseconds
-        instead.
-        </para>
-      </section>
-    </section>
-
-  </chapter>
-
-
-<!-- ****************************************************** -->
-<!-- Miscellaneous Devices  -->
-<!-- ****************************************************** -->
-  <chapter id="misc-devices">
-    <title>Miscellaneous Devices</title>
-
-    <section id="misc-devices-opl3">
-      <title>FM OPL3</title>
-      <para>
-        The FM OPL3 is still used in many chips (mainly for backward
-      compatibility). ALSA has a nice OPL3 FM control layer, too. The
-      OPL3 API is defined in
-      <filename>&lt;sound/opl3.h&gt;</filename>. 
-      </para>
-
-      <para>
-        FM registers can be directly accessed through the direct-FM API,
-      defined in <filename>&lt;sound/asound_fm.h&gt;</filename>. In
-      ALSA native mode, FM registers are accessed through
-      the Hardware-Dependant Device direct-FM extension API, whereas in
-      OSS compatible mode, FM registers can be accessed with the OSS
-      direct-FM compatible API in <filename>/dev/dmfmX</filename> device. 
-      </para>
-
-      <para>
-        To create the OPL3 component, you have two functions to
-        call. The first one is a constructor for the <type>opl3_t</type>
-        instance. 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct snd_opl3 *opl3;
-  snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
-                  integrated, &opl3);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        The first argument is the card pointer, the second one is the
-      left port address, and the third is the right port address. In
-      most cases, the right port is placed at the left port + 2. 
-      </para>
-
-      <para>
-        The fourth argument is the hardware type.
-      </para>
-
-      <para>
-        When the left and right ports have been already allocated by
-      the card driver, pass non-zero to the fifth argument
-      (<parameter>integrated</parameter>). Otherwise, the opl3 module will
-      allocate the specified ports by itself. 
-      </para>
-
-      <para>
-        When the accessing the hardware requires special method
-        instead of the standard I/O access, you can create opl3 instance
-        separately with <function>snd_opl3_new()</function>.
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct snd_opl3 *opl3;
-  snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-	Then set <structfield>command</structfield>,
-	<structfield>private_data</structfield> and
-	<structfield>private_free</structfield> for the private
-	access function, the private data and the destructor.
-	The l_port and r_port are not necessarily set.  Only the
-	command must be set properly.  You can retrieve the data
-	from the opl3-&gt;private_data field.
-      </para>
-
-      <para>
-	After creating the opl3 instance via <function>snd_opl3_new()</function>,
-	call <function>snd_opl3_init()</function> to initialize the chip to the
-	proper state. Note that <function>snd_opl3_create()</function> always
-	calls it internally.
-      </para>
-
-      <para>
-        If the opl3 instance is created successfully, then create a
-        hwdep device for this opl3. 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct snd_hwdep *opl3hwdep;
-  snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        The first argument is the <type>opl3_t</type> instance you
-      created, and the second is the index number, usually 0. 
-      </para>
-
-      <para>
-        The third argument is the index-offset for the sequencer
-      client assigned to the OPL3 port. When there is an MPU401-UART,
-      give 1 for here (UART always takes 0). 
-      </para>
-    </section>
-
-    <section id="misc-devices-hardware-dependent">
-      <title>Hardware-Dependent Devices</title>
-      <para>
-        Some chips need user-space access for special
-      controls or for loading the micro code. In such a case, you can
-      create a hwdep (hardware-dependent) device. The hwdep API is
-      defined in <filename>&lt;sound/hwdep.h&gt;</filename>. You can
-      find examples in opl3 driver or
-      <filename>isa/sb/sb16_csp.c</filename>. 
-      </para>
-
-      <para>
-        The creation of the <type>hwdep</type> instance is done via
-        <function>snd_hwdep_new()</function>. 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct snd_hwdep *hw;
-  snd_hwdep_new(card, "My HWDEP", 0, &hw);
-]]>
-          </programlisting>
-        </informalexample>
-
-        where the third argument is the index number.
-      </para>
-
-      <para>
-        You can then pass any pointer value to the
-        <parameter>private_data</parameter>.
-        If you assign a private data, you should define the
-        destructor, too. The destructor function is set in
-        the <structfield>private_free</structfield> field.  
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
-  hw->private_data = p;
-  hw->private_free = mydata_free;
-]]>
-          </programlisting>
-        </informalexample>
-
-        and the implementation of the destructor would be:
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static void mydata_free(struct snd_hwdep *hw)
-  {
-          struct mydata *p = hw->private_data;
-          kfree(p);
-  }
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        The arbitrary file operations can be defined for this
-        instance. The file operators are defined in
-        the <parameter>ops</parameter> table. For example, assume that
-        this chip needs an ioctl. 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  hw->ops.open = mydata_open;
-  hw->ops.ioctl = mydata_ioctl;
-  hw->ops.release = mydata_release;
-]]>
-          </programlisting>
-        </informalexample>
-
-        And implement the callback functions as you like.
-      </para>
-    </section>
-
-    <section id="misc-devices-IEC958">
-      <title>IEC958 (S/PDIF)</title>
-      <para>
-        Usually the controls for IEC958 devices are implemented via
-      the control interface. There is a macro to compose a name string for
-      IEC958 controls, <function>SNDRV_CTL_NAME_IEC958()</function>
-      defined in <filename>&lt;include/asound.h&gt;</filename>.  
-      </para>
-
-      <para>
-        There are some standard controls for IEC958 status bits. These
-      controls use the type <type>SNDRV_CTL_ELEM_TYPE_IEC958</type>,
-      and the size of element is fixed as 4 bytes array
-      (value.iec958.status[x]). For the <structfield>info</structfield>
-      callback, you don't specify 
-      the value field for this type (the count field must be set,
-      though). 
-      </para>
-
-      <para>
-        <quote>IEC958 Playback Con Mask</quote> is used to return the
-      bit-mask for the IEC958 status bits of consumer mode. Similarly,
-      <quote>IEC958 Playback Pro Mask</quote> returns the bitmask for
-      professional mode. They are read-only controls, and are defined
-      as MIXER controls (iface =
-      <constant>SNDRV_CTL_ELEM_IFACE_MIXER</constant>).  
-      </para>
-
-      <para>
-        Meanwhile, <quote>IEC958 Playback Default</quote> control is
-      defined for getting and setting the current default IEC958
-      bits. Note that this one is usually defined as a PCM control
-      (iface = <constant>SNDRV_CTL_ELEM_IFACE_PCM</constant>),
-      although in some places it's defined as a MIXER control. 
-      </para>
-
-      <para>
-        In addition, you can define the control switches to
-      enable/disable or to set the raw bit mode. The implementation
-      will depend on the chip, but the control should be named as
-      <quote>IEC958 xxx</quote>, preferably using
-      the <function>SNDRV_CTL_NAME_IEC958()</function> macro. 
-      </para>
-
-      <para>
-        You can find several cases, for example,
-      <filename>pci/emu10k1</filename>,
-      <filename>pci/ice1712</filename>, or
-      <filename>pci/cmipci.c</filename>.  
-      </para>
-    </section>
-
-  </chapter>
-
-
-<!-- ****************************************************** -->
-<!-- Buffer and Memory Management  -->
-<!-- ****************************************************** -->
-  <chapter id="buffer-and-memory">
-    <title>Buffer and Memory Management</title>
-
-    <section id="buffer-and-memory-buffer-types">
-      <title>Buffer Types</title>
-      <para>
-        ALSA provides several different buffer allocation functions
-      depending on the bus and the architecture. All these have a
-      consistent API. The allocation of physically-contiguous pages is
-      done via 
-      <function>snd_malloc_xxx_pages()</function> function, where xxx
-      is the bus type. 
-      </para>
-
-      <para>
-        The allocation of pages with fallback is
-      <function>snd_malloc_xxx_pages_fallback()</function>. This
-      function tries to allocate the specified pages but if the pages
-      are not available, it tries to reduce the page sizes until
-      enough space is found.
-      </para>
-
-      <para>
-      The release the pages, call
-      <function>snd_free_xxx_pages()</function> function. 
-      </para>
-
-      <para>
-      Usually, ALSA drivers try to allocate and reserve
-       a large contiguous physical space
-       at the time the module is loaded for the later use.
-       This is called <quote>pre-allocation</quote>.
-       As already written, you can call the following function at 
-       pcm instance construction time (in the case of PCI bus). 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
-                                        snd_dma_pci_data(pci), size, max);
-]]>
-          </programlisting>
-        </informalexample>
-
-        where <parameter>size</parameter> is the byte size to be
-      pre-allocated and the <parameter>max</parameter> is the maximum
-      size to be changed via the <filename>prealloc</filename> proc file.
-      The allocator will try to get an area as large as possible
-      within the given size. 
-      </para>
-
-      <para>
-      The second argument (type) and the third argument (device pointer)
-      are dependent on the bus.
-      In the case of the ISA bus, pass <function>snd_dma_isa_data()</function>
-      as the third argument with <constant>SNDRV_DMA_TYPE_DEV</constant> type.
-      For the continuous buffer unrelated to the bus can be pre-allocated
-      with <constant>SNDRV_DMA_TYPE_CONTINUOUS</constant> type and the
-      <function>snd_dma_continuous_data(GFP_KERNEL)</function> device pointer,
-      where <constant>GFP_KERNEL</constant> is the kernel allocation flag to
-      use.
-      For the PCI scatter-gather buffers, use
-      <constant>SNDRV_DMA_TYPE_DEV_SG</constant> with
-      <function>snd_dma_pci_data(pci)</function>
-      (see the 
-          <link linkend="buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers
-          </citetitle></link> section).
-      </para>
-
-      <para>
-        Once the buffer is pre-allocated, you can use the
-        allocator in the <structfield>hw_params</structfield> callback: 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  snd_pcm_lib_malloc_pages(substream, size);
-]]>
-          </programlisting>
-        </informalexample>
-
-        Note that you have to pre-allocate to use this function.
-      </para>
-    </section>
-
-    <section id="buffer-and-memory-external-hardware">
-      <title>External Hardware Buffers</title>
-      <para>
-        Some chips have their own hardware buffers and the DMA
-      transfer from the host memory is not available. In such a case,
-      you need to either 1) copy/set the audio data directly to the
-      external hardware buffer, or 2) make an intermediate buffer and
-      copy/set the data from it to the external hardware buffer in
-      interrupts (or in tasklets, preferably).
-      </para>
-
-      <para>
-        The first case works fine if the external hardware buffer is large
-      enough.  This method doesn't need any extra buffers and thus is
-      more effective. You need to define the
-      <structfield>copy</structfield> and
-      <structfield>silence</structfield> callbacks for 
-      the data transfer. However, there is a drawback: it cannot
-      be mmapped. The examples are GUS's GF1 PCM or emu8000's
-      wavetable PCM. 
-      </para>
-
-      <para>
-        The second case allows for mmap on the buffer, although you have
-      to handle an interrupt or a tasklet to transfer the data
-      from the intermediate buffer to the hardware buffer. You can find an
-      example in the vxpocket driver. 
-      </para>
-
-      <para>
-        Another case is when the chip uses a PCI memory-map
-      region for the buffer instead of the host memory. In this case,
-      mmap is available only on certain architectures like the Intel one.
-      In non-mmap mode, the data cannot be transferred as in the normal
-      way. Thus you need to define the <structfield>copy</structfield> and
-      <structfield>silence</structfield> callbacks as well, 
-      as in the cases above. The examples are found in
-      <filename>rme32.c</filename> and <filename>rme96.c</filename>. 
-      </para>
-
-      <para>
-        The implementation of the <structfield>copy</structfield> and
-        <structfield>silence</structfield> callbacks depends upon 
-        whether the hardware supports interleaved or non-interleaved
-        samples. The <structfield>copy</structfield> callback is
-        defined like below, a bit 
-        differently depending whether the direction is playback or
-        capture: 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static int playback_copy(struct snd_pcm_substream *substream, int channel,
-               snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count);
-  static int capture_copy(struct snd_pcm_substream *substream, int channel,
-               snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        In the case of interleaved samples, the second argument
-      (<parameter>channel</parameter>) is not used. The third argument
-      (<parameter>pos</parameter>) points the 
-      current position offset in frames. 
-      </para>
-
-      <para>
-        The meaning of the fourth argument is different between
-      playback and capture. For playback, it holds the source data
-      pointer, and for capture, it's the destination data pointer. 
-      </para>
-
-      <para>
-        The last argument is the number of frames to be copied.
-      </para>
-
-      <para>
-        What you have to do in this callback is again different
-        between playback and capture directions. In the
-        playback case, you copy the given amount of data
-        (<parameter>count</parameter>) at the specified pointer
-        (<parameter>src</parameter>) to the specified offset
-        (<parameter>pos</parameter>) on the hardware buffer. When
-        coded like memcpy-like way, the copy would be like: 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src,
-            frames_to_bytes(runtime, count));
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        For the capture direction, you copy the given amount of
-        data (<parameter>count</parameter>) at the specified offset
-        (<parameter>pos</parameter>) on the hardware buffer to the
-        specified pointer (<parameter>dst</parameter>). 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos),
-            frames_to_bytes(runtime, count));
-]]>
-          </programlisting>
-        </informalexample>
-
-        Note that both the position and the amount of data are given
-      in frames. 
-      </para>
-
-      <para>
-        In the case of non-interleaved samples, the implementation
-      will be a bit more complicated. 
-      </para>
-
-      <para>
-        You need to check the channel argument, and if it's -1, copy
-      the whole channels. Otherwise, you have to copy only the
-      specified channel. Please check
-      <filename>isa/gus/gus_pcm.c</filename> as an example. 
-      </para>
-
-      <para>
-        The <structfield>silence</structfield> callback is also
-        implemented in a similar way. 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  static int silence(struct snd_pcm_substream *substream, int channel,
-                     snd_pcm_uframes_t pos, snd_pcm_uframes_t count);
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        The meanings of arguments are the same as in the
-      <structfield>copy</structfield> 
-      callback, although there is no <parameter>src/dst</parameter>
-      argument. In the case of interleaved samples, the channel
-      argument has no meaning, as well as on
-      <structfield>copy</structfield> callback.  
-      </para>
-
-      <para>
-        The role of <structfield>silence</structfield> callback is to
-        set the given amount 
-        (<parameter>count</parameter>) of silence data at the
-        specified offset (<parameter>pos</parameter>) on the hardware
-        buffer. Suppose that the data format is signed (that is, the
-        silent-data is 0), and the implementation using a memset-like
-        function would be like: 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0,
-            frames_to_bytes(runtime, count));
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        In the case of non-interleaved samples, again, the
-      implementation becomes a bit more complicated. See, for example,
-      <filename>isa/gus/gus_pcm.c</filename>. 
-      </para>
-    </section>
-
-    <section id="buffer-and-memory-non-contiguous">
-      <title>Non-Contiguous Buffers</title>
-      <para>
-        If your hardware supports the page table as in emu10k1 or the
-      buffer descriptors as in via82xx, you can use the scatter-gather
-      (SG) DMA. ALSA provides an interface for handling SG-buffers.
-      The API is provided in <filename>&lt;sound/pcm.h&gt;</filename>. 
-      </para>
-
-      <para>
-        For creating the SG-buffer handler, call
-        <function>snd_pcm_lib_preallocate_pages()</function> or
-        <function>snd_pcm_lib_preallocate_pages_for_all()</function>
-        with <constant>SNDRV_DMA_TYPE_DEV_SG</constant>
-	in the PCM constructor like other PCI pre-allocator.
-        You need to pass <function>snd_dma_pci_data(pci)</function>,
-        where pci is the struct <structname>pci_dev</structname> pointer
-        of the chip as well.
-        The <type>struct snd_sg_buf</type> instance is created as
-        substream-&gt;dma_private. You can cast
-        the pointer like: 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private;
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        Then call <function>snd_pcm_lib_malloc_pages()</function>
-      in the <structfield>hw_params</structfield> callback
-      as well as in the case of normal PCI buffer.
-      The SG-buffer handler will allocate the non-contiguous kernel
-      pages of the given size and map them onto the virtually contiguous
-      memory.  The virtual pointer is addressed in runtime-&gt;dma_area.
-      The physical address (runtime-&gt;dma_addr) is set to zero,
-      because the buffer is physically non-contigous.
-      The physical address table is set up in sgbuf-&gt;table.
-      You can get the physical address at a certain offset via
-      <function>snd_pcm_sgbuf_get_addr()</function>. 
-      </para>
-
-      <para>
-        When a SG-handler is used, you need to set
-      <function>snd_pcm_sgbuf_ops_page</function> as
-      the <structfield>page</structfield> callback.
-      (See <link linkend="pcm-interface-operators-page-callback">
-      <citetitle>page callback section</citetitle></link>.)
-      </para>
-
-      <para>
-        To release the data, call
-      <function>snd_pcm_lib_free_pages()</function> in the
-      <structfield>hw_free</structfield> callback as usual.
-      </para>
-    </section>
-
-    <section id="buffer-and-memory-vmalloced">
-      <title>Vmalloc'ed Buffers</title>
-      <para>
-        It's possible to use a buffer allocated via
-      <function>vmalloc</function>, for example, for an intermediate
-      buffer. Since the allocated pages are not contiguous, you need
-      to set the <structfield>page</structfield> callback to obtain
-      the physical address at every offset. 
-      </para>
-
-      <para>
-        The implementation of <structfield>page</structfield> callback
-        would be like this: 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  #include <linux/vmalloc.h>
-
-  /* get the physical page pointer on the given offset */
-  static struct page *mychip_page(struct snd_pcm_substream *substream,
-                                  unsigned long offset)
-  {
-          void *pageptr = substream->runtime->dma_area + offset;
-          return vmalloc_to_page(pageptr);
-  }
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-    </section>
-
-  </chapter>
-
-
-<!-- ****************************************************** -->
-<!-- Proc Interface  -->
-<!-- ****************************************************** -->
-  <chapter id="proc-interface">
-    <title>Proc Interface</title>
-    <para>
-      ALSA provides an easy interface for procfs. The proc files are
-      very useful for debugging. I recommend you set up proc files if
-      you write a driver and want to get a running status or register
-      dumps. The API is found in
-      <filename>&lt;sound/info.h&gt;</filename>. 
-    </para>
-
-    <para>
-      To create a proc file, call
-      <function>snd_card_proc_new()</function>. 
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  struct snd_info_entry *entry;
-  int err = snd_card_proc_new(card, "my-file", &entry);
-]]>
-        </programlisting>
-      </informalexample>
-
-      where the second argument specifies the name of the proc file to be
-    created. The above example will create a file
-    <filename>my-file</filename> under the card directory,
-    e.g. <filename>/proc/asound/card0/my-file</filename>. 
-    </para>
-
-    <para>
-    Like other components, the proc entry created via
-    <function>snd_card_proc_new()</function> will be registered and
-    released automatically in the card registration and release
-    functions.
-    </para>
-
-    <para>
-      When the creation is successful, the function stores a new
-    instance in the pointer given in the third argument.
-    It is initialized as a text proc file for read only.  To use
-    this proc file as a read-only text file as it is, set the read
-    callback with a private data via 
-     <function>snd_info_set_text_ops()</function>.
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  snd_info_set_text_ops(entry, chip, my_proc_read);
-]]>
-        </programlisting>
-      </informalexample>
-    
-    where the second argument (<parameter>chip</parameter>) is the
-    private data to be used in the callbacks. The third parameter
-    specifies the read buffer size and the fourth
-    (<parameter>my_proc_read</parameter>) is the callback function, which
-    is defined like
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  static void my_proc_read(struct snd_info_entry *entry,
-                           struct snd_info_buffer *buffer);
-]]>
-        </programlisting>
-      </informalexample>
-    
-    </para>
-
-    <para>
-    In the read callback, use <function>snd_iprintf()</function> for
-    output strings, which works just like normal
-    <function>printf()</function>.  For example,
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  static void my_proc_read(struct snd_info_entry *entry,
-                           struct snd_info_buffer *buffer)
-  {
-          struct my_chip *chip = entry->private_data;
-
-          snd_iprintf(buffer, "This is my chip!\n");
-          snd_iprintf(buffer, "Port = %ld\n", chip->port);
-  }
-]]>
-        </programlisting>
-      </informalexample>
-    </para>
-
-    <para>
-    The file permissions can be changed afterwards.  As default, it's
-    set as read only for all users.  If you want to add write
-    permission for the user (root as default), do as follows:
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
- entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
-]]>
-        </programlisting>
-      </informalexample>
-
-    and set the write buffer size and the callback
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  entry->c.text.write = my_proc_write;
-]]>
-        </programlisting>
-      </informalexample>
-    </para>
-
-    <para>
-      For the write callback, you can use
-    <function>snd_info_get_line()</function> to get a text line, and
-    <function>snd_info_get_str()</function> to retrieve a string from
-    the line. Some examples are found in
-    <filename>core/oss/mixer_oss.c</filename>, core/oss/and
-    <filename>pcm_oss.c</filename>. 
-    </para>
-
-    <para>
-      For a raw-data proc-file, set the attributes as follows:
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  static struct snd_info_entry_ops my_file_io_ops = {
-          .read = my_file_io_read,
-  };
-
-  entry->content = SNDRV_INFO_CONTENT_DATA;
-  entry->private_data = chip;
-  entry->c.ops = &my_file_io_ops;
-  entry->size = 4096;
-  entry->mode = S_IFREG | S_IRUGO;
-]]>
-        </programlisting>
-      </informalexample>
-    </para>
-
-    <para>
-      The callback is much more complicated than the text-file
-      version. You need to use a low-level I/O functions such as
-      <function>copy_from/to_user()</function> to transfer the
-      data.
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  static long my_file_io_read(struct snd_info_entry *entry,
-                              void *file_private_data,
-                              struct file *file,
-                              char *buf,
-                              unsigned long count,
-                              unsigned long pos)
-  {
-          long size = count;
-          if (pos + size > local_max_size)
-                  size = local_max_size - pos;
-          if (copy_to_user(buf, local_data + pos, size))
-                  return -EFAULT;
-          return size;
-  }
-]]>
-        </programlisting>
-      </informalexample>
-    </para>
-
-  </chapter>
-
-
-<!-- ****************************************************** -->
-<!-- Power Management  -->
-<!-- ****************************************************** -->
-  <chapter id="power-management">
-    <title>Power Management</title>
-    <para>
-      If the chip is supposed to work with suspend/resume
-      functions, you need to add power-management code to the
-      driver. The additional code for power-management should be
-      <function>ifdef</function>'ed with
-      <constant>CONFIG_PM</constant>. 
-    </para>
-
-	<para>
-	If the driver <emphasis>fully</emphasis> supports suspend/resume
-	that is, the device can be
-	properly resumed to its state when suspend was called,
-	you can set the <constant>SNDRV_PCM_INFO_RESUME</constant> flag
-	in the pcm info field.  Usually, this is possible when the
-	registers of the chip can be safely saved and restored to
-	RAM. If this is set, the trigger callback is called with
-	<constant>SNDRV_PCM_TRIGGER_RESUME</constant> after the resume
-	callback completes. 
-	</para>
-
-	<para>
-	Even if the driver doesn't support PM fully but 
-	partial suspend/resume is still possible, it's still worthy to
-	implement suspend/resume callbacks. In such a case, applications
-	would reset the status by calling
-	<function>snd_pcm_prepare()</function> and restart the stream
-	appropriately.  Hence, you can define suspend/resume callbacks
-	below but don't set <constant>SNDRV_PCM_INFO_RESUME</constant>
-	info flag to the PCM.
-	</para>
-	
-	<para>
-	Note that the trigger with SUSPEND can always be called when
-	<function>snd_pcm_suspend_all</function> is called,
-	regardless of the <constant>SNDRV_PCM_INFO_RESUME</constant> flag.
-	The <constant>RESUME</constant> flag affects only the behavior
-	of <function>snd_pcm_resume()</function>.
-	(Thus, in theory,
-	<constant>SNDRV_PCM_TRIGGER_RESUME</constant> isn't needed
-	to be handled in the trigger callback when no
-	<constant>SNDRV_PCM_INFO_RESUME</constant> flag is set.  But,
-	it's better to keep it for compatibility reasons.)
-	</para>
-    <para>
-      In the earlier version of ALSA drivers, a common
-      power-management layer was provided, but it has been removed.
-      The driver needs to define the suspend/resume hooks according to
-      the bus the device is connected to.  In the case of PCI drivers, the
-      callbacks look like below:
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  #ifdef CONFIG_PM
-  static int snd_my_suspend(struct pci_dev *pci, pm_message_t state)
-  {
-          .... /* do things for suspend */
-          return 0;
-  }
-  static int snd_my_resume(struct pci_dev *pci)
-  {
-          .... /* do things for suspend */
-          return 0;
-  }
-  #endif
-]]>
-        </programlisting>
-      </informalexample>
-    </para>
-
-    <para>
-      The scheme of the real suspend job is as follows.
-
-      <orderedlist>
-        <listitem><para>Retrieve the card and the chip data.</para></listitem>
-        <listitem><para>Call <function>snd_power_change_state()</function> with
-	  <constant>SNDRV_CTL_POWER_D3hot</constant> to change the
-	  power status.</para></listitem>
-        <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem>
-	<listitem><para>If AC97 codecs are used, call
-	<function>snd_ac97_suspend()</function> for each codec.</para></listitem>
-        <listitem><para>Save the register values if necessary.</para></listitem>
-        <listitem><para>Stop the hardware if necessary.</para></listitem>
-        <listitem><para>Disable the PCI device by calling
-	  <function>pci_disable_device()</function>.  Then, call
-          <function>pci_save_state()</function> at last.</para></listitem>
-      </orderedlist>
-    </para>
-
-    <para>
-      A typical code would be like:
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  static int mychip_suspend(struct pci_dev *pci, pm_message_t state)
-  {
-          /* (1) */
-          struct snd_card *card = pci_get_drvdata(pci);
-          struct mychip *chip = card->private_data;
-          /* (2) */
-          snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
-          /* (3) */
-          snd_pcm_suspend_all(chip->pcm);
-          /* (4) */
-          snd_ac97_suspend(chip->ac97);
-          /* (5) */
-          snd_mychip_save_registers(chip);
-          /* (6) */
-          snd_mychip_stop_hardware(chip);
-          /* (7) */
-          pci_disable_device(pci);
-          pci_save_state(pci);
-          return 0;
-  }
-]]>
-        </programlisting>
-      </informalexample>
-    </para>
-
-    <para>
-    The scheme of the real resume job is as follows.
-
-    <orderedlist>
-    <listitem><para>Retrieve the card and the chip data.</para></listitem>
-    <listitem><para>Set up PCI. First, call <function>pci_restore_state()</function>.
-    	Then enable the pci device again by calling <function>pci_enable_device()</function>.
-	Call <function>pci_set_master()</function> if necessary, too.</para></listitem>
-    <listitem><para>Re-initialize the chip.</para></listitem>
-    <listitem><para>Restore the saved registers if necessary.</para></listitem>
-    <listitem><para>Resume the mixer, e.g. calling
-    <function>snd_ac97_resume()</function>.</para></listitem>
-    <listitem><para>Restart the hardware (if any).</para></listitem>
-    <listitem><para>Call <function>snd_power_change_state()</function> with
-	<constant>SNDRV_CTL_POWER_D0</constant> to notify the processes.</para></listitem>
-    </orderedlist>
-    </para>
-
-    <para>
-    A typical code would be like:
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  static int mychip_resume(struct pci_dev *pci)
-  {
-          /* (1) */
-          struct snd_card *card = pci_get_drvdata(pci);
-          struct mychip *chip = card->private_data;
-          /* (2) */
-          pci_restore_state(pci);
-          pci_enable_device(pci);
-          pci_set_master(pci);
-          /* (3) */
-          snd_mychip_reinit_chip(chip);
-          /* (4) */
-          snd_mychip_restore_registers(chip);
-          /* (5) */
-          snd_ac97_resume(chip->ac97);
-          /* (6) */
-          snd_mychip_restart_chip(chip);
-          /* (7) */
-          snd_power_change_state(card, SNDRV_CTL_POWER_D0);
-          return 0;
-  }
-]]>
-        </programlisting>
-      </informalexample>
-    </para>
-
-    <para>
-	As shown in the above, it's better to save registers after
-	suspending the PCM operations via
-	<function>snd_pcm_suspend_all()</function> or
-	<function>snd_pcm_suspend()</function>.  It means that the PCM
-	streams are already stoppped when the register snapshot is
-	taken.  But, remember that you don't have to restart the PCM
-	stream in the resume callback. It'll be restarted via 
-	trigger call with <constant>SNDRV_PCM_TRIGGER_RESUME</constant>
-	when necessary.
-    </para>
-
-    <para>
-      OK, we have all callbacks now. Let's set them up. In the
-      initialization of the card, make sure that you can get the chip
-      data from the card instance, typically via
-      <structfield>private_data</structfield> field, in case you
-      created the chip data individually.
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  static int __devinit snd_mychip_probe(struct pci_dev *pci,
-                               const struct pci_device_id *pci_id)
-  {
-          ....
-          struct snd_card *card;
-          struct mychip *chip;
-          ....
-          card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL);
-          ....
-          chip = kzalloc(sizeof(*chip), GFP_KERNEL);
-          ....
-          card->private_data = chip;
-          ....
-  }
-]]>
-        </programlisting>
-      </informalexample>
-
-	When you created the chip data with
-	<function>snd_card_new()</function>, it's anyway accessible
-	via <structfield>private_data</structfield> field.
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  static int __devinit snd_mychip_probe(struct pci_dev *pci,
-                               const struct pci_device_id *pci_id)
-  {
-          ....
-          struct snd_card *card;
-          struct mychip *chip;
-          ....
-          card = snd_card_new(index[dev], id[dev], THIS_MODULE,
-                              sizeof(struct mychip));
-          ....
-          chip = card->private_data;
-          ....
-  }
-]]>
-        </programlisting>
-      </informalexample>
-
-    </para>
-
-    <para>
-      If you need a space to save the registers, allocate the
-	buffer for it here, too, since it would be fatal
-    if you cannot allocate a memory in the suspend phase.
-    The allocated buffer should be released in the corresponding
-    destructor.
-    </para>
-
-    <para>
-      And next, set suspend/resume callbacks to the pci_driver.
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  static struct pci_driver driver = {
-          .name = "My Chip",
-          .id_table = snd_my_ids,
-          .probe = snd_my_probe,
-          .remove = __devexit_p(snd_my_remove),
-  #ifdef CONFIG_PM
-          .suspend = snd_my_suspend,
-          .resume = snd_my_resume,
-  #endif
-  };
-]]>
-        </programlisting>
-      </informalexample>
-    </para>
-
-  </chapter>
-
-
-<!-- ****************************************************** -->
-<!-- Module Parameters  -->
-<!-- ****************************************************** -->
-  <chapter id="module-parameters">
-    <title>Module Parameters</title>
-    <para>
-      There are standard module options for ALSA. At least, each
-      module should have the <parameter>index</parameter>,
-      <parameter>id</parameter> and <parameter>enable</parameter>
-      options. 
-    </para>
-
-    <para>
-      If the module supports multiple cards (usually up to
-      8 = <constant>SNDRV_CARDS</constant> cards), they should be
-      arrays. The default initial values are defined already as
-      constants for easier programming:
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
-  static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
-  static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
-]]>
-        </programlisting>
-      </informalexample>
-    </para>
-
-    <para>
-      If the module supports only a single card, they could be single
-    variables, instead.  <parameter>enable</parameter> option is not
-    always necessary in this case, but it would be better to have a
-    dummy option for compatibility.
-    </para>
-
-    <para>
-      The module parameters must be declared with the standard
-    <function>module_param()()</function>,
-    <function>module_param_array()()</function> and
-    <function>MODULE_PARM_DESC()</function> macros.
-    </para>
-
-    <para>
-      The typical coding would be like below:
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  #define CARD_NAME "My Chip"
-
-  module_param_array(index, int, NULL, 0444);
-  MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
-  module_param_array(id, charp, NULL, 0444);
-  MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
-  module_param_array(enable, bool, NULL, 0444);
-  MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
-]]>
-        </programlisting>
-      </informalexample>
-    </para>
-
-    <para>
-      Also, don't forget to define the module description, classes,
-      license and devices. Especially, the recent modprobe requires to
-      define the module license as GPL, etc., otherwise the system is
-      shown as <quote>tainted</quote>. 
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  MODULE_DESCRIPTION("My Chip");
-  MODULE_LICENSE("GPL");
-  MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}");
-]]>
-        </programlisting>
-      </informalexample>
-    </para>
-
-  </chapter>
-
-
-<!-- ****************************************************** -->
-<!-- How To Put Your Driver  -->
-<!-- ****************************************************** -->
-  <chapter id="how-to-put-your-driver">
-    <title>How To Put Your Driver Into ALSA Tree</title>
-	<section>
-	<title>General</title>
-	<para>
-	So far, you've learned how to write the driver codes.
-	And you might have a question now: how to put my own
-	driver into the ALSA driver tree?
-	Here (finally :) the standard procedure is described briefly.
-	</para>
-
-	<para>
-	Suppose that you create a new PCI driver for the card
-	<quote>xyz</quote>.  The card module name would be
-	snd-xyz.  The new driver is usually put into the alsa-driver
-	tree, <filename>alsa-driver/pci</filename> directory in
-	the case of PCI cards.
-	Then the driver is evaluated, audited and tested
-	by developers and users.  After a certain time, the driver
-	will go to the alsa-kernel tree (to the corresponding directory,
-	such as <filename>alsa-kernel/pci</filename>) and eventually
- 	will be integrated into the Linux 2.6 tree (the directory would be
-	<filename>linux/sound/pci</filename>).
-	</para>
-
-	<para>
-	In the following sections, the driver code is supposed
-	to be put into alsa-driver tree. The two cases are covered:
-	a driver consisting of a single source file and one consisting
-	of several source files.
-	</para>
-	</section>
-
-	<section>
-	<title>Driver with A Single Source File</title>
-	<para>
-	<orderedlist>
-	<listitem>
-	<para>
-	Modify alsa-driver/pci/Makefile
-	</para>
-
-	<para>
-	Suppose you have a file xyz.c.  Add the following
-	two lines
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  snd-xyz-objs := xyz.o
-  obj-$(CONFIG_SND_XYZ) += snd-xyz.o
-]]>
-        </programlisting>
-      </informalexample>
-	</para>
-	</listitem>
-
-	<listitem>
-	<para>
-	Create the Kconfig entry
-	</para>
-
-	<para>
-	Add the new entry of Kconfig for your xyz driver.
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  config SND_XYZ
-          tristate "Foobar XYZ"
-          depends on SND
-          select SND_PCM
-          help
-            Say Y here to include support for Foobar XYZ soundcard.
-
-            To compile this driver as a module, choose M here: the module
-            will be called snd-xyz.
-]]>
-        </programlisting>
-      </informalexample>
-
-	the line, select SND_PCM, specifies that the driver xyz supports
-	PCM.  In addition to SND_PCM, the following components are
-	supported for select command:
-	SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
-	SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC.
-	Add the select command for each supported component.
-	</para>
-
-	<para>
-	Note that some selections imply the lowlevel selections.
-	For example, PCM includes TIMER, MPU401_UART includes RAWMIDI,
-	AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP.
-	You don't need to give the lowlevel selections again.
-	</para>
-
-	<para>
-	For the details of Kconfig script, refer to the kbuild
-	documentation.
-	</para>
-
-	</listitem>
-
-	<listitem>
-	<para>
-	Run cvscompile script to re-generate the configure script and
-	build the whole stuff again.
-	</para>
-	</listitem>
-	</orderedlist>
-	</para>
-	</section>
-
-	<section>
-	<title>Drivers with Several Source Files</title>
-	<para>
-	Suppose that the driver snd-xyz have several source files.
-	They are located in the new subdirectory,
-	pci/xyz.
-
-	<orderedlist>
-	<listitem>
-	<para>
-	Add a new directory (<filename>xyz</filename>) in
-	<filename>alsa-driver/pci/Makefile</filename> as below
-
-      <informalexample>
-        <programlisting>
-<![CDATA[
-  obj-$(CONFIG_SND) += xyz/
-]]>
-        </programlisting>
-      </informalexample>
-	</para>
-	</listitem>
-
-	<listitem>
-	<para>
-	Under the directory <filename>xyz</filename>, create a Makefile
-
-      <example>
-	<title>Sample Makefile for a driver xyz</title>
-        <programlisting>
-<![CDATA[
-  ifndef SND_TOPDIR
-  SND_TOPDIR=../..
-  endif
-
-  include $(SND_TOPDIR)/toplevel.config
-  include $(SND_TOPDIR)/Makefile.conf
-
-  snd-xyz-objs := xyz.o abc.o def.o
-
-  obj-$(CONFIG_SND_XYZ) += snd-xyz.o
-
-  include $(SND_TOPDIR)/Rules.make
-]]>
-        </programlisting>
-      </example>
-	</para>
-	</listitem>
-
-	<listitem>
-	<para>
-	Create the Kconfig entry
-	</para>
-
-	<para>
-	This procedure is as same as in the last section.
-	</para>
-	</listitem>
-
-	<listitem>
-	<para>
-	Run cvscompile script to re-generate the configure script and
-	build the whole stuff again.
-	</para>
-	</listitem>
-	</orderedlist>
-	</para>
-	</section>
-
-  </chapter>
-
-<!-- ****************************************************** -->
-<!-- Useful Functions  -->
-<!-- ****************************************************** -->
-  <chapter id="useful-functions">
-    <title>Useful Functions</title>
-
-    <section id="useful-functions-snd-printk">
-      <title><function>snd_printk()</function> and friends</title>
-      <para>
-        ALSA provides a verbose version of the
-      <function>printk()</function> function. If a kernel config
-      <constant>CONFIG_SND_VERBOSE_PRINTK</constant> is set, this
-      function prints the given message together with the file name
-      and the line of the caller. The <constant>KERN_XXX</constant>
-      prefix is processed as 
-      well as the original <function>printk()</function> does, so it's
-      recommended to add this prefix, e.g. 
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\n");
-]]>
-          </programlisting>
-        </informalexample>
-      </para>
-
-      <para>
-        There are also <function>printk()</function>'s for
-      debugging. <function>snd_printd()</function> can be used for
-      general debugging purposes. If
-      <constant>CONFIG_SND_DEBUG</constant> is set, this function is
-      compiled, and works just like
-      <function>snd_printk()</function>. If the ALSA is compiled
-      without the debugging flag, it's ignored. 
-      </para>
-
-      <para>
-        <function>snd_printdd()</function> is compiled in only when
-      <constant>CONFIG_SND_DEBUG_VERBOSE</constant> is set. Please note
-      that <constant>CONFIG_SND_DEBUG_VERBOSE</constant> is not set as default
-      even if you configure the alsa-driver with
-      <option>--with-debug=full</option> option. You need to give
-      explicitly <option>--with-debug=detect</option> option instead. 
-      </para>
-    </section>
-
-    <section id="useful-functions-snd-bug">
-      <title><function>snd_BUG()</function></title>
-      <para>
-        It shows the <computeroutput>BUG?</computeroutput> message and
-      stack trace as well as <function>snd_BUG_ON</function> at the point.
-      It's useful to show that a fatal error happens there. 
-      </para>
-      <para>
-	 When no debug flag is set, this macro is ignored. 
-      </para>
-    </section>
-
-    <section id="useful-functions-snd-bug-on">
-      <title><function>snd_BUG_ON()</function></title>
-      <para>
-        <function>snd_BUG_ON()</function> macro is similar with
-	<function>WARN_ON()</function> macro. For example,  
-
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  snd_BUG_ON(!pointer);
-]]>
-          </programlisting>
-        </informalexample>
-
-	or it can be used as the condition,
-        <informalexample>
-          <programlisting>
-<![CDATA[
-  if (snd_BUG_ON(non_zero_is_bug))
-          return -EINVAL;
-]]>
-          </programlisting>
-        </informalexample>
-
-      </para>
-
-      <para>
-        The macro takes an conditional expression to evaluate.
-	When <constant>CONFIG_SND_DEBUG</constant>, is set, the
-	expression is actually evaluated. If it's non-zero, it shows
-	the warning message such as
-	<computeroutput>BUG? (xxx)</computeroutput>
-	normally followed by stack trace.  It returns the evaluated
-	value.
-	When no <constant>CONFIG_SND_DEBUG</constant> is set, this
-	macro always returns zero.
-      </para>
-
-    </section>
-
-  </chapter>
-
-
-<!-- ****************************************************** -->
-<!-- Acknowledgments  -->
-<!-- ****************************************************** -->
-  <chapter id="acknowledgments">
-    <title>Acknowledgments</title>
-    <para>
-      I would like to thank Phil Kerr for his help for improvement and
-      corrections of this document. 
-    </para>
-    <para>
-    Kevin Conder reformatted the original plain-text to the
-    DocBook format.
-    </para>
-    <para>
-    Giuliano Pochini corrected typos and contributed the example codes
-    in the hardware constraints section.
-    </para>
-  </chapter>
-</book>

+ 19 - 3
Documentation/sound/alsa/HD-Audio-Models.txt

@@ -56,6 +56,7 @@ ALC262
   sony-assamd	Sony ASSAMD
   toshiba-s06	Toshiba S06
   toshiba-rx1	Toshiba RX1
+  tyan		Tyan Thunder n6650W (S2915-E)
   ultra		Samsung Q1 Ultra Vista model
   lenovo-3000	Lenovo 3000 y410
   nec		NEC Versa S9100
@@ -261,6 +262,8 @@ Conexant 5051
 =============
   laptop	Basic Laptop config (default)
   hp		HP Spartan laptop
+  hp-dv6736	HP dv6736
+  lenovo-x200	Lenovo X200 laptop
 
 STAC9200
 ========
@@ -278,6 +281,7 @@ STAC9200
   gateway-m4	Gateway laptops with EAPD control
   gateway-m4-2	Gateway laptops with EAPD control
   panasonic	Panasonic CF-74
+  auto		BIOS setup (default)
 
 STAC9205/9254
 =============
@@ -285,6 +289,8 @@ STAC9205/9254
   dell-m42	Dell (unknown)
   dell-m43	Dell Precision
   dell-m44	Dell Inspiron
+  eapd		Keep EAPD on (e.g. Gateway T1616)
+  auto		BIOS setup (default)
 
 STAC9220/9221
 =============
@@ -308,6 +314,7 @@ STAC9220/9221
   dell-d82	Dell (unknown)
   dell-m81	Dell (unknown)
   dell-m82	Dell XPS M1210
+  auto		BIOS setup (default)
 
 STAC9202/9250/9251
 ==================
@@ -319,6 +326,7 @@ STAC9202/9250/9251
   m3		Some Gateway MX series laptops
   m5		Some Gateway MX series laptops (MP6954)
   m6		Some Gateway NX series laptops
+  auto		BIOS setup (default)
 
 STAC9227/9228/9229/927x
 =======================
@@ -328,6 +336,7 @@ STAC9227/9228/9229/927x
   5stack	D965 5stack + SPDIF
   dell-3stack	Dell Dimension E520
   dell-bios	Fixes with Dell BIOS setup
+  auto		BIOS setup (default)
 
 STAC92HD71B*
 ============
@@ -335,7 +344,10 @@ STAC92HD71B*
   dell-m4-1	Dell desktops
   dell-m4-2	Dell desktops
   dell-m4-3	Dell desktops
-  hp-m4		HP dv laptops
+  hp-m4		HP mini 1000
+  hp-dv5	HP dv series
+  hp-hdx	HP HDX series
+  auto		BIOS setup (default)
 
 STAC92HD73*
 ===========
@@ -345,12 +357,16 @@ STAC92HD73*
   dell-m6-dmic	Dell desktops/laptops with digital mics
   dell-m6	Dell desktops/laptops with both type of mics
   dell-eq	Dell desktops/laptops
+  auto		BIOS setup (default)
 
 STAC92HD83*
 ===========
   ref		Reference board
+  mic-ref	Reference board with power managment for ports
+  dell-s14	Dell laptop
+  auto		BIOS setup (default)
 
 STAC9872
 ========
-  vaio		Setup for VAIO FE550G/SZ110
-  vaio-ar Setup for VAIO AR
+  vaio		VAIO laptop without SPDIF
+  auto		BIOS setup (default)

+ 44 - 3
Documentation/sound/alsa/HD-Audio.txt

@@ -109,6 +109,13 @@ slot, pass `probe_mask=1`.  For the first and the third slots, pass
 Since 2.6.29 kernel, the driver has a more robust probing method, so
 this error might happen rarely, though.
 
+On a machine with a broken BIOS, sometimes you need to force the
+driver to probe the codec slots the hardware doesn't report for use.
+In such a case, turn the bit 8 (0x100) of `probe_mask` option on.
+Then the rest 8 bits are passed as the codec slots to probe
+unconditionally.  For example, `probe_mask=0x103` will force to probe
+the codec slots 0 and 1 no matter what the hardware reports.
+
 
 Interrupt Handling
 ~~~~~~~~~~~~~~~~~~
@@ -358,10 +365,26 @@ modelname::
   to this file.
 init_verbs::
   The extra verbs to execute at initialization.  You can add a verb by
-  writing to this file.  Pass tree numbers, nid, verb and parameter.
+  writing to this file.  Pass three numbers: nid, verb and parameter
+  (separated with a space).
 hints::
-  Shows hint strings for codec parsers for any use.  Right now it's
-  not used.
+  Shows / stores hint strings for codec parsers for any use.
+  Its format is `key = value`.  For example, passing `hp_detect = yes`
+  to IDT/STAC codec parser will result in the disablement of the
+  headphone detection.
+init_pin_configs::
+  Shows the initial pin default config values set by BIOS.
+driver_pin_configs::
+  Shows the pin default values set by the codec parser explicitly.
+  This doesn't show all pin values but only the changed values by
+  the parser.  That is, if the parser doesn't change the pin default
+  config values by itself, this will contain nothing.
+user_pin_configs::
+  Shows the pin default config values to override the BIOS setup.
+  Writing this (with two numbers, NID and value) appends the new
+  value.  The given will be used instead of the initial BIOS value at
+  the next reconfiguration time.  Note that this config will override
+  even the driver pin configs, too.
 reconfig::
   Triggers the codec re-configuration.  When any value is written to
   this file, the driver re-initialize and parses the codec tree
@@ -371,6 +394,14 @@ clear::
   Resets the codec, removes the mixer elements and PCM stuff of the
   specified codec, and clear all init verbs and hints.
 
+For example, when you want to change the pin default configuration
+value of the pin widget 0x14 to 0x9993013f, and let the driver
+re-configure based on that state, run like below:
+------------------------------------------------------------------------
+  # echo 0x14 0x9993013f > /sys/class/sound/hwC0D0/user_pin_configs
+  # echo 1 > /sys/class/sound/hwC0D0/reconfig  
+------------------------------------------------------------------------
+
 
 Power-Saving
 ~~~~~~~~~~~~
@@ -461,6 +492,16 @@ run with `--no-upload` option, and attach the generated file.
 There are some other useful options.  See `--help` option output for
 details.
 
+When a probe error occurs or when the driver obviously assigns a
+mismatched model, it'd be helpful to load the driver with
+`probe_only=1` option (at best after the cold reboot) and run
+alsa-info at this state.  With this option, the driver won't configure
+the mixer and PCM but just tries to probe the codec slot.  After
+probing, the proc file is available, so you can get the raw codec
+information before modified by the driver.  Of course, the driver
+isn't usable with `probe_only=1`.  But you can continue the
+configuration via hwdep sysfs file if hda-reconfig option is enabled.
+
 
 hda-verb
 ~~~~~~~~

+ 3 - 0
Documentation/sound/alsa/soc/dapm.txt

@@ -116,6 +116,9 @@ SOC_DAPM_SINGLE("HiFi Playback Switch", WM8731_APANA, 4, 1, 0),
 SND_SOC_DAPM_MIXER("Output Mixer", WM8731_PWR, 4, 1, wm8731_output_mixer_controls,
 	ARRAY_SIZE(wm8731_output_mixer_controls)),
 
+If you dont want the mixer elements prefixed with the name of the mixer widget,
+you can use SND_SOC_DAPM_MIXER_NAMED_CTL instead. the parameters are the same
+as for SND_SOC_DAPM_MIXER.
 
 2.3 Platform/Machine domain Widgets
 -----------------------------------

+ 0 - 23
Documentation/sound/oss/CS4232

@@ -1,23 +0,0 @@
-To configure the Crystal CS423x sound chip and activate its DSP functions,
-modules may be loaded in this order:
-  
-	modprobe sound
-	insmod ad1848
-	insmod uart401
-	insmod cs4232 io=* irq=* dma=* dma2=*
-  
-This is the meaning of the parameters:
-  
-	io--I/O address of the Windows Sound System (normally 0x534)
-	irq--IRQ of this device
-	dma and dma2--DMA channels (DMA2 may be 0)
-  
-On some cards, the board attempts to do non-PnP setup, and fails.  If you
-have problems, use Linux' PnP facilities. 
-  
-To get MIDI facilities add
-  
-	insmod opl3 io=*
-  
-where "io" is the I/O address of the OPL3 synthesizer. This will be shown
-in /proc/sys/pnp and is normally 0x388.

+ 1 - 1
Documentation/sound/oss/Introduction

@@ -80,7 +80,7 @@ Notes:
     additional features.
 
 2.  The commercial OSS driver may be obtained from the site:
-    http://www/opensound.com.  This may be used for cards that
+    http://www.opensound.com.  This may be used for cards that
     are unsupported by the kernel driver, or may be used
     by other operating systems.  
 

+ 2 - 4
Documentation/tracers/mmiotrace.txt

@@ -78,12 +78,10 @@ to view your kernel log and look for "mmiotrace has lost events" warning. If
 events were lost, the trace is incomplete. You should enlarge the buffers and
 try again. Buffers are enlarged by first seeing how large the current buffers
 are:
-$ cat /debug/tracing/trace_entries
+$ cat /debug/tracing/buffer_size_kb
 gives you a number. Approximately double this number and write it back, for
 instance:
-$ echo 0 > /debug/tracing/tracing_enabled
-$ echo 128000 > /debug/tracing/trace_entries
-$ echo 1 > /debug/tracing/tracing_enabled
+$ echo 128000 > /debug/tracing/buffer_size_kb
 Then start again from the top.
 
 If you are doing a trace for a driver project, e.g. Nouveau, you should also

+ 6 - 5
Documentation/usb/dma.txt

@@ -6,8 +6,9 @@ in the kernel usb programming guide (kerneldoc, from the source code).
 API OVERVIEW
 
 The big picture is that USB drivers can continue to ignore most DMA issues,
-though they still must provide DMA-ready buffers (see DMA-mapping.txt).
-That's how they've worked through the 2.4 (and earlier) kernels.
+though they still must provide DMA-ready buffers (see
+Documentation/PCI/PCI-DMA-mapping.txt).  That's how they've worked through
+the 2.4 (and earlier) kernels.
 
 OR:  they can now be DMA-aware.
 
@@ -62,8 +63,8 @@ and effects like cache-trashing can impose subtle penalties.
   force a consistent memory access ordering by using memory barriers.  It's
   not using a streaming DMA mapping, so it's good for small transfers on
   systems where the I/O would otherwise thrash an IOMMU mapping.  (See
-  Documentation/DMA-mapping.txt for definitions of "coherent" and "streaming"
-  DMA mappings.)
+  Documentation/PCI/PCI-DMA-mapping.txt for definitions of "coherent" and
+  "streaming" DMA mappings.)
 
   Asking for 1/Nth of a page (as well as asking for N pages) is reasonably
   space-efficient.
@@ -93,7 +94,7 @@ WORKING WITH EXISTING BUFFERS
 Existing buffers aren't usable for DMA without first being mapped into the
 DMA address space of the device.  However, most buffers passed to your
 driver can safely be used with such DMA mapping.  (See the first section
-of DMA-mapping.txt, titled "What memory is DMA-able?")
+of Documentation/PCI/PCI-DMA-mapping.txt, titled "What memory is DMA-able?")
 
 - When you're using scatterlists, you can map everything at once.  On some
   systems, this kicks in an IOMMU and turns the scatterlists into single

+ 20 - 7
Documentation/usb/usbmon.txt

@@ -229,16 +229,26 @@ struct usbmon_packet {
 	int status;		/* 28: */
 	unsigned int length;	/* 32: Length of data (submitted or actual) */
 	unsigned int len_cap;	/* 36: Delivered length */
-	unsigned char setup[8];	/* 40: Only for Control 'S' */
-};				/* 48 bytes total */
+	union {			/* 40: */
+		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
+		struct iso_rec {		/* Only for ISO */
+			int error_count;
+			int numdesc;
+		} iso;
+	} s;
+	int interval;		/* 48: Only for Interrupt and ISO */
+	int start_frame;	/* 52: For ISO */
+	unsigned int xfer_flags; /* 56: copy of URB's transfer_flags */
+	unsigned int ndesc;	/* 60: Actual number of ISO descriptors */
+};				/* 64 total length */
 
 These events can be received from a character device by reading with read(2),
-with an ioctl(2), or by accessing the buffer with mmap.
+with an ioctl(2), or by accessing the buffer with mmap. However, read(2)
+only returns first 48 bytes for compatibility reasons.
 
 The character device is usually called /dev/usbmonN, where N is the USB bus
 number. Number zero (/dev/usbmon0) is special and means "all buses".
-However, this feature is not implemented yet. Note that specific naming
-policy is set by your Linux distribution.
+Note that specific naming policy is set by your Linux distribution.
 
 If you create /dev/usbmon0 by hand, make sure that it is owned by root
 and has mode 0600. Otherwise, unpriviledged users will be able to snoop
@@ -279,9 +289,10 @@ size is out of [unspecified] bounds for this kernel, the call fails with
 This call returns the current size of the buffer in bytes.
 
  MON_IOCX_GET, defined as _IOW(MON_IOC_MAGIC, 6, struct mon_get_arg)
+ MON_IOCX_GETX, defined as _IOW(MON_IOC_MAGIC, 10, struct mon_get_arg)
 
-This call waits for events to arrive if none were in the kernel buffer,
-then returns the first event. Its argument is a pointer to the following
+These calls wait for events to arrive if none were in the kernel buffer,
+then return the first event. The argument is a pointer to the following
 structure:
 
 struct mon_get_arg {
@@ -294,6 +305,8 @@ Before the call, hdr, data, and alloc should be filled. Upon return, the area
 pointed by hdr contains the next event structure, and the data buffer contains
 the data, if any. The event is removed from the kernel buffer.
 
+The MON_IOCX_GET copies 48 bytes, MON_IOCX_GETX copies 64 bytes.
+
  MON_IOCX_MFETCH, defined as _IOWR(MON_IOC_MAGIC, 7, struct mon_mfetch_arg)
 
 This ioctl is primarily used when the application accesses the buffer

+ 17 - 8
Documentation/video4linux/v4lgrab.c

@@ -4,12 +4,21 @@
  *
  *	Compile with:
  *		gcc -s -Wall -Wstrict-prototypes v4lgrab.c -o v4lgrab
- *      Use as:
- *              v4lgrab >image.ppm
+ *	Use as:
+ *		v4lgrab >image.ppm
  *
  *	Copyright (C) 1998-05-03, Phil Blundell <philb@gnu.org>
- *      Copied from http://www.tazenda.demon.co.uk/phil/vgrabber.c
- *      with minor modifications (Dave Forrest, drf5n@virginia.edu).
+ *	Copied from http://www.tazenda.demon.co.uk/phil/vgrabber.c
+ *	with minor modifications (Dave Forrest, drf5n@virginia.edu).
+ *
+ *
+ *	For some cameras you may need to pre-load libv4l to perform
+ *	the necessary decompression, e.g.:
+ *
+ *	export LD_PRELOAD=/usr/lib/libv4l/v4l1compat.so
+ *	./v4lgrab >image.ppm
+ *
+ *	see http://hansdegoede.livejournal.com/3636.html for details.
  *
  */
 
@@ -24,7 +33,7 @@
 #include <linux/types.h>
 #include <linux/videodev.h>
 
-#define FILE "/dev/video0"
+#define VIDEO_DEV "/dev/video0"
 
 /* Stole this from tvset.c */
 
@@ -90,7 +99,7 @@ int get_brightness_adj(unsigned char *image, long size, int *brightness) {
 
 int main(int argc, char ** argv)
 {
-  int fd = open(FILE, O_RDONLY), f;
+  int fd = open(VIDEO_DEV, O_RDONLY), f;
   struct video_capability cap;
   struct video_window win;
   struct video_picture vpic;
@@ -100,13 +109,13 @@ int main(int argc, char ** argv)
   unsigned int i, src_depth;
 
   if (fd < 0) {
-    perror(FILE);
+    perror(VIDEO_DEV);
     exit(1);
   }
 
   if (ioctl(fd, VIDIOCGCAP, &cap) < 0) {
     perror("VIDIOGCAP");
-    fprintf(stderr, "(" FILE " not a video4linux device?)\n");
+    fprintf(stderr, "(" VIDEO_DEV " not a video4linux device?)\n");
     close(fd);
     exit(1);
   }

+ 97 - 27
MAINTAINERS

@@ -692,6 +692,13 @@ M:	kernel@wantstofly.org
 L:	linux-arm-kernel@lists.arm.linux.org.uk (subscribers-only)
 S:	Maintained
 
+ARM/NUVOTON W90X900 ARM ARCHITECTURE
+P:      Wan ZongShun
+M:      mcuos.com@gmail.com
+L:      linux-arm-kernel@lists.arm.linux.org.uk (subscribers-only)
+W:      http://www.mcuos.com
+S:      Maintained
+
 ARPD SUPPORT
 P:	Jonathan Layes
 L:	netdev@vger.kernel.org
@@ -911,7 +918,7 @@ S:	Maintained
 BLACKFIN ARCHITECTURE
 P:	Bryan Wu
 M:	cooloney@kernel.org
-L:	uclinux-dist-devel@blackfin.uclinux.org (subscribers-only)
+L:	uclinux-dist-devel@blackfin.uclinux.org
 W:	http://blackfin.uclinux.org
 S:	Supported
 
@@ -1004,6 +1011,8 @@ L:	netdev@vger.kernel.org
 S:	Supported
 
 BROADCOM TG3 GIGABIT ETHERNET DRIVER
+P:	Matt Carlson
+M:	mcarlson@broadcom.com
 P:	Michael Chan
 M:	mchan@broadcom.com
 L:	netdev@vger.kernel.org
@@ -1021,6 +1030,14 @@ M:	mb@bu3sch.de
 W:	http://bu3sch.de/btgpio.php
 S:	Maintained
 
+BTRFS FILE SYSTEM
+P:	Chris Mason
+M:	chris.mason@oracle.com
+L:	linux-btrfs@vger.kernel.org
+W:	http://btrfs.wiki.kernel.org/
+T:	git kernel.org:/pub/scm/linux/kernel/git/mason/btrfs-unstable.git
+S:	Maintained
+
 BTTV VIDEO4LINUX DRIVER
 P:	Mauro Carvalho Chehab
 M:	mchehab@infradead.org
@@ -1194,6 +1211,8 @@ S:	Supported
 CONTROL GROUPS (CGROUPS)
 P:	Paul Menage
 M:	menage@google.com
+P:	Li Zefan
+M:	lizf@cn.fujitsu.com
 L:	containers@lists.linux-foundation.org
 S:	Maintained
 
@@ -1252,6 +1271,12 @@ L:	linux-crypto@vger.kernel.org
 T:	git kernel.org:/pub/scm/linux/kernel/git/herbert/crypto-2.6.git
 S:	Maintained
 
+CRYPTOGRAPHIC RANDOM NUMBER GENERATOR
+P:	Neil Horman
+M:	nhorman@tuxdriver.com
+L:	linux-crypto@vger.kernel.org
+S:	Maintained
+
 CS5535 Audio ALSA driver
 P:	Jaya Kumar
 M:	jayakumar.alsa@gmail.com
@@ -1452,8 +1477,6 @@ L:	linux-acpi@vger.kernel.org
 S:	Supported
 
 DOCUMENTATION (/Documentation directory)
-P:	Michael Kerrisk
-M:	mtk.manpages@gmail.com
 P:	Randy Dunlap
 M:	rdunlap@xenotime.net
 L:	linux-doc@vger.kernel.org
@@ -1895,10 +1918,10 @@ W:	http://gigaset307x.sourceforge.net/
 S:	Maintained
 
 HARD DRIVE ACTIVE PROTECTION SYSTEM (HDAPS) DRIVER
-P:	Robert Love
-M:	rlove@rlove.org
-M:	linux-kernel@vger.kernel.org
-W:	http://www.kernel.org/pub/linux/kernel/people/rml/hdaps/
+P:	Frank Seidel
+M:	frank@f-seidel.de
+L:	lm-sensors@lm-sensors.org
+W:	http://www.kernel.org/pub/linux/kernel/people/fseidel/hdaps/
 S:	Maintained
 
 GSPCA FINEPIX SUBDRIVER
@@ -1991,7 +2014,7 @@ S:	Maintained
 
 HIBERNATION (aka Software Suspend, aka swsusp)
 P:	Pavel Machek
-M:	pavel@suse.cz
+M:	pavel@ucw.cz
 P:	Rafael J. Wysocki
 M:	rjw@sisk.pl
 L:	linux-pm@lists.linux-foundation.org
@@ -2102,7 +2125,8 @@ M:	khali@linux-fr.org
 P:	Ben Dooks (embedded platforms)
 M:	ben-linux@fluff.org
 L:	linux-i2c@vger.kernel.org
-T:	quilt http://khali.linux-fr.org/devel/linux-2.6/jdelvare-i2c/
+W:	http://i2c.wiki.kernel.org/
+T:	quilt kernel.org/pub/linux/kernel/people/jdelvare/linux-2.6/jdelvare-i2c/
 S:	Maintained
 
 I2C-TINY-USB DRIVER
@@ -2200,6 +2224,11 @@ M:	stefanr@s5r6.in-berlin.de
 L:	linux1394-devel@lists.sourceforge.net
 S:	Maintained
 
+INTEGRITY MEASUREMENT ARCHITECTURE (IMA)
+P:	Mimi Zohar
+M:	zohar@us.ibm.com
+S:	Supported
+
 IMS TWINTURBO FRAMEBUFFER DRIVER
 L:	linux-fbdev-devel@lists.sourceforge.net (moderated for non-subscribers)
 S:	Orphan
@@ -2211,7 +2240,7 @@ P:	Sean Hefty
 M:	sean.hefty@intel.com
 P:	Hal Rosenstock
 M:	hal.rosenstock@gmail.com
-L:	general@lists.openfabrics.org
+L:	general@lists.openfabrics.org (moderated for non-subscribers)
 W:	http://www.openib.org/
 T:	git kernel.org:/pub/scm/linux/kernel/git/roland/infiniband.git
 S:	Supported
@@ -2446,7 +2475,7 @@ S:	Maintained
 
 ISDN SUBSYSTEM
 P:	Karsten Keil
-M:	kkeil@suse.de
+M:	isdn@linux-pingi.de
 L:	isdn4linux@listserv.isdn4linux.de (subscribers-only)
 W:	http://www.isdn4linux.de
 T:	git kernel.org:/pub/scm/linux/kernel/kkeil/isdn-2.6.git
@@ -2816,7 +2845,7 @@ P:	Roman Zippel
 M:	zippel@linux-m68k.org
 L:	linux-m68k@lists.linux-m68k.org
 W:	http://www.linux-m68k.org/
-W:	http://linux-m68k-cvs.ubb.ca/
+T:	git git.kernel.org/pub/scm/linux/kernel/git/geert/linux-m68k.git
 S:	Maintained
 
 M68K ON APPLE MACINTOSH
@@ -2835,8 +2864,6 @@ S:	Maintained
 MAC80211
 P:	Johannes Berg
 M:	johannes@sipsolutions.net
-P:	Michael Wu
-M:	flamingice@sourmilk.net
 L:	linux-wireless@vger.kernel.org
 W:	http://linuxwireless.org/
 T:	git kernel.org:/pub/scm/linux/kernel/git/linville/wireless-2.6.git
@@ -2863,7 +2890,7 @@ P:	Michael Kerrisk
 M:	mtk.manpages@gmail.com
 W:	http://www.kernel.org/doc/man-pages
 L:	linux-man@vger.kernel.org
-S:	Supported
+S:	Maintained
 
 MARVELL LIBERTAS WIRELESS DRIVER
 P:	Dan Williams
@@ -3318,8 +3345,8 @@ P:	Jeremy Fitzhardinge
 M:	jeremy@xensource.com
 P:	Chris Wright
 M:	chrisw@sous-sol.org
-P:	Zachary Amsden
-M:	zach@vmware.com
+P:	Alok Kataria
+M:	akataria@vmware.com
 P:	Rusty Russell
 M:	rusty@rustcorp.com.au
 L:	virtualization@lists.osdl.org
@@ -3336,10 +3363,8 @@ S:	Maintained
 PARISC ARCHITECTURE
 P:	Kyle McMartin
 M:	kyle@mcmartin.ca
-P:	Matthew Wilcox
-M:	matthew@wil.cx
-P:	Grant Grundler
-M:	grundler@parisc-linux.org
+P:	Helge Deller
+M:	deller@gmx.de
 L:	linux-parisc@vger.kernel.org
 W:	http://www.parisc-linux.org/
 T:	git kernel.org:/pub/scm/linux/kernel/git/kyle/parisc-2.6.git
@@ -3530,6 +3555,12 @@ S:	Maintained
 PXA MMCI DRIVER
 S:	Orphan
 
+PXA RTC DRIVER
+P:	Robert Jarzmik
+M:	robert.jarzmik@free.fr
+L:	rtc-linux@googlegroups.com
+S:	Maintained
+
 QLOGIC QLA2XXX FC-SCSI DRIVER
 P:	Andrew Vasquez
 M:	linux-driver@qlogic.com
@@ -3617,6 +3648,12 @@ M:	florian.fainelli@telecomint.eu
 L:	netdev@vger.kernel.org
 S:	Maintained
 
+RDS - RELIABLE DATAGRAM SOCKETS
+P:	Andy Grover
+M:	andy.grover@oracle.com
+L:	rds-devel@oss.oracle.com
+S:	Supported
+
 READ-COPY UPDATE (RCU)
 P:	Dipankar Sarma
 M:	dipankar@in.ibm.com
@@ -3708,6 +3745,15 @@ L:	linux-s390@vger.kernel.org
 W:	http://www.ibm.com/developerworks/linux/linux390/
 S:	Supported
 
+S390 ZCRYPT DRIVER
+P:	Felix Beck
+M:	felix.beck@de.ibm.com
+P:	Ralph Wuerthner
+M:	ralph.wuerthner@de.ibm.com
+M:	linux390@de.ibm.com
+L:	linux-s390@vger.kernel.org
+S:	Supported
+
 S390 ZFCP DRIVER
 P:	Christof Schmitt
 M:	christof.schmitt@de.ibm.com
@@ -3826,6 +3872,7 @@ M:	jmorris@namei.org
 L:	linux-kernel@vger.kernel.org
 L:	linux-security-module@vger.kernel.org (suggested Cc:)
 T:	git kernel.org:pub/scm/linux/kernel/git/jmorris/security-testing-2.6.git
+W:	http://security.wiki.kernel.org/
 S:	Supported
 
 SECURITY CONTACT
@@ -3858,6 +3905,15 @@ L:	linux-ide@vger.kernel.org
 T:	git kernel.org:/pub/scm/linux/kernel/git/jgarzik/libata-dev.git
 S:	Supported
 
+SERVER ENGINES 10Gbps NIC - BladeEngine 2 DRIVER
+P:	Sathya Perla
+M:	sathyap@serverengines.com
+P:      Subbu Seetharaman
+M:      subbus@serverengines.com
+L:      netdev@vger.kernel.org
+W:      http://www.serverengines.com
+S:      Supported
+
 SFC NETWORK DRIVER
 P:	Steve Hodgson
 P:	Ben Hutchings
@@ -4157,7 +4213,7 @@ SUSPEND TO RAM
 P:	Len Brown
 M:	len.brown@intel.com
 P:	Pavel Machek
-M:	pavel@suse.cz
+M:	pavel@ucw.cz
 P:	Rafael J. Wysocki
 M:	rjw@sisk.pl
 L:	linux-pm@lists.linux-foundation.org
@@ -4258,6 +4314,19 @@ L:	tlan-devel@lists.sourceforge.net (subscribers-only)
 W:	http://sourceforge.net/projects/tlan/
 S:	Maintained
 
+TOMOYO SECURITY MODULE
+P:	Kentaro Takeda
+M:	takedakn@nttdata.co.jp
+P:	Tetsuo Handa
+M:	penguin-kernel@I-love.SAKURA.ne.jp
+L:	linux-kernel@vger.kernel.org (kernel issues)
+L:	tomoyo-users-en@lists.sourceforge.jp (subscribers-only, for developers and users in English)
+L:	tomoyo-dev@lists.sourceforge.jp (subscribers-only, for developers in Japanese)
+L:	tomoyo-users@lists.sourceforge.jp (subscribers-only, for users in Japanese)
+W:	http://tomoyo.sourceforge.jp/
+T:	quilt http://svn.sourceforge.jp/svnroot/tomoyo/trunk/2.2.x/tomoyo-lsm/patches/
+S:	Maintained
+
 TOSHIBA ACPI EXTRAS DRIVER
 P:	John Belmonte
 M:	toshiba_acpi@memebeam.org
@@ -4278,8 +4347,8 @@ P:	Rajiv Andrade
 M:	srajiv@linux.vnet.ibm.com
 W:	http://tpmdd.sourceforge.net
 P:	Marcel Selhorst
-M:	tpm@selhorst.net
-W:	http://www.prosec.rub.de/tpm/
+M:	m.selhorst@sirrix.com
+W:	http://www.sirrix.com
 L:	tpmdd-devel@lists.sourceforge.net (moderated for non-subscribers)
 S:	Maintained
 
@@ -4842,6 +4911,7 @@ P:	Ingo Molnar
 M:	mingo@redhat.com
 P:	H. Peter Anvin
 M:	hpa@zytor.com
+M:	x86@kernel.org
 L:	linux-kernel@vger.kernel.org
 T:	git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux-2.6-x86.git
 S:	Maintained
@@ -4908,11 +4978,11 @@ L:	zd1211-devs@lists.sourceforge.net (subscribers-only)
 S:	Maintained
 
 ZR36067 VIDEO FOR LINUX DRIVER
-P:	Ronald Bultje
-M:	rbultje@ronald.bitfreak.net
 L:	mjpeg-users@lists.sourceforge.net
+L:	linux-media@vger.kernel.org
 W:	http://mjpeg.sourceforge.net/driver-zoran/
-S:	Maintained
+T:	Mercurial http://linuxtv.org/hg/v4l-dvb
+S:	Odd Fixes
 
 ZS DECSTATION Z85C30 SERIAL DRIVER
 P:	Maciej W. Rozycki

+ 43 - 50
Makefile

@@ -1,8 +1,8 @@
 VERSION = 2
 PATCHLEVEL = 6
 SUBLEVEL = 29
-EXTRAVERSION = -rc1
-NAME = Erotic Pickled Herring
+EXTRAVERSION =
+NAME = Temporary Tasmanian Devil
 
 # *DOCUMENTATION*
 # To see a list of typical targets execute "make help"
@@ -213,6 +213,10 @@ endif
 # Where to locate arch specific headers
 hdr-arch  := $(SRCARCH)
 
+ifeq ($(ARCH),m68knommu)
+       hdr-arch  := m68k
+endif
+
 KCONFIG_CONFIG	?= .config
 
 # SHELL used by kbuild
@@ -385,6 +389,7 @@ PHONY += outputmakefile
 # output directory.
 outputmakefile:
 ifneq ($(KBUILD_SRC),)
+	$(Q)ln -fsn $(srctree) source
 	$(Q)$(CONFIG_SHELL) $(srctree)/scripts/mkmakefile \
 	    $(srctree) $(objtree) $(VERSION) $(PATCHLEVEL)
 endif
@@ -561,6 +566,12 @@ KBUILD_CFLAGS += $(call cc-option,-Wdeclaration-after-statement,)
 # disable pointer signed / unsigned warnings in gcc 4.0
 KBUILD_CFLAGS += $(call cc-option,-Wno-pointer-sign,)
 
+# disable invalid "can't wrap" optimzations for signed / pointers
+KBUILD_CFLAGS	+= $(call cc-option,-fwrapv)
+
+# revert to pre-gcc-4.4 behaviour of .eh_frame
+KBUILD_CFLAGS	+= $(call cc-option,-fno-dwarf2-cfi-asm)
+
 # Add user supplied CPPFLAGS, AFLAGS and CFLAGS as the last assignments
 # But warn user when we do so
 warn-assign = \
@@ -606,25 +617,20 @@ export	INSTALL_PATH ?= /boot
 MODLIB	= $(INSTALL_MOD_PATH)/lib/modules/$(KERNELRELEASE)
 export MODLIB
 
-strip-symbols := $(srctree)/scripts/strip-symbols \
-		 $(wildcard $(srctree)/arch/$(ARCH)/scripts/strip-symbols)
-
 #
-# INSTALL_MOD_STRIP, if defined, will cause modules to be stripped while
-# they get installed.  If INSTALL_MOD_STRIP is '1', then the default
-# options (see below) will be used.  Otherwise, INSTALL_MOD_STRIP will
-# be used as the option(s) to the objcopy command.
+#  INSTALL_MOD_STRIP, if defined, will cause modules to be
+#  stripped after they are installed.  If INSTALL_MOD_STRIP is '1', then
+#  the default option --strip-debug will be used.  Otherwise,
+#  INSTALL_MOD_STRIP will used as the options to the strip command.
+
 ifdef INSTALL_MOD_STRIP
 ifeq ($(INSTALL_MOD_STRIP),1)
-mod_strip_cmd = $(OBJCOPY) --strip-debug
-ifeq ($(CONFIG_KALLSYMS_ALL),$(CONFIG_KALLSYMS_STRIP_GENERATED))
-mod_strip_cmd += --wildcard $(addprefix --strip-symbols ,$(strip-symbols))
-endif
+mod_strip_cmd = $(STRIP) --strip-debug
 else
-mod_strip_cmd = $(OBJCOPY) $(INSTALL_MOD_STRIP)
+mod_strip_cmd = $(STRIP) $(INSTALL_MOD_STRIP)
 endif # INSTALL_MOD_STRIP=1
 else
-mod_strip_cmd = false
+mod_strip_cmd = true
 endif # INSTALL_MOD_STRIP
 export mod_strip_cmd
 
@@ -754,7 +760,6 @@ last_kallsyms := 2
 endif
 
 kallsyms.o := .tmp_kallsyms$(last_kallsyms).o
-kallsyms.h := $(wildcard include/config/kallsyms/*.h) $(wildcard include/config/kallsyms/*/*.h)
 
 define verify_kallsyms
 	$(Q)$(if $($(quiet)cmd_sysmap),                                      \
@@ -779,41 +784,24 @@ endef
 
 # Generate .S file with all kernel symbols
 quiet_cmd_kallsyms = KSYM    $@
-      cmd_kallsyms = { test $* -eq 0 || $(NM) -n $<; } \
-		     | $(KALLSYMS) $(if $(CONFIG_KALLSYMS_ALL),--all-symbols) >$@
-
-quiet_cmd_kstrip = STRIP   $@
-      cmd_kstrip = $(OBJCOPY) --wildcard $(addprefix --strip$(if $(CONFIG_RELOCATABLE),-unneeded)-symbols ,$(filter %/scripts/strip-symbols,$^)) $< $@
+      cmd_kallsyms = $(NM) -n $< | $(KALLSYMS) \
+                     $(if $(CONFIG_KALLSYMS_ALL),--all-symbols) > $@
 
-$(foreach n,0 1 2 3,.tmp_kallsyms$(n).o): KBUILD_AFLAGS += -Wa,--strip-local-absolute
-$(foreach n,0 1 2 3,.tmp_kallsyms$(n).o): %.o: %.S scripts FORCE
+.tmp_kallsyms1.o .tmp_kallsyms2.o .tmp_kallsyms3.o: %.o: %.S scripts FORCE
 	$(call if_changed_dep,as_o_S)
 
-ifeq ($(CONFIG_KALLSYMS_STRIP_GENERATED),y)
-strip-ext := .stripped
-endif
-
-.tmp_kallsyms%.S: .tmp_vmlinux%$(strip-ext) $(KALLSYMS) $(kallsyms.h)
+.tmp_kallsyms%.S: .tmp_vmlinux% $(KALLSYMS)
 	$(call cmd,kallsyms)
 
-# make -jN seems to have problems with intermediate files, see bug #3330.
-.SECONDARY: $(foreach n,1 2 3,.tmp_vmlinux$(n).stripped)
-.tmp_vmlinux%.stripped: .tmp_vmlinux% $(strip-symbols) $(kallsyms.h)
-	$(call cmd,kstrip)
-
-ifneq ($(CONFIG_DEBUG_INFO),y)
-.tmp_vmlinux%: LDFLAGS_vmlinux += -S
-endif
 # .tmp_vmlinux1 must be complete except kallsyms, so update vmlinux version
-.tmp_vmlinux%: $(vmlinux-lds) $(vmlinux-all) FORCE
-	$(if $(filter 1,$*),$(call if_changed_rule,ksym_ld),$(call if_changed,vmlinux__))
+.tmp_vmlinux1: $(vmlinux-lds) $(vmlinux-all) FORCE
+	$(call if_changed_rule,ksym_ld)
 
-.tmp_vmlinux0$(strip-ext):
-	$(Q)echo "placeholder" >$@
+.tmp_vmlinux2: $(vmlinux-lds) $(vmlinux-all) .tmp_kallsyms1.o FORCE
+	$(call if_changed,vmlinux__)
 
-.tmp_vmlinux1: .tmp_kallsyms0.o
-.tmp_vmlinux2: .tmp_kallsyms1.o
-.tmp_vmlinux3: .tmp_kallsyms2.o
+.tmp_vmlinux3: $(vmlinux-lds) $(vmlinux-all) .tmp_kallsyms2.o FORCE
+	$(call if_changed,vmlinux__)
 
 # Needs to visit scripts/ before $(KALLSYMS) can be used.
 $(KALLSYMS): scripts ;
@@ -922,12 +910,18 @@ localver = $(subst $(space),, $(string) \
 # and if the SCM is know a tag from the SCM is appended.
 # The appended tag is determined by the SCM used.
 #
-# Currently, only git is supported.
-# Other SCMs can edit scripts/setlocalversion and add the appropriate
-# checks as needed.
+# .scmversion is used when generating rpm packages so we do not loose
+# the version information from the SCM when we do the build of the kernel
+# from the copied source
 ifdef CONFIG_LOCALVERSION_AUTO
-	_localver-auto = $(shell $(CONFIG_SHELL) \
-	                  $(srctree)/scripts/setlocalversion $(srctree))
+
+ifeq ($(wildcard .scmversion),)
+        _localver-auto = $(shell $(CONFIG_SHELL) \
+                         $(srctree)/scripts/setlocalversion $(srctree))
+else
+        _localver-auto = $(shell cat .scmversion 2> /dev/null)
+endif
+
 	localver-auto  = $(LOCALVERSION)$(_localver-auto)
 endif
 
@@ -965,7 +959,6 @@ ifneq ($(KBUILD_SRC),)
 	    mkdir -p include2;                                          \
 	    ln -fsn $(srctree)/include/asm-$(SRCARCH) include2/asm;     \
 	fi
-	ln -fsn $(srctree) source
 endif
 
 # prepare2 creates a makefile if using a separate output directory
@@ -1556,7 +1549,7 @@ quiet_cmd_depmod = DEPMOD  $(KERNELRELEASE)
       cmd_depmod = \
 	if [ -r System.map -a -x $(DEPMOD) ]; then                              \
 		$(DEPMOD) -ae -F System.map                                     \
-		$(if $(strip $(INSTALL_MOD_PATH)), -b $(INSTALL_MOD_PATH) -r)   \
+		$(if $(strip $(INSTALL_MOD_PATH)), -b $(INSTALL_MOD_PATH) )     \
 		$(KERNELRELEASE);                                               \
 	fi
 

+ 1 - 1
README

@@ -188,7 +188,7 @@ CONFIGURING the kernel:
 			   values to random values.
 
    You can find more information on using the Linux kernel config tools
-   in Documentation/kbuild/make-configs.txt.
+   in Documentation/kbuild/kconfig.txt.
 
 	NOTES on "make config":
 	- having unnecessary drivers will make the kernel bigger, and can

+ 1 - 0
arch/alpha/Kconfig

@@ -8,6 +8,7 @@ config ALPHA
 	select HAVE_AOUT
 	select HAVE_IDE
 	select HAVE_OPROFILE
+	select HAVE_SYSCALL_WRAPPERS
 	help
 	  The Alpha is a 64-bit general-purpose processor designed and
 	  marketed by the Digital Equipment Corporation of blessed memory,

+ 6 - 11
arch/alpha/include/asm/bug.h

@@ -8,17 +8,12 @@
 
 /* ??? Would be nice to use .gprel32 here, but we can't be sure that the
    function loaded the GP, so this could fail in modules.  */
-static inline void ATTRIB_NORET __BUG(const char *file, int line)
-{
-	__asm__ __volatile__(
-		"call_pal %0  # bugchk\n\t"
-		".long %1\n\t.8byte %2"
-		       : : "i" (PAL_bugchk), "i"(line), "i"(file));
-	for ( ; ; )
-		;
-}
-
-#define BUG() __BUG(__FILE__, __LINE__)
+#define BUG()	do {							\
+	__asm__ __volatile__(						\
+		"call_pal %0  # bugchk\n\t"				\
+		".long %1\n\t.8byte %2"					\
+		: : "i"(PAL_bugchk), "i"(__LINE__), "i"(__FILE__));	\
+	for ( ; ; ); } while (0)
 
 #define HAVE_ARCH_BUG
 #endif

+ 2 - 0
arch/alpha/include/asm/dma-mapping.h

@@ -29,6 +29,8 @@
 
 #else	/* no PCI - no IOMMU. */
 
+#include <asm/io.h>	/* for virt_to_phys() */
+
 struct scatterlist;
 void *dma_alloc_coherent(struct device *dev, size_t size,
 			 dma_addr_t *dma_handle, gfp_t gfp);

+ 3 - 0
arch/alpha/include/asm/socket.h

@@ -62,6 +62,9 @@
 
 #define SO_MARK			36
 
+#define SO_TIMESTAMPING		37
+#define SCM_TIMESTAMPING	SO_TIMESTAMPING
+
 /* O_NONBLOCK clashes with the bits used for socket types.  Therefore we
  * have to define SOCK_NONBLOCK to a different value here.
  */

+ 2 - 0
arch/alpha/include/asm/statfs.h

@@ -1,6 +1,8 @@
 #ifndef _ALPHA_STATFS_H
 #define _ALPHA_STATFS_H
 
+#include <linux/types.h>
+
 /* Alpha is the only 64-bit platform with 32-bit statfs. And doesn't
    even seem to implement statfs64 */
 #define __statfs_word __u32

+ 1 - 1
arch/alpha/include/asm/swab.h

@@ -1,7 +1,7 @@
 #ifndef _ALPHA_SWAB_H
 #define _ALPHA_SWAB_H
 
-#include <asm/types.h>
+#include <linux/types.h>
 #include <linux/compiler.h>
 #include <asm/compiler.h>
 

+ 1 - 1
arch/alpha/kernel/entry.S

@@ -933,7 +933,7 @@ sys_execve:
 osf_sigprocmask:
 	.prologue 0
 	mov	$sp, $18
-	jmp	$31, do_osf_sigprocmask
+	jmp	$31, sys_osf_sigprocmask
 .end osf_sigprocmask
 
 	.align	4

+ 1 - 1
arch/alpha/kernel/irq.c

@@ -90,7 +90,7 @@ show_interrupts(struct seq_file *p, void *v)
 		seq_printf(p, "%10u ", kstat_irqs(irq));
 #else
 		for_each_online_cpu(j)
-			seq_printf(p, "%10u ", kstat_cpu(j).irqs[irq]);
+			seq_printf(p, "%10u ", kstat_irqs_cpu(irq, j));
 #endif
 		seq_printf(p, " %14s", irq_desc[irq].chip->typename);
 		seq_printf(p, "  %c%s",

+ 1 - 1
arch/alpha/kernel/irq_alpha.c

@@ -64,7 +64,7 @@ do_entInt(unsigned long type, unsigned long vector,
 		smp_percpu_timer_interrupt(regs);
 		cpu = smp_processor_id();
 		if (cpu != boot_cpuid) {
-		        kstat_cpu(cpu).irqs[RTC_IRQ]++;
+		        kstat_incr_irqs_this_cpu(RTC_IRQ, irq_to_desc(RTC_IRQ));
 		} else {
 			handle_irq(RTC_IRQ);
 		}

+ 50 - 63
arch/alpha/kernel/osf_sys.c

@@ -54,8 +54,7 @@ extern int do_pipe(int *);
  * identical to OSF as we don't return 0 on success, but doing otherwise
  * would require changes to libc.  Hopefully this is good enough.
  */
-asmlinkage unsigned long
-osf_brk(unsigned long brk)
+SYSCALL_DEFINE1(osf_brk, unsigned long, brk)
 {
 	unsigned long retval = sys_brk(brk);
 	if (brk && brk != retval)
@@ -66,9 +65,9 @@ osf_brk(unsigned long brk)
 /*
  * This is pure guess-work..
  */
-asmlinkage int
-osf_set_program_attributes(unsigned long text_start, unsigned long text_len,
-			   unsigned long bss_start, unsigned long bss_len)
+SYSCALL_DEFINE4(osf_set_program_attributes, unsigned long, text_start,
+		unsigned long, text_len, unsigned long, bss_start,
+		unsigned long, bss_len)
 {
 	struct mm_struct *mm;
 
@@ -146,9 +145,9 @@ Efault:
 	return -EFAULT;
 }
 
-asmlinkage int
-osf_getdirentries(unsigned int fd, struct osf_dirent __user *dirent,
-		  unsigned int count, long __user *basep)
+SYSCALL_DEFINE4(osf_getdirentries, unsigned int, fd,
+		struct osf_dirent __user *, dirent, unsigned int, count,
+		long __user *, basep)
 {
 	int error;
 	struct file *file;
@@ -177,9 +176,9 @@ osf_getdirentries(unsigned int fd, struct osf_dirent __user *dirent,
 
 #undef NAME_OFFSET
 
-asmlinkage unsigned long
-osf_mmap(unsigned long addr, unsigned long len, unsigned long prot,
-	 unsigned long flags, unsigned long fd, unsigned long off)
+SYSCALL_DEFINE6(osf_mmap, unsigned long, addr, unsigned long, len,
+		unsigned long, prot, unsigned long, flags, unsigned long, fd,
+		unsigned long, off)
 {
 	struct file *file = NULL;
 	unsigned long ret = -EBADF;
@@ -254,8 +253,8 @@ do_osf_statfs(struct dentry * dentry, struct osf_statfs __user *buffer,
 	return error;	
 }
 
-asmlinkage int
-osf_statfs(char __user *pathname, struct osf_statfs __user *buffer, unsigned long bufsiz)
+SYSCALL_DEFINE3(osf_statfs, char __user *, pathname,
+		struct osf_statfs __user *, buffer, unsigned long, bufsiz)
 {
 	struct path path;
 	int retval;
@@ -268,8 +267,8 @@ osf_statfs(char __user *pathname, struct osf_statfs __user *buffer, unsigned lon
 	return retval;
 }
 
-asmlinkage int
-osf_fstatfs(unsigned long fd, struct osf_statfs __user *buffer, unsigned long bufsiz)
+SYSCALL_DEFINE3(osf_fstatfs, unsigned long, fd,
+		struct osf_statfs __user *, buffer, unsigned long, bufsiz)
 {
 	struct file *file;
 	int retval;
@@ -368,8 +367,8 @@ osf_procfs_mount(char *dirname, struct procfs_args __user *args, int flags)
 	return do_mount("", dirname, "proc", flags, NULL);
 }
 
-asmlinkage int
-osf_mount(unsigned long typenr, char __user *path, int flag, void __user *data)
+SYSCALL_DEFINE4(osf_mount, unsigned long, typenr, char __user *, path,
+		int, flag, void __user *, data)
 {
 	int retval = -EINVAL;
 	char *name;
@@ -399,8 +398,7 @@ osf_mount(unsigned long typenr, char __user *path, int flag, void __user *data)
 	return retval;
 }
 
-asmlinkage int
-osf_utsname(char __user *name)
+SYSCALL_DEFINE1(osf_utsname, char __user *, name)
 {
 	int error;
 
@@ -423,14 +421,12 @@ osf_utsname(char __user *name)
 	return error;
 }
 
-asmlinkage unsigned long
-sys_getpagesize(void)
+SYSCALL_DEFINE0(getpagesize)
 {
 	return PAGE_SIZE;
 }
 
-asmlinkage unsigned long
-sys_getdtablesize(void)
+SYSCALL_DEFINE0(getdtablesize)
 {
 	return sysctl_nr_open;
 }
@@ -438,8 +434,7 @@ sys_getdtablesize(void)
 /*
  * For compatibility with OSF/1 only.  Use utsname(2) instead.
  */
-asmlinkage int
-osf_getdomainname(char __user *name, int namelen)
+SYSCALL_DEFINE2(osf_getdomainname, char __user *, name, int, namelen)
 {
 	unsigned len;
 	int i;
@@ -527,8 +522,8 @@ enum pl_code {
 	PL_DEL = 5, PL_FDEL = 6
 };
 
-asmlinkage long
-osf_proplist_syscall(enum pl_code code, union pl_args __user *args)
+SYSCALL_DEFINE2(osf_proplist_syscall, enum pl_code, code,
+		union pl_args __user *, args)
 {
 	long error;
 	int __user *min_buf_size_ptr;
@@ -567,8 +562,8 @@ osf_proplist_syscall(enum pl_code code, union pl_args __user *args)
 	return error;
 }
 
-asmlinkage int
-osf_sigstack(struct sigstack __user *uss, struct sigstack __user *uoss)
+SYSCALL_DEFINE2(osf_sigstack, struct sigstack __user *, uss,
+		struct sigstack __user *, uoss)
 {
 	unsigned long usp = rdusp();
 	unsigned long oss_sp = current->sas_ss_sp + current->sas_ss_size;
@@ -608,8 +603,7 @@ osf_sigstack(struct sigstack __user *uss, struct sigstack __user *uoss)
 	return error;
 }
 
-asmlinkage long
-osf_sysinfo(int command, char __user *buf, long count)
+SYSCALL_DEFINE3(osf_sysinfo, int, command, char __user *, buf, long, count)
 {
 	char *sysinfo_table[] = {
 		utsname()->sysname,
@@ -647,9 +641,8 @@ osf_sysinfo(int command, char __user *buf, long count)
 	return err;
 }
 
-asmlinkage unsigned long
-osf_getsysinfo(unsigned long op, void __user *buffer, unsigned long nbytes,
-	       int __user *start, void __user *arg)
+SYSCALL_DEFINE5(osf_getsysinfo, unsigned long, op, void __user *, buffer,
+		unsigned long, nbytes, int __user *, start, void __user *, arg)
 {
 	unsigned long w;
 	struct percpu_struct *cpu;
@@ -705,9 +698,8 @@ osf_getsysinfo(unsigned long op, void __user *buffer, unsigned long nbytes,
 	return -EOPNOTSUPP;
 }
 
-asmlinkage unsigned long
-osf_setsysinfo(unsigned long op, void __user *buffer, unsigned long nbytes,
-	       int __user *start, void __user *arg)
+SYSCALL_DEFINE5(osf_setsysinfo, unsigned long, op, void __user *, buffer,
+		unsigned long, nbytes, int __user *, start, void __user *, arg)
 {
 	switch (op) {
 	case SSI_IEEE_FP_CONTROL: {
@@ -880,8 +872,8 @@ jiffies_to_timeval32(unsigned long jiffies, struct timeval32 *value)
 	value->tv_sec = jiffies / HZ;
 }
 
-asmlinkage int
-osf_gettimeofday(struct timeval32 __user *tv, struct timezone __user *tz)
+SYSCALL_DEFINE2(osf_gettimeofday, struct timeval32 __user *, tv,
+		struct timezone __user *, tz)
 {
 	if (tv) {
 		struct timeval ktv;
@@ -896,8 +888,8 @@ osf_gettimeofday(struct timeval32 __user *tv, struct timezone __user *tz)
 	return 0;
 }
 
-asmlinkage int
-osf_settimeofday(struct timeval32 __user *tv, struct timezone __user *tz)
+SYSCALL_DEFINE2(osf_settimeofday, struct timeval32 __user *, tv,
+		struct timezone __user *, tz)
 {
 	struct timespec kts;
 	struct timezone ktz;
@@ -916,8 +908,7 @@ osf_settimeofday(struct timeval32 __user *tv, struct timezone __user *tz)
 	return do_sys_settimeofday(tv ? &kts : NULL, tz ? &ktz : NULL);
 }
 
-asmlinkage int
-osf_getitimer(int which, struct itimerval32 __user *it)
+SYSCALL_DEFINE2(osf_getitimer, int, which, struct itimerval32 __user *, it)
 {
 	struct itimerval kit;
 	int error;
@@ -929,8 +920,8 @@ osf_getitimer(int which, struct itimerval32 __user *it)
 	return error;
 }
 
-asmlinkage int
-osf_setitimer(int which, struct itimerval32 __user *in, struct itimerval32 __user *out)
+SYSCALL_DEFINE3(osf_setitimer, int, which, struct itimerval32 __user *, in,
+		struct itimerval32 __user *, out)
 {
 	struct itimerval kin, kout;
 	int error;
@@ -952,8 +943,8 @@ osf_setitimer(int which, struct itimerval32 __user *in, struct itimerval32 __use
 
 }
 
-asmlinkage int
-osf_utimes(char __user *filename, struct timeval32 __user *tvs)
+SYSCALL_DEFINE2(osf_utimes, char __user *, filename,
+		struct timeval32 __user *, tvs)
 {
 	struct timespec tv[2];
 
@@ -979,9 +970,8 @@ osf_utimes(char __user *filename, struct timeval32 __user *tvs)
 #define MAX_SELECT_SECONDS \
 	((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1)
 
-asmlinkage int
-osf_select(int n, fd_set __user *inp, fd_set __user *outp, fd_set __user *exp,
-	   struct timeval32 __user *tvp)
+SYSCALL_DEFINE5(osf_select, int, n, fd_set __user *, inp, fd_set __user *, outp,
+		fd_set __user *, exp, struct timeval32 __user *, tvp)
 {
 	struct timespec end_time, *to = NULL;
 	if (tvp) {
@@ -1026,8 +1016,7 @@ struct rusage32 {
 	long	ru_nivcsw;		/* involuntary " */
 };
 
-asmlinkage int
-osf_getrusage(int who, struct rusage32 __user *ru)
+SYSCALL_DEFINE2(osf_getrusage, int, who, struct rusage32 __user *, ru)
 {
 	struct rusage32 r;
 
@@ -1053,9 +1042,8 @@ osf_getrusage(int who, struct rusage32 __user *ru)
 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
 }
 
-asmlinkage long
-osf_wait4(pid_t pid, int __user *ustatus, int options,
-	  struct rusage32 __user *ur)
+SYSCALL_DEFINE4(osf_wait4, pid_t, pid, int __user *, ustatus, int, options,
+		struct rusage32 __user *, ur)
 {
 	struct rusage r;
 	long ret, err;
@@ -1101,8 +1089,8 @@ osf_wait4(pid_t pid, int __user *ustatus, int options,
  * seems to be a timeval pointer, and I suspect the second
  * one is the time remaining.. Ho humm.. No documentation.
  */
-asmlinkage int
-osf_usleep_thread(struct timeval32 __user *sleep, struct timeval32 __user *remain)
+SYSCALL_DEFINE2(osf_usleep_thread, struct timeval32 __user *, sleep,
+		struct timeval32 __user *, remain)
 {
 	struct timeval tmp;
 	unsigned long ticks;
@@ -1155,8 +1143,7 @@ struct timex32 {
 	int  :32; int  :32; int  :32; int  :32;
 };
 
-asmlinkage int
-sys_old_adjtimex(struct timex32 __user *txc_p)
+SYSCALL_DEFINE1(old_adjtimex, struct timex32 __user *, txc_p)
 {
         struct timex txc;
 	int ret;
@@ -1267,8 +1254,8 @@ osf_fix_iov_len(const struct iovec __user *iov, unsigned long count)
 	return 0;
 }
 
-asmlinkage ssize_t
-osf_readv(unsigned long fd, const struct iovec __user * vector, unsigned long count)
+SYSCALL_DEFINE3(osf_readv, unsigned long, fd,
+		const struct iovec __user *, vector, unsigned long, count)
 {
 	if (unlikely(personality(current->personality) == PER_OSF4))
 		if (osf_fix_iov_len(vector, count))
@@ -1276,8 +1263,8 @@ osf_readv(unsigned long fd, const struct iovec __user * vector, unsigned long co
 	return sys_readv(fd, vector, count);
 }
 
-asmlinkage ssize_t
-osf_writev(unsigned long fd, const struct iovec __user * vector, unsigned long count)
+SYSCALL_DEFINE3(osf_writev, unsigned long, fd,
+		const struct iovec __user *, vector, unsigned long, count)
 {
 	if (unlikely(personality(current->personality) == PER_OSF4))
 		if (osf_fix_iov_len(vector, count))

+ 2 - 1
arch/alpha/kernel/pci-noop.c

@@ -109,7 +109,8 @@ sys_pciconfig_write(unsigned long bus, unsigned long dfn,
 /* Stubs for the routines in pci_iommu.c: */
 
 void *
-pci_alloc_consistent(struct pci_dev *pdev, size_t size, dma_addr_t *dma_addrp)
+__pci_alloc_consistent(struct pci_dev *pdev, size_t size,
+		       dma_addr_t *dma_addrp, gfp_t gfp)
 {
 	return NULL;
 }

+ 4 - 4
arch/alpha/kernel/process.c

@@ -93,8 +93,8 @@ common_shutdown_1(void *generic_ptr)
 	if (cpuid != boot_cpuid) {
 		flags |= 0x00040000UL; /* "remain halted" */
 		*pflags = flags;
-		cpu_clear(cpuid, cpu_present_map);
-		cpu_clear(cpuid, cpu_possible_map);
+		set_cpu_present(cpuid, false);
+		set_cpu_possible(cpuid, false);
 		halt();
 	}
 #endif
@@ -120,8 +120,8 @@ common_shutdown_1(void *generic_ptr)
 
 #ifdef CONFIG_SMP
 	/* Wait for the secondaries to halt. */
-	cpu_clear(boot_cpuid, cpu_present_map);
-	cpu_clear(boot_cpuid, cpu_possible_map);
+	set_cpu_present(boot_cpuid, false);
+	set_cpu_possible(boot_cpuid, false);
 	while (cpus_weight(cpu_present_map))
 		barrier();
 #endif

+ 9 - 9
arch/alpha/kernel/signal.c

@@ -19,6 +19,7 @@
 #include <linux/tty.h>
 #include <linux/binfmts.h>
 #include <linux/bitops.h>
+#include <linux/syscalls.h>
 
 #include <asm/uaccess.h>
 #include <asm/sigcontext.h>
@@ -51,8 +52,8 @@ static void do_signal(struct pt_regs *, struct switch_stack *,
  * Note that we don't need to acquire the kernel lock for SMP
  * operation, as all of this is local to this thread.
  */
-asmlinkage unsigned long
-do_osf_sigprocmask(int how, unsigned long newmask, struct pt_regs *regs)
+SYSCALL_DEFINE3(osf_sigprocmask, int, how, unsigned long, newmask,
+		struct pt_regs *, regs)
 {
 	unsigned long oldmask = -EINVAL;
 
@@ -81,9 +82,9 @@ do_osf_sigprocmask(int how, unsigned long newmask, struct pt_regs *regs)
 	return oldmask;
 }
 
-asmlinkage int 
-osf_sigaction(int sig, const struct osf_sigaction __user *act,
-	      struct osf_sigaction __user *oact)
+SYSCALL_DEFINE3(osf_sigaction, int, sig,
+		const struct osf_sigaction __user *, act,
+		struct osf_sigaction __user *, oact)
 {
 	struct k_sigaction new_ka, old_ka;
 	int ret;
@@ -112,10 +113,9 @@ osf_sigaction(int sig, const struct osf_sigaction __user *act,
 	return ret;
 }
 
-asmlinkage long
-sys_rt_sigaction(int sig, const struct sigaction __user *act,
-		 struct sigaction __user *oact,
-		 size_t sigsetsize, void __user *restorer)
+SYSCALL_DEFINE5(rt_sigaction, int, sig, const struct sigaction __user *, act,
+		struct sigaction __user *, oact,
+		size_t, sigsetsize, void __user *, restorer)
 {
 	struct k_sigaction new_ka, old_ka;
 	int ret;

Энэ ялгаанд хэт олон файл өөрчлөгдсөн тул зарим файлыг харуулаагүй болно