|
@@ -117,65 +117,7 @@ ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
|
|
|
return res & mask;
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * Now the non-atomic variants. We let the compiler handle all
|
|
|
- * optimisations for these. These are all _native_ endian.
|
|
|
- */
|
|
|
-static inline void __set_bit(int nr, volatile unsigned long *p)
|
|
|
-{
|
|
|
- p[nr >> 5] |= (1UL << (nr & 31));
|
|
|
-}
|
|
|
-
|
|
|
-static inline void __clear_bit(int nr, volatile unsigned long *p)
|
|
|
-{
|
|
|
- p[nr >> 5] &= ~(1UL << (nr & 31));
|
|
|
-}
|
|
|
-
|
|
|
-static inline void __change_bit(int nr, volatile unsigned long *p)
|
|
|
-{
|
|
|
- p[nr >> 5] ^= (1UL << (nr & 31));
|
|
|
-}
|
|
|
-
|
|
|
-static inline int __test_and_set_bit(int nr, volatile unsigned long *p)
|
|
|
-{
|
|
|
- unsigned long oldval, mask = 1UL << (nr & 31);
|
|
|
-
|
|
|
- p += nr >> 5;
|
|
|
-
|
|
|
- oldval = *p;
|
|
|
- *p = oldval | mask;
|
|
|
- return oldval & mask;
|
|
|
-}
|
|
|
-
|
|
|
-static inline int __test_and_clear_bit(int nr, volatile unsigned long *p)
|
|
|
-{
|
|
|
- unsigned long oldval, mask = 1UL << (nr & 31);
|
|
|
-
|
|
|
- p += nr >> 5;
|
|
|
-
|
|
|
- oldval = *p;
|
|
|
- *p = oldval & ~mask;
|
|
|
- return oldval & mask;
|
|
|
-}
|
|
|
-
|
|
|
-static inline int __test_and_change_bit(int nr, volatile unsigned long *p)
|
|
|
-{
|
|
|
- unsigned long oldval, mask = 1UL << (nr & 31);
|
|
|
-
|
|
|
- p += nr >> 5;
|
|
|
-
|
|
|
- oldval = *p;
|
|
|
- *p = oldval ^ mask;
|
|
|
- return oldval & mask;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * This routine doesn't need to be atomic.
|
|
|
- */
|
|
|
-static inline int __test_bit(int nr, const volatile unsigned long * p)
|
|
|
-{
|
|
|
- return (p[nr >> 5] >> (nr & 31)) & 1UL;
|
|
|
-}
|
|
|
+#include <asm-generic/bitops/non-atomic.h>
|
|
|
|
|
|
/*
|
|
|
* A note about Endian-ness.
|
|
@@ -261,7 +203,6 @@ extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
|
|
|
#define test_and_set_bit(nr,p) ATOMIC_BITOP_LE(test_and_set_bit,nr,p)
|
|
|
#define test_and_clear_bit(nr,p) ATOMIC_BITOP_LE(test_and_clear_bit,nr,p)
|
|
|
#define test_and_change_bit(nr,p) ATOMIC_BITOP_LE(test_and_change_bit,nr,p)
|
|
|
-#define test_bit(nr,p) __test_bit(nr,p)
|
|
|
#define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
|
|
|
#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
|
|
|
#define find_first_bit(p,sz) _find_first_bit_le(p,sz)
|
|
@@ -280,7 +221,6 @@ extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
|
|
|
#define test_and_set_bit(nr,p) ATOMIC_BITOP_BE(test_and_set_bit,nr,p)
|
|
|
#define test_and_clear_bit(nr,p) ATOMIC_BITOP_BE(test_and_clear_bit,nr,p)
|
|
|
#define test_and_change_bit(nr,p) ATOMIC_BITOP_BE(test_and_change_bit,nr,p)
|
|
|
-#define test_bit(nr,p) __test_bit(nr,p)
|
|
|
#define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
|
|
|
#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
|
|
|
#define find_first_bit(p,sz) _find_first_bit_be(p,sz)
|
|
@@ -292,55 +232,10 @@ extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
|
|
|
|
|
|
#if __LINUX_ARM_ARCH__ < 5
|
|
|
|
|
|
-/*
|
|
|
- * ffz = Find First Zero in word. Undefined if no zero exists,
|
|
|
- * so code should check against ~0UL first..
|
|
|
- */
|
|
|
-static inline unsigned long ffz(unsigned long word)
|
|
|
-{
|
|
|
- int k;
|
|
|
-
|
|
|
- word = ~word;
|
|
|
- k = 31;
|
|
|
- if (word & 0x0000ffff) { k -= 16; word <<= 16; }
|
|
|
- if (word & 0x00ff0000) { k -= 8; word <<= 8; }
|
|
|
- if (word & 0x0f000000) { k -= 4; word <<= 4; }
|
|
|
- if (word & 0x30000000) { k -= 2; word <<= 2; }
|
|
|
- if (word & 0x40000000) { k -= 1; }
|
|
|
- return k;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * ffz = Find First Zero in word. Undefined if no zero exists,
|
|
|
- * so code should check against ~0UL first..
|
|
|
- */
|
|
|
-static inline unsigned long __ffs(unsigned long word)
|
|
|
-{
|
|
|
- int k;
|
|
|
-
|
|
|
- k = 31;
|
|
|
- if (word & 0x0000ffff) { k -= 16; word <<= 16; }
|
|
|
- if (word & 0x00ff0000) { k -= 8; word <<= 8; }
|
|
|
- if (word & 0x0f000000) { k -= 4; word <<= 4; }
|
|
|
- if (word & 0x30000000) { k -= 2; word <<= 2; }
|
|
|
- if (word & 0x40000000) { k -= 1; }
|
|
|
- return k;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * fls: find last bit set.
|
|
|
- */
|
|
|
-
|
|
|
-#define fls(x) generic_fls(x)
|
|
|
-#define fls64(x) generic_fls64(x)
|
|
|
-
|
|
|
-/*
|
|
|
- * ffs: find first bit set. This is defined the same way as
|
|
|
- * the libc and compiler builtin ffs routines, therefore
|
|
|
- * differs in spirit from the above ffz (man ffs).
|
|
|
- */
|
|
|
-
|
|
|
-#define ffs(x) generic_ffs(x)
|
|
|
+#include <asm-generic/bitops/ffz.h>
|
|
|
+#include <asm-generic/bitops/__ffs.h>
|
|
|
+#include <asm-generic/bitops/fls.h>
|
|
|
+#include <asm-generic/bitops/ffs.h>
|
|
|
|
|
|
#else
|
|
|
|
|
@@ -381,37 +276,16 @@ static inline int constant_fls(int x)
|
|
|
#define fls(x) \
|
|
|
( __builtin_constant_p(x) ? constant_fls(x) : \
|
|
|
({ int __r; asm("clz\t%0, %1" : "=r"(__r) : "r"(x) : "cc"); 32-__r; }) )
|
|
|
-#define fls64(x) generic_fls64(x)
|
|
|
#define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
|
|
|
#define __ffs(x) (ffs(x) - 1)
|
|
|
#define ffz(x) __ffs( ~(x) )
|
|
|
|
|
|
#endif
|
|
|
|
|
|
-/*
|
|
|
- * Find first bit set in a 168-bit bitmap, where the first
|
|
|
- * 128 bits are unlikely to be set.
|
|
|
- */
|
|
|
-static inline int sched_find_first_bit(const unsigned long *b)
|
|
|
-{
|
|
|
- unsigned long v;
|
|
|
- unsigned int off;
|
|
|
-
|
|
|
- for (off = 0; v = b[off], off < 4; off++) {
|
|
|
- if (unlikely(v))
|
|
|
- break;
|
|
|
- }
|
|
|
- return __ffs(v) + off * 32;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * hweightN: returns the hamming weight (i.e. the number
|
|
|
- * of bits set) of a N-bit word
|
|
|
- */
|
|
|
+#include <asm-generic/bitops/fls64.h>
|
|
|
|
|
|
-#define hweight32(x) generic_hweight32(x)
|
|
|
-#define hweight16(x) generic_hweight16(x)
|
|
|
-#define hweight8(x) generic_hweight8(x)
|
|
|
+#include <asm-generic/bitops/sched.h>
|
|
|
+#include <asm-generic/bitops/hweight.h>
|
|
|
|
|
|
/*
|
|
|
* Ext2 is defined to use little-endian byte ordering.
|
|
@@ -426,7 +300,7 @@ static inline int sched_find_first_bit(const unsigned long *b)
|
|
|
#define ext2_clear_bit_atomic(lock,nr,p) \
|
|
|
test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
|
|
|
#define ext2_test_bit(nr,p) \
|
|
|
- __test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
|
|
|
+ test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
|
|
|
#define ext2_find_first_zero_bit(p,sz) \
|
|
|
_find_first_zero_bit_le(p,sz)
|
|
|
#define ext2_find_next_zero_bit(p,sz,off) \
|
|
@@ -439,7 +313,7 @@ static inline int sched_find_first_bit(const unsigned long *b)
|
|
|
#define minix_set_bit(nr,p) \
|
|
|
__set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
|
|
|
#define minix_test_bit(nr,p) \
|
|
|
- __test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
|
|
|
+ test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
|
|
|
#define minix_test_and_set_bit(nr,p) \
|
|
|
__test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
|
|
|
#define minix_test_and_clear_bit(nr,p) \
|