|
@@ -25,17 +25,13 @@
|
|
|
#include <linux/mm.h>
|
|
|
#include <asm/page.h>
|
|
|
#include <asm/pgtable.h>
|
|
|
-#include <irq_vectors.h>
|
|
|
#include "lg.h"
|
|
|
|
|
|
-/*H:120 This is the core hypercall routine: where the Guest gets what it
|
|
|
- * wants. Or gets killed. Or, in the case of LHCALL_CRASH, both.
|
|
|
- *
|
|
|
- * Remember from the Guest: %eax == which call to make, and the arguments are
|
|
|
- * packed into %edx, %ebx and %ecx if needed. */
|
|
|
-static void do_hcall(struct lguest *lg, struct lguest_regs *regs)
|
|
|
+/*H:120 This is the core hypercall routine: where the Guest gets what it wants.
|
|
|
+ * Or gets killed. Or, in the case of LHCALL_CRASH, both. */
|
|
|
+static void do_hcall(struct lguest *lg, struct hcall_args *args)
|
|
|
{
|
|
|
- switch (regs->eax) {
|
|
|
+ switch (args->arg0) {
|
|
|
case LHCALL_FLUSH_ASYNC:
|
|
|
/* This call does nothing, except by breaking out of the Guest
|
|
|
* it makes us process all the asynchronous hypercalls. */
|
|
@@ -51,7 +47,7 @@ static void do_hcall(struct lguest *lg, struct lguest_regs *regs)
|
|
|
char msg[128];
|
|
|
/* If the lgread fails, it will call kill_guest() itself; the
|
|
|
* kill_guest() with the message will be ignored. */
|
|
|
- lgread(lg, msg, regs->edx, sizeof(msg));
|
|
|
+ lgread(lg, msg, args->arg1, sizeof(msg));
|
|
|
msg[sizeof(msg)-1] = '\0';
|
|
|
kill_guest(lg, "CRASH: %s", msg);
|
|
|
break;
|
|
@@ -59,7 +55,7 @@ static void do_hcall(struct lguest *lg, struct lguest_regs *regs)
|
|
|
case LHCALL_FLUSH_TLB:
|
|
|
/* FLUSH_TLB comes in two flavors, depending on the
|
|
|
* argument: */
|
|
|
- if (regs->edx)
|
|
|
+ if (args->arg1)
|
|
|
guest_pagetable_clear_all(lg);
|
|
|
else
|
|
|
guest_pagetable_flush_user(lg);
|
|
@@ -71,55 +67,47 @@ static void do_hcall(struct lguest *lg, struct lguest_regs *regs)
|
|
|
* it here. This can legitimately fail, since we currently
|
|
|
* place a limit on the number of DMA pools a Guest can have.
|
|
|
* So we return true or false from this call. */
|
|
|
- regs->eax = bind_dma(lg, regs->edx, regs->ebx,
|
|
|
- regs->ecx >> 8, regs->ecx & 0xFF);
|
|
|
+ args->arg0 = bind_dma(lg, args->arg1, args->arg2,
|
|
|
+ args->arg3 >> 8, args->arg3 & 0xFF);
|
|
|
break;
|
|
|
|
|
|
/* All these calls simply pass the arguments through to the right
|
|
|
* routines. */
|
|
|
case LHCALL_SEND_DMA:
|
|
|
- send_dma(lg, regs->edx, regs->ebx);
|
|
|
- break;
|
|
|
- case LHCALL_LOAD_GDT:
|
|
|
- load_guest_gdt(lg, regs->edx, regs->ebx);
|
|
|
- break;
|
|
|
- case LHCALL_LOAD_IDT_ENTRY:
|
|
|
- load_guest_idt_entry(lg, regs->edx, regs->ebx, regs->ecx);
|
|
|
+ send_dma(lg, args->arg1, args->arg2);
|
|
|
break;
|
|
|
case LHCALL_NEW_PGTABLE:
|
|
|
- guest_new_pagetable(lg, regs->edx);
|
|
|
+ guest_new_pagetable(lg, args->arg1);
|
|
|
break;
|
|
|
case LHCALL_SET_STACK:
|
|
|
- guest_set_stack(lg, regs->edx, regs->ebx, regs->ecx);
|
|
|
+ guest_set_stack(lg, args->arg1, args->arg2, args->arg3);
|
|
|
break;
|
|
|
case LHCALL_SET_PTE:
|
|
|
- guest_set_pte(lg, regs->edx, regs->ebx, mkgpte(regs->ecx));
|
|
|
+ guest_set_pte(lg, args->arg1, args->arg2, mkgpte(args->arg3));
|
|
|
break;
|
|
|
case LHCALL_SET_PMD:
|
|
|
- guest_set_pmd(lg, regs->edx, regs->ebx);
|
|
|
- break;
|
|
|
- case LHCALL_LOAD_TLS:
|
|
|
- guest_load_tls(lg, regs->edx);
|
|
|
+ guest_set_pmd(lg, args->arg1, args->arg2);
|
|
|
break;
|
|
|
case LHCALL_SET_CLOCKEVENT:
|
|
|
- guest_set_clockevent(lg, regs->edx);
|
|
|
+ guest_set_clockevent(lg, args->arg1);
|
|
|
break;
|
|
|
-
|
|
|
case LHCALL_TS:
|
|
|
/* This sets the TS flag, as we saw used in run_guest(). */
|
|
|
- lg->ts = regs->edx;
|
|
|
+ lg->ts = args->arg1;
|
|
|
break;
|
|
|
case LHCALL_HALT:
|
|
|
/* Similarly, this sets the halted flag for run_guest(). */
|
|
|
lg->halted = 1;
|
|
|
break;
|
|
|
default:
|
|
|
- kill_guest(lg, "Bad hypercall %li\n", regs->eax);
|
|
|
+ if (lguest_arch_do_hcall(lg, args))
|
|
|
+ kill_guest(lg, "Bad hypercall %li\n", args->arg0);
|
|
|
}
|
|
|
}
|
|
|
+/*:*/
|
|
|
|
|
|
-/* Asynchronous hypercalls are easy: we just look in the array in the Guest's
|
|
|
- * "struct lguest_data" and see if there are any new ones marked "ready".
|
|
|
+/*H:124 Asynchronous hypercalls are easy: we just look in the array in the
|
|
|
+ * Guest's "struct lguest_data" to see if any new ones are marked "ready".
|
|
|
*
|
|
|
* We are careful to do these in order: obviously we respect the order the
|
|
|
* Guest put them in the ring, but we also promise the Guest that they will
|
|
@@ -134,10 +122,9 @@ static void do_async_hcalls(struct lguest *lg)
|
|
|
if (copy_from_user(&st, &lg->lguest_data->hcall_status, sizeof(st)))
|
|
|
return;
|
|
|
|
|
|
-
|
|
|
/* We process "struct lguest_data"s hcalls[] ring once. */
|
|
|
for (i = 0; i < ARRAY_SIZE(st); i++) {
|
|
|
- struct lguest_regs regs;
|
|
|
+ struct hcall_args args;
|
|
|
/* We remember where we were up to from last time. This makes
|
|
|
* sure that the hypercalls are done in the order the Guest
|
|
|
* places them in the ring. */
|
|
@@ -152,18 +139,16 @@ static void do_async_hcalls(struct lguest *lg)
|
|
|
if (++lg->next_hcall == LHCALL_RING_SIZE)
|
|
|
lg->next_hcall = 0;
|
|
|
|
|
|
- /* We copy the hypercall arguments into a fake register
|
|
|
- * structure. This makes life simple for do_hcall(). */
|
|
|
- if (get_user(regs.eax, &lg->lguest_data->hcalls[n].eax)
|
|
|
- || get_user(regs.edx, &lg->lguest_data->hcalls[n].edx)
|
|
|
- || get_user(regs.ecx, &lg->lguest_data->hcalls[n].ecx)
|
|
|
- || get_user(regs.ebx, &lg->lguest_data->hcalls[n].ebx)) {
|
|
|
+ /* Copy the hypercall arguments into a local copy of
|
|
|
+ * the hcall_args struct. */
|
|
|
+ if (copy_from_user(&args, &lg->lguest_data->hcalls[n],
|
|
|
+ sizeof(struct hcall_args))) {
|
|
|
kill_guest(lg, "Fetching async hypercalls");
|
|
|
break;
|
|
|
}
|
|
|
|
|
|
/* Do the hypercall, same as a normal one. */
|
|
|
- do_hcall(lg, ®s);
|
|
|
+ do_hcall(lg, &args);
|
|
|
|
|
|
/* Mark the hypercall done. */
|
|
|
if (put_user(0xFF, &lg->lguest_data->hcall_status[n])) {
|
|
@@ -182,41 +167,16 @@ static void do_async_hcalls(struct lguest *lg)
|
|
|
* Guest makes a hypercall, we end up here to set things up: */
|
|
|
static void initialize(struct lguest *lg)
|
|
|
{
|
|
|
- u32 tsc_speed;
|
|
|
|
|
|
/* You can't do anything until you're initialized. The Guest knows the
|
|
|
* rules, so we're unforgiving here. */
|
|
|
- if (lg->regs->eax != LHCALL_LGUEST_INIT) {
|
|
|
- kill_guest(lg, "hypercall %li before LGUEST_INIT",
|
|
|
- lg->regs->eax);
|
|
|
+ if (lg->hcall->arg0 != LHCALL_LGUEST_INIT) {
|
|
|
+ kill_guest(lg, "hypercall %li before INIT", lg->hcall->arg0);
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
- /* We insist that the Time Stamp Counter exist and doesn't change with
|
|
|
- * cpu frequency. Some devious chip manufacturers decided that TSC
|
|
|
- * changes could be handled in software. I decided that time going
|
|
|
- * backwards might be good for benchmarks, but it's bad for users.
|
|
|
- *
|
|
|
- * We also insist that the TSC be stable: the kernel detects unreliable
|
|
|
- * TSCs for its own purposes, and we use that here. */
|
|
|
- if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && !check_tsc_unstable())
|
|
|
- tsc_speed = tsc_khz;
|
|
|
- else
|
|
|
- tsc_speed = 0;
|
|
|
-
|
|
|
- /* The pointer to the Guest's "struct lguest_data" is the only
|
|
|
- * argument. We check that address now. */
|
|
|
- if (!lguest_address_ok(lg, lg->regs->edx, sizeof(*lg->lguest_data))) {
|
|
|
+ if (lguest_arch_init_hypercalls(lg))
|
|
|
kill_guest(lg, "bad guest page %p", lg->lguest_data);
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- /* Having checked it, we simply set lg->lguest_data to point straight
|
|
|
- * into the Launcher's memory at the right place and then use
|
|
|
- * copy_to_user/from_user from now on, instead of lgread/write. I put
|
|
|
- * this in to show that I'm not immune to writing stupid
|
|
|
- * optimizations. */
|
|
|
- lg->lguest_data = lg->mem_base + lg->regs->edx;
|
|
|
|
|
|
/* The Guest tells us where we're not to deliver interrupts by putting
|
|
|
* the range of addresses into "struct lguest_data". */
|
|
@@ -224,8 +184,7 @@ static void initialize(struct lguest *lg)
|
|
|
|| get_user(lg->noirq_end, &lg->lguest_data->noirq_end)
|
|
|
/* We tell the Guest that it can't use the top 4MB of virtual
|
|
|
* addresses used by the Switcher. */
|
|
|
- || put_user(4U*1024*1024, &lg->lguest_data->reserve_mem)
|
|
|
- || put_user(tsc_speed, &lg->lguest_data->tsc_khz))
|
|
|
+ || put_user(4U*1024*1024, &lg->lguest_data->reserve_mem))
|
|
|
kill_guest(lg, "bad guest page %p", lg->lguest_data);
|
|
|
|
|
|
/* We write the current time into the Guest's data page once now. */
|
|
@@ -237,9 +196,6 @@ static void initialize(struct lguest *lg)
|
|
|
* page. */
|
|
|
guest_pagetable_clear_all(lg);
|
|
|
}
|
|
|
-/* Now we've examined the hypercall code; our Guest can make requests. There
|
|
|
- * is one other way we can do things for the Guest, as we see in
|
|
|
- * emulate_insn(). */
|
|
|
|
|
|
/*H:100
|
|
|
* Hypercalls
|