|
@@ -1,264 +0,0 @@
|
|
-/*
|
|
|
|
- * arch/sh/kernel/time_64.c
|
|
|
|
- *
|
|
|
|
- * Copyright (C) 2000, 2001 Paolo Alberelli
|
|
|
|
- * Copyright (C) 2003 - 2007 Paul Mundt
|
|
|
|
- * Copyright (C) 2003 Richard Curnow
|
|
|
|
- *
|
|
|
|
- * Original TMU/RTC code taken from sh version.
|
|
|
|
- * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
|
|
|
|
- * Some code taken from i386 version.
|
|
|
|
- * Copyright (C) 1991, 1992, 1995 Linus Torvalds
|
|
|
|
- *
|
|
|
|
- * This file is subject to the terms and conditions of the GNU General Public
|
|
|
|
- * License. See the file "COPYING" in the main directory of this archive
|
|
|
|
- * for more details.
|
|
|
|
- */
|
|
|
|
-#include <linux/errno.h>
|
|
|
|
-#include <linux/rwsem.h>
|
|
|
|
-#include <linux/sched.h>
|
|
|
|
-#include <linux/kernel.h>
|
|
|
|
-#include <linux/param.h>
|
|
|
|
-#include <linux/string.h>
|
|
|
|
-#include <linux/mm.h>
|
|
|
|
-#include <linux/interrupt.h>
|
|
|
|
-#include <linux/time.h>
|
|
|
|
-#include <linux/delay.h>
|
|
|
|
-#include <linux/init.h>
|
|
|
|
-#include <linux/profile.h>
|
|
|
|
-#include <linux/smp.h>
|
|
|
|
-#include <linux/module.h>
|
|
|
|
-#include <linux/bcd.h>
|
|
|
|
-#include <linux/timex.h>
|
|
|
|
-#include <linux/irq.h>
|
|
|
|
-#include <linux/io.h>
|
|
|
|
-#include <linux/platform_device.h>
|
|
|
|
-#include <cpu/registers.h> /* required by inline __asm__ stmt. */
|
|
|
|
-#include <cpu/irq.h>
|
|
|
|
-#include <asm/addrspace.h>
|
|
|
|
-#include <asm/processor.h>
|
|
|
|
-#include <asm/uaccess.h>
|
|
|
|
-#include <asm/delay.h>
|
|
|
|
-#include <asm/clock.h>
|
|
|
|
-
|
|
|
|
-#define TMU_TOCR_INIT 0x00
|
|
|
|
-#define TMU0_TCR_INIT 0x0020
|
|
|
|
-#define TMU_TSTR_INIT 1
|
|
|
|
-#define TMU_TSTR_OFF 0
|
|
|
|
-
|
|
|
|
-/* Time Management Unit */
|
|
|
|
-#define TMU_BLOCK_OFF 0x01020000
|
|
|
|
-#define TMU_BASE PHYS_PERIPHERAL_BLOCK + TMU_BLOCK_OFF
|
|
|
|
-#define TMU0_BASE tmu_base + 0x8 + (0xc * 0x0)
|
|
|
|
-#define TMU1_BASE tmu_base + 0x8 + (0xc * 0x1)
|
|
|
|
-#define TMU2_BASE tmu_base + 0x8 + (0xc * 0x2)
|
|
|
|
-
|
|
|
|
-#define TMU_TOCR tmu_base+0x0 /* Byte access */
|
|
|
|
-#define TMU_TSTR tmu_base+0x4 /* Byte access */
|
|
|
|
-
|
|
|
|
-#define TMU0_TCOR TMU0_BASE+0x0 /* Long access */
|
|
|
|
-#define TMU0_TCNT TMU0_BASE+0x4 /* Long access */
|
|
|
|
-#define TMU0_TCR TMU0_BASE+0x8 /* Word access */
|
|
|
|
-
|
|
|
|
-#define TICK_SIZE (tick_nsec / 1000)
|
|
|
|
-
|
|
|
|
-static unsigned long tmu_base;
|
|
|
|
-
|
|
|
|
-/* Variables to allow interpolation of time of day to resolution better than a
|
|
|
|
- * jiffy. */
|
|
|
|
-
|
|
|
|
-/* This is effectively protected by xtime_lock */
|
|
|
|
-static unsigned long ctc_last_interrupt;
|
|
|
|
-static unsigned long long usecs_per_jiffy = 1000000/HZ; /* Approximation */
|
|
|
|
-
|
|
|
|
-#define CTC_JIFFY_SCALE_SHIFT 40
|
|
|
|
-
|
|
|
|
-/* 2**CTC_JIFFY_SCALE_SHIFT / ctc_ticks_per_jiffy */
|
|
|
|
-static unsigned long long scaled_recip_ctc_ticks_per_jiffy;
|
|
|
|
-
|
|
|
|
-/* Estimate number of microseconds that have elapsed since the last timer tick,
|
|
|
|
- by scaling the delta that has occurred in the CTC register.
|
|
|
|
-
|
|
|
|
- WARNING WARNING WARNING : This algorithm relies on the CTC decrementing at
|
|
|
|
- the CPU clock rate. If the CPU sleeps, the CTC stops counting. Bear this
|
|
|
|
- in mind if enabling SLEEP_WORKS in process.c. In that case, this algorithm
|
|
|
|
- probably needs to use TMU.TCNT0 instead. This will work even if the CPU is
|
|
|
|
- sleeping, though will be coarser.
|
|
|
|
-
|
|
|
|
- FIXME : What if usecs_per_tick is moving around too much, e.g. if an adjtime
|
|
|
|
- is running or if the freq or tick arguments of adjtimex are modified after
|
|
|
|
- we have calibrated the scaling factor? This will result in either a jump at
|
|
|
|
- the end of a tick period, or a wrap backwards at the start of the next one,
|
|
|
|
- if the application is reading the time of day often enough. I think we
|
|
|
|
- ought to do better than this. For this reason, usecs_per_jiffy is left
|
|
|
|
- separated out in the calculation below. This allows some future hook into
|
|
|
|
- the adjtime-related stuff in kernel/timer.c to remove this hazard.
|
|
|
|
-
|
|
|
|
-*/
|
|
|
|
-
|
|
|
|
-static unsigned long usecs_since_tick(void)
|
|
|
|
-{
|
|
|
|
- unsigned long long current_ctc;
|
|
|
|
- long ctc_ticks_since_interrupt;
|
|
|
|
- unsigned long long ull_ctc_ticks_since_interrupt;
|
|
|
|
- unsigned long result;
|
|
|
|
-
|
|
|
|
- unsigned long long mul1_out;
|
|
|
|
- unsigned long long mul1_out_high;
|
|
|
|
- unsigned long long mul2_out_low, mul2_out_high;
|
|
|
|
-
|
|
|
|
- /* Read CTC register */
|
|
|
|
- asm ("getcon cr62, %0" : "=r" (current_ctc));
|
|
|
|
- /* Note, the CTC counts down on each CPU clock, not up.
|
|
|
|
- Note(2), use long type to get correct wraparound arithmetic when
|
|
|
|
- the counter crosses zero. */
|
|
|
|
- ctc_ticks_since_interrupt = (long) ctc_last_interrupt - (long) current_ctc;
|
|
|
|
- ull_ctc_ticks_since_interrupt = (unsigned long long) ctc_ticks_since_interrupt;
|
|
|
|
-
|
|
|
|
- /* Inline assembly to do 32x32x32->64 multiplier */
|
|
|
|
- asm volatile ("mulu.l %1, %2, %0" :
|
|
|
|
- "=r" (mul1_out) :
|
|
|
|
- "r" (ull_ctc_ticks_since_interrupt), "r" (usecs_per_jiffy));
|
|
|
|
-
|
|
|
|
- mul1_out_high = mul1_out >> 32;
|
|
|
|
-
|
|
|
|
- asm volatile ("mulu.l %1, %2, %0" :
|
|
|
|
- "=r" (mul2_out_low) :
|
|
|
|
- "r" (mul1_out), "r" (scaled_recip_ctc_ticks_per_jiffy));
|
|
|
|
-
|
|
|
|
-#if 1
|
|
|
|
- asm volatile ("mulu.l %1, %2, %0" :
|
|
|
|
- "=r" (mul2_out_high) :
|
|
|
|
- "r" (mul1_out_high), "r" (scaled_recip_ctc_ticks_per_jiffy));
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- result = (unsigned long) (((mul2_out_high << 32) + mul2_out_low) >> CTC_JIFFY_SCALE_SHIFT);
|
|
|
|
-
|
|
|
|
- return result;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-u32 arch_gettimeoffset(void)
|
|
|
|
-{
|
|
|
|
- return usecs_since_tick() * 1000;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/* Dummy RTC ops */
|
|
|
|
-static void null_rtc_get_time(struct timespec *tv)
|
|
|
|
-{
|
|
|
|
- tv->tv_sec = mktime(2000, 1, 1, 0, 0, 0);
|
|
|
|
- tv->tv_nsec = 0;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-static int null_rtc_set_time(const time_t secs)
|
|
|
|
-{
|
|
|
|
- return 0;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void (*rtc_sh_get_time)(struct timespec *) = null_rtc_get_time;
|
|
|
|
-int (*rtc_sh_set_time)(const time_t) = null_rtc_set_time;
|
|
|
|
-
|
|
|
|
-/* last time the RTC clock got updated */
|
|
|
|
-static long last_rtc_update;
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * timer_interrupt() needs to keep up the real-time clock,
|
|
|
|
- * as well as call the "do_timer()" routine every clocktick
|
|
|
|
- */
|
|
|
|
-static inline void do_timer_interrupt(void)
|
|
|
|
-{
|
|
|
|
- unsigned long long current_ctc;
|
|
|
|
-
|
|
|
|
- if (current->pid)
|
|
|
|
- profile_tick(CPU_PROFILING);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Here we are in the timer irq handler. We just have irqs locally
|
|
|
|
- * disabled but we don't know if the timer_bh is running on the other
|
|
|
|
- * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
|
|
|
|
- * the irq version of write_lock because as just said we have irq
|
|
|
|
- * locally disabled. -arca
|
|
|
|
- */
|
|
|
|
- write_seqlock(&xtime_lock);
|
|
|
|
- asm ("getcon cr62, %0" : "=r" (current_ctc));
|
|
|
|
- ctc_last_interrupt = (unsigned long) current_ctc;
|
|
|
|
-
|
|
|
|
- do_timer(1);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * If we have an externally synchronized Linux clock, then update
|
|
|
|
- * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
|
|
|
|
- * called as close as possible to 500 ms before the new second starts.
|
|
|
|
- */
|
|
|
|
- if (ntp_synced() &&
|
|
|
|
- xtime.tv_sec > last_rtc_update + 660 &&
|
|
|
|
- (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
|
|
|
|
- (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
|
|
|
|
- if (rtc_sh_set_time(xtime.tv_sec) == 0)
|
|
|
|
- last_rtc_update = xtime.tv_sec;
|
|
|
|
- else
|
|
|
|
- /* do it again in 60 s */
|
|
|
|
- last_rtc_update = xtime.tv_sec - 600;
|
|
|
|
- }
|
|
|
|
- write_sequnlock(&xtime_lock);
|
|
|
|
-
|
|
|
|
-#ifndef CONFIG_SMP
|
|
|
|
- update_process_times(user_mode(get_irq_regs()));
|
|
|
|
-#endif
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * This is the same as the above, except we _also_ save the current
|
|
|
|
- * Time Stamp Counter value at the time of the timer interrupt, so that
|
|
|
|
- * we later on can estimate the time of day more exactly.
|
|
|
|
- */
|
|
|
|
-static irqreturn_t timer_interrupt(int irq, void *dev_id)
|
|
|
|
-{
|
|
|
|
- unsigned long timer_status;
|
|
|
|
-
|
|
|
|
- /* Clear UNF bit */
|
|
|
|
- timer_status = ctrl_inw(TMU0_TCR);
|
|
|
|
- timer_status &= ~0x100;
|
|
|
|
- ctrl_outw(timer_status, TMU0_TCR);
|
|
|
|
-
|
|
|
|
- do_timer_interrupt();
|
|
|
|
-
|
|
|
|
- return IRQ_HANDLED;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-static struct irqaction irq0 = {
|
|
|
|
- .handler = timer_interrupt,
|
|
|
|
- .flags = IRQF_DISABLED,
|
|
|
|
- .name = "timer",
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-void __init time_init(void)
|
|
|
|
-{
|
|
|
|
- unsigned long interval;
|
|
|
|
- struct clk *clk;
|
|
|
|
-
|
|
|
|
- tmu_base = (unsigned long)ioremap_nocache(TMU_BASE, 1024);
|
|
|
|
- if (!tmu_base) {
|
|
|
|
- panic("Unable to remap TMU\n");
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- clk = clk_get(NULL, "cpu_clk");
|
|
|
|
- scaled_recip_ctc_ticks_per_jiffy = ((1ULL << CTC_JIFFY_SCALE_SHIFT) /
|
|
|
|
- (unsigned long long)(clk_get_rate(clk) / HZ));
|
|
|
|
-
|
|
|
|
- rtc_sh_get_time(&xtime);
|
|
|
|
-
|
|
|
|
- setup_irq(TIMER_IRQ, &irq0);
|
|
|
|
-
|
|
|
|
- clk = clk_get(NULL, "module_clk");
|
|
|
|
- interval = (clk_get_rate(clk)/(HZ*4));
|
|
|
|
-
|
|
|
|
- printk("Interval = %ld\n", interval);
|
|
|
|
-
|
|
|
|
- /* Start TMU0 */
|
|
|
|
- ctrl_outb(TMU_TSTR_OFF, TMU_TSTR);
|
|
|
|
- ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
|
|
|
|
- ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
|
|
|
|
- ctrl_outl(interval, TMU0_TCOR);
|
|
|
|
- ctrl_outl(interval, TMU0_TCNT);
|
|
|
|
- ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);
|
|
|
|
-}
|
|
|