|
@@ -18,9 +18,17 @@
|
|
#include <linux/percpu.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/smp.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
+#include <asm/processor.h>
|
|
#include <asm/i387.h>
|
|
#include <asm/i387.h>
|
|
#include "padlock.h"
|
|
#include "padlock.h"
|
|
|
|
|
|
|
|
+/* number of data blocks actually fetched for each xcrypt insn */
|
|
|
|
+static unsigned int ecb_fetch_blocks = 2;
|
|
|
|
+static unsigned int cbc_fetch_blocks = 1;
|
|
|
|
+
|
|
|
|
+#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
|
|
|
|
+#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
|
|
|
|
+
|
|
/* Control word. */
|
|
/* Control word. */
|
|
struct cword {
|
|
struct cword {
|
|
unsigned int __attribute__ ((__packed__))
|
|
unsigned int __attribute__ ((__packed__))
|
|
@@ -173,63 +181,59 @@ static inline void padlock_store_cword(struct cword *cword)
|
|
*/
|
|
*/
|
|
|
|
|
|
static inline void padlock_xcrypt(const u8 *input, u8 *output, void *key,
|
|
static inline void padlock_xcrypt(const u8 *input, u8 *output, void *key,
|
|
- struct cword *control_word)
|
|
|
|
|
|
+ struct cword *control_word, int count)
|
|
{
|
|
{
|
|
asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
|
|
asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
|
|
: "+S"(input), "+D"(output)
|
|
: "+S"(input), "+D"(output)
|
|
- : "d"(control_word), "b"(key), "c"(1));
|
|
|
|
|
|
+ : "d"(control_word), "b"(key), "c"(count));
|
|
}
|
|
}
|
|
|
|
|
|
-static void aes_crypt_copy(const u8 *in, u8 *out, u32 *key, struct cword *cword)
|
|
|
|
|
|
+static void aes_crypt_copy(const u8 *in, u8 *out, u32 *key,
|
|
|
|
+ struct cword *cword, int count)
|
|
{
|
|
{
|
|
- u8 buf[AES_BLOCK_SIZE * 2 + PADLOCK_ALIGNMENT - 1];
|
|
|
|
|
|
+ /*
|
|
|
|
+ * Padlock prefetches extra data so we must provide mapped input buffers.
|
|
|
|
+ * Assume there are at least 16 bytes of stack already in use.
|
|
|
|
+ */
|
|
|
|
+ u8 buf[AES_BLOCK_SIZE * 7 + PADLOCK_ALIGNMENT - 1];
|
|
u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
|
|
u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
|
|
|
|
|
|
- memcpy(tmp, in, AES_BLOCK_SIZE);
|
|
|
|
- padlock_xcrypt(tmp, out, key, cword);
|
|
|
|
|
|
+ memcpy(tmp, in, count * AES_BLOCK_SIZE);
|
|
|
|
+ padlock_xcrypt(tmp, out, key, cword, count);
|
|
}
|
|
}
|
|
|
|
|
|
static inline void aes_crypt(const u8 *in, u8 *out, u32 *key,
|
|
static inline void aes_crypt(const u8 *in, u8 *out, u32 *key,
|
|
- struct cword *cword)
|
|
|
|
|
|
+ struct cword *cword, int count)
|
|
{
|
|
{
|
|
- /* padlock_xcrypt requires at least two blocks of data. */
|
|
|
|
- if (unlikely(!(((unsigned long)in ^ (PAGE_SIZE - AES_BLOCK_SIZE)) &
|
|
|
|
- (PAGE_SIZE - 1)))) {
|
|
|
|
- aes_crypt_copy(in, out, key, cword);
|
|
|
|
|
|
+ /* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
|
|
|
|
+ * We could avoid some copying here but it's probably not worth it.
|
|
|
|
+ */
|
|
|
|
+ if (unlikely(((unsigned long)in & PAGE_SIZE) + ecb_fetch_bytes > PAGE_SIZE)) {
|
|
|
|
+ aes_crypt_copy(in, out, key, cword, count);
|
|
return;
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
- padlock_xcrypt(in, out, key, cword);
|
|
|
|
|
|
+ padlock_xcrypt(in, out, key, cword, count);
|
|
}
|
|
}
|
|
|
|
|
|
static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
|
|
static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
|
|
void *control_word, u32 count)
|
|
void *control_word, u32 count)
|
|
{
|
|
{
|
|
- if (count == 1) {
|
|
|
|
- aes_crypt(input, output, key, control_word);
|
|
|
|
|
|
+ u32 initial = count & (ecb_fetch_blocks - 1);
|
|
|
|
+
|
|
|
|
+ if (count < ecb_fetch_blocks) {
|
|
|
|
+ aes_crypt(input, output, key, control_word, count);
|
|
return;
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
- asm volatile ("test $1, %%cl;"
|
|
|
|
- "je 1f;"
|
|
|
|
-#ifndef CONFIG_X86_64
|
|
|
|
- "lea -1(%%ecx), %%eax;"
|
|
|
|
- "mov $1, %%ecx;"
|
|
|
|
-#else
|
|
|
|
- "lea -1(%%rcx), %%rax;"
|
|
|
|
- "mov $1, %%rcx;"
|
|
|
|
-#endif
|
|
|
|
- ".byte 0xf3,0x0f,0xa7,0xc8;" /* rep xcryptecb */
|
|
|
|
-#ifndef CONFIG_X86_64
|
|
|
|
- "mov %%eax, %%ecx;"
|
|
|
|
-#else
|
|
|
|
- "mov %%rax, %%rcx;"
|
|
|
|
-#endif
|
|
|
|
- "1:"
|
|
|
|
- ".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
|
|
|
|
|
|
+ if (initial)
|
|
|
|
+ asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
|
|
|
|
+ : "+S"(input), "+D"(output)
|
|
|
|
+ : "d"(control_word), "b"(key), "c"(initial));
|
|
|
|
+
|
|
|
|
+ asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
|
|
: "+S"(input), "+D"(output)
|
|
: "+S"(input), "+D"(output)
|
|
- : "d"(control_word), "b"(key), "c"(count)
|
|
|
|
- : "ax");
|
|
|
|
|
|
+ : "d"(control_word), "b"(key), "c"(count - initial));
|
|
}
|
|
}
|
|
|
|
|
|
static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
|
|
static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
|
|
@@ -249,7 +253,7 @@ static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
|
|
|
|
|
|
padlock_reset_key(&ctx->cword.encrypt);
|
|
padlock_reset_key(&ctx->cword.encrypt);
|
|
ts_state = irq_ts_save();
|
|
ts_state = irq_ts_save();
|
|
- aes_crypt(in, out, ctx->E, &ctx->cword.encrypt);
|
|
|
|
|
|
+ aes_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
|
|
irq_ts_restore(ts_state);
|
|
irq_ts_restore(ts_state);
|
|
padlock_store_cword(&ctx->cword.encrypt);
|
|
padlock_store_cword(&ctx->cword.encrypt);
|
|
}
|
|
}
|
|
@@ -261,7 +265,7 @@ static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
|
|
|
|
|
|
padlock_reset_key(&ctx->cword.encrypt);
|
|
padlock_reset_key(&ctx->cword.encrypt);
|
|
ts_state = irq_ts_save();
|
|
ts_state = irq_ts_save();
|
|
- aes_crypt(in, out, ctx->D, &ctx->cword.decrypt);
|
|
|
|
|
|
+ aes_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
|
|
irq_ts_restore(ts_state);
|
|
irq_ts_restore(ts_state);
|
|
padlock_store_cword(&ctx->cword.encrypt);
|
|
padlock_store_cword(&ctx->cword.encrypt);
|
|
}
|
|
}
|
|
@@ -454,6 +458,7 @@ static struct crypto_alg cbc_aes_alg = {
|
|
static int __init padlock_init(void)
|
|
static int __init padlock_init(void)
|
|
{
|
|
{
|
|
int ret;
|
|
int ret;
|
|
|
|
+ struct cpuinfo_x86 *c = &cpu_data(0);
|
|
|
|
|
|
if (!cpu_has_xcrypt) {
|
|
if (!cpu_has_xcrypt) {
|
|
printk(KERN_NOTICE PFX "VIA PadLock not detected.\n");
|
|
printk(KERN_NOTICE PFX "VIA PadLock not detected.\n");
|
|
@@ -476,6 +481,12 @@ static int __init padlock_init(void)
|
|
|
|
|
|
printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
|
|
printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
|
|
|
|
|
|
|
|
+ if (c->x86 == 6 && c->x86_model == 15 && c->x86_mask == 2) {
|
|
|
|
+ ecb_fetch_blocks = 8;
|
|
|
|
+ cbc_fetch_blocks = 4; /* NOTE: notused */
|
|
|
|
+ printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
|
|
|
|
+ }
|
|
|
|
+
|
|
out:
|
|
out:
|
|
return ret;
|
|
return ret;
|
|
|
|
|