|
@@ -0,0 +1,191 @@
|
|
|
|
+/*
|
|
|
|
+ * Copyright (C) 2009 Intel Corporation.
|
|
|
|
+ * Author: Patrick Ohly <patrick.ohly@intel.com>
|
|
|
|
+ *
|
|
|
|
+ * This program is free software; you can redistribute it and/or modify
|
|
|
|
+ * it under the terms of the GNU General Public License as published by
|
|
|
|
+ * the Free Software Foundation; either version 2 of the License, or
|
|
|
|
+ * (at your option) any later version.
|
|
|
|
+ *
|
|
|
|
+ * This program is distributed in the hope that it will be useful,
|
|
|
|
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
+ * GNU General Public License for more details.
|
|
|
|
+ *
|
|
|
|
+ * You should have received a copy of the GNU General Public License
|
|
|
|
+ * along with this program; if not, write to the Free Software
|
|
|
|
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+#include <linux/timecompare.h>
|
|
|
|
+#include <linux/module.h>
|
|
|
|
+#include <linux/math64.h>
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * fixed point arithmetic scale factor for skew
|
|
|
|
+ *
|
|
|
|
+ * Usually one would measure skew in ppb (parts per billion, 1e9), but
|
|
|
|
+ * using a factor of 2 simplifies the math.
|
|
|
|
+ */
|
|
|
|
+#define TIMECOMPARE_SKEW_RESOLUTION (((s64)1)<<30)
|
|
|
|
+
|
|
|
|
+ktime_t timecompare_transform(struct timecompare *sync,
|
|
|
|
+ u64 source_tstamp)
|
|
|
|
+{
|
|
|
|
+ u64 nsec;
|
|
|
|
+
|
|
|
|
+ nsec = source_tstamp + sync->offset;
|
|
|
|
+ nsec += (s64)(source_tstamp - sync->last_update) * sync->skew /
|
|
|
|
+ TIMECOMPARE_SKEW_RESOLUTION;
|
|
|
|
+
|
|
|
|
+ return ns_to_ktime(nsec);
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(timecompare_transform);
|
|
|
|
+
|
|
|
|
+int timecompare_offset(struct timecompare *sync,
|
|
|
|
+ s64 *offset,
|
|
|
|
+ u64 *source_tstamp)
|
|
|
|
+{
|
|
|
|
+ u64 start_source = 0, end_source = 0;
|
|
|
|
+ struct {
|
|
|
|
+ s64 offset;
|
|
|
|
+ s64 duration_target;
|
|
|
|
+ } buffer[10], sample, *samples;
|
|
|
|
+ int counter = 0, i;
|
|
|
|
+ int used;
|
|
|
|
+ int index;
|
|
|
|
+ int num_samples = sync->num_samples;
|
|
|
|
+
|
|
|
|
+ if (num_samples > sizeof(buffer)/sizeof(buffer[0])) {
|
|
|
|
+ samples = kmalloc(sizeof(*samples) * num_samples, GFP_ATOMIC);
|
|
|
|
+ if (!samples) {
|
|
|
|
+ samples = buffer;
|
|
|
|
+ num_samples = sizeof(buffer)/sizeof(buffer[0]);
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ samples = buffer;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* run until we have enough valid samples, but do not try forever */
|
|
|
|
+ i = 0;
|
|
|
|
+ counter = 0;
|
|
|
|
+ while (1) {
|
|
|
|
+ u64 ts;
|
|
|
|
+ ktime_t start, end;
|
|
|
|
+
|
|
|
|
+ start = sync->target();
|
|
|
|
+ ts = timecounter_read(sync->source);
|
|
|
|
+ end = sync->target();
|
|
|
|
+
|
|
|
|
+ if (!i)
|
|
|
|
+ start_source = ts;
|
|
|
|
+
|
|
|
|
+ /* ignore negative durations */
|
|
|
|
+ sample.duration_target = ktime_to_ns(ktime_sub(end, start));
|
|
|
|
+ if (sample.duration_target >= 0) {
|
|
|
|
+ /*
|
|
|
|
+ * assume symetric delay to and from source:
|
|
|
|
+ * average target time corresponds to measured
|
|
|
|
+ * source time
|
|
|
|
+ */
|
|
|
|
+ sample.offset =
|
|
|
|
+ ktime_to_ns(ktime_add(end, start)) / 2 -
|
|
|
|
+ ts;
|
|
|
|
+
|
|
|
|
+ /* simple insertion sort based on duration */
|
|
|
|
+ index = counter - 1;
|
|
|
|
+ while (index >= 0) {
|
|
|
|
+ if (samples[index].duration_target <
|
|
|
|
+ sample.duration_target)
|
|
|
|
+ break;
|
|
|
|
+ samples[index + 1] = samples[index];
|
|
|
|
+ index--;
|
|
|
|
+ }
|
|
|
|
+ samples[index + 1] = sample;
|
|
|
|
+ counter++;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ i++;
|
|
|
|
+ if (counter >= num_samples || i >= 100000) {
|
|
|
|
+ end_source = ts;
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ *source_tstamp = (end_source + start_source) / 2;
|
|
|
|
+
|
|
|
|
+ /* remove outliers by only using 75% of the samples */
|
|
|
|
+ used = counter * 3 / 4;
|
|
|
|
+ if (!used)
|
|
|
|
+ used = counter;
|
|
|
|
+ if (used) {
|
|
|
|
+ /* calculate average */
|
|
|
|
+ s64 off = 0;
|
|
|
|
+ for (index = 0; index < used; index++)
|
|
|
|
+ off += samples[index].offset;
|
|
|
|
+ *offset = div_s64(off, used);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (samples && samples != buffer)
|
|
|
|
+ kfree(samples);
|
|
|
|
+
|
|
|
|
+ return used;
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(timecompare_offset);
|
|
|
|
+
|
|
|
|
+void __timecompare_update(struct timecompare *sync,
|
|
|
|
+ u64 source_tstamp)
|
|
|
|
+{
|
|
|
|
+ s64 offset;
|
|
|
|
+ u64 average_time;
|
|
|
|
+
|
|
|
|
+ if (!timecompare_offset(sync, &offset, &average_time))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ if (!sync->last_update) {
|
|
|
|
+ sync->last_update = average_time;
|
|
|
|
+ sync->offset = offset;
|
|
|
|
+ sync->skew = 0;
|
|
|
|
+ } else {
|
|
|
|
+ s64 delta_nsec = average_time - sync->last_update;
|
|
|
|
+
|
|
|
|
+ /* avoid division by negative or small deltas */
|
|
|
|
+ if (delta_nsec >= 10000) {
|
|
|
|
+ s64 delta_offset_nsec = offset - sync->offset;
|
|
|
|
+ s64 skew; /* delta_offset_nsec *
|
|
|
|
+ TIMECOMPARE_SKEW_RESOLUTION /
|
|
|
|
+ delta_nsec */
|
|
|
|
+ u64 divisor;
|
|
|
|
+
|
|
|
|
+ /* div_s64() is limited to 32 bit divisor */
|
|
|
|
+ skew = delta_offset_nsec * TIMECOMPARE_SKEW_RESOLUTION;
|
|
|
|
+ divisor = delta_nsec;
|
|
|
|
+ while (unlikely(divisor >= ((s64)1) << 32)) {
|
|
|
|
+ /* divide both by 2; beware, right shift
|
|
|
|
+ of negative value has undefined
|
|
|
|
+ behavior and can only be used for
|
|
|
|
+ the positive divisor */
|
|
|
|
+ skew = div_s64(skew, 2);
|
|
|
|
+ divisor >>= 1;
|
|
|
|
+ }
|
|
|
|
+ skew = div_s64(skew, divisor);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Calculate new overall skew as 4/16 the
|
|
|
|
+ * old value and 12/16 the new one. This is
|
|
|
|
+ * a rather arbitrary tradeoff between
|
|
|
|
+ * only using the latest measurement (0/16 and
|
|
|
|
+ * 16/16) and even more weight on past measurements.
|
|
|
|
+ */
|
|
|
|
+#define TIMECOMPARE_NEW_SKEW_PER_16 12
|
|
|
|
+ sync->skew =
|
|
|
|
+ div_s64((16 - TIMECOMPARE_NEW_SKEW_PER_16) *
|
|
|
|
+ sync->skew +
|
|
|
|
+ TIMECOMPARE_NEW_SKEW_PER_16 * skew,
|
|
|
|
+ 16);
|
|
|
|
+ sync->last_update = average_time;
|
|
|
|
+ sync->offset = offset;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+EXPORT_SYMBOL(__timecompare_update);
|