|
@@ -24,6 +24,7 @@
|
|
|
* Authors: Christian König
|
|
|
*/
|
|
|
#include <linux/hdmi.h>
|
|
|
+#include <linux/gcd.h>
|
|
|
#include <drm/drmP.h>
|
|
|
#include <drm/radeon_drm.h>
|
|
|
#include "radeon.h"
|
|
@@ -67,25 +68,47 @@ static const struct radeon_hdmi_acr r600_hdmi_predefined_acr[] = {
|
|
|
{ 74250, 4096, 74250, 6272, 82500, 6144, 74250 }, /* 74.25 MHz */
|
|
|
{ 148352, 4096, 148352, 5733, 150670, 6144, 148352 }, /* 148.50/1.001 MHz */
|
|
|
{ 148500, 4096, 148500, 6272, 165000, 6144, 148500 }, /* 148.50 MHz */
|
|
|
- { 0, 4096, 0, 6272, 0, 6144, 0 } /* Other */
|
|
|
};
|
|
|
|
|
|
+
|
|
|
/*
|
|
|
- * calculate CTS value if it's not found in the table
|
|
|
+ * calculate CTS and N values if they are not found in the table
|
|
|
*/
|
|
|
-static void r600_hdmi_calc_cts(uint32_t clock, int *CTS, int N, int freq)
|
|
|
+static void r600_hdmi_calc_cts(uint32_t clock, int *CTS, int *N, int freq)
|
|
|
{
|
|
|
- u64 n;
|
|
|
- u32 d;
|
|
|
-
|
|
|
- if (*CTS == 0) {
|
|
|
- n = (u64)clock * (u64)N * 1000ULL;
|
|
|
- d = 128 * freq;
|
|
|
- do_div(n, d);
|
|
|
- *CTS = n;
|
|
|
- }
|
|
|
- DRM_DEBUG("Using ACR timing N=%d CTS=%d for frequency %d\n",
|
|
|
- N, *CTS, freq);
|
|
|
+ int n, cts;
|
|
|
+ unsigned long div, mul;
|
|
|
+
|
|
|
+ /* Safe, but overly large values */
|
|
|
+ n = 128 * freq;
|
|
|
+ cts = clock * 1000;
|
|
|
+
|
|
|
+ /* Smallest valid fraction */
|
|
|
+ div = gcd(n, cts);
|
|
|
+
|
|
|
+ n /= div;
|
|
|
+ cts /= div;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The optimal N is 128*freq/1000. Calculate the closest larger
|
|
|
+ * value that doesn't truncate any bits.
|
|
|
+ */
|
|
|
+ mul = ((128*freq/1000) + (n-1))/n;
|
|
|
+
|
|
|
+ n *= mul;
|
|
|
+ cts *= mul;
|
|
|
+
|
|
|
+ /* Check that we are in spec (not always possible) */
|
|
|
+ if (n < (128*freq/1500))
|
|
|
+ printk(KERN_WARNING "Calculated ACR N value is too small. You may experience audio problems.\n");
|
|
|
+ if (n > (128*freq/300))
|
|
|
+ printk(KERN_WARNING "Calculated ACR N value is too large. You may experience audio problems.\n");
|
|
|
+
|
|
|
+ *N = n;
|
|
|
+ *CTS = cts;
|
|
|
+
|
|
|
+ DRM_DEBUG("Calculated ACR timing N=%d CTS=%d for frequency %d\n",
|
|
|
+ *N, *CTS, freq);
|
|
|
}
|
|
|
|
|
|
struct radeon_hdmi_acr r600_hdmi_acr(uint32_t clock)
|
|
@@ -93,15 +116,16 @@ struct radeon_hdmi_acr r600_hdmi_acr(uint32_t clock)
|
|
|
struct radeon_hdmi_acr res;
|
|
|
u8 i;
|
|
|
|
|
|
- for (i = 0; r600_hdmi_predefined_acr[i].clock != clock &&
|
|
|
- r600_hdmi_predefined_acr[i].clock != 0; i++)
|
|
|
- ;
|
|
|
- res = r600_hdmi_predefined_acr[i];
|
|
|
+ /* Precalculated values for common clocks */
|
|
|
+ for (i = 0; i < ARRAY_SIZE(r600_hdmi_predefined_acr); i++) {
|
|
|
+ if (r600_hdmi_predefined_acr[i].clock == clock)
|
|
|
+ return r600_hdmi_predefined_acr[i];
|
|
|
+ }
|
|
|
|
|
|
- /* In case some CTS are missing */
|
|
|
- r600_hdmi_calc_cts(clock, &res.cts_32khz, res.n_32khz, 32000);
|
|
|
- r600_hdmi_calc_cts(clock, &res.cts_44_1khz, res.n_44_1khz, 44100);
|
|
|
- r600_hdmi_calc_cts(clock, &res.cts_48khz, res.n_48khz, 48000);
|
|
|
+ /* And odd clocks get manually calculated */
|
|
|
+ r600_hdmi_calc_cts(clock, &res.cts_32khz, &res.n_32khz, 32000);
|
|
|
+ r600_hdmi_calc_cts(clock, &res.cts_44_1khz, &res.n_44_1khz, 44100);
|
|
|
+ r600_hdmi_calc_cts(clock, &res.cts_48khz, &res.n_48khz, 48000);
|
|
|
|
|
|
return res;
|
|
|
}
|