|
@@ -52,6 +52,7 @@ MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_
|
|
|
module_param(tcp_friendliness, int, 0644);
|
|
|
MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
|
|
|
|
|
|
+#include <asm/div64.h>
|
|
|
|
|
|
/* BIC TCP Parameters */
|
|
|
struct bictcp {
|
|
@@ -93,67 +94,51 @@ static void bictcp_init(struct sock *sk)
|
|
|
tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
|
|
|
}
|
|
|
|
|
|
-/* 65536 times the cubic root */
|
|
|
-static const u64 cubic_table[8]
|
|
|
- = {0, 65536, 82570, 94519, 104030, 112063, 119087, 125367};
|
|
|
+/* 64bit divisor, dividend and result. dynamic precision */
|
|
|
+static inline u_int64_t div64_64(u_int64_t dividend, u_int64_t divisor)
|
|
|
+{
|
|
|
+ u_int32_t d = divisor;
|
|
|
+
|
|
|
+ if (divisor > 0xffffffffULL) {
|
|
|
+ unsigned int shift = fls(divisor >> 32);
|
|
|
+
|
|
|
+ d = divisor >> shift;
|
|
|
+ dividend >>= shift;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* avoid 64 bit division if possible */
|
|
|
+ if (dividend >> 32)
|
|
|
+ do_div(dividend, d);
|
|
|
+ else
|
|
|
+ dividend = (uint32_t) dividend / d;
|
|
|
+
|
|
|
+ return dividend;
|
|
|
+}
|
|
|
|
|
|
/*
|
|
|
- * calculate the cubic root of x
|
|
|
- * the basic idea is that x can be expressed as i*8^j
|
|
|
- * so cubic_root(x) = cubic_root(i)*2^j
|
|
|
- * in the following code, x is i, and y is 2^j
|
|
|
- * because of integer calculation, there are errors in calculation
|
|
|
- * so finally use binary search to find out the exact solution
|
|
|
+ * calculate the cubic root of x using Newton-Raphson
|
|
|
*/
|
|
|
-static u32 cubic_root(u64 x)
|
|
|
+static u32 cubic_root(u64 a)
|
|
|
{
|
|
|
- u64 y, app, target, start, end, mid, start_diff, end_diff;
|
|
|
-
|
|
|
- if (x == 0)
|
|
|
- return 0;
|
|
|
+ u32 x, x1;
|
|
|
|
|
|
- target = x;
|
|
|
-
|
|
|
- /* first estimate lower and upper bound */
|
|
|
- y = 1;
|
|
|
- while (x >= 8){
|
|
|
- x = (x >> 3);
|
|
|
- y = (y << 1);
|
|
|
- }
|
|
|
- start = (y*cubic_table[x])>>16;
|
|
|
- if (x==7)
|
|
|
- end = (y<<1);
|
|
|
- else
|
|
|
- end = (y*cubic_table[x+1]+65535)>>16;
|
|
|
-
|
|
|
- /* binary search for more accurate one */
|
|
|
- while (start < end-1) {
|
|
|
- mid = (start+end) >> 1;
|
|
|
- app = mid*mid*mid;
|
|
|
- if (app < target)
|
|
|
- start = mid;
|
|
|
- else if (app > target)
|
|
|
- end = mid;
|
|
|
- else
|
|
|
- return mid;
|
|
|
- }
|
|
|
+ /* Initial estimate is based on:
|
|
|
+ * cbrt(x) = exp(log(x) / 3)
|
|
|
+ */
|
|
|
+ x = 1u << (fls64(a)/3);
|
|
|
|
|
|
- /* find the most accurate one from start and end */
|
|
|
- app = start*start*start;
|
|
|
- if (app < target)
|
|
|
- start_diff = target - app;
|
|
|
- else
|
|
|
- start_diff = app - target;
|
|
|
- app = end*end*end;
|
|
|
- if (app < target)
|
|
|
- end_diff = target - app;
|
|
|
- else
|
|
|
- end_diff = app - target;
|
|
|
+ /*
|
|
|
+ * Iteration based on:
|
|
|
+ * 2
|
|
|
+ * x = ( 2 * x + a / x ) / 3
|
|
|
+ * k+1 k k
|
|
|
+ */
|
|
|
+ do {
|
|
|
+ x1 = x;
|
|
|
+ x = (2 * x + (uint32_t) div64_64(a, x*x)) / 3;
|
|
|
+ } while (abs(x1 - x) > 1);
|
|
|
|
|
|
- if (start_diff < end_diff)
|
|
|
- return (u32)start;
|
|
|
- else
|
|
|
- return (u32)end;
|
|
|
+ return x;
|
|
|
}
|
|
|
|
|
|
/*
|