|
@@ -88,78 +88,97 @@ static int nx_xcbc_update(struct shash_desc *desc,
|
|
|
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
|
|
|
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
|
|
|
struct nx_sg *in_sg;
|
|
|
- u32 to_process, leftover;
|
|
|
+ u32 to_process, leftover, total;
|
|
|
+ u32 max_sg_len;
|
|
|
unsigned long irq_flags;
|
|
|
int rc = 0;
|
|
|
|
|
|
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
|
|
|
|
|
|
- if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
|
|
|
- /* we've hit the nx chip previously and we're updating again,
|
|
|
- * so copy over the partial digest */
|
|
|
- memcpy(csbcpb->cpb.aes_xcbc.cv,
|
|
|
- csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
|
|
|
- }
|
|
|
+
|
|
|
+ total = sctx->count + len;
|
|
|
|
|
|
/* 2 cases for total data len:
|
|
|
* 1: <= AES_BLOCK_SIZE: copy into state, return 0
|
|
|
* 2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
|
|
|
*/
|
|
|
- if (len + sctx->count <= AES_BLOCK_SIZE) {
|
|
|
+ if (total <= AES_BLOCK_SIZE) {
|
|
|
memcpy(sctx->buffer + sctx->count, data, len);
|
|
|
sctx->count += len;
|
|
|
goto out;
|
|
|
}
|
|
|
|
|
|
- /* to_process: the AES_BLOCK_SIZE data chunk to process in this
|
|
|
- * update */
|
|
|
- to_process = (sctx->count + len) & ~(AES_BLOCK_SIZE - 1);
|
|
|
- leftover = (sctx->count + len) & (AES_BLOCK_SIZE - 1);
|
|
|
-
|
|
|
- /* the hardware will not accept a 0 byte operation for this algorithm
|
|
|
- * and the operation MUST be finalized to be correct. So if we happen
|
|
|
- * to get an update that falls on a block sized boundary, we must
|
|
|
- * save off the last block to finalize with later. */
|
|
|
- if (!leftover) {
|
|
|
- to_process -= AES_BLOCK_SIZE;
|
|
|
- leftover = AES_BLOCK_SIZE;
|
|
|
- }
|
|
|
-
|
|
|
- if (sctx->count) {
|
|
|
- in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buffer,
|
|
|
- sctx->count, nx_ctx->ap->sglen);
|
|
|
- in_sg = nx_build_sg_list(in_sg, (u8 *)data,
|
|
|
- to_process - sctx->count,
|
|
|
- nx_ctx->ap->sglen);
|
|
|
+ in_sg = nx_ctx->in_sg;
|
|
|
+ max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
|
|
|
+ nx_ctx->ap->sglen);
|
|
|
+
|
|
|
+ do {
|
|
|
+
|
|
|
+ /* to_process: the AES_BLOCK_SIZE data chunk to process in this
|
|
|
+ * update */
|
|
|
+ to_process = min_t(u64, total, nx_ctx->ap->databytelen);
|
|
|
+ to_process = min_t(u64, to_process,
|
|
|
+ NX_PAGE_SIZE * (max_sg_len - 1));
|
|
|
+ to_process = to_process & ~(AES_BLOCK_SIZE - 1);
|
|
|
+ leftover = total - to_process;
|
|
|
+
|
|
|
+ /* the hardware will not accept a 0 byte operation for this
|
|
|
+ * algorithm and the operation MUST be finalized to be correct.
|
|
|
+ * So if we happen to get an update that falls on a block sized
|
|
|
+ * boundary, we must save off the last block to finalize with
|
|
|
+ * later. */
|
|
|
+ if (!leftover) {
|
|
|
+ to_process -= AES_BLOCK_SIZE;
|
|
|
+ leftover = AES_BLOCK_SIZE;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (sctx->count) {
|
|
|
+ in_sg = nx_build_sg_list(nx_ctx->in_sg,
|
|
|
+ (u8 *) sctx->buffer,
|
|
|
+ sctx->count,
|
|
|
+ max_sg_len);
|
|
|
+ }
|
|
|
+ in_sg = nx_build_sg_list(in_sg,
|
|
|
+ (u8 *) data,
|
|
|
+ to_process - sctx->count,
|
|
|
+ max_sg_len);
|
|
|
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
|
|
|
sizeof(struct nx_sg);
|
|
|
- } else {
|
|
|
- in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)data, to_process,
|
|
|
- nx_ctx->ap->sglen);
|
|
|
- nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
|
|
|
- sizeof(struct nx_sg);
|
|
|
- }
|
|
|
|
|
|
- NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
|
|
|
+ /* we've hit the nx chip previously and we're updating again,
|
|
|
+ * so copy over the partial digest */
|
|
|
+ if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
|
|
|
+ memcpy(csbcpb->cpb.aes_xcbc.cv,
|
|
|
+ csbcpb->cpb.aes_xcbc.out_cv_mac,
|
|
|
+ AES_BLOCK_SIZE);
|
|
|
+ }
|
|
|
+
|
|
|
+ NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
|
|
|
+ if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
|
|
|
+ rc = -EINVAL;
|
|
|
+ goto out;
|
|
|
+ }
|
|
|
+
|
|
|
+ rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
|
|
|
+ desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
|
|
|
+ if (rc)
|
|
|
+ goto out;
|
|
|
|
|
|
- if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
|
|
|
- rc = -EINVAL;
|
|
|
- goto out;
|
|
|
- }
|
|
|
+ atomic_inc(&(nx_ctx->stats->aes_ops));
|
|
|
|
|
|
- rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
|
|
|
- desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
|
|
|
- if (rc)
|
|
|
- goto out;
|
|
|
+ /* everything after the first update is continuation */
|
|
|
+ NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
|
|
|
|
|
|
- atomic_inc(&(nx_ctx->stats->aes_ops));
|
|
|
+ total -= to_process;
|
|
|
+ data += to_process - sctx->count;
|
|
|
+ sctx->count = 0;
|
|
|
+ in_sg = nx_ctx->in_sg;
|
|
|
+ } while (leftover > AES_BLOCK_SIZE);
|
|
|
|
|
|
/* copy the leftover back into the state struct */
|
|
|
- memcpy(sctx->buffer, data + len - leftover, leftover);
|
|
|
+ memcpy(sctx->buffer, data, leftover);
|
|
|
sctx->count = leftover;
|
|
|
|
|
|
- /* everything after the first update is continuation */
|
|
|
- NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
|
|
|
out:
|
|
|
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
|
|
|
return rc;
|