|
@@ -1822,6 +1822,58 @@ out:
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+/*
|
|
|
+ * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
|
|
|
+ */
|
|
|
+static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
|
|
|
+{
|
|
|
+ unsigned long nr[NR_LRU_LISTS];
|
|
|
+ unsigned long nr_to_scan;
|
|
|
+ enum lru_list lru;
|
|
|
+ unsigned long nr_reclaimed = 0;
|
|
|
+ unsigned long nr_to_reclaim = sc->nr_to_reclaim;
|
|
|
+ struct blk_plug plug;
|
|
|
+
|
|
|
+ get_scan_count(lruvec, sc, nr);
|
|
|
+
|
|
|
+ blk_start_plug(&plug);
|
|
|
+ while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
|
|
|
+ nr[LRU_INACTIVE_FILE]) {
|
|
|
+ for_each_evictable_lru(lru) {
|
|
|
+ if (nr[lru]) {
|
|
|
+ nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
|
|
|
+ nr[lru] -= nr_to_scan;
|
|
|
+
|
|
|
+ nr_reclaimed += shrink_list(lru, nr_to_scan,
|
|
|
+ lruvec, sc);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ * On large memory systems, scan >> priority can become
|
|
|
+ * really large. This is fine for the starting priority;
|
|
|
+ * we want to put equal scanning pressure on each zone.
|
|
|
+ * However, if the VM has a harder time of freeing pages,
|
|
|
+ * with multiple processes reclaiming pages, the total
|
|
|
+ * freeing target can get unreasonably large.
|
|
|
+ */
|
|
|
+ if (nr_reclaimed >= nr_to_reclaim &&
|
|
|
+ sc->priority < DEF_PRIORITY)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ blk_finish_plug(&plug);
|
|
|
+ sc->nr_reclaimed += nr_reclaimed;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Even if we did not try to evict anon pages at all, we want to
|
|
|
+ * rebalance the anon lru active/inactive ratio.
|
|
|
+ */
|
|
|
+ if (inactive_anon_is_low(lruvec))
|
|
|
+ shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
|
|
|
+ sc, LRU_ACTIVE_ANON);
|
|
|
+
|
|
|
+ throttle_vm_writeout(sc->gfp_mask);
|
|
|
+}
|
|
|
+
|
|
|
/* Use reclaim/compaction for costly allocs or under memory pressure */
|
|
|
static bool in_reclaim_compaction(struct scan_control *sc)
|
|
|
{
|
|
@@ -1840,7 +1892,7 @@ static bool in_reclaim_compaction(struct scan_control *sc)
|
|
|
* calls try_to_compact_zone() that it will have enough free pages to succeed.
|
|
|
* It will give up earlier than that if there is difficulty reclaiming pages.
|
|
|
*/
|
|
|
-static inline bool should_continue_reclaim(struct lruvec *lruvec,
|
|
|
+static inline bool should_continue_reclaim(struct zone *zone,
|
|
|
unsigned long nr_reclaimed,
|
|
|
unsigned long nr_scanned,
|
|
|
struct scan_control *sc)
|
|
@@ -1880,15 +1932,15 @@ static inline bool should_continue_reclaim(struct lruvec *lruvec,
|
|
|
* inactive lists are large enough, continue reclaiming
|
|
|
*/
|
|
|
pages_for_compaction = (2UL << sc->order);
|
|
|
- inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
|
|
|
+ inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
|
|
|
if (nr_swap_pages > 0)
|
|
|
- inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
|
|
|
+ inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
|
|
|
if (sc->nr_reclaimed < pages_for_compaction &&
|
|
|
inactive_lru_pages > pages_for_compaction)
|
|
|
return true;
|
|
|
|
|
|
/* If compaction would go ahead or the allocation would succeed, stop */
|
|
|
- switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
|
|
|
+ switch (compaction_suitable(zone, sc->order)) {
|
|
|
case COMPACT_PARTIAL:
|
|
|
case COMPACT_CONTINUE:
|
|
|
return false;
|
|
@@ -1897,98 +1949,49 @@ static inline bool should_continue_reclaim(struct lruvec *lruvec,
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
|
|
|
- */
|
|
|
-static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
|
|
|
+static void shrink_zone(struct zone *zone, struct scan_control *sc)
|
|
|
{
|
|
|
- unsigned long nr[NR_LRU_LISTS];
|
|
|
- unsigned long nr_to_scan;
|
|
|
- enum lru_list lru;
|
|
|
unsigned long nr_reclaimed, nr_scanned;
|
|
|
- unsigned long nr_to_reclaim = sc->nr_to_reclaim;
|
|
|
- struct blk_plug plug;
|
|
|
-
|
|
|
-restart:
|
|
|
- nr_reclaimed = 0;
|
|
|
- nr_scanned = sc->nr_scanned;
|
|
|
- get_scan_count(lruvec, sc, nr);
|
|
|
-
|
|
|
- blk_start_plug(&plug);
|
|
|
- while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
|
|
|
- nr[LRU_INACTIVE_FILE]) {
|
|
|
- for_each_evictable_lru(lru) {
|
|
|
- if (nr[lru]) {
|
|
|
- nr_to_scan = min_t(unsigned long,
|
|
|
- nr[lru], SWAP_CLUSTER_MAX);
|
|
|
- nr[lru] -= nr_to_scan;
|
|
|
-
|
|
|
- nr_reclaimed += shrink_list(lru, nr_to_scan,
|
|
|
- lruvec, sc);
|
|
|
- }
|
|
|
- }
|
|
|
- /*
|
|
|
- * On large memory systems, scan >> priority can become
|
|
|
- * really large. This is fine for the starting priority;
|
|
|
- * we want to put equal scanning pressure on each zone.
|
|
|
- * However, if the VM has a harder time of freeing pages,
|
|
|
- * with multiple processes reclaiming pages, the total
|
|
|
- * freeing target can get unreasonably large.
|
|
|
- */
|
|
|
- if (nr_reclaimed >= nr_to_reclaim &&
|
|
|
- sc->priority < DEF_PRIORITY)
|
|
|
- break;
|
|
|
- }
|
|
|
- blk_finish_plug(&plug);
|
|
|
- sc->nr_reclaimed += nr_reclaimed;
|
|
|
|
|
|
- /*
|
|
|
- * Even if we did not try to evict anon pages at all, we want to
|
|
|
- * rebalance the anon lru active/inactive ratio.
|
|
|
- */
|
|
|
- if (inactive_anon_is_low(lruvec))
|
|
|
- shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
|
|
|
- sc, LRU_ACTIVE_ANON);
|
|
|
-
|
|
|
- /* reclaim/compaction might need reclaim to continue */
|
|
|
- if (should_continue_reclaim(lruvec, nr_reclaimed,
|
|
|
- sc->nr_scanned - nr_scanned, sc))
|
|
|
- goto restart;
|
|
|
+ do {
|
|
|
+ struct mem_cgroup *root = sc->target_mem_cgroup;
|
|
|
+ struct mem_cgroup_reclaim_cookie reclaim = {
|
|
|
+ .zone = zone,
|
|
|
+ .priority = sc->priority,
|
|
|
+ };
|
|
|
+ struct mem_cgroup *memcg;
|
|
|
|
|
|
- throttle_vm_writeout(sc->gfp_mask);
|
|
|
-}
|
|
|
+ nr_reclaimed = sc->nr_reclaimed;
|
|
|
+ nr_scanned = sc->nr_scanned;
|
|
|
|
|
|
-static void shrink_zone(struct zone *zone, struct scan_control *sc)
|
|
|
-{
|
|
|
- struct mem_cgroup *root = sc->target_mem_cgroup;
|
|
|
- struct mem_cgroup_reclaim_cookie reclaim = {
|
|
|
- .zone = zone,
|
|
|
- .priority = sc->priority,
|
|
|
- };
|
|
|
- struct mem_cgroup *memcg;
|
|
|
+ memcg = mem_cgroup_iter(root, NULL, &reclaim);
|
|
|
+ do {
|
|
|
+ struct lruvec *lruvec;
|
|
|
|
|
|
- memcg = mem_cgroup_iter(root, NULL, &reclaim);
|
|
|
- do {
|
|
|
- struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
|
|
|
+ lruvec = mem_cgroup_zone_lruvec(zone, memcg);
|
|
|
|
|
|
- shrink_lruvec(lruvec, sc);
|
|
|
+ shrink_lruvec(lruvec, sc);
|
|
|
|
|
|
- /*
|
|
|
- * Limit reclaim has historically picked one memcg and
|
|
|
- * scanned it with decreasing priority levels until
|
|
|
- * nr_to_reclaim had been reclaimed. This priority
|
|
|
- * cycle is thus over after a single memcg.
|
|
|
- *
|
|
|
- * Direct reclaim and kswapd, on the other hand, have
|
|
|
- * to scan all memory cgroups to fulfill the overall
|
|
|
- * scan target for the zone.
|
|
|
- */
|
|
|
- if (!global_reclaim(sc)) {
|
|
|
- mem_cgroup_iter_break(root, memcg);
|
|
|
- break;
|
|
|
- }
|
|
|
- memcg = mem_cgroup_iter(root, memcg, &reclaim);
|
|
|
- } while (memcg);
|
|
|
+ /*
|
|
|
+ * Limit reclaim has historically picked one
|
|
|
+ * memcg and scanned it with decreasing
|
|
|
+ * priority levels until nr_to_reclaim had
|
|
|
+ * been reclaimed. This priority cycle is
|
|
|
+ * thus over after a single memcg.
|
|
|
+ *
|
|
|
+ * Direct reclaim and kswapd, on the other
|
|
|
+ * hand, have to scan all memory cgroups to
|
|
|
+ * fulfill the overall scan target for the
|
|
|
+ * zone.
|
|
|
+ */
|
|
|
+ if (!global_reclaim(sc)) {
|
|
|
+ mem_cgroup_iter_break(root, memcg);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ memcg = mem_cgroup_iter(root, memcg, &reclaim);
|
|
|
+ } while (memcg);
|
|
|
+ } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
|
|
|
+ sc->nr_scanned - nr_scanned, sc));
|
|
|
}
|
|
|
|
|
|
/* Returns true if compaction should go ahead for a high-order request */
|