|
@@ -0,0 +1,532 @@
|
|
|
+/*
|
|
|
+ * include/asm-xtensa/uaccess.h
|
|
|
+ *
|
|
|
+ * User space memory access functions
|
|
|
+ *
|
|
|
+ * These routines provide basic accessing functions to the user memory
|
|
|
+ * space for the kernel. This header file provides fuctions such as:
|
|
|
+ *
|
|
|
+ * This file is subject to the terms and conditions of the GNU General Public
|
|
|
+ * License. See the file "COPYING" in the main directory of this archive
|
|
|
+ * for more details.
|
|
|
+ *
|
|
|
+ * Copyright (C) 2001 - 2005 Tensilica Inc.
|
|
|
+ */
|
|
|
+
|
|
|
+#ifndef _XTENSA_UACCESS_H
|
|
|
+#define _XTENSA_UACCESS_H
|
|
|
+
|
|
|
+#include <linux/errno.h>
|
|
|
+
|
|
|
+#define VERIFY_READ 0
|
|
|
+#define VERIFY_WRITE 1
|
|
|
+
|
|
|
+#ifdef __ASSEMBLY__
|
|
|
+
|
|
|
+#define _ASMLANGUAGE
|
|
|
+#include <asm/current.h>
|
|
|
+#include <asm/offsets.h>
|
|
|
+#include <asm/processor.h>
|
|
|
+
|
|
|
+/*
|
|
|
+ * These assembly macros mirror the C macros that follow below. They
|
|
|
+ * should always have identical functionality. See
|
|
|
+ * arch/xtensa/kernel/sys.S for usage.
|
|
|
+ */
|
|
|
+
|
|
|
+#define KERNEL_DS 0
|
|
|
+#define USER_DS 1
|
|
|
+
|
|
|
+#define get_ds (KERNEL_DS)
|
|
|
+
|
|
|
+/*
|
|
|
+ * get_fs reads current->thread.current_ds into a register.
|
|
|
+ * On Entry:
|
|
|
+ * <ad> anything
|
|
|
+ * <sp> stack
|
|
|
+ * On Exit:
|
|
|
+ * <ad> contains current->thread.current_ds
|
|
|
+ */
|
|
|
+ .macro get_fs ad, sp
|
|
|
+ GET_CURRENT(\ad,\sp)
|
|
|
+ l32i \ad, \ad, THREAD_CURRENT_DS
|
|
|
+ .endm
|
|
|
+
|
|
|
+/*
|
|
|
+ * set_fs sets current->thread.current_ds to some value.
|
|
|
+ * On Entry:
|
|
|
+ * <at> anything (temp register)
|
|
|
+ * <av> value to write
|
|
|
+ * <sp> stack
|
|
|
+ * On Exit:
|
|
|
+ * <at> destroyed (actually, current)
|
|
|
+ * <av> preserved, value to write
|
|
|
+ */
|
|
|
+ .macro set_fs at, av, sp
|
|
|
+ GET_CURRENT(\at,\sp)
|
|
|
+ s32i \av, \at, THREAD_CURRENT_DS
|
|
|
+ .endm
|
|
|
+
|
|
|
+/*
|
|
|
+ * kernel_ok determines whether we should bypass addr/size checking.
|
|
|
+ * See the equivalent C-macro version below for clarity.
|
|
|
+ * On success, kernel_ok branches to a label indicated by parameter
|
|
|
+ * <success>. This implies that the macro falls through to the next
|
|
|
+ * insruction on an error.
|
|
|
+ *
|
|
|
+ * Note that while this macro can be used independently, we designed
|
|
|
+ * in for optimal use in the access_ok macro below (i.e., we fall
|
|
|
+ * through on error).
|
|
|
+ *
|
|
|
+ * On Entry:
|
|
|
+ * <at> anything (temp register)
|
|
|
+ * <success> label to branch to on success; implies
|
|
|
+ * fall-through macro on error
|
|
|
+ * <sp> stack pointer
|
|
|
+ * On Exit:
|
|
|
+ * <at> destroyed (actually, current->thread.current_ds)
|
|
|
+ */
|
|
|
+
|
|
|
+#if ((KERNEL_DS != 0) || (USER_DS == 0))
|
|
|
+# error Assembly macro kernel_ok fails
|
|
|
+#endif
|
|
|
+ .macro kernel_ok at, sp, success
|
|
|
+ get_fs \at, \sp
|
|
|
+ beqz \at, \success
|
|
|
+ .endm
|
|
|
+
|
|
|
+/*
|
|
|
+ * user_ok determines whether the access to user-space memory is allowed.
|
|
|
+ * See the equivalent C-macro version below for clarity.
|
|
|
+ *
|
|
|
+ * On error, user_ok branches to a label indicated by parameter
|
|
|
+ * <error>. This implies that the macro falls through to the next
|
|
|
+ * instruction on success.
|
|
|
+ *
|
|
|
+ * Note that while this macro can be used independently, we designed
|
|
|
+ * in for optimal use in the access_ok macro below (i.e., we fall
|
|
|
+ * through on success).
|
|
|
+ *
|
|
|
+ * On Entry:
|
|
|
+ * <aa> register containing memory address
|
|
|
+ * <as> register containing memory size
|
|
|
+ * <at> temp register
|
|
|
+ * <error> label to branch to on error; implies fall-through
|
|
|
+ * macro on success
|
|
|
+ * On Exit:
|
|
|
+ * <aa> preserved
|
|
|
+ * <as> preserved
|
|
|
+ * <at> destroyed (actually, (TASK_SIZE + 1 - size))
|
|
|
+ */
|
|
|
+ .macro user_ok aa, as, at, error
|
|
|
+ movi \at, (TASK_SIZE+1)
|
|
|
+ bgeu \as, \at, \error
|
|
|
+ sub \at, \at, \as
|
|
|
+ bgeu \aa, \at, \error
|
|
|
+ .endm
|
|
|
+
|
|
|
+/*
|
|
|
+ * access_ok determines whether a memory access is allowed. See the
|
|
|
+ * equivalent C-macro version below for clarity.
|
|
|
+ *
|
|
|
+ * On error, access_ok branches to a label indicated by parameter
|
|
|
+ * <error>. This implies that the macro falls through to the next
|
|
|
+ * instruction on success.
|
|
|
+ *
|
|
|
+ * Note that we assume success is the common case, and we optimize the
|
|
|
+ * branch fall-through case on success.
|
|
|
+ *
|
|
|
+ * On Entry:
|
|
|
+ * <aa> register containing memory address
|
|
|
+ * <as> register containing memory size
|
|
|
+ * <at> temp register
|
|
|
+ * <sp>
|
|
|
+ * <error> label to branch to on error; implies fall-through
|
|
|
+ * macro on success
|
|
|
+ * On Exit:
|
|
|
+ * <aa> preserved
|
|
|
+ * <as> preserved
|
|
|
+ * <at> destroyed
|
|
|
+ */
|
|
|
+ .macro access_ok aa, as, at, sp, error
|
|
|
+ kernel_ok \at, \sp, .Laccess_ok_\@
|
|
|
+ user_ok \aa, \as, \at, \error
|
|
|
+.Laccess_ok_\@:
|
|
|
+ .endm
|
|
|
+
|
|
|
+/*
|
|
|
+ * verify_area determines whether a memory access is allowed. It's
|
|
|
+ * mostly an unnecessary wrapper for access_ok, but we provide it as a
|
|
|
+ * duplicate of the verify_area() C inline function below. See the
|
|
|
+ * equivalent C version below for clarity.
|
|
|
+ *
|
|
|
+ * On error, verify_area branches to a label indicated by parameter
|
|
|
+ * <error>. This implies that the macro falls through to the next
|
|
|
+ * instruction on success.
|
|
|
+ *
|
|
|
+ * Note that we assume success is the common case, and we optimize the
|
|
|
+ * branch fall-through case on success.
|
|
|
+ *
|
|
|
+ * On Entry:
|
|
|
+ * <aa> register containing memory address
|
|
|
+ * <as> register containing memory size
|
|
|
+ * <at> temp register
|
|
|
+ * <error> label to branch to on error; implies fall-through
|
|
|
+ * macro on success
|
|
|
+ * On Exit:
|
|
|
+ * <aa> preserved
|
|
|
+ * <as> preserved
|
|
|
+ * <at> destroyed
|
|
|
+ */
|
|
|
+ .macro verify_area aa, as, at, sp, error
|
|
|
+ access_ok \at, \aa, \as, \sp, \error
|
|
|
+ .endm
|
|
|
+
|
|
|
+
|
|
|
+#else /* __ASSEMBLY__ not defined */
|
|
|
+
|
|
|
+#include <linux/sched.h>
|
|
|
+#include <asm/types.h>
|
|
|
+
|
|
|
+/*
|
|
|
+ * The fs value determines whether argument validity checking should
|
|
|
+ * be performed or not. If get_fs() == USER_DS, checking is
|
|
|
+ * performed, with get_fs() == KERNEL_DS, checking is bypassed.
|
|
|
+ *
|
|
|
+ * For historical reasons (Data Segment Register?), these macros are
|
|
|
+ * grossly misnamed.
|
|
|
+ */
|
|
|
+
|
|
|
+#define KERNEL_DS ((mm_segment_t) { 0 })
|
|
|
+#define USER_DS ((mm_segment_t) { 1 })
|
|
|
+
|
|
|
+#define get_ds() (KERNEL_DS)
|
|
|
+#define get_fs() (current->thread.current_ds)
|
|
|
+#define set_fs(val) (current->thread.current_ds = (val))
|
|
|
+
|
|
|
+#define segment_eq(a,b) ((a).seg == (b).seg)
|
|
|
+
|
|
|
+#define __kernel_ok (segment_eq(get_fs(), KERNEL_DS))
|
|
|
+#define __user_ok(addr,size) (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size)))
|
|
|
+#define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size)))
|
|
|
+#define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size))
|
|
|
+
|
|
|
+extern inline int verify_area(int type, const void * addr, unsigned long size)
|
|
|
+{
|
|
|
+ return access_ok(type,addr,size) ? 0 : -EFAULT;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * These are the main single-value transfer routines. They
|
|
|
+ * automatically use the right size if we just have the right pointer
|
|
|
+ * type.
|
|
|
+ *
|
|
|
+ * This gets kind of ugly. We want to return _two_ values in
|
|
|
+ * "get_user()" and yet we don't want to do any pointers, because that
|
|
|
+ * is too much of a performance impact. Thus we have a few rather ugly
|
|
|
+ * macros here, and hide all the uglyness from the user.
|
|
|
+ *
|
|
|
+ * Careful to not
|
|
|
+ * (a) re-use the arguments for side effects (sizeof is ok)
|
|
|
+ * (b) require any knowledge of processes at this stage
|
|
|
+ */
|
|
|
+#define put_user(x,ptr) __put_user_check((x),(ptr),sizeof(*(ptr)))
|
|
|
+#define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr)))
|
|
|
+
|
|
|
+/*
|
|
|
+ * The "__xxx" versions of the user access functions are versions that
|
|
|
+ * do not verify the address space, that must have been done previously
|
|
|
+ * with a separate "access_ok()" call (this is used when we do multiple
|
|
|
+ * accesses to the same area of user memory).
|
|
|
+ */
|
|
|
+#define __put_user(x,ptr) __put_user_nocheck((x),(ptr),sizeof(*(ptr)))
|
|
|
+#define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr)))
|
|
|
+
|
|
|
+
|
|
|
+extern long __put_user_bad(void);
|
|
|
+
|
|
|
+#define __put_user_nocheck(x,ptr,size) \
|
|
|
+({ \
|
|
|
+ long __pu_err; \
|
|
|
+ __put_user_size((x),(ptr),(size),__pu_err); \
|
|
|
+ __pu_err; \
|
|
|
+})
|
|
|
+
|
|
|
+#define __put_user_check(x,ptr,size) \
|
|
|
+({ \
|
|
|
+ long __pu_err = -EFAULT; \
|
|
|
+ __typeof__(*(ptr)) *__pu_addr = (ptr); \
|
|
|
+ if (access_ok(VERIFY_WRITE,__pu_addr,size)) \
|
|
|
+ __put_user_size((x),__pu_addr,(size),__pu_err); \
|
|
|
+ __pu_err; \
|
|
|
+})
|
|
|
+
|
|
|
+#define __put_user_size(x,ptr,size,retval) \
|
|
|
+do { \
|
|
|
+ retval = 0; \
|
|
|
+ switch (size) { \
|
|
|
+ case 1: __put_user_asm(x,ptr,retval,1,"s8i"); break; \
|
|
|
+ case 2: __put_user_asm(x,ptr,retval,2,"s16i"); break; \
|
|
|
+ case 4: __put_user_asm(x,ptr,retval,4,"s32i"); break; \
|
|
|
+ case 8: { \
|
|
|
+ __typeof__(*ptr) __v64 = x; \
|
|
|
+ retval = __copy_to_user(ptr,&__v64,8); \
|
|
|
+ break; \
|
|
|
+ } \
|
|
|
+ default: __put_user_bad(); \
|
|
|
+ } \
|
|
|
+} while (0)
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ * Consider a case of a user single load/store would cause both an
|
|
|
+ * unaligned exception and an MMU-related exception (unaligned
|
|
|
+ * exceptions happen first):
|
|
|
+ *
|
|
|
+ * User code passes a bad variable ptr to a system call.
|
|
|
+ * Kernel tries to access the variable.
|
|
|
+ * Unaligned exception occurs.
|
|
|
+ * Unaligned exception handler tries to make aligned accesses.
|
|
|
+ * Double exception occurs for MMU-related cause (e.g., page not mapped).
|
|
|
+ * do_page_fault() thinks the fault address belongs to the kernel, not the
|
|
|
+ * user, and panics.
|
|
|
+ *
|
|
|
+ * The kernel currently prohibits user unaligned accesses. We use the
|
|
|
+ * __check_align_* macros to check for unaligned addresses before
|
|
|
+ * accessing user space so we don't crash the kernel. Both
|
|
|
+ * __put_user_asm and __get_user_asm use these alignment macros, so
|
|
|
+ * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in
|
|
|
+ * sync.
|
|
|
+ */
|
|
|
+
|
|
|
+#define __check_align_1 ""
|
|
|
+
|
|
|
+#define __check_align_2 \
|
|
|
+ " _bbci.l %2, 0, 1f \n" \
|
|
|
+ " movi %0, %3 \n" \
|
|
|
+ " _j 2f \n"
|
|
|
+
|
|
|
+#define __check_align_4 \
|
|
|
+ " _bbsi.l %2, 0, 0f \n" \
|
|
|
+ " _bbci.l %2, 1, 1f \n" \
|
|
|
+ "0: movi %0, %3 \n" \
|
|
|
+ " _j 2f \n"
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ * We don't tell gcc that we are accessing memory, but this is OK
|
|
|
+ * because we do not write to any memory gcc knows about, so there
|
|
|
+ * are no aliasing issues.
|
|
|
+ *
|
|
|
+ * WARNING: If you modify this macro at all, verify that the
|
|
|
+ * __check_align_* macros still work.
|
|
|
+ */
|
|
|
+#define __put_user_asm(x, addr, err, align, insn) \
|
|
|
+ __asm__ __volatile__( \
|
|
|
+ __check_align_##align \
|
|
|
+ "1: "insn" %1, %2, 0 \n" \
|
|
|
+ "2: \n" \
|
|
|
+ " .section .fixup,\"ax\" \n" \
|
|
|
+ " .align 4 \n" \
|
|
|
+ "4: \n" \
|
|
|
+ " .long 2b \n" \
|
|
|
+ "5: \n" \
|
|
|
+ " l32r %2, 4b \n" \
|
|
|
+ " movi %0, %3 \n" \
|
|
|
+ " jx %2 \n" \
|
|
|
+ " .previous \n" \
|
|
|
+ " .section __ex_table,\"a\" \n" \
|
|
|
+ " .long 1b, 5b \n" \
|
|
|
+ " .previous" \
|
|
|
+ :"=r" (err) \
|
|
|
+ :"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err))
|
|
|
+
|
|
|
+#define __get_user_nocheck(x,ptr,size) \
|
|
|
+({ \
|
|
|
+ long __gu_err, __gu_val; \
|
|
|
+ __get_user_size(__gu_val,(ptr),(size),__gu_err); \
|
|
|
+ (x) = (__typeof__(*(ptr)))__gu_val; \
|
|
|
+ __gu_err; \
|
|
|
+})
|
|
|
+
|
|
|
+#define __get_user_check(x,ptr,size) \
|
|
|
+({ \
|
|
|
+ long __gu_err = -EFAULT, __gu_val = 0; \
|
|
|
+ const __typeof__(*(ptr)) *__gu_addr = (ptr); \
|
|
|
+ if (access_ok(VERIFY_READ,__gu_addr,size)) \
|
|
|
+ __get_user_size(__gu_val,__gu_addr,(size),__gu_err); \
|
|
|
+ (x) = (__typeof__(*(ptr)))__gu_val; \
|
|
|
+ __gu_err; \
|
|
|
+})
|
|
|
+
|
|
|
+extern long __get_user_bad(void);
|
|
|
+
|
|
|
+#define __get_user_size(x,ptr,size,retval) \
|
|
|
+do { \
|
|
|
+ retval = 0; \
|
|
|
+ switch (size) { \
|
|
|
+ case 1: __get_user_asm(x,ptr,retval,1,"l8ui"); break; \
|
|
|
+ case 2: __get_user_asm(x,ptr,retval,2,"l16ui"); break; \
|
|
|
+ case 4: __get_user_asm(x,ptr,retval,4,"l32i"); break; \
|
|
|
+ case 8: retval = __copy_from_user(&x,ptr,8); break; \
|
|
|
+ default: (x) = __get_user_bad(); \
|
|
|
+ } \
|
|
|
+} while (0)
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ * WARNING: If you modify this macro at all, verify that the
|
|
|
+ * __check_align_* macros still work.
|
|
|
+ */
|
|
|
+#define __get_user_asm(x, addr, err, align, insn) \
|
|
|
+ __asm__ __volatile__( \
|
|
|
+ __check_align_##align \
|
|
|
+ "1: "insn" %1, %2, 0 \n" \
|
|
|
+ "2: \n" \
|
|
|
+ " .section .fixup,\"ax\" \n" \
|
|
|
+ " .align 4 \n" \
|
|
|
+ "4: \n" \
|
|
|
+ " .long 2b \n" \
|
|
|
+ "5: \n" \
|
|
|
+ " l32r %2, 4b \n" \
|
|
|
+ " movi %1, 0 \n" \
|
|
|
+ " movi %0, %3 \n" \
|
|
|
+ " jx %2 \n" \
|
|
|
+ " .previous \n" \
|
|
|
+ " .section __ex_table,\"a\" \n" \
|
|
|
+ " .long 1b, 5b \n" \
|
|
|
+ " .previous" \
|
|
|
+ :"=r" (err), "=r" (x) \
|
|
|
+ :"r" (addr), "i" (-EFAULT), "0" (err))
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ * Copy to/from user space
|
|
|
+ */
|
|
|
+
|
|
|
+/*
|
|
|
+ * We use a generic, arbitrary-sized copy subroutine. The Xtensa
|
|
|
+ * architecture would cause heavy code bloat if we tried to inline
|
|
|
+ * these functions and provide __constant_copy_* equivalents like the
|
|
|
+ * i386 versions. __xtensa_copy_user is quite efficient. See the
|
|
|
+ * .fixup section of __xtensa_copy_user for a discussion on the
|
|
|
+ * X_zeroing equivalents for Xtensa.
|
|
|
+ */
|
|
|
+
|
|
|
+extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n);
|
|
|
+#define __copy_user(to,from,size) __xtensa_copy_user(to,from,size)
|
|
|
+
|
|
|
+
|
|
|
+static inline unsigned long
|
|
|
+__generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n)
|
|
|
+{
|
|
|
+ return __copy_user(to,from,n);
|
|
|
+}
|
|
|
+
|
|
|
+static inline unsigned long
|
|
|
+__generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n)
|
|
|
+{
|
|
|
+ return __copy_user(to,from,n);
|
|
|
+}
|
|
|
+
|
|
|
+static inline unsigned long
|
|
|
+__generic_copy_to_user(void *to, const void *from, unsigned long n)
|
|
|
+{
|
|
|
+ prefetch(from);
|
|
|
+ if (access_ok(VERIFY_WRITE, to, n))
|
|
|
+ return __copy_user(to,from,n);
|
|
|
+ return n;
|
|
|
+}
|
|
|
+
|
|
|
+static inline unsigned long
|
|
|
+__generic_copy_from_user(void *to, const void *from, unsigned long n)
|
|
|
+{
|
|
|
+ prefetchw(to);
|
|
|
+ if (access_ok(VERIFY_READ, from, n))
|
|
|
+ return __copy_user(to,from,n);
|
|
|
+ else
|
|
|
+ memset(to, 0, n);
|
|
|
+ return n;
|
|
|
+}
|
|
|
+
|
|
|
+#define copy_to_user(to,from,n) __generic_copy_to_user((to),(from),(n))
|
|
|
+#define copy_from_user(to,from,n) __generic_copy_from_user((to),(from),(n))
|
|
|
+#define __copy_to_user(to,from,n) __generic_copy_to_user_nocheck((to),(from),(n))
|
|
|
+#define __copy_from_user(to,from,n) __generic_copy_from_user_nocheck((to),(from),(n))
|
|
|
+#define __copy_to_user_inatomic __copy_to_user
|
|
|
+#define __copy_from_user_inatomic __copy_from_user
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ * We need to return the number of bytes not cleared. Our memset()
|
|
|
+ * returns zero if a problem occurs while accessing user-space memory.
|
|
|
+ * In that event, return no memory cleared. Otherwise, zero for
|
|
|
+ * success.
|
|
|
+ */
|
|
|
+
|
|
|
+extern inline unsigned long
|
|
|
+__xtensa_clear_user(void *addr, unsigned long size)
|
|
|
+{
|
|
|
+ if ( ! memset(addr, 0, size) )
|
|
|
+ return size;
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+extern inline unsigned long
|
|
|
+clear_user(void *addr, unsigned long size)
|
|
|
+{
|
|
|
+ if (access_ok(VERIFY_WRITE, addr, size))
|
|
|
+ return __xtensa_clear_user(addr, size);
|
|
|
+ return size ? -EFAULT : 0;
|
|
|
+}
|
|
|
+
|
|
|
+#define __clear_user __xtensa_clear_user
|
|
|
+
|
|
|
+
|
|
|
+extern long __strncpy_user(char *, const char *, long);
|
|
|
+#define __strncpy_from_user __strncpy_user
|
|
|
+
|
|
|
+extern inline long
|
|
|
+strncpy_from_user(char *dst, const char *src, long count)
|
|
|
+{
|
|
|
+ if (access_ok(VERIFY_READ, src, 1))
|
|
|
+ return __strncpy_from_user(dst, src, count);
|
|
|
+ return -EFAULT;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+#define strlen_user(str) strnlen_user((str), TASK_SIZE - 1)
|
|
|
+
|
|
|
+/*
|
|
|
+ * Return the size of a string (including the ending 0!)
|
|
|
+ */
|
|
|
+extern long __strnlen_user(const char *, long);
|
|
|
+
|
|
|
+extern inline long strnlen_user(const char *str, long len)
|
|
|
+{
|
|
|
+ unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1;
|
|
|
+
|
|
|
+ if ((unsigned long)str > top)
|
|
|
+ return 0;
|
|
|
+ return __strnlen_user(str, len);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+struct exception_table_entry
|
|
|
+{
|
|
|
+ unsigned long insn, fixup;
|
|
|
+};
|
|
|
+
|
|
|
+/* Returns 0 if exception not found and fixup.unit otherwise. */
|
|
|
+
|
|
|
+extern unsigned long search_exception_table(unsigned long addr);
|
|
|
+extern void sort_exception_table(void);
|
|
|
+
|
|
|
+/* Returns the new pc */
|
|
|
+#define fixup_exception(map_reg, fixup_unit, pc) \
|
|
|
+({ \
|
|
|
+ fixup_unit; \
|
|
|
+})
|
|
|
+
|
|
|
+#endif /* __ASSEMBLY__ */
|
|
|
+#endif /* _XTENSA_UACCESS_H */
|