|
@@ -3085,6 +3085,114 @@ static int set_journal_csum_feature_set(struct super_block *sb)
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
+/*
|
|
|
+ * Note: calculating the overhead so we can be compatible with
|
|
|
+ * historical BSD practice is quite difficult in the face of
|
|
|
+ * clusters/bigalloc. This is because multiple metadata blocks from
|
|
|
+ * different block group can end up in the same allocation cluster.
|
|
|
+ * Calculating the exact overhead in the face of clustered allocation
|
|
|
+ * requires either O(all block bitmaps) in memory or O(number of block
|
|
|
+ * groups**2) in time. We will still calculate the superblock for
|
|
|
+ * older file systems --- and if we come across with a bigalloc file
|
|
|
+ * system with zero in s_overhead_clusters the estimate will be close to
|
|
|
+ * correct especially for very large cluster sizes --- but for newer
|
|
|
+ * file systems, it's better to calculate this figure once at mkfs
|
|
|
+ * time, and store it in the superblock. If the superblock value is
|
|
|
+ * present (even for non-bigalloc file systems), we will use it.
|
|
|
+ */
|
|
|
+static int count_overhead(struct super_block *sb, ext4_group_t grp,
|
|
|
+ char *buf)
|
|
|
+{
|
|
|
+ struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
|
+ struct ext4_group_desc *gdp;
|
|
|
+ ext4_fsblk_t first_block, last_block, b;
|
|
|
+ ext4_group_t i, ngroups = ext4_get_groups_count(sb);
|
|
|
+ int s, j, count = 0;
|
|
|
+
|
|
|
+ first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
|
|
|
+ (grp * EXT4_BLOCKS_PER_GROUP(sb));
|
|
|
+ last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
|
|
|
+ for (i = 0; i < ngroups; i++) {
|
|
|
+ gdp = ext4_get_group_desc(sb, i, NULL);
|
|
|
+ b = ext4_block_bitmap(sb, gdp);
|
|
|
+ if (b >= first_block && b <= last_block) {
|
|
|
+ ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
|
|
|
+ count++;
|
|
|
+ }
|
|
|
+ b = ext4_inode_bitmap(sb, gdp);
|
|
|
+ if (b >= first_block && b <= last_block) {
|
|
|
+ ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
|
|
|
+ count++;
|
|
|
+ }
|
|
|
+ b = ext4_inode_table(sb, gdp);
|
|
|
+ if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
|
|
|
+ for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
|
|
|
+ int c = EXT4_B2C(sbi, b - first_block);
|
|
|
+ ext4_set_bit(c, buf);
|
|
|
+ count++;
|
|
|
+ }
|
|
|
+ if (i != grp)
|
|
|
+ continue;
|
|
|
+ s = 0;
|
|
|
+ if (ext4_bg_has_super(sb, grp)) {
|
|
|
+ ext4_set_bit(s++, buf);
|
|
|
+ count++;
|
|
|
+ }
|
|
|
+ for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
|
|
|
+ ext4_set_bit(EXT4_B2C(sbi, s++), buf);
|
|
|
+ count++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (!count)
|
|
|
+ return 0;
|
|
|
+ return EXT4_CLUSTERS_PER_GROUP(sb) -
|
|
|
+ ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Compute the overhead and stash it in sbi->s_overhead
|
|
|
+ */
|
|
|
+int ext4_calculate_overhead(struct super_block *sb)
|
|
|
+{
|
|
|
+ struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
|
+ struct ext4_super_block *es = sbi->s_es;
|
|
|
+ ext4_group_t i, ngroups = ext4_get_groups_count(sb);
|
|
|
+ ext4_fsblk_t overhead = 0;
|
|
|
+ char *buf = (char *) get_zeroed_page(GFP_KERNEL);
|
|
|
+
|
|
|
+ memset(buf, 0, PAGE_SIZE);
|
|
|
+ if (!buf)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Compute the overhead (FS structures). This is constant
|
|
|
+ * for a given filesystem unless the number of block groups
|
|
|
+ * changes so we cache the previous value until it does.
|
|
|
+ */
|
|
|
+
|
|
|
+ /*
|
|
|
+ * All of the blocks before first_data_block are overhead
|
|
|
+ */
|
|
|
+ overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Add the overhead found in each block group
|
|
|
+ */
|
|
|
+ for (i = 0; i < ngroups; i++) {
|
|
|
+ int blks;
|
|
|
+
|
|
|
+ blks = count_overhead(sb, i, buf);
|
|
|
+ overhead += blks;
|
|
|
+ if (blks)
|
|
|
+ memset(buf, 0, PAGE_SIZE);
|
|
|
+ cond_resched();
|
|
|
+ }
|
|
|
+ sbi->s_overhead = overhead;
|
|
|
+ smp_wmb();
|
|
|
+ free_page((unsigned long) buf);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
static int ext4_fill_super(struct super_block *sb, void *data, int silent)
|
|
|
{
|
|
|
char *orig_data = kstrdup(data, GFP_KERNEL);
|
|
@@ -3734,6 +3842,18 @@ static int ext4_fill_super(struct super_block *sb, void *data, int silent)
|
|
|
percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
|
|
|
|
|
|
no_journal:
|
|
|
+ /*
|
|
|
+ * Get the # of file system overhead blocks from the
|
|
|
+ * superblock if present.
|
|
|
+ */
|
|
|
+ if (es->s_overhead_clusters)
|
|
|
+ sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
|
|
|
+ else {
|
|
|
+ ret = ext4_calculate_overhead(sb);
|
|
|
+ if (ret)
|
|
|
+ goto failed_mount_wq;
|
|
|
+ }
|
|
|
+
|
|
|
/*
|
|
|
* The maximum number of concurrent works can be high and
|
|
|
* concurrency isn't really necessary. Limit it to 1.
|
|
@@ -4600,67 +4720,21 @@ restore_opts:
|
|
|
return err;
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * Note: calculating the overhead so we can be compatible with
|
|
|
- * historical BSD practice is quite difficult in the face of
|
|
|
- * clusters/bigalloc. This is because multiple metadata blocks from
|
|
|
- * different block group can end up in the same allocation cluster.
|
|
|
- * Calculating the exact overhead in the face of clustered allocation
|
|
|
- * requires either O(all block bitmaps) in memory or O(number of block
|
|
|
- * groups**2) in time. We will still calculate the superblock for
|
|
|
- * older file systems --- and if we come across with a bigalloc file
|
|
|
- * system with zero in s_overhead_clusters the estimate will be close to
|
|
|
- * correct especially for very large cluster sizes --- but for newer
|
|
|
- * file systems, it's better to calculate this figure once at mkfs
|
|
|
- * time, and store it in the superblock. If the superblock value is
|
|
|
- * present (even for non-bigalloc file systems), we will use it.
|
|
|
- */
|
|
|
static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
|
|
|
{
|
|
|
struct super_block *sb = dentry->d_sb;
|
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
|
struct ext4_super_block *es = sbi->s_es;
|
|
|
- struct ext4_group_desc *gdp;
|
|
|
+ ext4_fsblk_t overhead = 0;
|
|
|
u64 fsid;
|
|
|
s64 bfree;
|
|
|
|
|
|
- if (test_opt(sb, MINIX_DF)) {
|
|
|
- sbi->s_overhead_last = 0;
|
|
|
- } else if (es->s_overhead_clusters) {
|
|
|
- sbi->s_overhead_last = le32_to_cpu(es->s_overhead_clusters);
|
|
|
- } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
|
|
|
- ext4_group_t i, ngroups = ext4_get_groups_count(sb);
|
|
|
- ext4_fsblk_t overhead = 0;
|
|
|
-
|
|
|
- /*
|
|
|
- * Compute the overhead (FS structures). This is constant
|
|
|
- * for a given filesystem unless the number of block groups
|
|
|
- * changes so we cache the previous value until it does.
|
|
|
- */
|
|
|
-
|
|
|
- /*
|
|
|
- * All of the blocks before first_data_block are
|
|
|
- * overhead
|
|
|
- */
|
|
|
- overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
|
|
|
-
|
|
|
- /*
|
|
|
- * Add the overhead found in each block group
|
|
|
- */
|
|
|
- for (i = 0; i < ngroups; i++) {
|
|
|
- gdp = ext4_get_group_desc(sb, i, NULL);
|
|
|
- overhead += ext4_num_overhead_clusters(sb, i, gdp);
|
|
|
- cond_resched();
|
|
|
- }
|
|
|
- sbi->s_overhead_last = overhead;
|
|
|
- smp_wmb();
|
|
|
- sbi->s_blocks_last = ext4_blocks_count(es);
|
|
|
- }
|
|
|
+ if (!test_opt(sb, MINIX_DF))
|
|
|
+ overhead = sbi->s_overhead;
|
|
|
|
|
|
buf->f_type = EXT4_SUPER_MAGIC;
|
|
|
buf->f_bsize = sb->s_blocksize;
|
|
|
- buf->f_blocks = (ext4_blocks_count(es) -
|
|
|
- EXT4_C2B(sbi, sbi->s_overhead_last));
|
|
|
+ buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, sbi->s_overhead);
|
|
|
bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
|
|
|
percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
|
|
|
/* prevent underflow in case that few free space is available */
|