|
@@ -56,7 +56,6 @@ static int create_strip_zones (mddev_t *mddev)
|
|
|
{
|
|
|
int i, c, j;
|
|
|
sector_t curr_zone_end;
|
|
|
- sector_t min_spacing;
|
|
|
raid0_conf_t *conf = mddev_to_conf(mddev);
|
|
|
mdk_rdev_t *smallest, *rdev1, *rdev2, *rdev;
|
|
|
struct strip_zone *zone;
|
|
@@ -202,28 +201,7 @@ static int create_strip_zones (mddev_t *mddev)
|
|
|
printk(KERN_INFO "raid0: current zone start: %llu\n",
|
|
|
(unsigned long long)smallest->sectors);
|
|
|
}
|
|
|
- /* Now find appropriate hash spacing.
|
|
|
- * We want a number which causes most hash entries to cover
|
|
|
- * at most two strips, but the hash table must be at most
|
|
|
- * 1 PAGE. We choose the smallest strip, or contiguous collection
|
|
|
- * of strips, that has big enough size. We never consider the last
|
|
|
- * strip though as it's size has no bearing on the efficacy of the hash
|
|
|
- * table.
|
|
|
- */
|
|
|
- conf->spacing = curr_zone_end;
|
|
|
- min_spacing = curr_zone_end;
|
|
|
- sector_div(min_spacing, PAGE_SIZE/sizeof(struct strip_zone*));
|
|
|
- for (i=0; i < conf->nr_strip_zones-1; i++) {
|
|
|
- sector_t s = 0;
|
|
|
- for (j = i; j < conf->nr_strip_zones - 1 &&
|
|
|
- s < min_spacing; j++)
|
|
|
- s += conf->strip_zone[j].sectors;
|
|
|
- if (s >= min_spacing && s < conf->spacing)
|
|
|
- conf->spacing = s;
|
|
|
- }
|
|
|
-
|
|
|
mddev->queue->unplug_fn = raid0_unplug;
|
|
|
-
|
|
|
mddev->queue->backing_dev_info.congested_fn = raid0_congested;
|
|
|
mddev->queue->backing_dev_info.congested_data = mddev;
|
|
|
|
|
@@ -273,10 +251,8 @@ static sector_t raid0_size(mddev_t *mddev, sector_t sectors, int raid_disks)
|
|
|
return array_sectors;
|
|
|
}
|
|
|
|
|
|
-static int raid0_run (mddev_t *mddev)
|
|
|
+static int raid0_run(mddev_t *mddev)
|
|
|
{
|
|
|
- unsigned cur=0, i=0, nb_zone;
|
|
|
- s64 sectors;
|
|
|
raid0_conf_t *conf;
|
|
|
|
|
|
if (mddev->chunk_size == 0) {
|
|
@@ -306,43 +282,6 @@ static int raid0_run (mddev_t *mddev)
|
|
|
|
|
|
printk(KERN_INFO "raid0 : md_size is %llu sectors.\n",
|
|
|
(unsigned long long)mddev->array_sectors);
|
|
|
- printk(KERN_INFO "raid0 : conf->spacing is %llu sectors.\n",
|
|
|
- (unsigned long long)conf->spacing);
|
|
|
- {
|
|
|
- sector_t s = raid0_size(mddev, 0, 0);
|
|
|
- sector_t space = conf->spacing;
|
|
|
- int round;
|
|
|
- conf->sector_shift = 0;
|
|
|
- if (sizeof(sector_t) > sizeof(u32)) {
|
|
|
- /*shift down space and s so that sector_div will work */
|
|
|
- while (space > (sector_t) (~(u32)0)) {
|
|
|
- s >>= 1;
|
|
|
- space >>= 1;
|
|
|
- s += 1; /* force round-up */
|
|
|
- conf->sector_shift++;
|
|
|
- }
|
|
|
- }
|
|
|
- round = sector_div(s, (u32)space) ? 1 : 0;
|
|
|
- nb_zone = s + round;
|
|
|
- }
|
|
|
- printk(KERN_INFO "raid0 : nb_zone is %d.\n", nb_zone);
|
|
|
- sectors = conf->strip_zone[cur].sectors;
|
|
|
-
|
|
|
- for (i=1; i< nb_zone; i++) {
|
|
|
- while (sectors <= conf->spacing) {
|
|
|
- cur++;
|
|
|
- sectors += conf->strip_zone[cur].sectors;
|
|
|
- }
|
|
|
- sectors -= conf->spacing;
|
|
|
- }
|
|
|
- if (conf->sector_shift) {
|
|
|
- conf->spacing >>= conf->sector_shift;
|
|
|
- /* round spacing up so when we divide by it, we
|
|
|
- * err on the side of too-low, which is safest
|
|
|
- */
|
|
|
- conf->spacing++;
|
|
|
- }
|
|
|
-
|
|
|
/* calculate the max read-ahead size.
|
|
|
* For read-ahead of large files to be effective, we need to
|
|
|
* readahead at least twice a whole stripe. i.e. number of devices
|