|
@@ -30,7 +30,7 @@
|
|
|
*/
|
|
|
struct crypt_io {
|
|
|
struct dm_target *target;
|
|
|
- struct bio *bio;
|
|
|
+ struct bio *base_bio;
|
|
|
struct bio *first_clone;
|
|
|
struct work_struct work;
|
|
|
atomic_t pending;
|
|
@@ -319,7 +319,7 @@ static struct bio *
|
|
|
crypt_alloc_buffer(struct crypt_config *cc, unsigned int size,
|
|
|
struct bio *base_bio, unsigned int *bio_vec_idx)
|
|
|
{
|
|
|
- struct bio *bio;
|
|
|
+ struct bio *clone;
|
|
|
unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
|
gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
|
|
|
unsigned int i;
|
|
@@ -330,23 +330,23 @@ crypt_alloc_buffer(struct crypt_config *cc, unsigned int size,
|
|
|
* FIXME: Is this really intelligent?
|
|
|
*/
|
|
|
if (base_bio)
|
|
|
- bio = bio_clone(base_bio, GFP_NOIO|__GFP_NOMEMALLOC);
|
|
|
+ clone = bio_clone(base_bio, GFP_NOIO|__GFP_NOMEMALLOC);
|
|
|
else
|
|
|
- bio = bio_alloc(GFP_NOIO|__GFP_NOMEMALLOC, nr_iovecs);
|
|
|
- if (!bio)
|
|
|
+ clone = bio_alloc(GFP_NOIO|__GFP_NOMEMALLOC, nr_iovecs);
|
|
|
+ if (!clone)
|
|
|
return NULL;
|
|
|
|
|
|
/* if the last bio was not complete, continue where that one ended */
|
|
|
- bio->bi_idx = *bio_vec_idx;
|
|
|
- bio->bi_vcnt = *bio_vec_idx;
|
|
|
- bio->bi_size = 0;
|
|
|
- bio->bi_flags &= ~(1 << BIO_SEG_VALID);
|
|
|
+ clone->bi_idx = *bio_vec_idx;
|
|
|
+ clone->bi_vcnt = *bio_vec_idx;
|
|
|
+ clone->bi_size = 0;
|
|
|
+ clone->bi_flags &= ~(1 << BIO_SEG_VALID);
|
|
|
|
|
|
- /* bio->bi_idx pages have already been allocated */
|
|
|
- size -= bio->bi_idx * PAGE_SIZE;
|
|
|
+ /* clone->bi_idx pages have already been allocated */
|
|
|
+ size -= clone->bi_idx * PAGE_SIZE;
|
|
|
|
|
|
- for(i = bio->bi_idx; i < nr_iovecs; i++) {
|
|
|
- struct bio_vec *bv = bio_iovec_idx(bio, i);
|
|
|
+ for (i = clone->bi_idx; i < nr_iovecs; i++) {
|
|
|
+ struct bio_vec *bv = bio_iovec_idx(clone, i);
|
|
|
|
|
|
bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
|
|
|
if (!bv->bv_page)
|
|
@@ -357,7 +357,7 @@ crypt_alloc_buffer(struct crypt_config *cc, unsigned int size,
|
|
|
* return a partially allocated bio, the caller will then try
|
|
|
* to allocate additional bios while submitting this partial bio
|
|
|
*/
|
|
|
- if ((i - bio->bi_idx) == (MIN_BIO_PAGES - 1))
|
|
|
+ if ((i - clone->bi_idx) == (MIN_BIO_PAGES - 1))
|
|
|
gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
|
|
|
|
|
|
bv->bv_offset = 0;
|
|
@@ -366,13 +366,13 @@ crypt_alloc_buffer(struct crypt_config *cc, unsigned int size,
|
|
|
else
|
|
|
bv->bv_len = size;
|
|
|
|
|
|
- bio->bi_size += bv->bv_len;
|
|
|
- bio->bi_vcnt++;
|
|
|
+ clone->bi_size += bv->bv_len;
|
|
|
+ clone->bi_vcnt++;
|
|
|
size -= bv->bv_len;
|
|
|
}
|
|
|
|
|
|
- if (!bio->bi_size) {
|
|
|
- bio_put(bio);
|
|
|
+ if (!clone->bi_size) {
|
|
|
+ bio_put(clone);
|
|
|
return NULL;
|
|
|
}
|
|
|
|
|
@@ -380,13 +380,13 @@ crypt_alloc_buffer(struct crypt_config *cc, unsigned int size,
|
|
|
* Remember the last bio_vec allocated to be able
|
|
|
* to correctly continue after the splitting.
|
|
|
*/
|
|
|
- *bio_vec_idx = bio->bi_vcnt;
|
|
|
+ *bio_vec_idx = clone->bi_vcnt;
|
|
|
|
|
|
- return bio;
|
|
|
+ return clone;
|
|
|
}
|
|
|
|
|
|
static void crypt_free_buffer_pages(struct crypt_config *cc,
|
|
|
- struct bio *bio, unsigned int bytes)
|
|
|
+ struct bio *clone, unsigned int bytes)
|
|
|
{
|
|
|
unsigned int i, start, end;
|
|
|
struct bio_vec *bv;
|
|
@@ -400,19 +400,19 @@ static void crypt_free_buffer_pages(struct crypt_config *cc,
|
|
|
* A fix to the bi_idx issue in the kernel is in the works, so
|
|
|
* we will hopefully be able to revert to the cleaner solution soon.
|
|
|
*/
|
|
|
- i = bio->bi_vcnt - 1;
|
|
|
- bv = bio_iovec_idx(bio, i);
|
|
|
- end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - bio->bi_size;
|
|
|
+ i = clone->bi_vcnt - 1;
|
|
|
+ bv = bio_iovec_idx(clone, i);
|
|
|
+ end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - clone->bi_size;
|
|
|
start = end - bytes;
|
|
|
|
|
|
start >>= PAGE_SHIFT;
|
|
|
- if (!bio->bi_size)
|
|
|
- end = bio->bi_vcnt;
|
|
|
+ if (!clone->bi_size)
|
|
|
+ end = clone->bi_vcnt;
|
|
|
else
|
|
|
end >>= PAGE_SHIFT;
|
|
|
|
|
|
- for(i = start; i < end; i++) {
|
|
|
- bv = bio_iovec_idx(bio, i);
|
|
|
+ for (i = start; i < end; i++) {
|
|
|
+ bv = bio_iovec_idx(clone, i);
|
|
|
BUG_ON(!bv->bv_page);
|
|
|
mempool_free(bv->bv_page, cc->page_pool);
|
|
|
bv->bv_page = NULL;
|
|
@@ -436,7 +436,7 @@ static void dec_pending(struct crypt_io *io, int error)
|
|
|
if (io->first_clone)
|
|
|
bio_put(io->first_clone);
|
|
|
|
|
|
- bio_endio(io->bio, io->bio->bi_size, io->error);
|
|
|
+ bio_endio(io->base_bio, io->base_bio->bi_size, io->error);
|
|
|
|
|
|
mempool_free(io, cc->io_pool);
|
|
|
}
|
|
@@ -449,25 +449,133 @@ static void dec_pending(struct crypt_io *io, int error)
|
|
|
* queued here.
|
|
|
*/
|
|
|
static struct workqueue_struct *_kcryptd_workqueue;
|
|
|
+static void kcryptd_do_work(void *data);
|
|
|
|
|
|
-static void kcryptd_do_work(void *data)
|
|
|
+static void kcryptd_queue_io(struct crypt_io *io)
|
|
|
{
|
|
|
- struct crypt_io *io = (struct crypt_io *) data;
|
|
|
- struct crypt_config *cc = (struct crypt_config *) io->target->private;
|
|
|
+ INIT_WORK(&io->work, kcryptd_do_work, io);
|
|
|
+ queue_work(_kcryptd_workqueue, &io->work);
|
|
|
+}
|
|
|
+
|
|
|
+static int crypt_endio(struct bio *clone, unsigned int done, int error)
|
|
|
+{
|
|
|
+ struct crypt_io *io = clone->bi_private;
|
|
|
+ struct crypt_config *cc = io->target->private;
|
|
|
+ unsigned read_io = bio_data_dir(clone) == READ;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * free the processed pages, even if
|
|
|
+ * it's only a partially completed write
|
|
|
+ */
|
|
|
+ if (!read_io)
|
|
|
+ crypt_free_buffer_pages(cc, clone, done);
|
|
|
+
|
|
|
+ if (unlikely(clone->bi_size))
|
|
|
+ return 1;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * successful reads are decrypted by the worker thread
|
|
|
+ */
|
|
|
+ if (!read_io)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ if (unlikely(!bio_flagged(clone, BIO_UPTODATE))) {
|
|
|
+ error = -EIO;
|
|
|
+ goto out;
|
|
|
+ }
|
|
|
+
|
|
|
+ bio_put(clone);
|
|
|
+ kcryptd_queue_io(io);
|
|
|
+ return 0;
|
|
|
+
|
|
|
+out:
|
|
|
+ bio_put(clone);
|
|
|
+ dec_pending(io, error);
|
|
|
+ return error;
|
|
|
+}
|
|
|
+
|
|
|
+static void clone_init(struct crypt_io *io, struct bio *clone)
|
|
|
+{
|
|
|
+ struct crypt_config *cc = io->target->private;
|
|
|
+
|
|
|
+ clone->bi_private = io;
|
|
|
+ clone->bi_end_io = crypt_endio;
|
|
|
+ clone->bi_bdev = cc->dev->bdev;
|
|
|
+ clone->bi_rw = io->base_bio->bi_rw;
|
|
|
+}
|
|
|
+
|
|
|
+static struct bio *clone_read(struct crypt_io *io,
|
|
|
+ sector_t sector)
|
|
|
+{
|
|
|
+ struct crypt_config *cc = io->target->private;
|
|
|
+ struct bio *base_bio = io->base_bio;
|
|
|
+ struct bio *clone;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The block layer might modify the bvec array, so always
|
|
|
+ * copy the required bvecs because we need the original
|
|
|
+ * one in order to decrypt the whole bio data *afterwards*.
|
|
|
+ */
|
|
|
+ clone = bio_alloc(GFP_NOIO, bio_segments(base_bio));
|
|
|
+ if (unlikely(!clone))
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ clone_init(io, clone);
|
|
|
+ clone->bi_idx = 0;
|
|
|
+ clone->bi_vcnt = bio_segments(base_bio);
|
|
|
+ clone->bi_size = base_bio->bi_size;
|
|
|
+ memcpy(clone->bi_io_vec, bio_iovec(base_bio),
|
|
|
+ sizeof(struct bio_vec) * clone->bi_vcnt);
|
|
|
+ clone->bi_sector = cc->start + sector;
|
|
|
+
|
|
|
+ return clone;
|
|
|
+}
|
|
|
+
|
|
|
+static struct bio *clone_write(struct crypt_io *io,
|
|
|
+ sector_t sector,
|
|
|
+ unsigned *bvec_idx,
|
|
|
+ struct convert_context *ctx)
|
|
|
+{
|
|
|
+ struct crypt_config *cc = io->target->private;
|
|
|
+ struct bio *base_bio = io->base_bio;
|
|
|
+ struct bio *clone;
|
|
|
+
|
|
|
+ clone = crypt_alloc_buffer(cc, base_bio->bi_size,
|
|
|
+ io->first_clone, bvec_idx);
|
|
|
+ if (!clone)
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ ctx->bio_out = clone;
|
|
|
+
|
|
|
+ if (unlikely(crypt_convert(cc, ctx) < 0)) {
|
|
|
+ crypt_free_buffer_pages(cc, clone,
|
|
|
+ clone->bi_size);
|
|
|
+ bio_put(clone);
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ clone_init(io, clone);
|
|
|
+ clone->bi_sector = cc->start + sector;
|
|
|
+
|
|
|
+ return clone;
|
|
|
+}
|
|
|
+
|
|
|
+static void process_read_endio(struct crypt_io *io)
|
|
|
+{
|
|
|
+ struct crypt_config *cc = io->target->private;
|
|
|
struct convert_context ctx;
|
|
|
- int r;
|
|
|
|
|
|
- crypt_convert_init(cc, &ctx, io->bio, io->bio,
|
|
|
- io->bio->bi_sector - io->target->begin, 0);
|
|
|
- r = crypt_convert(cc, &ctx);
|
|
|
+ crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
|
|
|
+ io->base_bio->bi_sector - io->target->begin, 0);
|
|
|
|
|
|
- dec_pending(io, r);
|
|
|
+ dec_pending(io, crypt_convert(cc, &ctx));
|
|
|
}
|
|
|
|
|
|
-static void kcryptd_queue_io(struct crypt_io *io)
|
|
|
+static void kcryptd_do_work(void *data)
|
|
|
{
|
|
|
- INIT_WORK(&io->work, kcryptd_do_work, io);
|
|
|
- queue_work(_kcryptd_workqueue, &io->work);
|
|
|
+ struct crypt_io *io = data;
|
|
|
+
|
|
|
+ process_read_endio(io);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -481,7 +589,7 @@ static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
|
|
|
|
|
|
buffer[2] = '\0';
|
|
|
|
|
|
- for(i = 0; i < size; i++) {
|
|
|
+ for (i = 0; i < size; i++) {
|
|
|
buffer[0] = *hex++;
|
|
|
buffer[1] = *hex++;
|
|
|
|
|
@@ -504,7 +612,7 @@ static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
|
|
|
{
|
|
|
unsigned int i;
|
|
|
|
|
|
- for(i = 0; i < size; i++) {
|
|
|
+ for (i = 0; i < size; i++) {
|
|
|
sprintf(hex, "%02x", *key);
|
|
|
hex += 2;
|
|
|
key++;
|
|
@@ -725,88 +833,10 @@ static void crypt_dtr(struct dm_target *ti)
|
|
|
kfree(cc);
|
|
|
}
|
|
|
|
|
|
-static int crypt_endio(struct bio *bio, unsigned int done, int error)
|
|
|
-{
|
|
|
- struct crypt_io *io = (struct crypt_io *) bio->bi_private;
|
|
|
- struct crypt_config *cc = (struct crypt_config *) io->target->private;
|
|
|
-
|
|
|
- if (bio_data_dir(bio) == WRITE) {
|
|
|
- /*
|
|
|
- * free the processed pages, even if
|
|
|
- * it's only a partially completed write
|
|
|
- */
|
|
|
- crypt_free_buffer_pages(cc, bio, done);
|
|
|
- }
|
|
|
-
|
|
|
- if (bio->bi_size)
|
|
|
- return 1;
|
|
|
-
|
|
|
- bio_put(bio);
|
|
|
-
|
|
|
- /*
|
|
|
- * successful reads are decrypted by the worker thread
|
|
|
- */
|
|
|
- if ((bio_data_dir(bio) == READ)
|
|
|
- && bio_flagged(bio, BIO_UPTODATE)) {
|
|
|
- kcryptd_queue_io(io);
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- dec_pending(io, error);
|
|
|
- return error;
|
|
|
-}
|
|
|
-
|
|
|
-static inline struct bio *
|
|
|
-crypt_clone(struct crypt_config *cc, struct crypt_io *io, struct bio *bio,
|
|
|
- sector_t sector, unsigned int *bvec_idx,
|
|
|
- struct convert_context *ctx)
|
|
|
-{
|
|
|
- struct bio *clone;
|
|
|
-
|
|
|
- if (bio_data_dir(bio) == WRITE) {
|
|
|
- clone = crypt_alloc_buffer(cc, bio->bi_size,
|
|
|
- io->first_clone, bvec_idx);
|
|
|
- if (clone) {
|
|
|
- ctx->bio_out = clone;
|
|
|
- if (crypt_convert(cc, ctx) < 0) {
|
|
|
- crypt_free_buffer_pages(cc, clone,
|
|
|
- clone->bi_size);
|
|
|
- bio_put(clone);
|
|
|
- return NULL;
|
|
|
- }
|
|
|
- }
|
|
|
- } else {
|
|
|
- /*
|
|
|
- * The block layer might modify the bvec array, so always
|
|
|
- * copy the required bvecs because we need the original
|
|
|
- * one in order to decrypt the whole bio data *afterwards*.
|
|
|
- */
|
|
|
- clone = bio_alloc(GFP_NOIO, bio_segments(bio));
|
|
|
- if (clone) {
|
|
|
- clone->bi_idx = 0;
|
|
|
- clone->bi_vcnt = bio_segments(bio);
|
|
|
- clone->bi_size = bio->bi_size;
|
|
|
- memcpy(clone->bi_io_vec, bio_iovec(bio),
|
|
|
- sizeof(struct bio_vec) * clone->bi_vcnt);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (!clone)
|
|
|
- return NULL;
|
|
|
-
|
|
|
- clone->bi_private = io;
|
|
|
- clone->bi_end_io = crypt_endio;
|
|
|
- clone->bi_bdev = cc->dev->bdev;
|
|
|
- clone->bi_sector = cc->start + sector;
|
|
|
- clone->bi_rw = bio->bi_rw;
|
|
|
-
|
|
|
- return clone;
|
|
|
-}
|
|
|
-
|
|
|
static int crypt_map(struct dm_target *ti, struct bio *bio,
|
|
|
union map_info *map_context)
|
|
|
{
|
|
|
- struct crypt_config *cc = (struct crypt_config *) ti->private;
|
|
|
+ struct crypt_config *cc = ti->private;
|
|
|
struct crypt_io *io;
|
|
|
struct convert_context ctx;
|
|
|
struct bio *clone;
|
|
@@ -816,7 +846,7 @@ static int crypt_map(struct dm_target *ti, struct bio *bio,
|
|
|
|
|
|
io = mempool_alloc(cc->io_pool, GFP_NOIO);
|
|
|
io->target = ti;
|
|
|
- io->bio = bio;
|
|
|
+ io->base_bio = bio;
|
|
|
io->first_clone = NULL;
|
|
|
io->error = 0;
|
|
|
atomic_set(&io->pending, 1); /* hold a reference */
|
|
@@ -829,7 +859,10 @@ static int crypt_map(struct dm_target *ti, struct bio *bio,
|
|
|
* so repeat the whole process until all the data can be handled.
|
|
|
*/
|
|
|
while (remaining) {
|
|
|
- clone = crypt_clone(cc, io, bio, sector, &bvec_idx, &ctx);
|
|
|
+ if (bio_data_dir(bio) == WRITE)
|
|
|
+ clone = clone_write(io, sector, &bvec_idx, &ctx);
|
|
|
+ else
|
|
|
+ clone = clone_read(io, sector);
|
|
|
if (!clone)
|
|
|
goto cleanup;
|
|
|
|