|
@@ -8,6 +8,8 @@
|
|
|
#include <linux/delay.h>
|
|
|
#include <linux/init.h>
|
|
|
|
|
|
+#include <asm/timex.h>
|
|
|
+
|
|
|
static unsigned long preset_lpj;
|
|
|
static int __init lpj_setup(char *str)
|
|
|
{
|
|
@@ -17,6 +19,92 @@ static int __init lpj_setup(char *str)
|
|
|
|
|
|
__setup("lpj=", lpj_setup);
|
|
|
|
|
|
+#ifdef ARCH_HAS_READ_CURRENT_TIMER
|
|
|
+
|
|
|
+/* This routine uses the read_current_timer() routine and gets the
|
|
|
+ * loops per jiffy directly, instead of guessing it using delay().
|
|
|
+ * Also, this code tries to handle non-maskable asynchronous events
|
|
|
+ * (like SMIs)
|
|
|
+ */
|
|
|
+#define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
|
|
|
+#define MAX_DIRECT_CALIBRATION_RETRIES 5
|
|
|
+
|
|
|
+static unsigned long __devinit calibrate_delay_direct(void)
|
|
|
+{
|
|
|
+ unsigned long pre_start, start, post_start;
|
|
|
+ unsigned long pre_end, end, post_end;
|
|
|
+ unsigned long start_jiffies;
|
|
|
+ unsigned long tsc_rate_min, tsc_rate_max;
|
|
|
+ unsigned long good_tsc_sum = 0;
|
|
|
+ unsigned long good_tsc_count = 0;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ if (read_current_timer(&pre_start) < 0 )
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * A simple loop like
|
|
|
+ * while ( jiffies < start_jiffies+1)
|
|
|
+ * start = read_current_timer();
|
|
|
+ * will not do. As we don't really know whether jiffy switch
|
|
|
+ * happened first or timer_value was read first. And some asynchronous
|
|
|
+ * event can happen between these two events introducing errors in lpj.
|
|
|
+ *
|
|
|
+ * So, we do
|
|
|
+ * 1. pre_start <- When we are sure that jiffy switch hasn't happened
|
|
|
+ * 2. check jiffy switch
|
|
|
+ * 3. start <- timer value before or after jiffy switch
|
|
|
+ * 4. post_start <- When we are sure that jiffy switch has happened
|
|
|
+ *
|
|
|
+ * Note, we don't know anything about order of 2 and 3.
|
|
|
+ * Now, by looking at post_start and pre_start difference, we can
|
|
|
+ * check whether any asynchronous event happened or not
|
|
|
+ */
|
|
|
+
|
|
|
+ for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
|
|
|
+ pre_start = 0;
|
|
|
+ read_current_timer(&start);
|
|
|
+ start_jiffies = jiffies;
|
|
|
+ while (jiffies <= (start_jiffies + 1)) {
|
|
|
+ pre_start = start;
|
|
|
+ read_current_timer(&start);
|
|
|
+ }
|
|
|
+ read_current_timer(&post_start);
|
|
|
+
|
|
|
+ pre_end = 0;
|
|
|
+ end = post_start;
|
|
|
+ while (jiffies <=
|
|
|
+ (start_jiffies + 1 + DELAY_CALIBRATION_TICKS)) {
|
|
|
+ pre_end = end;
|
|
|
+ read_current_timer(&end);
|
|
|
+ }
|
|
|
+ read_current_timer(&post_end);
|
|
|
+
|
|
|
+ tsc_rate_max = (post_end - pre_start) / DELAY_CALIBRATION_TICKS;
|
|
|
+ tsc_rate_min = (pre_end - post_start) / DELAY_CALIBRATION_TICKS;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If the upper limit and lower limit of the tsc_rate is
|
|
|
+ * >= 12.5% apart, redo calibration.
|
|
|
+ */
|
|
|
+ if (pre_start != 0 && pre_end != 0 &&
|
|
|
+ (tsc_rate_max - tsc_rate_min) < (tsc_rate_max >> 3)) {
|
|
|
+ good_tsc_count++;
|
|
|
+ good_tsc_sum += tsc_rate_max;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (good_tsc_count)
|
|
|
+ return (good_tsc_sum/good_tsc_count);
|
|
|
+
|
|
|
+ printk(KERN_WARNING "calibrate_delay_direct() failed to get a good "
|
|
|
+ "estimate for loops_per_jiffy.\nProbably due to long platform interrupts. Consider using \"lpj=\" boot option.\n");
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+#else
|
|
|
+static unsigned long __devinit calibrate_delay_direct(void) {return 0;}
|
|
|
+#endif
|
|
|
+
|
|
|
/*
|
|
|
* This is the number of bits of precision for the loops_per_jiffy. Each
|
|
|
* bit takes on average 1.5/HZ seconds. This (like the original) is a little
|
|
@@ -35,6 +123,12 @@ void __devinit calibrate_delay(void)
|
|
|
"%lu.%02lu BogoMIPS preset\n",
|
|
|
loops_per_jiffy/(500000/HZ),
|
|
|
(loops_per_jiffy/(5000/HZ)) % 100);
|
|
|
+ } else if ((loops_per_jiffy = calibrate_delay_direct()) != 0) {
|
|
|
+ printk("Calibrating delay using timer specific routine.. ");
|
|
|
+ printk("%lu.%02lu BogoMIPS (lpj=%lu)\n",
|
|
|
+ loops_per_jiffy/(500000/HZ),
|
|
|
+ (loops_per_jiffy/(5000/HZ)) % 100,
|
|
|
+ loops_per_jiffy);
|
|
|
} else {
|
|
|
loops_per_jiffy = (1<<12);
|
|
|
|