|
@@ -537,40 +537,55 @@ static u32 clocksource_max_adjustment(struct clocksource *cs)
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
- * clocksource_max_deferment - Returns max time the clocksource can be deferred
|
|
|
- * @cs: Pointer to clocksource
|
|
|
- *
|
|
|
+ * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
|
|
|
+ * @mult: cycle to nanosecond multiplier
|
|
|
+ * @shift: cycle to nanosecond divisor (power of two)
|
|
|
+ * @maxadj: maximum adjustment value to mult (~11%)
|
|
|
+ * @mask: bitmask for two's complement subtraction of non 64 bit counters
|
|
|
*/
|
|
|
-static u64 clocksource_max_deferment(struct clocksource *cs)
|
|
|
+u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask)
|
|
|
{
|
|
|
u64 max_nsecs, max_cycles;
|
|
|
|
|
|
/*
|
|
|
* Calculate the maximum number of cycles that we can pass to the
|
|
|
* cyc2ns function without overflowing a 64-bit signed result. The
|
|
|
- * maximum number of cycles is equal to ULLONG_MAX/(cs->mult+cs->maxadj)
|
|
|
+ * maximum number of cycles is equal to ULLONG_MAX/(mult+maxadj)
|
|
|
* which is equivalent to the below.
|
|
|
- * max_cycles < (2^63)/(cs->mult + cs->maxadj)
|
|
|
- * max_cycles < 2^(log2((2^63)/(cs->mult + cs->maxadj)))
|
|
|
- * max_cycles < 2^(log2(2^63) - log2(cs->mult + cs->maxadj))
|
|
|
- * max_cycles < 2^(63 - log2(cs->mult + cs->maxadj))
|
|
|
- * max_cycles < 1 << (63 - log2(cs->mult + cs->maxadj))
|
|
|
+ * max_cycles < (2^63)/(mult + maxadj)
|
|
|
+ * max_cycles < 2^(log2((2^63)/(mult + maxadj)))
|
|
|
+ * max_cycles < 2^(log2(2^63) - log2(mult + maxadj))
|
|
|
+ * max_cycles < 2^(63 - log2(mult + maxadj))
|
|
|
+ * max_cycles < 1 << (63 - log2(mult + maxadj))
|
|
|
* Please note that we add 1 to the result of the log2 to account for
|
|
|
* any rounding errors, ensure the above inequality is satisfied and
|
|
|
* no overflow will occur.
|
|
|
*/
|
|
|
- max_cycles = 1ULL << (63 - (ilog2(cs->mult + cs->maxadj) + 1));
|
|
|
+ max_cycles = 1ULL << (63 - (ilog2(mult + maxadj) + 1));
|
|
|
|
|
|
/*
|
|
|
* The actual maximum number of cycles we can defer the clocksource is
|
|
|
- * determined by the minimum of max_cycles and cs->mask.
|
|
|
+ * determined by the minimum of max_cycles and mask.
|
|
|
* Note: Here we subtract the maxadj to make sure we don't sleep for
|
|
|
* too long if there's a large negative adjustment.
|
|
|
*/
|
|
|
- max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
|
|
|
- max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult - cs->maxadj,
|
|
|
- cs->shift);
|
|
|
+ max_cycles = min(max_cycles, mask);
|
|
|
+ max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
|
|
|
+
|
|
|
+ return max_nsecs;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * clocksource_max_deferment - Returns max time the clocksource can be deferred
|
|
|
+ * @cs: Pointer to clocksource
|
|
|
+ *
|
|
|
+ */
|
|
|
+static u64 clocksource_max_deferment(struct clocksource *cs)
|
|
|
+{
|
|
|
+ u64 max_nsecs;
|
|
|
|
|
|
+ max_nsecs = clocks_calc_max_nsecs(cs->mult, cs->shift, cs->maxadj,
|
|
|
+ cs->mask);
|
|
|
/*
|
|
|
* To ensure that the clocksource does not wrap whilst we are idle,
|
|
|
* limit the time the clocksource can be deferred by 12.5%. Please
|