소스 검색

Merge branch 'upstream'

Jeff Garzik 19 년 전
부모
커밋
875999c553
100개의 변경된 파일6223개의 추가작업 그리고 1088개의 파일을 삭제
  1. 3 3
      CREDITS
  2. 2 2
      Documentation/DMA-mapping.txt
  3. 1 1
      Documentation/DocBook/Makefile
  4. 0 1
      Documentation/DocBook/kernel-api.tmpl
  5. 1 1
      Documentation/DocBook/libata.tmpl
  6. 1 1
      Documentation/acpi-hotkey.txt
  7. 12 15
      Documentation/feature-removal-schedule.txt
  8. 11 1
      Documentation/filesystems/vfs.txt
  9. 110 82
      Documentation/fujitsu/frv/kernel-ABI.txt
  10. 6 5
      Documentation/input/joystick-parport.txt
  11. 286 0
      Documentation/isdn/README.gigaset
  12. 1 1
      Documentation/kbuild/modules.txt
  13. 14 20
      Documentation/kernel-parameters.txt
  14. 5 5
      Documentation/laptop-mode.txt
  15. 71 0
      Documentation/leds-class.txt
  16. 1941 0
      Documentation/memory-barriers.txt
  17. 21 2
      Documentation/mtrr.txt
  18. 36 0
      Documentation/networking/bcm43xx.txt
  19. 1 1
      Documentation/networking/packet_mmap.txt
  20. 1 1
      Documentation/networking/tuntap.txt
  21. 6 0
      Documentation/pcmcia/driver-changes.txt
  22. 7 7
      Documentation/scsi/scsi_eh.txt
  23. 0 19
      Documentation/scsi/scsi_mid_low_api.txt
  24. 69 0
      Documentation/sound/alsa/ALSA-Configuration.txt
  25. 8 8
      Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl
  26. 3 2
      Documentation/video4linux/CARDLIST.saa7134
  27. 0 0
      Documentation/video4linux/et61x251.txt
  28. 1 1
      Documentation/video4linux/ibmcam.txt
  29. 5 6
      Documentation/video4linux/ov511.txt
  30. 0 0
      Documentation/video4linux/se401.txt
  31. 8 8
      Documentation/video4linux/sn9c102.txt
  32. 12 14
      Documentation/video4linux/stv680.txt
  33. 18 18
      Documentation/video4linux/w9968cf.txt
  34. 0 0
      Documentation/video4linux/zc0301.txt
  35. 10 10
      Documentation/vm/hugetlbpage.txt
  36. 5 0
      Documentation/x86_64/boot-options.txt
  37. 1 1
      Kbuild
  38. 6 2
      MAINTAINERS
  39. 30 28
      Makefile
  40. 5 0
      arch/alpha/Kconfig
  41. 0 3
      arch/alpha/kernel/alpha_ksyms.c
  42. 1 1
      arch/alpha/kernel/core_marvel.c
  43. 35 0
      arch/alpha/kernel/setup.c
  44. 3 5
      arch/alpha/kernel/smp.c
  45. 16 0
      arch/arm/Kconfig
  46. 44 0
      arch/arm/Kconfig-nommu
  47. 7 2
      arch/arm/Makefile
  48. 106 0
      arch/arm/boot/compressed/head.S
  49. 1 0
      arch/arm/boot/compressed/vmlinux.lds.in
  50. 8 2
      arch/arm/common/sharpsl_pm.c
  51. 1 1
      arch/arm/configs/at91rm9200dk_defconfig
  52. 1 1
      arch/arm/configs/at91rm9200ek_defconfig
  53. 0 14
      arch/arm/kernel/armksyms.c
  54. 1 1
      arch/arm/kernel/entry-armv.S
  55. 217 0
      arch/arm/kernel/head-common.S
  56. 83 0
      arch/arm/kernel/head-nommu.S
  57. 1 206
      arch/arm/kernel/head.S
  58. 0 1
      arch/arm/kernel/process.c
  59. 9 0
      arch/arm/kernel/setup.c
  60. 1 1
      arch/arm/kernel/signal.h
  61. 5 4
      arch/arm/kernel/traps.c
  62. 5 4
      arch/arm/mach-at91rm9200/Makefile
  63. 3 0
      arch/arm/mach-at91rm9200/board-csb337.c
  64. 3 0
      arch/arm/mach-at91rm9200/board-csb637.c
  65. 9 1
      arch/arm/mach-at91rm9200/board-dk.c
  66. 9 1
      arch/arm/mach-at91rm9200/board-ek.c
  67. 146 8
      arch/arm/mach-at91rm9200/devices.c
  68. 100 0
      arch/arm/mach-at91rm9200/leds.c
  69. 10 0
      arch/arm/mach-ep93xx/core.c
  70. 39 0
      arch/arm/mach-ep93xx/ts72xx.c
  71. 448 63
      arch/arm/mach-imx/dma.c
  72. 13 0
      arch/arm/mach-imx/generic.c
  73. 18 0
      arch/arm/mach-imx/mx1ads.c
  74. 9 0
      arch/arm/mach-ixp23xx/espresso.c
  75. 17 1
      arch/arm/mach-ixp23xx/pci.c
  76. 14 6
      arch/arm/mach-omap1/Kconfig
  77. 9 2
      arch/arm/mach-omap1/Makefile
  78. 116 0
      arch/arm/mach-omap1/board-ams-delta.c
  79. 1 1
      arch/arm/mach-omap1/board-generic.c
  80. 186 14
      arch/arm/mach-omap1/board-h2.c
  81. 264 13
      arch/arm/mach-omap1/board-h3.c
  82. 54 2
      arch/arm/mach-omap1/board-innovator.c
  83. 0 160
      arch/arm/mach-omap1/board-netstar.c
  84. 268 0
      arch/arm/mach-omap1/board-nokia770.c
  85. 92 3
      arch/arm/mach-omap1/board-osk.c
  86. 11 1
      arch/arm/mach-omap1/board-palmte.c
  87. 112 11
      arch/arm/mach-omap1/board-perseus2.c
  88. 4 4
      arch/arm/mach-omap1/board-voiceblue.c
  89. 7 2
      arch/arm/mach-omap1/clock.c
  90. 59 32
      arch/arm/mach-omap1/clock.h
  91. 37 8
      arch/arm/mach-omap1/devices.c
  92. 3 1
      arch/arm/mach-omap1/io.c
  93. 9 9
      arch/arm/mach-omap1/irq.c
  94. 17 13
      arch/arm/mach-omap1/mux.c
  95. 770 0
      arch/arm/mach-omap1/pm.c
  96. 3 3
      arch/arm/mach-omap1/serial.c
  97. 92 19
      arch/arm/mach-omap1/sleep.S
  98. 0 197
      arch/arm/mach-omap1/time.c
  99. 3 0
      arch/arm/mach-omap2/Kconfig
  100. 5 1
      arch/arm/mach-omap2/Makefile

+ 3 - 3
CREDITS

@@ -3382,7 +3382,7 @@ S: Germany
 
 N: Geert Uytterhoeven
 E: geert@linux-m68k.org
-W: http://home.tvd.be/cr26864/
+W: http://users.telenet.be/geertu/
 P: 1024/862678A6 C51D 361C 0BD1 4C90 B275  C553 6EEA 11BA 8626 78A6
 D: m68k/Amiga and PPC/CHRP Longtrail coordinator
 D: Frame buffer device and XF68_FBDev maintainer
@@ -3392,8 +3392,8 @@ D: Amiga Buddha and Catweasel chipset IDE
 D: Atari Falcon chipset IDE
 D: Amiga Gayle chipset IDE
 D: mipsel NEC DDB Vrc-5074
-S: Emiel Vlieberghlaan 2A/21
-S: B-3010 Kessel-Lo
+S: Haterbeekstraat 55B
+S: B-3200 Aarschot
 S: Belgium
 
 N: Chris Vance

+ 2 - 2
Documentation/DMA-mapping.txt

@@ -194,7 +194,7 @@ document for how to handle this case.
 Finally, if your device can only drive the low 24-bits of
 address during PCI bus mastering you might do something like:
 
-	if (pci_set_dma_mask(pdev, 0x00ffffff)) {
+	if (pci_set_dma_mask(pdev, DMA_24BIT_MASK)) {
 		printk(KERN_WARNING
 		       "mydev: 24-bit DMA addressing not available.\n");
 		goto ignore_this_device;
@@ -212,7 +212,7 @@ functions (for example a sound card provides playback and record
 functions) and the various different functions have _different_
 DMA addressing limitations, you may wish to probe each mask and
 only provide the functionality which the machine can handle.  It
-is important that the last call to pci_set_dma_mask() be for the 
+is important that the last call to pci_set_dma_mask() be for the
 most specific mask.
 
 Here is pseudo-code showing how this might be done:

+ 1 - 1
Documentation/DocBook/Makefile

@@ -2,7 +2,7 @@
 # This makefile is used to generate the kernel documentation,
 # primarily based on in-line comments in various source files.
 # See Documentation/kernel-doc-nano-HOWTO.txt for instruction in how
-# to ducument the SRC - and how to read it.
+# to document the SRC - and how to read it.
 # To add a new book the only step required is to add the book to the
 # list of DOCBOOKS.
 

+ 0 - 1
Documentation/DocBook/kernel-api.tmpl

@@ -322,7 +322,6 @@ X!Earch/i386/kernel/mca.c
   <chapter id="sysfs">
      <title>The Filesystem for Exporting Kernel Objects</title>
 !Efs/sysfs/file.c
-!Efs/sysfs/dir.c
 !Efs/sysfs/symlink.c
 !Efs/sysfs/bin.c
   </chapter>

+ 1 - 1
Documentation/DocBook/libata.tmpl

@@ -705,7 +705,7 @@ and other resources, etc.
 
 	<sect1><title>ata_scsi_error()</title>
 	<para>
-	ata_scsi_error() is the current hostt->eh_strategy_handler()
+	ata_scsi_error() is the current transportt->eh_strategy_handler()
 	for libata.  As discussed above, this will be entered in two
 	cases - timeout and ATAPI error completion.  This function
 	calls low level libata driver's eng_timeout() callback, the

+ 1 - 1
Documentation/acpi-hotkey.txt

@@ -30,7 +30,7 @@ specific hotkey(event))
 echo "event_num:event_type:event_argument" > 
 	/proc/acpi/hotkey/action.
 The result of the execution of this aml method is 
-attached to /proc/acpi/hotkey/poll_method, which is dnyamically
+attached to /proc/acpi/hotkey/poll_method, which is dynamically
 created.  Please use command "cat /proc/acpi/hotkey/polling_method" 
 to retrieve it.
 

+ 12 - 15
Documentation/feature-removal-schedule.txt

@@ -71,14 +71,6 @@ Who:	Mauro Carvalho Chehab <mchehab@brturbo.com.br>
 
 ---------------------------
 
-What:	remove EXPORT_SYMBOL(panic_timeout)
-When:	April 2006
-Files:	kernel/panic.c
-Why:	No modular usage in the kernel.
-Who:	Adrian Bunk <bunk@stusta.de>
-
----------------------------
-
 What:	remove EXPORT_SYMBOL(insert_resource)
 When:	April 2006
 Files:	kernel/resource.c
@@ -127,13 +119,6 @@ Who:	Christoph Hellwig <hch@lst.de>
 
 ---------------------------
 
-What:	EXPORT_SYMBOL(lookup_hash)
-When:	January 2006
-Why:	Too low-level interface.  Use lookup_one_len or lookup_create instead.
-Who:	Christoph Hellwig <hch@lst.de>
-
----------------------------
-
 What:	CONFIG_FORCED_INLINING
 When:	June 2006
 Why:	Config option is there to see if gcc is good enough. (in january
@@ -241,3 +226,15 @@ Why:	The USB subsystem has changed a lot over time, and it has been
 Who:	Greg Kroah-Hartman <gregkh@suse.de>
 
 ---------------------------
+
+What:	find_trylock_page
+When:	January 2007
+Why:	The interface no longer has any callers left in the kernel. It
+	is an odd interface (compared with other find_*_page functions), in
+	that it does not take a refcount to the page, only the page lock.
+	It should be replaced with find_get_page or find_lock_page if possible.
+	This feature removal can be reevaluated if users of the interface
+	cannot cleanly use something else.
+Who:	Nick Piggin <npiggin@suse.de>
+
+---------------------------

+ 11 - 1
Documentation/filesystems/vfs.txt

@@ -694,7 +694,7 @@ struct file_operations
 ----------------------
 
 This describes how the VFS can manipulate an open file. As of kernel
-2.6.13, the following members are defined:
+2.6.17, the following members are defined:
 
 struct file_operations {
 	loff_t (*llseek) (struct file *, loff_t, int);
@@ -723,6 +723,10 @@ struct file_operations {
 	int (*check_flags)(int);
 	int (*dir_notify)(struct file *filp, unsigned long arg);
 	int (*flock) (struct file *, int, struct file_lock *);
+	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, size_t, unsigned 
+int);
+	ssize_t (*splice_read)(struct file *, struct pipe_inode_info *, size_t, unsigned  
+int);
 };
 
 Again, all methods are called without any locks being held, unless
@@ -790,6 +794,12 @@ otherwise noted.
 
   flock: called by the flock(2) system call
 
+  splice_write: called by the VFS to splice data from a pipe to a file. This
+		method is used by the splice(2) system call
+
+  splice_read: called by the VFS to splice data from file to a pipe. This
+	       method is used by the splice(2) system call
+
 Note that the file operations are implemented by the specific
 filesystem in which the inode resides. When opening a device node
 (character or block special) most filesystems will call special

+ 110 - 82
Documentation/fujitsu/frv/kernel-ABI.txt

@@ -1,17 +1,19 @@
-				 =================================
-				 INTERNAL KERNEL ABI FOR FR-V ARCH
-				 =================================
-
-The internal FRV kernel ABI is not quite the same as the userspace ABI. A number of the registers
-are used for special purposed, and the ABI is not consistent between modules vs core, and MMU vs
-no-MMU.
-
-This partly stems from the fact that FRV CPUs do not have a separate supervisor stack pointer, and
-most of them do not have any scratch registers, thus requiring at least one general purpose
-register to be clobbered in such an event. Also, within the kernel core, it is possible to simply
-jump or call directly between functions using a relative offset. This cannot be extended to modules
-for the displacement is likely to be too far. Thus in modules the address of a function to call
-must be calculated in a register and then used, requiring two extra instructions.
+			=================================
+			INTERNAL KERNEL ABI FOR FR-V ARCH
+			=================================
+
+The internal FRV kernel ABI is not quite the same as the userspace ABI. A
+number of the registers are used for special purposed, and the ABI is not
+consistent between modules vs core, and MMU vs no-MMU.
+
+This partly stems from the fact that FRV CPUs do not have a separate
+supervisor stack pointer, and most of them do not have any scratch
+registers, thus requiring at least one general purpose register to be
+clobbered in such an event. Also, within the kernel core, it is possible to
+simply jump or call directly between functions using a relative offset.
+This cannot be extended to modules for the displacement is likely to be too
+far. Thus in modules the address of a function to call must be calculated
+in a register and then used, requiring two extra instructions.
 
 This document has the following sections:
 
@@ -39,7 +41,8 @@ When a system call is made, the following registers are effective:
 CPU OPERATING MODES
 ===================
 
-The FR-V CPU has three basic operating modes. In order of increasing capability:
+The FR-V CPU has three basic operating modes. In order of increasing
+capability:
 
   (1) User mode.
 
@@ -47,42 +50,46 @@ The FR-V CPU has three basic operating modes. In order of increasing capability:
 
   (2) Kernel mode.
 
-      Normal kernel mode. There are many additional control registers available that may be
-      accessed in this mode, in addition to all the stuff available to user mode. This has two
-      submodes:
+      Normal kernel mode. There are many additional control registers
+      available that may be accessed in this mode, in addition to all the
+      stuff available to user mode. This has two submodes:
 
       (a) Exceptions enabled (PSR.T == 1).
 
-      	  Exceptions will invoke the appropriate normal kernel mode handler. On entry to the
-      	  handler, the PSR.T bit will be cleared.
+	  Exceptions will invoke the appropriate normal kernel mode
+	  handler. On entry to the handler, the PSR.T bit will be cleared.
 
       (b) Exceptions disabled (PSR.T == 0).
 
-      	  No exceptions or interrupts may happen. Any mandatory exceptions will cause the CPU to
-      	  halt unless the CPU is told to jump into debug mode instead.
+	  No exceptions or interrupts may happen. Any mandatory exceptions
+	  will cause the CPU to halt unless the CPU is told to jump into
+	  debug mode instead.
 
   (3) Debug mode.
 
-      No exceptions may happen in this mode. Memory protection and management exceptions will be
-      flagged for later consideration, but the exception handler won't be invoked. Debugging traps
-      such as hardware breakpoints and watchpoints will be ignored. This mode is entered only by
-      debugging events obtained from the other two modes.
+      No exceptions may happen in this mode. Memory protection and
+      management exceptions will be flagged for later consideration, but
+      the exception handler won't be invoked. Debugging traps such as
+      hardware breakpoints and watchpoints will be ignored. This mode is
+      entered only by debugging events obtained from the other two modes.
 
-      All kernel mode registers may be accessed, plus a few extra debugging specific registers.
+      All kernel mode registers may be accessed, plus a few extra debugging
+      specific registers.
 
 
 =================================
 INTERNAL KERNEL-MODE REGISTER ABI
 =================================
 
-There are a number of permanent register assignments that are set up by entry.S in the exception
-prologue. Note that there is a complete set of exception prologues for each of user->kernel
-transition and kernel->kernel transition. There are also user->debug and kernel->debug mode
-transition prologues.
+There are a number of permanent register assignments that are set up by
+entry.S in the exception prologue. Note that there is a complete set of
+exception prologues for each of user->kernel transition and kernel->kernel
+transition. There are also user->debug and kernel->debug mode transition
+prologues.
 
 
 	REGISTER	FLAVOUR	USE
-	===============	=======	====================================================
+	===============	=======	==============================================
 	GR1			Supervisor stack pointer
 	GR15			Current thread info pointer
 	GR16			GP-Rel base register for small data
@@ -92,10 +99,12 @@ transition prologues.
 	GR31		NOMMU	Destroyed by debug mode entry
 	GR31		MMU	Destroyed by TLB miss kernel mode entry
 	CCR.ICC2		Virtual interrupt disablement tracking
-	CCCR.CC3		Cleared by exception prologue (atomic op emulation)
+	CCCR.CC3		Cleared by exception prologue 
+				(atomic op emulation)
 	SCR0		MMU	See mmu-layout.txt.
 	SCR1		MMU	See mmu-layout.txt.
-	SCR2		MMU	Save for EAR0 (destroyed by icache insns in debug mode)
+	SCR2		MMU	Save for EAR0 (destroyed by icache insns 
+					       in debug mode)
 	SCR3		MMU	Save for GR31 during debug exceptions
 	DAMR/IAMR	NOMMU	Fixed memory protection layout.
 	DAMR/IAMR	MMU	See mmu-layout.txt.
@@ -104,18 +113,21 @@ transition prologues.
 Certain registers are also used or modified across function calls:
 
 	REGISTER	CALL				RETURN
-	===============	===============================	===============================
+	===============	===============================	======================
 	GR0		Fixed Zero			-
 	GR2		Function call frame pointer
 	GR3		Special				Preserved
 	GR3-GR7		-				Clobbered
-	GR8		Function call arg #1		Return value (or clobbered)
-	GR9		Function call arg #2		Return value MSW (or clobbered)
+	GR8		Function call arg #1		Return value 
+							(or clobbered)
+	GR9		Function call arg #2		Return value MSW 
+							(or clobbered)
 	GR10-GR13	Function call arg #3-#6		Clobbered
 	GR14		-				Clobbered
 	GR15-GR16	Special				Preserved
 	GR17-GR27	-				Preserved
-	GR28-GR31	Special				Only accessed explicitly
+	GR28-GR31	Special				Only accessed 
+							explicitly
 	LR		Return address after CALL	Clobbered
 	CCR/CCCR	-				Mostly Clobbered
 
@@ -124,46 +136,53 @@ Certain registers are also used or modified across function calls:
 INTERNAL DEBUG-MODE REGISTER ABI
 ================================
 
-This is the same as the kernel-mode register ABI for functions calls. The difference is that in
-debug-mode there's a different stack and a different exception frame. Almost all the global
-registers from kernel-mode (including the stack pointer) may be changed.
+This is the same as the kernel-mode register ABI for functions calls. The
+difference is that in debug-mode there's a different stack and a different
+exception frame. Almost all the global registers from kernel-mode
+(including the stack pointer) may be changed.
 
 	REGISTER	FLAVOUR	USE
-	===============	=======	====================================================
+	===============	=======	==============================================
 	GR1			Debug stack pointer
 	GR16			GP-Rel base register for small data
-	GR31			Current debug exception frame pointer (__debug_frame)
+	GR31			Current debug exception frame pointer 
+				(__debug_frame)
 	SCR3		MMU	Saved value of GR31
 
 
-Note that debug mode is able to interfere with the kernel's emulated atomic ops, so it must be
-exceedingly careful not to do any that would interact with the main kernel in this regard. Hence
-the debug mode code (gdbstub) is almost completely self-contained. The only external code used is
-the sprintf family of functions.
+Note that debug mode is able to interfere with the kernel's emulated atomic
+ops, so it must be exceedingly careful not to do any that would interact
+with the main kernel in this regard. Hence the debug mode code (gdbstub) is
+almost completely self-contained. The only external code used is the
+sprintf family of functions.
 
-Futhermore, break.S is so complicated because single-step mode does not switch off on entry to an
-exception. That means unless manually disabled, single-stepping will blithely go on stepping into
-things like interrupts. See gdbstub.txt for more information.
+Futhermore, break.S is so complicated because single-step mode does not
+switch off on entry to an exception. That means unless manually disabled,
+single-stepping will blithely go on stepping into things like interrupts.
+See gdbstub.txt for more information.
 
 
 ==========================
 VIRTUAL INTERRUPT HANDLING
 ==========================
 
-Because accesses to the PSR is so slow, and to disable interrupts we have to access it twice (once
-to read and once to write), we don't actually disable interrupts at all if we don't have to. What
-we do instead is use the ICC2 condition code flags to note virtual disablement, such that if we
-then do take an interrupt, we note the flag, really disable interrupts, set another flag and resume
-execution at the point the interrupt happened. Setting condition flags as a side effect of an
-arithmetic or logical instruction is really fast. This use of the ICC2 only occurs within the
+Because accesses to the PSR is so slow, and to disable interrupts we have
+to access it twice (once to read and once to write), we don't actually
+disable interrupts at all if we don't have to. What we do instead is use
+the ICC2 condition code flags to note virtual disablement, such that if we
+then do take an interrupt, we note the flag, really disable interrupts, set
+another flag and resume execution at the point the interrupt happened.
+Setting condition flags as a side effect of an arithmetic or logical
+instruction is really fast. This use of the ICC2 only occurs within the
 kernel - it does not affect userspace.
 
 The flags we use are:
 
  (*) CCR.ICC2.Z [Zero flag]
 
-     Set to virtually disable interrupts, clear when interrupts are virtually enabled. Can be
-     modified by logical instructions without affecting the Carry flag.
+     Set to virtually disable interrupts, clear when interrupts are
+     virtually enabled. Can be modified by logical instructions without
+     affecting the Carry flag.
 
  (*) CCR.ICC2.C [Carry flag]
 
@@ -176,8 +195,9 @@ What happens is this:
 
 	ICC2.Z is 0, ICC2.C is 1.
 
- (2) An interrupt occurs. The exception prologue examines ICC2.Z and determines that nothing needs
-     doing. This is done simply with an unlikely BEQ instruction.
+ (2) An interrupt occurs. The exception prologue examines ICC2.Z and
+     determines that nothing needs doing. This is done simply with an
+     unlikely BEQ instruction.
 
  (3) The interrupts are disabled (local_irq_disable)
 
@@ -187,48 +207,56 @@ What happens is this:
 
 	ICC2.Z would be set to 0.
 
-     A TIHI #2 instruction (trap #2 if condition HI - Z==0 && C==0) would be used to trap if
-     interrupts were now virtually enabled, but physically disabled - which they're not, so the
-     trap isn't taken. The kernel would then be back to state (1).
+     A TIHI #2 instruction (trap #2 if condition HI - Z==0 && C==0) would
+     be used to trap if interrupts were now virtually enabled, but
+     physically disabled - which they're not, so the trap isn't taken. The
+     kernel would then be back to state (1).
 
- (5) An interrupt occurs. The exception prologue examines ICC2.Z and determines that the interrupt
-     shouldn't actually have happened. It jumps aside, and there disabled interrupts by setting
-     PSR.PIL to 14 and then it clears ICC2.C.
+ (5) An interrupt occurs. The exception prologue examines ICC2.Z and
+     determines that the interrupt shouldn't actually have happened. It
+     jumps aside, and there disabled interrupts by setting PSR.PIL to 14
+     and then it clears ICC2.C.
 
  (6) If interrupts were then saved and disabled again (local_irq_save):
 
-	ICC2.Z would be shifted into the save variable and masked off (giving a 1).
+	ICC2.Z would be shifted into the save variable and masked off 
+	(giving a 1).
 
-	ICC2.Z would then be set to 1 (thus unchanged), and ICC2.C would be unaffected (ie: 0).
+	ICC2.Z would then be set to 1 (thus unchanged), and ICC2.C would be
+	unaffected (ie: 0).
 
  (7) If interrupts were then restored from state (6) (local_irq_restore):
 
-	ICC2.Z would be set to indicate the result of XOR'ing the saved value (ie: 1) with 1, which
-	gives a result of 0 - thus leaving ICC2.Z set.
+	ICC2.Z would be set to indicate the result of XOR'ing the saved
+	value (ie: 1) with 1, which gives a result of 0 - thus leaving
+	ICC2.Z set.
 
 	ICC2.C would remain unaffected (ie: 0).
 
-     A TIHI #2 instruction would be used to again assay the current state, but this would do
-     nothing as Z==1.
+     A TIHI #2 instruction would be used to again assay the current state,
+     but this would do nothing as Z==1.
 
  (8) If interrupts were then enabled (local_irq_enable):
 
-	ICC2.Z would be cleared. ICC2.C would be left unaffected. Both flags would now be 0.
+	ICC2.Z would be cleared. ICC2.C would be left unaffected. Both
+	flags would now be 0.
 
-     A TIHI #2 instruction again issued to assay the current state would then trap as both Z==0
-     [interrupts virtually enabled] and C==0 [interrupts really disabled] would then be true.
+     A TIHI #2 instruction again issued to assay the current state would
+     then trap as both Z==0 [interrupts virtually enabled] and C==0
+     [interrupts really disabled] would then be true.
 
- (9) The trap #2 handler would simply enable hardware interrupts (set PSR.PIL to 0), set ICC2.C to
-     1 and return.
+ (9) The trap #2 handler would simply enable hardware interrupts 
+     (set PSR.PIL to 0), set ICC2.C to 1 and return.
 
 (10) Immediately upon returning, the pending interrupt would be taken.
 
-(11) The interrupt handler would take the path of actually processing the interrupt (ICC2.Z is
-     clear, BEQ fails as per step (2)).
+(11) The interrupt handler would take the path of actually processing the
+     interrupt (ICC2.Z is clear, BEQ fails as per step (2)).
 
-(12) The interrupt handler would then set ICC2.C to 1 since hardware interrupts are definitely
-     enabled - or else the kernel wouldn't be here.
+(12) The interrupt handler would then set ICC2.C to 1 since hardware
+     interrupts are definitely enabled - or else the kernel wouldn't be here.
 
 (13) On return from the interrupt handler, things would be back to state (1).
 
-This trap (#2) is only available in kernel mode. In user mode it will result in SIGILL.
+This trap (#2) is only available in kernel mode. In user mode it will
+result in SIGILL.

+ 6 - 5
Documentation/input/joystick-parport.txt

@@ -36,12 +36,12 @@ with them.
 
   All NES and SNES use the same synchronous serial protocol, clocked from
 the computer's side (and thus timing insensitive). To allow up to 5 NES
-and/or SNES gamepads connected to the parallel port at once, the output
-lines of the parallel port are shared, while one of 5 available input lines
-is assigned to each gamepad.
+and/or SNES gamepads and/or SNES mice connected to the parallel port at once,
+the output lines of the parallel port are shared, while one of 5 available
+input lines is assigned to each gamepad.
 
   This protocol is handled by the gamecon.c driver, so that's the one
-you'll use for NES and SNES gamepads.
+you'll use for NES, SNES gamepads and SNES mice.
 
   The main problem with PC parallel ports is that they don't have +5V power
 source on any of their pins. So, if you want a reliable source of power
@@ -106,7 +106,7 @@ A, Turbo B, Select and Start, and is connected through 5 wires, then it is
 either a NES or NES clone and will work with this connection. SNES gamepads
 also use 5 wires, but have more buttons. They will work as well, of course.
 
-Pinout for NES gamepads                 Pinout for SNES gamepads
+Pinout for NES gamepads                 Pinout for SNES gamepads and mice
 
 	   +----> Power                   +-----------------------\
 	   |                            7 | o  o  o  o |  x  x  o  | 1
@@ -454,6 +454,7 @@ uses the following kernel/module command line:
 	  6  | N64 pad
 	  7  | Sony PSX controller
 	  8  | Sony PSX DDR controller
+	  9  | SNES mouse
 
   The exact type of the PSX controller type is autoprobed when used so
 hot swapping should work (but is not recomended).

+ 286 - 0
Documentation/isdn/README.gigaset

@@ -0,0 +1,286 @@
+GigaSet 307x Device Driver
+==========================
+
+1.   Requirements
+     ------------
+1.1. Hardware
+     --------
+     This release supports the connection of the Gigaset 307x/417x family of
+     ISDN DECT bases via Gigaset M101 Data, Gigaset M105 Data or direct USB
+     connection. The following devices are reported to be compatible:
+     307x/417x:
+        Gigaset SX255isdn
+        Gigaset SX353isdn
+        Sinus 45 [AB] isdn (Deutsche Telekom)
+        Sinus 721X/XA
+        Vox Chicago 390 ISDN (KPN Telecom)
+     M101:
+        Sinus 45 Data 1 (Telekom)
+     M105:
+        Gigaset USB Adapter DECT
+        Sinus 45 Data 2 (Telekom)
+        Sinus 721 data
+        Chicago 390 USB (KPN)
+     See also http://www.erbze.info/sinus_gigaset.htm and
+              http://gigaset307x.sourceforge.net/
+
+     We had also reports from users of Gigaset M105 who could use the drivers
+     with SX 100 and CX 100 ISDN bases (only in unimodem mode, see section 2.4.)
+     If you have another device that works with our driver, please let us know.
+     For example, Gigaset SX205isdn/Sinus 721 X SE and Gigaset SX303isdn bases
+     are just versions without answering machine of models known to work, so
+     they should work just as well; but so far we are lacking positive reports
+     on these.
+
+     Chances of getting an USB device to work are good if the output of
+        lsusb
+     at the command line contains one of the following:
+        ID 0681:0001
+        ID 0681:0002
+        ID 0681:0009
+        ID 0681:0021
+        ID 0681:0022
+
+1.2. Software
+     --------
+     The driver works with ISDN4linux and so can be used with any software
+     which is able to use ISDN4linux for ISDN connections (voice or data).
+     CAPI4Linux support is planned but not yet available.
+
+     There are some user space tools available at
+     http://sourceforge.net/projects/gigaset307x/
+     which provide access to additional device specific functions like SMS,
+     phonebook or call journal.
+
+
+2.   How to use the driver
+     ---------------------
+2.1. Modules
+     -------
+     To get the device working, you have to load the proper kernel module. You
+     can do this using
+         modprobe modulename
+     where modulename is usb_gigaset (M105) or bas_gigaset (direct USB
+     connection to the base).
+
+2.2. Device nodes for user space programs
+     ------------------------------------
+     The device can be accessed from user space (eg. by the user space tools
+     mentioned in 1.2.) through the device nodes:
+
+     - /dev/ttyGU0 for M105 (USB data boxes)
+     - /dev/ttyGB0 for the base driver (direct USB connection)
+
+     You can also select a "default device" which is used by the frontends when
+     no device node is given as parameter, by creating a symlink /dev/ttyG to
+     one of them, eg.:
+
+        ln -s /dev/ttyGB0 /dev/ttyG
+
+2.3. ISDN4linux
+     ----------
+     This is the "normal" mode of operation. After loading the module you can
+     set up the ISDN system just as you'd do with any ISDN card.
+     Your distribution should provide some configuration utility.
+     If not, you can use some HOWTOs like
+         http://www.linuxhaven.de/dlhp/HOWTO/DE-ISDN-HOWTO-5.html
+     If this doesn't work, because you have some recent device like SX100 where
+     debug output (see section 3.2.) shows something like this when dialing
+         CMD Received: ERROR
+         Available Params: 0
+         Connection State: 0, Response: -1
+         gigaset_process_response: resp_code -1 in ConState 0 !
+         Timeout occurred
+     you might need to use unimodem mode:
+
+2.4. Unimodem mode
+     -------------
+     This is needed for some devices [e.g. SX100] as they have problems with
+     the "normal" commands.
+
+     If you have installed the command line tool gigacontr, you can enter
+     unimodem mode using
+         gigacontr --mode unimodem
+     You can switch back using
+         gigacontr --mode isdn
+
+     You can also load the driver using e.g.
+         modprobe usb_gigaset startmode=0
+     to prevent the driver from starting in "isdn4linux mode".
+
+     In this mode the device works like a modem connected to a serial port
+     (the /dev/ttyGU0, ... mentioned above) which understands the commands
+         ATZ                 init, reset
+             => OK or ERROR
+         ATD
+         ATDT                dial
+             => OK, CONNECT,
+                BUSY,
+                NO DIAL TONE,
+                NO CARRIER,
+                NO ANSWER
+         <pause>+++<pause>   change to command mode when connected
+         ATH                 hangup
+
+     You can use some configuration tool of your distribution to configure this
+     "modem" or configure pppd/wvdial manually. There are some example ppp
+     configuration files and chat scripts in the gigaset-VERSION/ppp directory.
+     Please note that the USB drivers are not able to change the state of the
+     control lines (the M105 driver can be configured to use some undocumented
+     control requests, if you really need the control lines, though). This means
+     you must use "Stupid Mode" if you are using wvdial or you should use the
+     nocrtscts option of pppd.
+     You must also assure that the ppp_async module is loaded with the parameter
+     flag_time=0. You can do this e.g. by adding a line like
+
+        options ppp_async flag_time=0
+
+     to /etc/modprobe.conf. If your distribution has some local module
+     configuration file like /etc/modprobe.conf.local,
+     using that should be preferred.
+
+2.5. Call-ID (CID) mode
+     ------------------
+     Call-IDs are numbers used to tag commands to, and responses from, the
+     Gigaset base in order to support the simultaneous handling of multiple
+     ISDN calls. Their use can be enabled ("CID mode") or disabled ("Unimodem
+     mode"). Without Call-IDs (in Unimodem mode), only a very limited set of
+     functions is available. It allows outgoing data connections only, but
+     does not signal incoming calls or other base events.
+
+     DECT cordless data devices (M10x) permanently occupy the cordless
+     connection to the base while Call-IDs are activated. As the Gigaset
+     bases only support one DECT data connection at a time, this prevents
+     other DECT cordless data devices from accessing the base.
+
+     During active operation, the driver switches to the necessary mode
+     automatically. However, for the reasons above, the mode chosen when
+     the device is not in use (idle) can be selected by the user.
+     - If you want to receive incoming calls, you can use the default
+       settings (CID mode).
+     - If you have several DECT data devices (M10x) which you want to use
+       in turn, select Unimodem mode by passing the parameter "cidmode=0" to
+       the driver ("modprobe usb_gigaset cidmode=0" or modprobe.conf).
+
+     If you want both of these at once, you are out of luck.
+
+     You can also use /sys/module/<name>/parameters/cidmode for changing
+     the CID mode setting (<name> is usb_gigaset or bas_gigaset).
+
+
+3.   Troubleshooting
+     ---------------
+3.1. Solutions to frequently reported problems
+     -----------------------------------------
+     Problem:
+        You have a slow provider and isdn4linux gives up dialing too early.
+     Solution:
+        Load the isdn module using the dialtimeout option. You can do this e.g.
+        by adding a line like
+
+           options isdn dialtimeout=15
+
+        to /etc/modprobe.conf. If your distribution has some local module
+        configuration file like /etc/modprobe.conf.local,
+        using that should be preferred.
+
+     Problem:
+        Your isdn script aborts with a message about isdnlog.
+     Solution:
+        Try deactivating (or commenting out) isdnlog. This driver does not
+        support it.
+
+     Problem:
+        You have two or more DECT data adapters (M101/M105) and only the
+        first one you turn on works.
+     Solution:
+        Select Unimodem mode for all DECT data adapters. (see section 2.4.)
+
+3.2. Telling the driver to provide more information
+     ----------------------------------------------
+     Building the driver with the "Gigaset debugging" kernel configuration
+     option (CONFIG_GIGASET_DEBUG) gives it the ability to produce additional
+     information useful for debugging.
+
+     You can control the amount of debugging information the driver produces by
+     writing an appropriate value to /sys/module/gigaset/parameters/debug, e.g.
+        echo 0 > /sys/module/gigaset/parameters/debug
+     switches off debugging output completely,
+        echo 0x10a020 > /sys/module/gigaset/parameters/debug
+     enables the standard set of debugging output messages. These values are
+     bit patterns where every bit controls a certain type of debugging output.
+     See the constants DEBUG_* in the source file gigaset.h for details.
+
+     The initial value can be set using the debug parameter when loading the
+     module "gigaset", e.g. by adding a line
+        options gigaset debug=0
+     to /etc/modprobe.conf, ...
+
+     Generated debugging information can be found
+     - as output of the command
+         dmesg
+     - in system log files written by your syslog daemon, usually
+       in /var/log/, e.g. /var/log/messages.
+
+3.3. Reporting problems and bugs
+     ---------------------------
+     If you can't solve problems with the driver on your own, feel free to
+     use one of the forums, bug trackers, or mailing lists on
+         http://sourceforge.net/projects/gigaset307x
+     or write an electronic mail to the maintainers.
+
+     Try to provide as much information as possible, such as
+     - distribution
+     - kernel version (uname -r)
+     - gcc version (gcc --version)
+     - hardware architecture (uname -m, ...)
+     - type and firmware version of your device (base and wireless module,
+       if any)
+     - output of "lsusb -v" (if using an USB device)
+     - error messages
+     - relevant system log messages (it would help if you activate debug
+       output as described in 3.2.)
+
+     For help with general configuration problems not specific to our driver,
+     such as isdn4linux and network configuration issues, please refer to the
+     appropriate forums and newsgroups.
+
+3.4. Reporting problem solutions
+     ---------------------------
+     If you solved a problem with our drivers, wrote startup scripts for your
+     distribution, ... feel free to contact us (using one of the places
+     mentioned in 3.3.). We'd like to add scripts, hints, documentation
+     to the driver and/or the project web page.
+
+
+4.   Links, other software
+     ---------------------
+     - Sourceforge project developing this driver and associated tools
+         http://sourceforge.net/projects/gigaset307x
+     - Yahoo! Group on the Siemens Gigaset family of devices
+         http://de.groups.yahoo.com/group/Siemens-Gigaset
+     - Siemens Gigaset/T-Sinus compatibility table
+         http://www.erbze.info/sinus_gigaset.htm
+
+
+5.   Credits
+     -------
+     Thanks to
+
+     Karsten Keil
+        for his help with isdn4linux
+     Deti Fliegl
+        for his base driver code
+     Dennis Dietrich
+        for his kernel 2.6 patches
+     Andreas Rummel
+        for his work and logs to get unimodem mode working
+     Andreas Degert
+        for his logs and patches to get cx 100 working
+     Dietrich Feist
+        for his generous donation of one M105 and two M101 cordless adapters
+     Christoph Schweers
+        for his generous donation of a M34 device
+
+     and all the other people who sent logs and other information.
+

+ 1 - 1
Documentation/kbuild/modules.txt

@@ -44,7 +44,7 @@ What is covered within this file is mainly information to authors
 of modules. The author of an external modules should supply
 a makefile that hides most of the complexity so one only has to type
 'make' to build the module. A complete example will be present in
-chapter ¤. Creating a kbuild file for an external module".
+chapter 4, "Creating a kbuild file for an external module".
 
 
 === 2. How to build external modules

+ 14 - 20
Documentation/kernel-parameters.txt

@@ -1,4 +1,4 @@
-February 2003             Kernel Parameters                     v2.5.59
+                          Kernel Parameters
                           ~~~~~~~~~~~~~~~~~
 
 The following is a consolidated list of the kernel parameters as implemented
@@ -17,9 +17,17 @@ are specified on the kernel command line with the module name plus
 
 	usbcore.blinkenlights=1
 
-The text in square brackets at the beginning of the description states the
-restrictions on the kernel for the said kernel parameter to be valid. The
-restrictions referred to are that the relevant option is valid if:
+This document may not be entirely up to date and comprehensive. The command
+"modinfo -p ${modulename}" shows a current list of all parameters of a loadable
+module. Loadable modules, after being loaded into the running kernel, also
+reveal their parameters in /sys/module/${modulename}/parameters/. Some of these
+parameters may be changed at runtime by the command
+"echo -n ${value} > /sys/module/${modulename}/parameters/${parm}".
+
+The parameters listed below are only valid if certain kernel build options were
+enabled and if respective hardware is present. The text in square brackets at
+the beginning of each description states the restrictions within which a
+parameter is applicable:
 
 	ACPI	ACPI support is enabled.
 	ALSA	ALSA sound support is enabled.
@@ -1046,10 +1054,10 @@ running once the system is up.
 	noltlbs		[PPC] Do not use large page/tlb entries for kernel
 			lowmem mapping on PPC40x.
 
-	nomce		[IA-32] Machine Check Exception
-
 	nomca		[IA-64] Disable machine check abort handling
 
+	nomce		[IA-32] Machine Check Exception
+
 	noresidual	[PPC] Don't use residual data on PReP machines.
 
 	noresume	[SWSUSP] Disables resume and restores original swap
@@ -1682,20 +1690,6 @@ running once the system is up.
 
 
 ______________________________________________________________________
-Changelog:
-
-2000-06-??	Mr. Unknown
-	The last known update (for 2.4.0) - the changelog was not kept before.
-
-2002-11-24	Petr Baudis <pasky@ucw.cz>
-		Randy Dunlap <randy.dunlap@verizon.net>
-	Update for 2.5.49, description for most of the options introduced,
-	references to other documentation (C files, READMEs, ..), added S390,
-	PPC, SPARC, MTD, ALSA and OSS category. Minor corrections and
-	reformatting.
-
-2005-10-19	Randy Dunlap <rdunlap@xenotime.net>
-	Lots of typos, whitespace, some reformatting.
 
 TODO:
 

+ 5 - 5
Documentation/laptop-mode.txt

@@ -919,11 +919,11 @@ int main(int argc, char **argv)
     int settle_time = 60;
 
     /* Parse the simple command-line */
-    if (ac == 2)
-	disk = av[1];
-    else if (ac == 4) {
-	settle_time = atoi(av[2]);
-	disk = av[3];
+    if (argc == 2)
+	disk = argv[1];
+    else if (argc == 4) {
+	settle_time = atoi(argv[2]);
+	disk = argv[3];
     } else
 	usage();
 

+ 71 - 0
Documentation/leds-class.txt

@@ -0,0 +1,71 @@
+LED handling under Linux
+========================
+
+If you're reading this and thinking about keyboard leds, these are
+handled by the input subsystem and the led class is *not* needed.
+
+In its simplest form, the LED class just allows control of LEDs from
+userspace. LEDs appear in /sys/class/leds/. The brightness file will
+set the brightness of the LED (taking a value 0-255). Most LEDs don't
+have hardware brightness support so will just be turned on for non-zero
+brightness settings.
+
+The class also introduces the optional concept of an LED trigger. A trigger
+is a kernel based source of led events. Triggers can either be simple or
+complex. A simple trigger isn't configurable and is designed to slot into
+existing subsystems with minimal additional code. Examples are the ide-disk,
+nand-disk and sharpsl-charge triggers. With led triggers disabled, the code
+optimises away.
+
+Complex triggers whilst available to all LEDs have LED specific
+parameters and work on a per LED basis. The timer trigger is an example.
+
+You can change triggers in a similar manner to the way an IO scheduler
+is chosen (via /sys/class/leds/<device>/trigger). Trigger specific
+parameters can appear in /sys/class/leds/<device> once a given trigger is
+selected.
+
+
+Design Philosophy
+=================
+
+The underlying design philosophy is simplicity. LEDs are simple devices
+and the aim is to keep a small amount of code giving as much functionality
+as possible.  Please keep this in mind when suggesting enhancements.
+
+
+LED Device Naming
+=================
+
+Is currently of the form:
+
+"devicename:colour"
+
+There have been calls for LED properties such as colour to be exported as
+individual led class attributes. As a solution which doesn't incur as much
+overhead, I suggest these become part of the device name. The naming scheme
+above leaves scope for further attributes should they be needed.
+
+
+Known Issues
+============
+
+The LED Trigger core cannot be a module as the simple trigger functions
+would cause nightmare dependency issues. I see this as a minor issue
+compared to the benefits the simple trigger functionality brings. The
+rest of the LED subsystem can be modular.
+
+Some leds can be programmed to flash in hardware. As this isn't a generic
+LED device property, this should be exported as a device specific sysfs
+attribute rather than part of the class if this functionality is required.
+
+
+Future Development
+==================
+
+At the moment, a trigger can't be created specifically for a single LED.
+There are a number of cases where a trigger might only be mappable to a
+particular LED (ACPI?). The addition of triggers provided by the LED driver
+should cover this option and be possible to add without breaking the
+current interface.
+

+ 1941 - 0
Documentation/memory-barriers.txt

@@ -0,0 +1,1941 @@
+			 ============================
+			 LINUX KERNEL MEMORY BARRIERS
+			 ============================
+
+By: David Howells <dhowells@redhat.com>
+
+Contents:
+
+ (*) Abstract memory access model.
+
+     - Device operations.
+     - Guarantees.
+
+ (*) What are memory barriers?
+
+     - Varieties of memory barrier.
+     - What may not be assumed about memory barriers?
+     - Data dependency barriers.
+     - Control dependencies.
+     - SMP barrier pairing.
+     - Examples of memory barrier sequences.
+
+ (*) Explicit kernel barriers.
+
+     - Compiler barrier.
+     - The CPU memory barriers.
+     - MMIO write barrier.
+
+ (*) Implicit kernel memory barriers.
+
+     - Locking functions.
+     - Interrupt disabling functions.
+     - Miscellaneous functions.
+
+ (*) Inter-CPU locking barrier effects.
+
+     - Locks vs memory accesses.
+     - Locks vs I/O accesses.
+
+ (*) Where are memory barriers needed?
+
+     - Interprocessor interaction.
+     - Atomic operations.
+     - Accessing devices.
+     - Interrupts.
+
+ (*) Kernel I/O barrier effects.
+
+ (*) Assumed minimum execution ordering model.
+
+ (*) The effects of the cpu cache.
+
+     - Cache coherency.
+     - Cache coherency vs DMA.
+     - Cache coherency vs MMIO.
+
+ (*) The things CPUs get up to.
+
+     - And then there's the Alpha.
+
+ (*) References.
+
+
+============================
+ABSTRACT MEMORY ACCESS MODEL
+============================
+
+Consider the following abstract model of the system:
+
+		            :                :
+		            :                :
+		            :                :
+		+-------+   :   +--------+   :   +-------+
+		|       |   :   |        |   :   |       |
+		|       |   :   |        |   :   |       |
+		| CPU 1 |<----->| Memory |<----->| CPU 2 |
+		|       |   :   |        |   :   |       |
+		|       |   :   |        |   :   |       |
+		+-------+   :   +--------+   :   +-------+
+		    ^       :       ^        :       ^
+		    |       :       |        :       |
+		    |       :       |        :       |
+		    |       :       v        :       |
+		    |       :   +--------+   :       |
+		    |       :   |        |   :       |
+		    |       :   |        |   :       |
+		    +---------->| Device |<----------+
+		            :   |        |   :
+		            :   |        |   :
+		            :   +--------+   :
+		            :                :
+
+Each CPU executes a program that generates memory access operations.  In the
+abstract CPU, memory operation ordering is very relaxed, and a CPU may actually
+perform the memory operations in any order it likes, provided program causality
+appears to be maintained.  Similarly, the compiler may also arrange the
+instructions it emits in any order it likes, provided it doesn't affect the
+apparent operation of the program.
+
+So in the above diagram, the effects of the memory operations performed by a
+CPU are perceived by the rest of the system as the operations cross the
+interface between the CPU and rest of the system (the dotted lines).
+
+
+For example, consider the following sequence of events:
+
+	CPU 1		CPU 2
+	===============	===============
+	{ A == 1; B == 2 }
+	A = 3;		x = A;
+	B = 4;		y = B;
+
+The set of accesses as seen by the memory system in the middle can be arranged
+in 24 different combinations:
+
+	STORE A=3,	STORE B=4,	x=LOAD A->3,	y=LOAD B->4
+	STORE A=3,	STORE B=4,	y=LOAD B->4,	x=LOAD A->3
+	STORE A=3,	x=LOAD A->3,	STORE B=4,	y=LOAD B->4
+	STORE A=3,	x=LOAD A->3,	y=LOAD B->2,	STORE B=4
+	STORE A=3,	y=LOAD B->2,	STORE B=4,	x=LOAD A->3
+	STORE A=3,	y=LOAD B->2,	x=LOAD A->3,	STORE B=4
+	STORE B=4,	STORE A=3,	x=LOAD A->3,	y=LOAD B->4
+	STORE B=4, ...
+	...
+
+and can thus result in four different combinations of values:
+
+	x == 1, y == 2
+	x == 1, y == 4
+	x == 3, y == 2
+	x == 3, y == 4
+
+
+Furthermore, the stores committed by a CPU to the memory system may not be
+perceived by the loads made by another CPU in the same order as the stores were
+committed.
+
+
+As a further example, consider this sequence of events:
+
+	CPU 1		CPU 2
+	===============	===============
+	{ A == 1, B == 2, C = 3, P == &A, Q == &C }
+	B = 4;		Q = P;
+	P = &B		D = *Q;
+
+There is an obvious data dependency here, as the value loaded into D depends on
+the address retrieved from P by CPU 2.  At the end of the sequence, any of the
+following results are possible:
+
+	(Q == &A) and (D == 1)
+	(Q == &B) and (D == 2)
+	(Q == &B) and (D == 4)
+
+Note that CPU 2 will never try and load C into D because the CPU will load P
+into Q before issuing the load of *Q.
+
+
+DEVICE OPERATIONS
+-----------------
+
+Some devices present their control interfaces as collections of memory
+locations, but the order in which the control registers are accessed is very
+important.  For instance, imagine an ethernet card with a set of internal
+registers that are accessed through an address port register (A) and a data
+port register (D).  To read internal register 5, the following code might then
+be used:
+
+	*A = 5;
+	x = *D;
+
+but this might show up as either of the following two sequences:
+
+	STORE *A = 5, x = LOAD *D
+	x = LOAD *D, STORE *A = 5
+
+the second of which will almost certainly result in a malfunction, since it set
+the address _after_ attempting to read the register.
+
+
+GUARANTEES
+----------
+
+There are some minimal guarantees that may be expected of a CPU:
+
+ (*) On any given CPU, dependent memory accesses will be issued in order, with
+     respect to itself.  This means that for:
+
+	Q = P; D = *Q;
+
+     the CPU will issue the following memory operations:
+
+	Q = LOAD P, D = LOAD *Q
+
+     and always in that order.
+
+ (*) Overlapping loads and stores within a particular CPU will appear to be
+     ordered within that CPU.  This means that for:
+
+	a = *X; *X = b;
+
+     the CPU will only issue the following sequence of memory operations:
+
+	a = LOAD *X, STORE *X = b
+
+     And for:
+
+	*X = c; d = *X;
+
+     the CPU will only issue:
+
+	STORE *X = c, d = LOAD *X
+
+     (Loads and stores overlap if they are targetted at overlapping pieces of
+     memory).
+
+And there are a number of things that _must_ or _must_not_ be assumed:
+
+ (*) It _must_not_ be assumed that independent loads and stores will be issued
+     in the order given.  This means that for:
+
+	X = *A; Y = *B; *D = Z;
+
+     we may get any of the following sequences:
+
+	X = LOAD *A,  Y = LOAD *B,  STORE *D = Z
+	X = LOAD *A,  STORE *D = Z, Y = LOAD *B
+	Y = LOAD *B,  X = LOAD *A,  STORE *D = Z
+	Y = LOAD *B,  STORE *D = Z, X = LOAD *A
+	STORE *D = Z, X = LOAD *A,  Y = LOAD *B
+	STORE *D = Z, Y = LOAD *B,  X = LOAD *A
+
+ (*) It _must_ be assumed that overlapping memory accesses may be merged or
+     discarded.  This means that for:
+
+	X = *A; Y = *(A + 4);
+
+     we may get any one of the following sequences:
+
+	X = LOAD *A; Y = LOAD *(A + 4);
+	Y = LOAD *(A + 4); X = LOAD *A;
+	{X, Y} = LOAD {*A, *(A + 4) };
+
+     And for:
+
+	*A = X; Y = *A;
+
+     we may get either of:
+
+	STORE *A = X; Y = LOAD *A;
+	STORE *A = Y;
+
+
+=========================
+WHAT ARE MEMORY BARRIERS?
+=========================
+
+As can be seen above, independent memory operations are effectively performed
+in random order, but this can be a problem for CPU-CPU interaction and for I/O.
+What is required is some way of intervening to instruct the compiler and the
+CPU to restrict the order.
+
+Memory barriers are such interventions.  They impose a perceived partial
+ordering between the memory operations specified on either side of the barrier.
+They request that the sequence of memory events generated appears to other
+parts of the system as if the barrier is effective on that CPU.
+
+
+VARIETIES OF MEMORY BARRIER
+---------------------------
+
+Memory barriers come in four basic varieties:
+
+ (1) Write (or store) memory barriers.
+
+     A write memory barrier gives a guarantee that all the STORE operations
+     specified before the barrier will appear to happen before all the STORE
+     operations specified after the barrier with respect to the other
+     components of the system.
+
+     A write barrier is a partial ordering on stores only; it is not required
+     to have any effect on loads.
+
+     A CPU can be viewed as as commiting a sequence of store operations to the
+     memory system as time progresses.  All stores before a write barrier will
+     occur in the sequence _before_ all the stores after the write barrier.
+
+     [!] Note that write barriers should normally be paired with read or data
+     dependency barriers; see the "SMP barrier pairing" subsection.
+
+
+ (2) Data dependency barriers.
+
+     A data dependency barrier is a weaker form of read barrier.  In the case
+     where two loads are performed such that the second depends on the result
+     of the first (eg: the first load retrieves the address to which the second
+     load will be directed), a data dependency barrier would be required to
+     make sure that the target of the second load is updated before the address
+     obtained by the first load is accessed.
+
+     A data dependency barrier is a partial ordering on interdependent loads
+     only; it is not required to have any effect on stores, independent loads
+     or overlapping loads.
+
+     As mentioned in (1), the other CPUs in the system can be viewed as
+     committing sequences of stores to the memory system that the CPU being
+     considered can then perceive.  A data dependency barrier issued by the CPU
+     under consideration guarantees that for any load preceding it, if that
+     load touches one of a sequence of stores from another CPU, then by the
+     time the barrier completes, the effects of all the stores prior to that
+     touched by the load will be perceptible to any loads issued after the data
+     dependency barrier.
+
+     See the "Examples of memory barrier sequences" subsection for diagrams
+     showing the ordering constraints.
+
+     [!] Note that the first load really has to have a _data_ dependency and
+     not a control dependency.  If the address for the second load is dependent
+     on the first load, but the dependency is through a conditional rather than
+     actually loading the address itself, then it's a _control_ dependency and
+     a full read barrier or better is required.  See the "Control dependencies"
+     subsection for more information.
+
+     [!] Note that data dependency barriers should normally be paired with
+     write barriers; see the "SMP barrier pairing" subsection.
+
+
+ (3) Read (or load) memory barriers.
+
+     A read barrier is a data dependency barrier plus a guarantee that all the
+     LOAD operations specified before the barrier will appear to happen before
+     all the LOAD operations specified after the barrier with respect to the
+     other components of the system.
+
+     A read barrier is a partial ordering on loads only; it is not required to
+     have any effect on stores.
+
+     Read memory barriers imply data dependency barriers, and so can substitute
+     for them.
+
+     [!] Note that read barriers should normally be paired with write barriers;
+     see the "SMP barrier pairing" subsection.
+
+
+ (4) General memory barriers.
+
+     A general memory barrier is a combination of both a read memory barrier
+     and a write memory barrier.  It is a partial ordering over both loads and
+     stores.
+
+     General memory barriers imply both read and write memory barriers, and so
+     can substitute for either.
+
+
+And a couple of implicit varieties:
+
+ (5) LOCK operations.
+
+     This acts as a one-way permeable barrier.  It guarantees that all memory
+     operations after the LOCK operation will appear to happen after the LOCK
+     operation with respect to the other components of the system.
+
+     Memory operations that occur before a LOCK operation may appear to happen
+     after it completes.
+
+     A LOCK operation should almost always be paired with an UNLOCK operation.
+
+
+ (6) UNLOCK operations.
+
+     This also acts as a one-way permeable barrier.  It guarantees that all
+     memory operations before the UNLOCK operation will appear to happen before
+     the UNLOCK operation with respect to the other components of the system.
+
+     Memory operations that occur after an UNLOCK operation may appear to
+     happen before it completes.
+
+     LOCK and UNLOCK operations are guaranteed to appear with respect to each
+     other strictly in the order specified.
+
+     The use of LOCK and UNLOCK operations generally precludes the need for
+     other sorts of memory barrier (but note the exceptions mentioned in the
+     subsection "MMIO write barrier").
+
+
+Memory barriers are only required where there's a possibility of interaction
+between two CPUs or between a CPU and a device.  If it can be guaranteed that
+there won't be any such interaction in any particular piece of code, then
+memory barriers are unnecessary in that piece of code.
+
+
+Note that these are the _minimum_ guarantees.  Different architectures may give
+more substantial guarantees, but they may _not_ be relied upon outside of arch
+specific code.
+
+
+WHAT MAY NOT BE ASSUMED ABOUT MEMORY BARRIERS?
+----------------------------------------------
+
+There are certain things that the Linux kernel memory barriers do not guarantee:
+
+ (*) There is no guarantee that any of the memory accesses specified before a
+     memory barrier will be _complete_ by the completion of a memory barrier
+     instruction; the barrier can be considered to draw a line in that CPU's
+     access queue that accesses of the appropriate type may not cross.
+
+ (*) There is no guarantee that issuing a memory barrier on one CPU will have
+     any direct effect on another CPU or any other hardware in the system.  The
+     indirect effect will be the order in which the second CPU sees the effects
+     of the first CPU's accesses occur, but see the next point:
+
+ (*) There is no guarantee that the a CPU will see the correct order of effects
+     from a second CPU's accesses, even _if_ the second CPU uses a memory
+     barrier, unless the first CPU _also_ uses a matching memory barrier (see
+     the subsection on "SMP Barrier Pairing").
+
+ (*) There is no guarantee that some intervening piece of off-the-CPU
+     hardware[*] will not reorder the memory accesses.  CPU cache coherency
+     mechanisms should propagate the indirect effects of a memory barrier
+     between CPUs, but might not do so in order.
+
+	[*] For information on bus mastering DMA and coherency please read:
+
+	    Documentation/pci.txt
+	    Documentation/DMA-mapping.txt
+	    Documentation/DMA-API.txt
+
+
+DATA DEPENDENCY BARRIERS
+------------------------
+
+The usage requirements of data dependency barriers are a little subtle, and
+it's not always obvious that they're needed.  To illustrate, consider the
+following sequence of events:
+
+	CPU 1		CPU 2
+	===============	===============
+	{ A == 1, B == 2, C = 3, P == &A, Q == &C }
+	B = 4;
+	<write barrier>
+	P = &B
+			Q = P;
+			D = *Q;
+
+There's a clear data dependency here, and it would seem that by the end of the
+sequence, Q must be either &A or &B, and that:
+
+	(Q == &A) implies (D == 1)
+	(Q == &B) implies (D == 4)
+
+But! CPU 2's perception of P may be updated _before_ its perception of B, thus
+leading to the following situation:
+
+	(Q == &B) and (D == 2) ????
+
+Whilst this may seem like a failure of coherency or causality maintenance, it
+isn't, and this behaviour can be observed on certain real CPUs (such as the DEC
+Alpha).
+
+To deal with this, a data dependency barrier must be inserted between the
+address load and the data load:
+
+	CPU 1		CPU 2
+	===============	===============
+	{ A == 1, B == 2, C = 3, P == &A, Q == &C }
+	B = 4;
+	<write barrier>
+	P = &B
+			Q = P;
+			<data dependency barrier>
+			D = *Q;
+
+This enforces the occurrence of one of the two implications, and prevents the
+third possibility from arising.
+
+[!] Note that this extremely counterintuitive situation arises most easily on
+machines with split caches, so that, for example, one cache bank processes
+even-numbered cache lines and the other bank processes odd-numbered cache
+lines.  The pointer P might be stored in an odd-numbered cache line, and the
+variable B might be stored in an even-numbered cache line.  Then, if the
+even-numbered bank of the reading CPU's cache is extremely busy while the
+odd-numbered bank is idle, one can see the new value of the pointer P (&B),
+but the old value of the variable B (1).
+
+
+Another example of where data dependency barriers might by required is where a
+number is read from memory and then used to calculate the index for an array
+access:
+
+	CPU 1		CPU 2
+	===============	===============
+	{ M[0] == 1, M[1] == 2, M[3] = 3, P == 0, Q == 3 }
+	M[1] = 4;
+	<write barrier>
+	P = 1
+			Q = P;
+			<data dependency barrier>
+			D = M[Q];
+
+
+The data dependency barrier is very important to the RCU system, for example.
+See rcu_dereference() in include/linux/rcupdate.h.  This permits the current
+target of an RCU'd pointer to be replaced with a new modified target, without
+the replacement target appearing to be incompletely initialised.
+
+See also the subsection on "Cache Coherency" for a more thorough example.
+
+
+CONTROL DEPENDENCIES
+--------------------
+
+A control dependency requires a full read memory barrier, not simply a data
+dependency barrier to make it work correctly.  Consider the following bit of
+code:
+
+	q = &a;
+	if (p)
+		q = &b;
+	<data dependency barrier>
+	x = *q;
+
+This will not have the desired effect because there is no actual data
+dependency, but rather a control dependency that the CPU may short-circuit by
+attempting to predict the outcome in advance.  In such a case what's actually
+required is:
+
+	q = &a;
+	if (p)
+		q = &b;
+	<read barrier>
+	x = *q;
+
+
+SMP BARRIER PAIRING
+-------------------
+
+When dealing with CPU-CPU interactions, certain types of memory barrier should
+always be paired.  A lack of appropriate pairing is almost certainly an error.
+
+A write barrier should always be paired with a data dependency barrier or read
+barrier, though a general barrier would also be viable.  Similarly a read
+barrier or a data dependency barrier should always be paired with at least an
+write barrier, though, again, a general barrier is viable:
+
+	CPU 1		CPU 2
+	===============	===============
+	a = 1;
+	<write barrier>
+	b = 2;		x = a;
+			<read barrier>
+			y = b;
+
+Or:
+
+	CPU 1		CPU 2
+	===============	===============================
+	a = 1;
+	<write barrier>
+	b = &a;		x = b;
+			<data dependency barrier>
+			y = *x;
+
+Basically, the read barrier always has to be there, even though it can be of
+the "weaker" type.
+
+
+EXAMPLES OF MEMORY BARRIER SEQUENCES
+------------------------------------
+
+Firstly, write barriers act as a partial orderings on store operations.
+Consider the following sequence of events:
+
+	CPU 1
+	=======================
+	STORE A = 1
+	STORE B = 2
+	STORE C = 3
+	<write barrier>
+	STORE D = 4
+	STORE E = 5
+
+This sequence of events is committed to the memory coherence system in an order
+that the rest of the system might perceive as the unordered set of { STORE A,
+STORE B, STORE C } all occuring before the unordered set of { STORE D, STORE E
+}:
+
+	+-------+       :      :
+	|       |       +------+
+	|       |------>| C=3  |     }     /\
+	|       |  :    +------+     }-----  \  -----> Events perceptible
+	|       |  :    | A=1  |     }        \/       to rest of system
+	|       |  :    +------+     }
+	| CPU 1 |  :    | B=2  |     }
+	|       |       +------+     }
+	|       |   wwwwwwwwwwwwwwww }   <--- At this point the write barrier
+	|       |       +------+     }        requires all stores prior to the
+	|       |  :    | E=5  |     }        barrier to be committed before
+	|       |  :    +------+     }        further stores may be take place.
+	|       |------>| D=4  |     }
+	|       |       +------+
+	+-------+       :      :
+	                   |
+	                   | Sequence in which stores committed to memory system
+	                   | by CPU 1
+	                   V
+
+
+Secondly, data dependency barriers act as a partial orderings on data-dependent
+loads.  Consider the following sequence of events:
+
+	CPU 1			CPU 2
+	=======================	=======================
+		{ B = 7; X = 9; Y = 8; C = &Y }
+	STORE A = 1
+	STORE B = 2
+	<write barrier>
+	STORE C = &B		LOAD X
+	STORE D = 4		LOAD C (gets &B)
+				LOAD *C (reads B)
+
+Without intervention, CPU 2 may perceive the events on CPU 1 in some
+effectively random order, despite the write barrier issued by CPU 1:
+
+	+-------+       :      :                :       :
+	|       |       +------+                +-------+  | Sequence of update
+	|       |------>| B=2  |-----       --->| Y->8  |  | of perception on
+	|       |  :    +------+     \          +-------+  | CPU 2
+	| CPU 1 |  :    | A=1  |      \     --->| C->&Y |  V
+	|       |       +------+       |        +-------+
+	|       |   wwwwwwwwwwwwwwww   |        :       :
+	|       |       +------+       |        :       :
+	|       |  :    | C=&B |---    |        :       :       +-------+
+	|       |  :    +------+   \   |        +-------+       |       |
+	|       |------>| D=4  |    ----------->| C->&B |------>|       |
+	|       |       +------+       |        +-------+       |       |
+	+-------+       :      :       |        :       :       |       |
+	                               |        :       :       |       |
+	                               |        :       :       | CPU 2 |
+	                               |        +-------+       |       |
+	    Apparently incorrect --->  |        | B->7  |------>|       |
+	    perception of B (!)        |        +-------+       |       |
+	                               |        :       :       |       |
+	                               |        +-------+       |       |
+	    The load of X holds --->    \       | X->9  |------>|       |
+	    up the maintenance           \      +-------+       |       |
+	    of coherence of B             ----->| B->2  |       +-------+
+	                                        +-------+
+	                                        :       :
+
+
+In the above example, CPU 2 perceives that B is 7, despite the load of *C
+(which would be B) coming after the the LOAD of C.
+
+If, however, a data dependency barrier were to be placed between the load of C
+and the load of *C (ie: B) on CPU 2:
+
+	CPU 1			CPU 2
+	=======================	=======================
+		{ B = 7; X = 9; Y = 8; C = &Y }
+	STORE A = 1
+	STORE B = 2
+	<write barrier>
+	STORE C = &B		LOAD X
+	STORE D = 4		LOAD C (gets &B)
+				<data dependency barrier>
+				LOAD *C (reads B)
+
+then the following will occur:
+
+	+-------+       :      :                :       :
+	|       |       +------+                +-------+
+	|       |------>| B=2  |-----       --->| Y->8  |
+	|       |  :    +------+     \          +-------+
+	| CPU 1 |  :    | A=1  |      \     --->| C->&Y |
+	|       |       +------+       |        +-------+
+	|       |   wwwwwwwwwwwwwwww   |        :       :
+	|       |       +------+       |        :       :
+	|       |  :    | C=&B |---    |        :       :       +-------+
+	|       |  :    +------+   \   |        +-------+       |       |
+	|       |------>| D=4  |    ----------->| C->&B |------>|       |
+	|       |       +------+       |        +-------+       |       |
+	+-------+       :      :       |        :       :       |       |
+	                               |        :       :       |       |
+	                               |        :       :       | CPU 2 |
+	                               |        +-------+       |       |
+	                                \       | X->9  |------>|       |
+	                                 \      +-------+       |       |
+	                                  ----->| B->2  |       |       |
+	                                        +-------+       |       |
+	     Makes sure all effects --->    ddddddddddddddddd   |       |
+	     prior to the store of C            +-------+       |       |
+	     are perceptible to                 | B->2  |------>|       |
+	     successive loads                   +-------+       |       |
+	                                        :       :       +-------+
+
+
+And thirdly, a read barrier acts as a partial order on loads.  Consider the
+following sequence of events:
+
+	CPU 1			CPU 2
+	=======================	=======================
+	STORE A=1
+	STORE B=2
+	STORE C=3
+	<write barrier>
+	STORE D=4
+	STORE E=5
+				LOAD A
+				LOAD B
+				LOAD C
+				LOAD D
+				LOAD E
+
+Without intervention, CPU 2 may then choose to perceive the events on CPU 1 in
+some effectively random order, despite the write barrier issued by CPU 1:
+
+	+-------+       :      :
+	|       |       +------+
+	|       |------>| C=3  | }
+	|       |  :    +------+ }
+	|       |  :    | A=1  | }
+	|       |  :    +------+ }
+	| CPU 1 |  :    | B=2  | }---
+	|       |       +------+ }   \
+	|       |   wwwwwwwwwwwww}    \
+	|       |       +------+ }     \          :       :       +-------+
+	|       |  :    | E=5  | }      \         +-------+       |       |
+	|       |  :    +------+ }       \      { | C->3  |------>|       |
+	|       |------>| D=4  | }        \     { +-------+    :  |       |
+	|       |       +------+           \    { | E->5  |    :  |       |
+	+-------+       :      :            \   { +-------+    :  |       |
+	                           Transfer  -->{ | A->1  |    :  | CPU 2 |
+	                          from CPU 1    { +-------+    :  |       |
+	                           to CPU 2     { | D->4  |    :  |       |
+	                                        { +-------+    :  |       |
+	                                        { | B->2  |------>|       |
+	                                          +-------+       |       |
+	                                          :       :       +-------+
+
+
+If, however, a read barrier were to be placed between the load of C and the
+load of D on CPU 2, then the partial ordering imposed by CPU 1 will be
+perceived correctly by CPU 2.
+
+	+-------+       :      :
+	|       |       +------+
+	|       |------>| C=3  | }
+	|       |  :    +------+ }
+	|       |  :    | A=1  | }---
+	|       |  :    +------+ }   \
+	| CPU 1 |  :    | B=2  | }    \
+	|       |       +------+       \
+	|       |   wwwwwwwwwwwwwwww    \
+	|       |       +------+         \        :       :       +-------+
+	|       |  :    | E=5  | }        \       +-------+       |       |
+	|       |  :    +------+ }---      \    { | C->3  |------>|       |
+	|       |------>| D=4  | }   \      \   { +-------+    :  |       |
+	|       |       +------+      \      -->{ | B->2  |    :  |       |
+	+-------+       :      :       \        { +-------+    :  |       |
+	                                \       { | A->1  |    :  | CPU 2 |
+	                                 \        +-------+       |       |
+	   At this point the read ---->   \   rrrrrrrrrrrrrrrrr   |       |
+	   barrier causes all effects      \      +-------+       |       |
+	   prior to the storage of C        \   { | E->5  |    :  |       |
+	   to be perceptible to CPU 2        -->{ +-------+    :  |       |
+	                                        { | D->4  |------>|       |
+	                                          +-------+       |       |
+	                                          :       :       +-------+
+
+
+========================
+EXPLICIT KERNEL BARRIERS
+========================
+
+The Linux kernel has a variety of different barriers that act at different
+levels:
+
+  (*) Compiler barrier.
+
+  (*) CPU memory barriers.
+
+  (*) MMIO write barrier.
+
+
+COMPILER BARRIER
+----------------
+
+The Linux kernel has an explicit compiler barrier function that prevents the
+compiler from moving the memory accesses either side of it to the other side:
+
+	barrier();
+
+This a general barrier - lesser varieties of compiler barrier do not exist.
+
+The compiler barrier has no direct effect on the CPU, which may then reorder
+things however it wishes.
+
+
+CPU MEMORY BARRIERS
+-------------------
+
+The Linux kernel has eight basic CPU memory barriers:
+
+	TYPE		MANDATORY		SMP CONDITIONAL
+	===============	=======================	===========================
+	GENERAL		mb()			smp_mb()
+	WRITE		wmb()			smp_wmb()
+	READ		rmb()			smp_rmb()
+	DATA DEPENDENCY	read_barrier_depends()	smp_read_barrier_depends()
+
+
+All CPU memory barriers unconditionally imply compiler barriers.
+
+SMP memory barriers are reduced to compiler barriers on uniprocessor compiled
+systems because it is assumed that a CPU will be appear to be self-consistent,
+and will order overlapping accesses correctly with respect to itself.
+
+[!] Note that SMP memory barriers _must_ be used to control the ordering of
+references to shared memory on SMP systems, though the use of locking instead
+is sufficient.
+
+Mandatory barriers should not be used to control SMP effects, since mandatory
+barriers unnecessarily impose overhead on UP systems. They may, however, be
+used to control MMIO effects on accesses through relaxed memory I/O windows.
+These are required even on non-SMP systems as they affect the order in which
+memory operations appear to a device by prohibiting both the compiler and the
+CPU from reordering them.
+
+
+There are some more advanced barrier functions:
+
+ (*) set_mb(var, value)
+ (*) set_wmb(var, value)
+
+     These assign the value to the variable and then insert at least a write
+     barrier after it, depending on the function.  They aren't guaranteed to
+     insert anything more than a compiler barrier in a UP compilation.
+
+
+ (*) smp_mb__before_atomic_dec();
+ (*) smp_mb__after_atomic_dec();
+ (*) smp_mb__before_atomic_inc();
+ (*) smp_mb__after_atomic_inc();
+
+     These are for use with atomic add, subtract, increment and decrement
+     functions that don't return a value, especially when used for reference
+     counting.  These functions do not imply memory barriers.
+
+     As an example, consider a piece of code that marks an object as being dead
+     and then decrements the object's reference count:
+
+	obj->dead = 1;
+	smp_mb__before_atomic_dec();
+	atomic_dec(&obj->ref_count);
+
+     This makes sure that the death mark on the object is perceived to be set
+     *before* the reference counter is decremented.
+
+     See Documentation/atomic_ops.txt for more information.  See the "Atomic
+     operations" subsection for information on where to use these.
+
+
+ (*) smp_mb__before_clear_bit(void);
+ (*) smp_mb__after_clear_bit(void);
+
+     These are for use similar to the atomic inc/dec barriers.  These are
+     typically used for bitwise unlocking operations, so care must be taken as
+     there are no implicit memory barriers here either.
+
+     Consider implementing an unlock operation of some nature by clearing a
+     locking bit.  The clear_bit() would then need to be barriered like this:
+
+	smp_mb__before_clear_bit();
+	clear_bit( ... );
+
+     This prevents memory operations before the clear leaking to after it.  See
+     the subsection on "Locking Functions" with reference to UNLOCK operation
+     implications.
+
+     See Documentation/atomic_ops.txt for more information.  See the "Atomic
+     operations" subsection for information on where to use these.
+
+
+MMIO WRITE BARRIER
+------------------
+
+The Linux kernel also has a special barrier for use with memory-mapped I/O
+writes:
+
+	mmiowb();
+
+This is a variation on the mandatory write barrier that causes writes to weakly
+ordered I/O regions to be partially ordered.  Its effects may go beyond the
+CPU->Hardware interface and actually affect the hardware at some level.
+
+See the subsection "Locks vs I/O accesses" for more information.
+
+
+===============================
+IMPLICIT KERNEL MEMORY BARRIERS
+===============================
+
+Some of the other functions in the linux kernel imply memory barriers, amongst
+which are locking, scheduling and memory allocation functions.
+
+This specification is a _minimum_ guarantee; any particular architecture may
+provide more substantial guarantees, but these may not be relied upon outside
+of arch specific code.
+
+
+LOCKING FUNCTIONS
+-----------------
+
+The Linux kernel has a number of locking constructs:
+
+ (*) spin locks
+ (*) R/W spin locks
+ (*) mutexes
+ (*) semaphores
+ (*) R/W semaphores
+ (*) RCU
+
+In all cases there are variants on "LOCK" operations and "UNLOCK" operations
+for each construct.  These operations all imply certain barriers:
+
+ (1) LOCK operation implication:
+
+     Memory operations issued after the LOCK will be completed after the LOCK
+     operation has completed.
+
+     Memory operations issued before the LOCK may be completed after the LOCK
+     operation has completed.
+
+ (2) UNLOCK operation implication:
+
+     Memory operations issued before the UNLOCK will be completed before the
+     UNLOCK operation has completed.
+
+     Memory operations issued after the UNLOCK may be completed before the
+     UNLOCK operation has completed.
+
+ (3) LOCK vs LOCK implication:
+
+     All LOCK operations issued before another LOCK operation will be completed
+     before that LOCK operation.
+
+ (4) LOCK vs UNLOCK implication:
+
+     All LOCK operations issued before an UNLOCK operation will be completed
+     before the UNLOCK operation.
+
+     All UNLOCK operations issued before a LOCK operation will be completed
+     before the LOCK operation.
+
+ (5) Failed conditional LOCK implication:
+
+     Certain variants of the LOCK operation may fail, either due to being
+     unable to get the lock immediately, or due to receiving an unblocked
+     signal whilst asleep waiting for the lock to become available.  Failed
+     locks do not imply any sort of barrier.
+
+Therefore, from (1), (2) and (4) an UNLOCK followed by an unconditional LOCK is
+equivalent to a full barrier, but a LOCK followed by an UNLOCK is not.
+
+[!] Note: one of the consequence of LOCKs and UNLOCKs being only one-way
+    barriers is that the effects instructions outside of a critical section may
+    seep into the inside of the critical section.
+
+Locks and semaphores may not provide any guarantee of ordering on UP compiled
+systems, and so cannot be counted on in such a situation to actually achieve
+anything at all - especially with respect to I/O accesses - unless combined
+with interrupt disabling operations.
+
+See also the section on "Inter-CPU locking barrier effects".
+
+
+As an example, consider the following:
+
+	*A = a;
+	*B = b;
+	LOCK
+	*C = c;
+	*D = d;
+	UNLOCK
+	*E = e;
+	*F = f;
+
+The following sequence of events is acceptable:
+
+	LOCK, {*F,*A}, *E, {*C,*D}, *B, UNLOCK
+
+	[+] Note that {*F,*A} indicates a combined access.
+
+But none of the following are:
+
+	{*F,*A}, *B,	LOCK, *C, *D,	UNLOCK, *E
+	*A, *B, *C,	LOCK, *D,	UNLOCK, *E, *F
+	*A, *B,		LOCK, *C,	UNLOCK, *D, *E, *F
+	*B,		LOCK, *C, *D,	UNLOCK, {*F,*A}, *E
+
+
+
+INTERRUPT DISABLING FUNCTIONS
+-----------------------------
+
+Functions that disable interrupts (LOCK equivalent) and enable interrupts
+(UNLOCK equivalent) will act as compiler barriers only.  So if memory or I/O
+barriers are required in such a situation, they must be provided from some
+other means.
+
+
+MISCELLANEOUS FUNCTIONS
+-----------------------
+
+Other functions that imply barriers:
+
+ (*) schedule() and similar imply full memory barriers.
+
+ (*) Memory allocation and release functions imply full memory barriers.
+
+
+=================================
+INTER-CPU LOCKING BARRIER EFFECTS
+=================================
+
+On SMP systems locking primitives give a more substantial form of barrier: one
+that does affect memory access ordering on other CPUs, within the context of
+conflict on any particular lock.
+
+
+LOCKS VS MEMORY ACCESSES
+------------------------
+
+Consider the following: the system has a pair of spinlocks (N) and (Q), and
+three CPUs; then should the following sequence of events occur:
+
+	CPU 1				CPU 2
+	===============================	===============================
+	*A = a;				*E = e;
+	LOCK M				LOCK Q
+	*B = b;				*F = f;
+	*C = c;				*G = g;
+	UNLOCK M			UNLOCK Q
+	*D = d;				*H = h;
+
+Then there is no guarantee as to what order CPU #3 will see the accesses to *A
+through *H occur in, other than the constraints imposed by the separate locks
+on the separate CPUs. It might, for example, see:
+
+	*E, LOCK M, LOCK Q, *G, *C, *F, *A, *B, UNLOCK Q, *D, *H, UNLOCK M
+
+But it won't see any of:
+
+	*B, *C or *D preceding LOCK M
+	*A, *B or *C following UNLOCK M
+	*F, *G or *H preceding LOCK Q
+	*E, *F or *G following UNLOCK Q
+
+
+However, if the following occurs:
+
+	CPU 1				CPU 2
+	===============================	===============================
+	*A = a;
+	LOCK M		[1]
+	*B = b;
+	*C = c;
+	UNLOCK M	[1]
+	*D = d;				*E = e;
+					LOCK M		[2]
+					*F = f;
+					*G = g;
+					UNLOCK M	[2]
+					*H = h;
+
+CPU #3 might see:
+
+	*E, LOCK M [1], *C, *B, *A, UNLOCK M [1],
+		LOCK M [2], *H, *F, *G, UNLOCK M [2], *D
+
+But assuming CPU #1 gets the lock first, it won't see any of:
+
+	*B, *C, *D, *F, *G or *H preceding LOCK M [1]
+	*A, *B or *C following UNLOCK M [1]
+	*F, *G or *H preceding LOCK M [2]
+	*A, *B, *C, *E, *F or *G following UNLOCK M [2]
+
+
+LOCKS VS I/O ACCESSES
+---------------------
+
+Under certain circumstances (especially involving NUMA), I/O accesses within
+two spinlocked sections on two different CPUs may be seen as interleaved by the
+PCI bridge, because the PCI bridge does not necessarily participate in the
+cache-coherence protocol, and is therefore incapable of issuing the required
+read memory barriers.
+
+For example:
+
+	CPU 1				CPU 2
+	===============================	===============================
+	spin_lock(Q)
+	writel(0, ADDR)
+	writel(1, DATA);
+	spin_unlock(Q);
+					spin_lock(Q);
+					writel(4, ADDR);
+					writel(5, DATA);
+					spin_unlock(Q);
+
+may be seen by the PCI bridge as follows:
+
+	STORE *ADDR = 0, STORE *ADDR = 4, STORE *DATA = 1, STORE *DATA = 5
+
+which would probably cause the hardware to malfunction.
+
+
+What is necessary here is to intervene with an mmiowb() before dropping the
+spinlock, for example:
+
+	CPU 1				CPU 2
+	===============================	===============================
+	spin_lock(Q)
+	writel(0, ADDR)
+	writel(1, DATA);
+	mmiowb();
+	spin_unlock(Q);
+					spin_lock(Q);
+					writel(4, ADDR);
+					writel(5, DATA);
+					mmiowb();
+					spin_unlock(Q);
+
+this will ensure that the two stores issued on CPU #1 appear at the PCI bridge
+before either of the stores issued on CPU #2.
+
+
+Furthermore, following a store by a load to the same device obviates the need
+for an mmiowb(), because the load forces the store to complete before the load
+is performed:
+
+	CPU 1				CPU 2
+	===============================	===============================
+	spin_lock(Q)
+	writel(0, ADDR)
+	a = readl(DATA);
+	spin_unlock(Q);
+					spin_lock(Q);
+					writel(4, ADDR);
+					b = readl(DATA);
+					spin_unlock(Q);
+
+
+See Documentation/DocBook/deviceiobook.tmpl for more information.
+
+
+=================================
+WHERE ARE MEMORY BARRIERS NEEDED?
+=================================
+
+Under normal operation, memory operation reordering is generally not going to
+be a problem as a single-threaded linear piece of code will still appear to
+work correctly, even if it's in an SMP kernel.  There are, however, three
+circumstances in which reordering definitely _could_ be a problem:
+
+ (*) Interprocessor interaction.
+
+ (*) Atomic operations.
+
+ (*) Accessing devices (I/O).
+
+ (*) Interrupts.
+
+
+INTERPROCESSOR INTERACTION
+--------------------------
+
+When there's a system with more than one processor, more than one CPU in the
+system may be working on the same data set at the same time.  This can cause
+synchronisation problems, and the usual way of dealing with them is to use
+locks.  Locks, however, are quite expensive, and so it may be preferable to
+operate without the use of a lock if at all possible.  In such a case
+operations that affect both CPUs may have to be carefully ordered to prevent
+a malfunction.
+
+Consider, for example, the R/W semaphore slow path.  Here a waiting process is
+queued on the semaphore, by virtue of it having a piece of its stack linked to
+the semaphore's list of waiting processes:
+
+	struct rw_semaphore {
+		...
+		spinlock_t lock;
+		struct list_head waiters;
+	};
+
+	struct rwsem_waiter {
+		struct list_head list;
+		struct task_struct *task;
+	};
+
+To wake up a particular waiter, the up_read() or up_write() functions have to:
+
+ (1) read the next pointer from this waiter's record to know as to where the
+     next waiter record is;
+
+ (4) read the pointer to the waiter's task structure;
+
+ (3) clear the task pointer to tell the waiter it has been given the semaphore;
+
+ (4) call wake_up_process() on the task; and
+
+ (5) release the reference held on the waiter's task struct.
+
+In otherwords, it has to perform this sequence of events:
+
+	LOAD waiter->list.next;
+	LOAD waiter->task;
+	STORE waiter->task;
+	CALL wakeup
+	RELEASE task
+
+and if any of these steps occur out of order, then the whole thing may
+malfunction.
+
+Once it has queued itself and dropped the semaphore lock, the waiter does not
+get the lock again; it instead just waits for its task pointer to be cleared
+before proceeding.  Since the record is on the waiter's stack, this means that
+if the task pointer is cleared _before_ the next pointer in the list is read,
+another CPU might start processing the waiter and might clobber the waiter's
+stack before the up*() function has a chance to read the next pointer.
+
+Consider then what might happen to the above sequence of events:
+
+	CPU 1				CPU 2
+	===============================	===============================
+					down_xxx()
+					Queue waiter
+					Sleep
+	up_yyy()
+	LOAD waiter->task;
+	STORE waiter->task;
+					Woken up by other event
+	<preempt>
+					Resume processing
+					down_xxx() returns
+					call foo()
+					foo() clobbers *waiter
+	</preempt>
+	LOAD waiter->list.next;
+	--- OOPS ---
+
+This could be dealt with using the semaphore lock, but then the down_xxx()
+function has to needlessly get the spinlock again after being woken up.
+
+The way to deal with this is to insert a general SMP memory barrier:
+
+	LOAD waiter->list.next;
+	LOAD waiter->task;
+	smp_mb();
+	STORE waiter->task;
+	CALL wakeup
+	RELEASE task
+
+In this case, the barrier makes a guarantee that all memory accesses before the
+barrier will appear to happen before all the memory accesses after the barrier
+with respect to the other CPUs on the system.  It does _not_ guarantee that all
+the memory accesses before the barrier will be complete by the time the barrier
+instruction itself is complete.
+
+On a UP system - where this wouldn't be a problem - the smp_mb() is just a
+compiler barrier, thus making sure the compiler emits the instructions in the
+right order without actually intervening in the CPU.  Since there there's only
+one CPU, that CPU's dependency ordering logic will take care of everything
+else.
+
+
+ATOMIC OPERATIONS
+-----------------
+
+Whilst they are technically interprocessor interaction considerations, atomic
+operations are noted specially as some of them imply full memory barriers and
+some don't, but they're very heavily relied on as a group throughout the
+kernel.
+
+Any atomic operation that modifies some state in memory and returns information
+about the state (old or new) implies an SMP-conditional general memory barrier
+(smp_mb()) on each side of the actual operation.  These include:
+
+	xchg();
+	cmpxchg();
+	atomic_cmpxchg();
+	atomic_inc_return();
+	atomic_dec_return();
+	atomic_add_return();
+	atomic_sub_return();
+	atomic_inc_and_test();
+	atomic_dec_and_test();
+	atomic_sub_and_test();
+	atomic_add_negative();
+	atomic_add_unless();
+	test_and_set_bit();
+	test_and_clear_bit();
+	test_and_change_bit();
+
+These are used for such things as implementing LOCK-class and UNLOCK-class
+operations and adjusting reference counters towards object destruction, and as
+such the implicit memory barrier effects are necessary.
+
+
+The following operation are potential problems as they do _not_ imply memory
+barriers, but might be used for implementing such things as UNLOCK-class
+operations:
+
+	atomic_set();
+	set_bit();
+	clear_bit();
+	change_bit();
+
+With these the appropriate explicit memory barrier should be used if necessary
+(smp_mb__before_clear_bit() for instance).
+
+
+The following also do _not_ imply memory barriers, and so may require explicit
+memory barriers under some circumstances (smp_mb__before_atomic_dec() for
+instance)):
+
+	atomic_add();
+	atomic_sub();
+	atomic_inc();
+	atomic_dec();
+
+If they're used for statistics generation, then they probably don't need memory
+barriers, unless there's a coupling between statistical data.
+
+If they're used for reference counting on an object to control its lifetime,
+they probably don't need memory barriers because either the reference count
+will be adjusted inside a locked section, or the caller will already hold
+sufficient references to make the lock, and thus a memory barrier unnecessary.
+
+If they're used for constructing a lock of some description, then they probably
+do need memory barriers as a lock primitive generally has to do things in a
+specific order.
+
+
+Basically, each usage case has to be carefully considered as to whether memory
+barriers are needed or not.
+
+[!] Note that special memory barrier primitives are available for these
+situations because on some CPUs the atomic instructions used imply full memory
+barriers, and so barrier instructions are superfluous in conjunction with them,
+and in such cases the special barrier primitives will be no-ops.
+
+See Documentation/atomic_ops.txt for more information.
+
+
+ACCESSING DEVICES
+-----------------
+
+Many devices can be memory mapped, and so appear to the CPU as if they're just
+a set of memory locations.  To control such a device, the driver usually has to
+make the right memory accesses in exactly the right order.
+
+However, having a clever CPU or a clever compiler creates a potential problem
+in that the carefully sequenced accesses in the driver code won't reach the
+device in the requisite order if the CPU or the compiler thinks it is more
+efficient to reorder, combine or merge accesses - something that would cause
+the device to malfunction.
+
+Inside of the Linux kernel, I/O should be done through the appropriate accessor
+routines - such as inb() or writel() - which know how to make such accesses
+appropriately sequential.  Whilst this, for the most part, renders the explicit
+use of memory barriers unnecessary, there are a couple of situations where they
+might be needed:
+
+ (1) On some systems, I/O stores are not strongly ordered across all CPUs, and
+     so for _all_ general drivers locks should be used and mmiowb() must be
+     issued prior to unlocking the critical section.
+
+ (2) If the accessor functions are used to refer to an I/O memory window with
+     relaxed memory access properties, then _mandatory_ memory barriers are
+     required to enforce ordering.
+
+See Documentation/DocBook/deviceiobook.tmpl for more information.
+
+
+INTERRUPTS
+----------
+
+A driver may be interrupted by its own interrupt service routine, and thus the
+two parts of the driver may interfere with each other's attempts to control or
+access the device.
+
+This may be alleviated - at least in part - by disabling local interrupts (a
+form of locking), such that the critical operations are all contained within
+the interrupt-disabled section in the driver.  Whilst the driver's interrupt
+routine is executing, the driver's core may not run on the same CPU, and its
+interrupt is not permitted to happen again until the current interrupt has been
+handled, thus the interrupt handler does not need to lock against that.
+
+However, consider a driver that was talking to an ethernet card that sports an
+address register and a data register.  If that driver's core talks to the card
+under interrupt-disablement and then the driver's interrupt handler is invoked:
+
+	LOCAL IRQ DISABLE
+	writew(ADDR, 3);
+	writew(DATA, y);
+	LOCAL IRQ ENABLE
+	<interrupt>
+	writew(ADDR, 4);
+	q = readw(DATA);
+	</interrupt>
+
+The store to the data register might happen after the second store to the
+address register if ordering rules are sufficiently relaxed:
+
+	STORE *ADDR = 3, STORE *ADDR = 4, STORE *DATA = y, q = LOAD *DATA
+
+
+If ordering rules are relaxed, it must be assumed that accesses done inside an
+interrupt disabled section may leak outside of it and may interleave with
+accesses performed in an interrupt - and vice versa - unless implicit or
+explicit barriers are used.
+
+Normally this won't be a problem because the I/O accesses done inside such
+sections will include synchronous load operations on strictly ordered I/O
+registers that form implicit I/O barriers. If this isn't sufficient then an
+mmiowb() may need to be used explicitly.
+
+
+A similar situation may occur between an interrupt routine and two routines
+running on separate CPUs that communicate with each other. If such a case is
+likely, then interrupt-disabling locks should be used to guarantee ordering.
+
+
+==========================
+KERNEL I/O BARRIER EFFECTS
+==========================
+
+When accessing I/O memory, drivers should use the appropriate accessor
+functions:
+
+ (*) inX(), outX():
+
+     These are intended to talk to I/O space rather than memory space, but
+     that's primarily a CPU-specific concept. The i386 and x86_64 processors do
+     indeed have special I/O space access cycles and instructions, but many
+     CPUs don't have such a concept.
+
+     The PCI bus, amongst others, defines an I/O space concept - which on such
+     CPUs as i386 and x86_64 cpus readily maps to the CPU's concept of I/O
+     space.  However, it may also mapped as a virtual I/O space in the CPU's
+     memory map, particularly on those CPUs that don't support alternate
+     I/O spaces.
+
+     Accesses to this space may be fully synchronous (as on i386), but
+     intermediary bridges (such as the PCI host bridge) may not fully honour
+     that.
+
+     They are guaranteed to be fully ordered with respect to each other.
+
+     They are not guaranteed to be fully ordered with respect to other types of
+     memory and I/O operation.
+
+ (*) readX(), writeX():
+
+     Whether these are guaranteed to be fully ordered and uncombined with
+     respect to each other on the issuing CPU depends on the characteristics
+     defined for the memory window through which they're accessing. On later
+     i386 architecture machines, for example, this is controlled by way of the
+     MTRR registers.
+
+     Ordinarily, these will be guaranteed to be fully ordered and uncombined,,
+     provided they're not accessing a prefetchable device.
+
+     However, intermediary hardware (such as a PCI bridge) may indulge in
+     deferral if it so wishes; to flush a store, a load from the same location
+     is preferred[*], but a load from the same device or from configuration
+     space should suffice for PCI.
+
+     [*] NOTE! attempting to load from the same location as was written to may
+     	 cause a malfunction - consider the 16550 Rx/Tx serial registers for
+     	 example.
+
+     Used with prefetchable I/O memory, an mmiowb() barrier may be required to
+     force stores to be ordered.
+
+     Please refer to the PCI specification for more information on interactions
+     between PCI transactions.
+
+ (*) readX_relaxed()
+
+     These are similar to readX(), but are not guaranteed to be ordered in any
+     way. Be aware that there is no I/O read barrier available.
+
+ (*) ioreadX(), iowriteX()
+
+     These will perform as appropriate for the type of access they're actually
+     doing, be it inX()/outX() or readX()/writeX().
+
+
+========================================
+ASSUMED MINIMUM EXECUTION ORDERING MODEL
+========================================
+
+It has to be assumed that the conceptual CPU is weakly-ordered but that it will
+maintain the appearance of program causality with respect to itself.  Some CPUs
+(such as i386 or x86_64) are more constrained than others (such as powerpc or
+frv), and so the most relaxed case (namely DEC Alpha) must be assumed outside
+of arch-specific code.
+
+This means that it must be considered that the CPU will execute its instruction
+stream in any order it feels like - or even in parallel - provided that if an
+instruction in the stream depends on the an earlier instruction, then that
+earlier instruction must be sufficiently complete[*] before the later
+instruction may proceed; in other words: provided that the appearance of
+causality is maintained.
+
+ [*] Some instructions have more than one effect - such as changing the
+     condition codes, changing registers or changing memory - and different
+     instructions may depend on different effects.
+
+A CPU may also discard any instruction sequence that winds up having no
+ultimate effect.  For example, if two adjacent instructions both load an
+immediate value into the same register, the first may be discarded.
+
+
+Similarly, it has to be assumed that compiler might reorder the instruction
+stream in any way it sees fit, again provided the appearance of causality is
+maintained.
+
+
+============================
+THE EFFECTS OF THE CPU CACHE
+============================
+
+The way cached memory operations are perceived across the system is affected to
+a certain extent by the caches that lie between CPUs and memory, and by the
+memory coherence system that maintains the consistency of state in the system.
+
+As far as the way a CPU interacts with another part of the system through the
+caches goes, the memory system has to include the CPU's caches, and memory
+barriers for the most part act at the interface between the CPU and its cache
+(memory barriers logically act on the dotted line in the following diagram):
+
+	    <--- CPU --->         :       <----------- Memory ----------->
+	                          :
+	+--------+    +--------+  :   +--------+    +-----------+
+	|        |    |        |  :   |        |    |           |    +--------+
+	|  CPU   |    | Memory |  :   | CPU    |    |           |    |	      |
+	|  Core  |--->| Access |----->| Cache  |<-->|           |    |	      |
+	|        |    | Queue  |  :   |        |    |           |--->| Memory |
+	|        |    |        |  :   |        |    |           |    |	      |
+	+--------+    +--------+  :   +--------+    |           |    | 	      |
+	                          :                 | Cache     |    +--------+
+	                          :                 | Coherency |
+	                          :                 | Mechanism |    +--------+
+	+--------+    +--------+  :   +--------+    |           |    |	      |
+	|        |    |        |  :   |        |    |           |    |        |
+	|  CPU   |    | Memory |  :   | CPU    |    |           |--->| Device |
+	|  Core  |--->| Access |----->| Cache  |<-->|           |    | 	      |
+	|        |    | Queue  |  :   |        |    |           |    | 	      |
+	|        |    |        |  :   |        |    |           |    +--------+
+	+--------+    +--------+  :   +--------+    +-----------+
+	                          :
+	                          :
+
+Although any particular load or store may not actually appear outside of the
+CPU that issued it since it may have been satisfied within the CPU's own cache,
+it will still appear as if the full memory access had taken place as far as the
+other CPUs are concerned since the cache coherency mechanisms will migrate the
+cacheline over to the accessing CPU and propagate the effects upon conflict.
+
+The CPU core may execute instructions in any order it deems fit, provided the
+expected program causality appears to be maintained.  Some of the instructions
+generate load and store operations which then go into the queue of memory
+accesses to be performed.  The core may place these in the queue in any order
+it wishes, and continue execution until it is forced to wait for an instruction
+to complete.
+
+What memory barriers are concerned with is controlling the order in which
+accesses cross from the CPU side of things to the memory side of things, and
+the order in which the effects are perceived to happen by the other observers
+in the system.
+
+[!] Memory barriers are _not_ needed within a given CPU, as CPUs always see
+their own loads and stores as if they had happened in program order.
+
+[!] MMIO or other device accesses may bypass the cache system.  This depends on
+the properties of the memory window through which devices are accessed and/or
+the use of any special device communication instructions the CPU may have.
+
+
+CACHE COHERENCY
+---------------
+
+Life isn't quite as simple as it may appear above, however: for while the
+caches are expected to be coherent, there's no guarantee that that coherency
+will be ordered.  This means that whilst changes made on one CPU will
+eventually become visible on all CPUs, there's no guarantee that they will
+become apparent in the same order on those other CPUs.
+
+
+Consider dealing with a system that has pair of CPUs (1 & 2), each of which has
+a pair of parallel data caches (CPU 1 has A/B, and CPU 2 has C/D):
+
+	            :
+	            :                          +--------+
+	            :      +---------+         |        |
+	+--------+  : +--->| Cache A |<------->|        |
+	|        |  : |    +---------+         |        |
+	|  CPU 1 |<---+                        |        |
+	|        |  : |    +---------+         |        |
+	+--------+  : +--->| Cache B |<------->|        |
+	            :      +---------+         |        |
+	            :                          | Memory |
+	            :      +---------+         | System |
+	+--------+  : +--->| Cache C |<------->|        |
+	|        |  : |    +---------+         |        |
+	|  CPU 2 |<---+                        |        |
+	|        |  : |    +---------+         |        |
+	+--------+  : +--->| Cache D |<------->|        |
+	            :      +---------+         |        |
+	            :                          +--------+
+	            :
+
+Imagine the system has the following properties:
+
+ (*) an odd-numbered cache line may be in cache A, cache C or it may still be
+     resident in memory;
+
+ (*) an even-numbered cache line may be in cache B, cache D or it may still be
+     resident in memory;
+
+ (*) whilst the CPU core is interrogating one cache, the other cache may be
+     making use of the bus to access the rest of the system - perhaps to
+     displace a dirty cacheline or to do a speculative load;
+
+ (*) each cache has a queue of operations that need to be applied to that cache
+     to maintain coherency with the rest of the system;
+
+ (*) the coherency queue is not flushed by normal loads to lines already
+     present in the cache, even though the contents of the queue may
+     potentially effect those loads.
+
+Imagine, then, that two writes are made on the first CPU, with a write barrier
+between them to guarantee that they will appear to reach that CPU's caches in
+the requisite order:
+
+	CPU 1		CPU 2		COMMENT
+	===============	===============	=======================================
+					u == 0, v == 1 and p == &u, q == &u
+	v = 2;
+	smp_wmb();			Make sure change to v visible before
+					 change to p
+	<A:modify v=2>			v is now in cache A exclusively
+	p = &v;
+	<B:modify p=&v>			p is now in cache B exclusively
+
+The write memory barrier forces the other CPUs in the system to perceive that
+the local CPU's caches have apparently been updated in the correct order.  But
+now imagine that the second CPU that wants to read those values:
+
+	CPU 1		CPU 2		COMMENT
+	===============	===============	=======================================
+	...
+			q = p;
+			x = *q;
+
+The above pair of reads may then fail to happen in expected order, as the
+cacheline holding p may get updated in one of the second CPU's caches whilst
+the update to the cacheline holding v is delayed in the other of the second
+CPU's caches by some other cache event:
+
+	CPU 1		CPU 2		COMMENT
+	===============	===============	=======================================
+					u == 0, v == 1 and p == &u, q == &u
+	v = 2;
+	smp_wmb();
+	<A:modify v=2>	<C:busy>
+			<C:queue v=2>
+	p = &b;		q = p;
+			<D:request p>
+	<B:modify p=&v>	<D:commit p=&v>
+		  	<D:read p>
+			x = *q;
+			<C:read *q>	Reads from v before v updated in cache
+			<C:unbusy>
+			<C:commit v=2>
+
+Basically, whilst both cachelines will be updated on CPU 2 eventually, there's
+no guarantee that, without intervention, the order of update will be the same
+as that committed on CPU 1.
+
+
+To intervene, we need to interpolate a data dependency barrier or a read
+barrier between the loads.  This will force the cache to commit its coherency
+queue before processing any further requests:
+
+	CPU 1		CPU 2		COMMENT
+	===============	===============	=======================================
+					u == 0, v == 1 and p == &u, q == &u
+	v = 2;
+	smp_wmb();
+	<A:modify v=2>	<C:busy>
+			<C:queue v=2>
+	p = &b;		q = p;
+			<D:request p>
+	<B:modify p=&v>	<D:commit p=&v>
+		  	<D:read p>
+			smp_read_barrier_depends()
+			<C:unbusy>
+			<C:commit v=2>
+			x = *q;
+			<C:read *q>	Reads from v after v updated in cache
+
+
+This sort of problem can be encountered on DEC Alpha processors as they have a
+split cache that improves performance by making better use of the data bus.
+Whilst most CPUs do imply a data dependency barrier on the read when a memory
+access depends on a read, not all do, so it may not be relied on.
+
+Other CPUs may also have split caches, but must coordinate between the various
+cachelets for normal memory accesss.  The semantics of the Alpha removes the
+need for coordination in absence of memory barriers.
+
+
+CACHE COHERENCY VS DMA
+----------------------
+
+Not all systems maintain cache coherency with respect to devices doing DMA.  In
+such cases, a device attempting DMA may obtain stale data from RAM because
+dirty cache lines may be resident in the caches of various CPUs, and may not
+have been written back to RAM yet.  To deal with this, the appropriate part of
+the kernel must flush the overlapping bits of cache on each CPU (and maybe
+invalidate them as well).
+
+In addition, the data DMA'd to RAM by a device may be overwritten by dirty
+cache lines being written back to RAM from a CPU's cache after the device has
+installed its own data, or cache lines simply present in a CPUs cache may
+simply obscure the fact that RAM has been updated, until at such time as the
+cacheline is discarded from the CPU's cache and reloaded.  To deal with this,
+the appropriate part of the kernel must invalidate the overlapping bits of the
+cache on each CPU.
+
+See Documentation/cachetlb.txt for more information on cache management.
+
+
+CACHE COHERENCY VS MMIO
+-----------------------
+
+Memory mapped I/O usually takes place through memory locations that are part of
+a window in the CPU's memory space that have different properties assigned than
+the usual RAM directed window.
+
+Amongst these properties is usually the fact that such accesses bypass the
+caching entirely and go directly to the device buses.  This means MMIO accesses
+may, in effect, overtake accesses to cached memory that were emitted earlier.
+A memory barrier isn't sufficient in such a case, but rather the cache must be
+flushed between the cached memory write and the MMIO access if the two are in
+any way dependent.
+
+
+=========================
+THE THINGS CPUS GET UP TO
+=========================
+
+A programmer might take it for granted that the CPU will perform memory
+operations in exactly the order specified, so that if a CPU is, for example,
+given the following piece of code to execute:
+
+	a = *A;
+	*B = b;
+	c = *C;
+	d = *D;
+	*E = e;
+
+They would then expect that the CPU will complete the memory operation for each
+instruction before moving on to the next one, leading to a definite sequence of
+operations as seen by external observers in the system:
+
+	LOAD *A, STORE *B, LOAD *C, LOAD *D, STORE *E.
+
+
+Reality is, of course, much messier.  With many CPUs and compilers, the above
+assumption doesn't hold because:
+
+ (*) loads are more likely to need to be completed immediately to permit
+     execution progress, whereas stores can often be deferred without a
+     problem;
+
+ (*) loads may be done speculatively, and the result discarded should it prove
+     to have been unnecessary;
+
+ (*) loads may be done speculatively, leading to the result having being
+     fetched at the wrong time in the expected sequence of events;
+
+ (*) the order of the memory accesses may be rearranged to promote better use
+     of the CPU buses and caches;
+
+ (*) loads and stores may be combined to improve performance when talking to
+     memory or I/O hardware that can do batched accesses of adjacent locations,
+     thus cutting down on transaction setup costs (memory and PCI devices may
+     both be able to do this); and
+
+ (*) the CPU's data cache may affect the ordering, and whilst cache-coherency
+     mechanisms may alleviate this - once the store has actually hit the cache
+     - there's no guarantee that the coherency management will be propagated in
+     order to other CPUs.
+
+So what another CPU, say, might actually observe from the above piece of code
+is:
+
+	LOAD *A, ..., LOAD {*C,*D}, STORE *E, STORE *B
+
+	(Where "LOAD {*C,*D}" is a combined load)
+
+
+However, it is guaranteed that a CPU will be self-consistent: it will see its
+_own_ accesses appear to be correctly ordered, without the need for a memory
+barrier.  For instance with the following code:
+
+	U = *A;
+	*A = V;
+	*A = W;
+	X = *A;
+	*A = Y;
+	Z = *A;
+
+and assuming no intervention by an external influence, it can be assumed that
+the final result will appear to be:
+
+	U == the original value of *A
+	X == W
+	Z == Y
+	*A == Y
+
+The code above may cause the CPU to generate the full sequence of memory
+accesses:
+
+	U=LOAD *A, STORE *A=V, STORE *A=W, X=LOAD *A, STORE *A=Y, Z=LOAD *A
+
+in that order, but, without intervention, the sequence may have almost any
+combination of elements combined or discarded, provided the program's view of
+the world remains consistent.
+
+The compiler may also combine, discard or defer elements of the sequence before
+the CPU even sees them.
+
+For instance:
+
+	*A = V;
+	*A = W;
+
+may be reduced to:
+
+	*A = W;
+
+since, without a write barrier, it can be assumed that the effect of the
+storage of V to *A is lost.  Similarly:
+
+	*A = Y;
+	Z = *A;
+
+may, without a memory barrier, be reduced to:
+
+	*A = Y;
+	Z = Y;
+
+and the LOAD operation never appear outside of the CPU.
+
+
+AND THEN THERE'S THE ALPHA
+--------------------------
+
+The DEC Alpha CPU is one of the most relaxed CPUs there is.  Not only that,
+some versions of the Alpha CPU have a split data cache, permitting them to have
+two semantically related cache lines updating at separate times.  This is where
+the data dependency barrier really becomes necessary as this synchronises both
+caches with the memory coherence system, thus making it seem like pointer
+changes vs new data occur in the right order.
+
+The Alpha defines the Linux's kernel's memory barrier model.
+
+See the subsection on "Cache Coherency" above.
+
+
+==========
+REFERENCES
+==========
+
+Alpha AXP Architecture Reference Manual, Second Edition (Sites & Witek,
+Digital Press)
+	Chapter 5.2: Physical Address Space Characteristics
+	Chapter 5.4: Caches and Write Buffers
+	Chapter 5.5: Data Sharing
+	Chapter 5.6: Read/Write Ordering
+
+AMD64 Architecture Programmer's Manual Volume 2: System Programming
+	Chapter 7.1: Memory-Access Ordering
+	Chapter 7.4: Buffering and Combining Memory Writes
+
+IA-32 Intel Architecture Software Developer's Manual, Volume 3:
+System Programming Guide
+	Chapter 7.1: Locked Atomic Operations
+	Chapter 7.2: Memory Ordering
+	Chapter 7.4: Serializing Instructions
+
+The SPARC Architecture Manual, Version 9
+	Chapter 8: Memory Models
+	Appendix D: Formal Specification of the Memory Models
+	Appendix J: Programming with the Memory Models
+
+UltraSPARC Programmer Reference Manual
+	Chapter 5: Memory Accesses and Cacheability
+	Chapter 15: Sparc-V9 Memory Models
+
+UltraSPARC III Cu User's Manual
+	Chapter 9: Memory Models
+
+UltraSPARC IIIi Processor User's Manual
+	Chapter 8: Memory Models
+
+UltraSPARC Architecture 2005
+	Chapter 9: Memory
+	Appendix D: Formal Specifications of the Memory Models
+
+UltraSPARC T1 Supplement to the UltraSPARC Architecture 2005
+	Chapter 8: Memory Models
+	Appendix F: Caches and Cache Coherency
+
+Solaris Internals, Core Kernel Architecture, p63-68:
+	Chapter 3.3: Hardware Considerations for Locks and
+			Synchronization
+
+Unix Systems for Modern Architectures, Symmetric Multiprocessing and Caching
+for Kernel Programmers:
+	Chapter 13: Other Memory Models
+
+Intel Itanium Architecture Software Developer's Manual: Volume 1:
+	Section 2.6: Speculation
+	Section 4.4: Memory Access

+ 21 - 2
Documentation/mtrr.txt

@@ -138,19 +138,29 @@ Reading MTRRs from a C program using ioctl()'s:
 
 */
 #include <stdio.h>
+#include <stdlib.h>
 #include <string.h>
 #include <sys/types.h>
 #include <sys/stat.h>
 #include <fcntl.h>
 #include <sys/ioctl.h>
 #include <errno.h>
-#define MTRR_NEED_STRINGS
 #include <asm/mtrr.h>
 
 #define TRUE 1
 #define FALSE 0
 #define ERRSTRING strerror (errno)
 
+static char *mtrr_strings[MTRR_NUM_TYPES] =
+{
+    "uncachable",               /* 0 */
+    "write-combining",          /* 1 */
+    "?",                        /* 2 */
+    "?",                        /* 3 */
+    "write-through",            /* 4 */
+    "write-protect",            /* 5 */
+    "write-back",               /* 6 */
+};
 
 int main ()
 {
@@ -232,13 +242,22 @@ Creating MTRRs from a C programme using ioctl()'s:
 #include <fcntl.h>
 #include <sys/ioctl.h>
 #include <errno.h>
-#define MTRR_NEED_STRINGS
 #include <asm/mtrr.h>
 
 #define TRUE 1
 #define FALSE 0
 #define ERRSTRING strerror (errno)
 
+static char *mtrr_strings[MTRR_NUM_TYPES] =
+{
+    "uncachable",               /* 0 */
+    "write-combining",          /* 1 */
+    "?",                        /* 2 */
+    "?",                        /* 3 */
+    "write-through",            /* 4 */
+    "write-protect",            /* 5 */
+    "write-back",               /* 6 */
+};
 
 int main (int argc, char **argv)
 {

+ 36 - 0
Documentation/networking/bcm43xx.txt

@@ -0,0 +1,36 @@
+
+			BCM43xx Linux Driver Project
+			============================
+
+About this software
+-------------------
+
+The goal of this project is to develop a linux driver for Broadcom
+BCM43xx chips, based on the specification at 
+http://bcm-specs.sipsolutions.net/
+
+The project page is http://bcm43xx.berlios.de/
+
+
+Requirements
+------------
+
+1)	Linux Kernel 2.6.16 or later
+	http://www.kernel.org/
+
+	You may want to configure your kernel with:
+
+	CONFIG_DEBUG_FS (optional):
+		-> Kernel hacking
+		  -> Debug Filesystem
+
+2)	SoftMAC IEEE 802.11 Networking Stack extension and patched ieee80211
+	modules:
+	http://softmac.sipsolutions.net/
+
+3)	Firmware Files
+
+	Please try fwcutter. Fwcutter can extract the firmware from various 
+	binary driver files. It supports driver files from Windows, MacOS and 
+	Linux. You can get fwcutter from http://bcm43xx.berlios.de/.
+	Also, fwcutter comes with a README file for further instructions.

+ 1 - 1
Documentation/networking/packet_mmap.txt

@@ -254,7 +254,7 @@ and, the number of frames be
 
 	<block number> * <block size> / <frame size>
 
-Suposse the following parameters, which apply for 2.6 kernel and an
+Suppose the following parameters, which apply for 2.6 kernel and an
 i386 architecture:
 
 	<size-max> = 131072 bytes

+ 1 - 1
Documentation/networking/tuntap.txt

@@ -138,7 +138,7 @@ This means that you have to read/write IP packets when you are using tun and
 ethernet frames when using tap.
 
 5. What is the difference between BPF and TUN/TAP driver?
-BFP is an advanced packet filter. It can be attached to existing
+BPF is an advanced packet filter. It can be attached to existing
 network interface. It does not provide a virtual network interface.
 A TUN/TAP driver does provide a virtual network interface and it is possible
 to attach BPF to this interface.

+ 6 - 0
Documentation/pcmcia/driver-changes.txt

@@ -1,5 +1,11 @@
 This file details changes in 2.6 which affect PCMCIA card driver authors:
 
+* New release helper (as of 2.6.17)
+   Instead of calling pcmcia_release_{configuration,io,irq,win}, all that's
+   necessary now is calling pcmcia_disable_device. As there is no valid
+   reason left to call pcmcia_release_io and pcmcia_release_irq, the
+   exports for them were removed.
+
 * Unify detach and REMOVAL event code, as well as attach and INSERTION
   code (as of 2.6.16)
        void (*remove)          (struct pcmcia_device *dev);

+ 7 - 7
Documentation/scsi/scsi_eh.txt

@@ -19,9 +19,9 @@ TABLE OF CONTENTS
 	[2-1-1] Overview
 	[2-1-2] Flow of scmds through EH
 	[2-1-3] Flow of control
-    [2-2] EH through hostt->eh_strategy_handler()
-	[2-2-1] Pre hostt->eh_strategy_handler() SCSI midlayer conditions
-	[2-2-2] Post hostt->eh_strategy_handler() SCSI midlayer conditions
+    [2-2] EH through transportt->eh_strategy_handler()
+	[2-2-1] Pre transportt->eh_strategy_handler() SCSI midlayer conditions
+	[2-2-2] Post transportt->eh_strategy_handler() SCSI midlayer conditions
 	[2-2-3] Things to consider
 
 
@@ -413,9 +413,9 @@ scmd->allowed.
 	    layer of failure of the scmds.
 
 
-[2-2] EH through hostt->eh_strategy_handler()
+[2-2] EH through transportt->eh_strategy_handler()
 
- hostt->eh_strategy_handler() is invoked in the place of
+ transportt->eh_strategy_handler() is invoked in the place of
 scsi_unjam_host() and it is responsible for whole recovery process.
 On completion, the handler should have made lower layers forget about
 all failed scmds and either ready for new commands or offline.  Also,
@@ -424,7 +424,7 @@ SCSI midlayer.  IOW, of the steps described in [2-1-2], all steps
 except for #1 must be implemented by eh_strategy_handler().
 
 
-[2-2-1] Pre hostt->eh_strategy_handler() SCSI midlayer conditions
+[2-2-1] Pre transportt->eh_strategy_handler() SCSI midlayer conditions
 
  The following conditions are true on entry to the handler.
 
@@ -437,7 +437,7 @@ except for #1 must be implemented by eh_strategy_handler().
  - shost->host_failed == shost->host_busy
 
 
-[2-2-2] Post hostt->eh_strategy_handler() SCSI midlayer conditions
+[2-2-2] Post transportt->eh_strategy_handler() SCSI midlayer conditions
 
  The following conditions must be true on exit from the handler.
 

+ 0 - 19
Documentation/scsi/scsi_mid_low_api.txt

@@ -804,7 +804,6 @@ Summary:
    eh_bus_reset_handler - issue SCSI bus reset
    eh_device_reset_handler - issue SCSI device reset
    eh_host_reset_handler - reset host (host bus adapter)
-   eh_strategy_handler - driver supplied alternate to scsi_unjam_host()
    info - supply information about given host
    ioctl - driver can respond to ioctls
    proc_info - supports /proc/scsi/{driver_name}/{host_no}
@@ -969,24 +968,6 @@ Details:
      int eh_host_reset_handler(struct scsi_cmnd * scp)
 
 
-/**
- *      eh_strategy_handler - driver supplied alternate to scsi_unjam_host()
- *      @shp: host on which error has occurred
- *
- *      Returns TRUE if host unjammed, else FALSE.
- *
- *      Locks: none
- *
- *      Calling context: kernel thread
- *
- *      Notes: Invoked from scsi_eh thread. LLD supplied alternate to 
- *      scsi_unjam_host() found in scsi_error.c
- *
- *      Optionally defined in: LLD
- **/
-     int eh_strategy_handler(struct Scsi_Host * shp)
-
-
 /**
  *      info - supply information about given host: driver name plus data
  *             to distinguish given host

+ 69 - 0
Documentation/sound/alsa/ALSA-Configuration.txt

@@ -120,6 +120,34 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
     enable  	- enable card
 		- Default: enabled, for PCI and ISA PnP cards
 
+  Module snd-adlib
+  ----------------
+
+    Module for AdLib FM cards.
+
+    port	- port # for OPL chip
+
+    This module supports multiple cards. It does not support autoprobe, so
+    the port must be specified. For actual AdLib FM cards it will be 0x388.
+    Note that this card does not have PCM support and no mixer; only FM
+    synthesis.
+
+    Make sure you have "sbiload" from the alsa-tools package available and,
+    after loading the module, find out the assigned ALSA sequencer port
+    number through "sbiload -l". Example output:
+
+      Port     Client name                       Port name
+      64:0     OPL2 FM synth                     OPL2 FM Port
+
+    Load the std.sb and drums.sb patches also supplied by sbiload:
+
+      sbiload -p 64:0 std.sb drums.sb
+
+    If you use this driver to drive an OPL3, you can use std.o3 and drums.o3
+    instead. To have the card produce sound, use aplaymidi from alsa-utils:
+
+      aplaymidi -p 64:0 foo.mid
+
   Module snd-ad1816a
   ------------------
 
@@ -190,6 +218,15 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
 
     The power-management is supported.
 
+  Module snd-als300
+  -----------------
+
+    Module for  Avance Logic ALS300 and ALS300+
+
+    This module supports multiple cards.
+
+    The power-management is supported.
+
   Module snd-als4000
   ------------------
 
@@ -701,6 +738,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
 	  uniwill	3-jack
 	  F1734		2-jack
 	  lg		LG laptop (m1 express dual)
+	  lg-lw		LG LW20 laptop
 	  test		for testing/debugging purpose, almost all controls can be
 			adjusted.  Appearing only when compiled with
 			$CONFIG_SND_DEBUG=y
@@ -1013,6 +1051,23 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
 
     The power-management is supported.
 
+  Module snd-miro
+  ---------------
+
+    Module for Miro soundcards: miroSOUND PCM 1 pro, 
+				miroSOUND PCM 12,
+				miroSOUND PCM 20 Radio.
+
+    port	- Port # (0x530,0x604,0xe80,0xf40)
+    irq		- IRQ # (5,7,9,10,11)
+    dma1	- 1st dma # (0,1,3)
+    dma2	- 2nd dma # (0,1)
+    mpu_port	- MPU-401 port # (0x300,0x310,0x320,0x330)
+    mpu_irq	- MPU-401 irq # (5,7,9,10)
+    fm_port	- FM Port # (0x388)
+    wss		- enable WSS mode
+    ide		- enable onboard ide support
+
   Module snd-mixart
   -----------------
 
@@ -1202,6 +1257,20 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
 
     The power-management is supported.
 
+  Module snd-riptide
+  ------------------
+
+    Module for Conexant Riptide chip
+
+      joystick_port	- Joystick port # (default: 0x200)
+      mpu_port		- MPU401 port # (default: 0x330)
+      opl3_port		- OPL3 port # (default: 0x388)
+
+    This module supports multiple cards.
+    The driver requires the firmware loader support on kernel.
+    You need to install the firmware file "riptide.hex" to the standard
+    firmware path (e.g. /lib/firmware).
+
   Module snd-rme32
   ----------------
 

+ 8 - 8
Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl

@@ -1123,8 +1123,8 @@
           if ((err = pci_enable_device(pci)) < 0)
                   return err;
           /* check PCI availability (28bit DMA) */
-          if (pci_set_dma_mask(pci, 0x0fffffff) < 0 ||
-              pci_set_consistent_dma_mask(pci, 0x0fffffff) < 0) {
+          if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 ||
+              pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) {
                   printk(KERN_ERR "error to set 28bit mask DMA\n");
                   pci_disable_device(pci);
                   return -ENXIO;
@@ -1216,7 +1216,7 @@
         The allocation of PCI resources is done in the
       <function>probe()</function> function, and usually an extra
       <function>xxx_create()</function> function is written for this
-      purpose. 
+      purpose.
       </para>
 
       <para>
@@ -1225,7 +1225,7 @@
       allocating resources. Also, you need to set the proper PCI DMA
       mask to limit the accessed i/o range. In some cases, you might
       need to call <function>pci_set_master()</function> function,
-      too. 
+      too.
       </para>
 
       <para>
@@ -1236,8 +1236,8 @@
 <![CDATA[
   if ((err = pci_enable_device(pci)) < 0)
           return err;
-  if (pci_set_dma_mask(pci, 0x0fffffff) < 0 ||
-      pci_set_consistent_dma_mask(pci, 0x0fffffff) < 0) {
+  if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 ||
+      pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) {
           printk(KERN_ERR "error to set 28bit mask DMA\n");
           pci_disable_device(pci);
           return -ENXIO;
@@ -1256,13 +1256,13 @@
       functions. Unlike ALSA ver.0.5.x., there are no helpers for
       that. And these resources must be released in the destructor
       function (see below). Also, on ALSA 0.9.x, you don't need to
-      allocate (pseudo-)DMA for PCI like ALSA 0.5.x. 
+      allocate (pseudo-)DMA for PCI like ALSA 0.5.x.
       </para>
 
       <para>
         Now assume that this PCI device has an I/O port with 8 bytes
         and an interrupt. Then struct <structname>mychip</structname> will have the
-        following fields: 
+        following fields:
 
         <informalexample>
           <programlisting>

+ 3 - 2
Documentation/video4linux/CARDLIST.saa7134

@@ -52,7 +52,7 @@
  51 -> ProVideo PV952                           [1540:9524]
  52 -> AverMedia AverTV/305                     [1461:2108]
  53 -> ASUS TV-FM 7135                          [1043:4845]
- 54 -> LifeView FlyTV Platinum FM               [5168:0214,1489:0214]
+ 54 -> LifeView FlyTV Platinum FM / Gold        [5168:0214,1489:0214,5168:0304]
  55 -> LifeView FlyDVB-T DUO                    [5168:0306]
  56 -> Avermedia AVerTV 307                     [1461:a70a]
  57 -> Avermedia AVerTV GO 007 FM               [1461:f31f]
@@ -84,7 +84,7 @@
  83 -> Terratec Cinergy 250 PCI TV              [153b:1160]
  84 -> LifeView FlyDVB Trio                     [5168:0319]
  85 -> AverTV DVB-T 777                         [1461:2c05]
- 86 -> LifeView FlyDVB-T                        [5168:0301]
+ 86 -> LifeView FlyDVB-T / Genius VideoWonder DVB-T [5168:0301,1489:0301]
  87 -> ADS Instant TV Duo Cardbus PTV331        [0331:1421]
  88 -> Tevion/KWorld DVB-T 220RF                [17de:7201]
  89 -> ELSA EX-VISION 700TV                     [1048:226c]
@@ -92,3 +92,4 @@
  91 -> AVerMedia A169 B                         [1461:7360]
  92 -> AVerMedia A169 B1                        [1461:6360]
  93 -> Medion 7134 Bridge #2                    [16be:0005]
+ 94 -> LifeView FlyDVB-T Hybrid Cardbus         [5168:3306,5168:3502]

+ 0 - 0
Documentation/usb/et61x251.txt → Documentation/video4linux/et61x251.txt


+ 1 - 1
Documentation/usb/ibmcam.txt → Documentation/video4linux/ibmcam.txt

@@ -122,7 +122,7 @@ WHAT YOU NEED:
 - A Linux box with USB support (2.3/2.4; 2.2 w/backport may work)
 
 - A Video4Linux compatible frame grabber program such as xawtv.
-  
+
 HOW TO COMPILE THE DRIVER:
 
 You need to compile the driver only if you are a developer

+ 5 - 6
Documentation/usb/ov511.txt → Documentation/video4linux/ov511.txt

@@ -9,7 +9,7 @@ INTRODUCTION:
 
 This is a driver for the OV511, a USB-only chip used in many "webcam" devices.
 Any camera using the OV511/OV511+ and the OV6620/OV7610/20/20AE should work.
-Video capture devices that use the Philips SAA7111A decoder also work. It 
+Video capture devices that use the Philips SAA7111A decoder also work. It
 supports streaming and capture of color or monochrome video via the Video4Linux
 API. Most V4L apps are compatible with it. Most resolutions with a width and
 height that are a multiple of 8 are supported.
@@ -52,15 +52,15 @@ from it:
 
 	chmod 666 /dev/video
 	chmod 666 /dev/video0 (if necessary)
-	
+
 Now you are ready to run a video app! Both vidcat and xawtv work well for me
 at 640x480.
-	
+
 [Using vidcat:]
 
 	vidcat -s 640x480 -p c > test.jpg
 	xview test.jpg
-	
+
 [Using xawtv:]
 
 From the main xawtv directory:
@@ -70,7 +70,7 @@ From the main xawtv directory:
 	make
 	make install
 
-Now you should be able to run xawtv. Right click for the options dialog. 
+Now you should be able to run xawtv. Right click for the options dialog.
 
 MODULE PARAMETERS:
 
@@ -286,4 +286,3 @@ Randy Dunlap, and others. Big thanks to them for their pioneering work on that
 and the USB stack. Thanks to Bret Wallach for getting camera reg IO, ISOC, and
 image capture working. Thanks to Orion Sky Lawlor, Kevin Moore, and Claudio
 Matsuoka for their work as well.
-

+ 0 - 0
Documentation/usb/se401.txt → Documentation/video4linux/se401.txt


+ 8 - 8
Documentation/usb/sn9c102.txt → Documentation/video4linux/sn9c102.txt

@@ -174,7 +174,7 @@ Module parameters are listed below:
 -------------------------------------------------------------------------------
 Name:           video_nr
 Type:           short array (min = 0, max = 64)
-Syntax:         <-1|n[,...]> 
+Syntax:         <-1|n[,...]>
 Description:    Specify V4L2 minor mode number:
                 -1 = use next available
                  n = use minor number n
@@ -187,7 +187,7 @@ Default:        -1
 -------------------------------------------------------------------------------
 Name:           force_munmap
 Type:           bool array (min = 0, max = 64)
-Syntax:         <0|1[,...]> 
+Syntax:         <0|1[,...]>
 Description:    Force the application to unmap previously mapped buffer memory
                 before calling any VIDIOC_S_CROP or VIDIOC_S_FMT ioctl's. Not
                 all the applications support this feature. This parameter is
@@ -206,7 +206,7 @@ Default:        2
 -------------------------------------------------------------------------------
 Name:           debug
 Type:           ushort
-Syntax:         <n> 
+Syntax:         <n>
 Description:    Debugging information level, from 0 to 3:
                 0 = none (use carefully)
                 1 = critical errors
@@ -267,7 +267,7 @@ The sysfs interface also provides the "frame_header" entry, which exports the
 frame header of the most recent requested and captured video frame. The header
 is always 18-bytes long and is appended to every video frame by the SN9C10x
 controllers. As an example, this additional information can be used by the user
-application for implementing auto-exposure features via software. 
+application for implementing auto-exposure features via software.
 
 The following table describes the frame header:
 
@@ -441,7 +441,7 @@ blue pixels in one video frame. Each pixel is associated with a 8-bit long
 value and is disposed in memory according to the pattern shown below:
 
 B[0]   G[1]    B[2]    G[3]    ...   B[m-2]         G[m-1]
-G[m]   R[m+1]  G[m+2]  R[m+2]  ...   G[2m-2]        R[2m-1] 
+G[m]   R[m+1]  G[m+2]  R[m+2]  ...   G[2m-2]        R[2m-1]
 ...
 ...                                  B[(n-1)(m-2)]  G[(n-1)(m-1)]
 ...                                  G[n(m-2)]      R[n(m-1)]
@@ -472,12 +472,12 @@ The pixel reference value is calculated as follows:
 The algorithm purely describes the conversion from compressed Bayer code used
 in the SN9C10x chips to uncompressed Bayer. Additional steps are required to
 convert this to a color image (i.e. a color interpolation algorithm).
- 
+
 The following Huffman codes have been found:
-0: +0 (relative to reference pixel value) 
+0: +0 (relative to reference pixel value)
 100: +4
 101: -4?
-1110xxxx: set absolute value to xxxx.0000 
+1110xxxx: set absolute value to xxxx.0000
 1101: +11
 1111: -11
 11001: +20

+ 12 - 14
Documentation/usb/stv680.txt → Documentation/video4linux/stv680.txt

@@ -5,15 +5,15 @@ Copyright, 2001, Kevin Sisson
 
 INTRODUCTION:
 
-STMicroelectronics produces the STV0680B chip, which comes in two 
-types, -001 and -003. The -003 version allows the recording and downloading 
-of sound clips from the camera, and allows a flash attachment. Otherwise, 
-it uses the same commands as the -001 version. Both versions support a 
-variety of SDRAM sizes and sensors, allowing for a maximum of 26 VGA or 20 
-CIF pictures. The STV0680 supports either a serial or a usb interface, and 
+STMicroelectronics produces the STV0680B chip, which comes in two
+types, -001 and -003. The -003 version allows the recording and downloading
+of sound clips from the camera, and allows a flash attachment. Otherwise,
+it uses the same commands as the -001 version. Both versions support a
+variety of SDRAM sizes and sensors, allowing for a maximum of 26 VGA or 20
+CIF pictures. The STV0680 supports either a serial or a usb interface, and
 video is possible through the usb interface.
 
-The following cameras are known to work with this driver, although any 
+The following cameras are known to work with this driver, although any
 camera with Vendor/Product codes of 0553/0202 should work:
 
 Aiptek Pencam (various models)
@@ -34,15 +34,15 @@ http://www.linux-usb.org
 MODULE OPTIONS:
 
 When the driver is compiled as a module, you can set a "swapRGB=1"
-option, if necessary, for those applications that require it 
-(such as xawtv). However, the driver should detect and set this 
+option, if necessary, for those applications that require it
+(such as xawtv). However, the driver should detect and set this
 automatically, so this option should not normally be used.
 
 
 KNOWN PROBLEMS:
 
-The driver seems to work better with the usb-ohci than the usb-uhci host 
-controller driver. 
+The driver seems to work better with the usb-ohci than the usb-uhci host
+controller driver.
 
 HELP:
 
@@ -50,6 +50,4 @@ The latest info on this driver can be found at:
 http://personal.clt.bellsouth.net/~kjsisson or at
 http://stv0680-usb.sourceforge.net
 
-Any questions to me can be send to:  kjsisson@bellsouth.net
-
-
+Any questions to me can be send to:  kjsisson@bellsouth.net

+ 18 - 18
Documentation/usb/w9968cf.txt → Documentation/video4linux/w9968cf.txt

@@ -1,5 +1,5 @@
 
-                   W996[87]CF JPEG USB Dual Mode Camera Chip 
+                   W996[87]CF JPEG USB Dual Mode Camera Chip
                      Driver for Linux 2.6 (basic version)
                    =========================================
 
@@ -115,7 +115,7 @@ additional testing and full support, would be much appreciated.
 ======================
 For it to work properly, the driver needs kernel support for Video4Linux, USB
 and I2C, and the "ovcamchip" module for the image sensor. Make sure you are not
-actually using any external "ovcamchip" module, given that the W996[87]CF 
+actually using any external "ovcamchip" module, given that the W996[87]CF
 driver depends on the version of the module present in the official kernels.
 
 The following options of the kernel configuration file must be enabled and
@@ -197,16 +197,16 @@ Note:            The kernel must be compiled with the CONFIG_KMOD option
                  enabled for the 'ovcamchip' module to be loaded and for
                  this parameter to be present.
 -------------------------------------------------------------------------------
-Name:           simcams 
-Type:           int 
-Syntax:         <n> 
+Name:           simcams
+Type:           int
+Syntax:         <n>
 Description:    Number of cameras allowed to stream simultaneously.
                 n may vary from 0 to 32.
 Default:        32
 -------------------------------------------------------------------------------
 Name:           video_nr
 Type:           int array (min = 0, max = 32)
-Syntax:         <-1|n[,...]> 
+Syntax:         <-1|n[,...]>
 Description:    Specify V4L minor mode number.
                 -1 = use next available
                  n = use minor number n
@@ -219,7 +219,7 @@ Default:        -1
 -------------------------------------------------------------------------------
 Name:           packet_size
 Type:           int array (min = 0, max = 32)
-Syntax:         <n[,...]> 
+Syntax:         <n[,...]>
 Description:    Specify the maximum data payload size in bytes for alternate
                 settings, for each device. n is scaled between 63 and 1023.
 Default:        1023
@@ -234,7 +234,7 @@ Default:        2
 -------------------------------------------------------------------------------
 Name:           double_buffer
 Type:           bool array (min = 0, max = 32)
-Syntax:         <0|1[,...]> 
+Syntax:         <0|1[,...]>
 Description:    Hardware double buffering: 0 disabled, 1 enabled.
                 It should be enabled if you want smooth video output: if you
                 obtain out of sync. video, disable it, or try to
@@ -243,13 +243,13 @@ Default:        1 for every device.
 -------------------------------------------------------------------------------
 Name:           clamping
 Type:           bool array (min = 0, max = 32)
-Syntax:         <0|1[,...]> 
+Syntax:         <0|1[,...]>
 Description:    Video data clamping: 0 disabled, 1 enabled.
 Default:        0 for every device.
 -------------------------------------------------------------------------------
 Name:           filter_type
 Type:           int array (min = 0, max = 32)
-Syntax:         <0|1|2[,...]> 
+Syntax:         <0|1|2[,...]>
 Description:    Video filter type.
                 0 none, 1 (1-2-1) 3-tap filter, 2 (2-3-6-3-2) 5-tap filter.
                 The filter is used to reduce noise and aliasing artifacts
@@ -258,13 +258,13 @@ Default:        0 for every device.
 -------------------------------------------------------------------------------
 Name:           largeview
 Type:           bool array (min = 0, max = 32)
-Syntax:         <0|1[,...]> 
+Syntax:         <0|1[,...]>
 Description:    Large view: 0 disabled, 1 enabled.
 Default:        1 for every device.
 -------------------------------------------------------------------------------
 Name:           upscaling
 Type:           bool array (min = 0, max = 32)
-Syntax:         <0|1[,...]> 
+Syntax:         <0|1[,...]>
 Description:    Software scaling (for non-compressed video only):
                 0 disabled, 1 enabled.
                 Disable it if you have a slow CPU or you don't have enough
@@ -341,8 +341,8 @@ Default:        50 for every device.
 -------------------------------------------------------------------------------
 Name:           bandingfilter
 Type:           bool array (min = 0, max = 32)
-Syntax:         <0|1[,...]> 
-Description:    Banding filter to reduce effects of fluorescent 
+Syntax:         <0|1[,...]>
+Description:    Banding filter to reduce effects of fluorescent
                 lighting:
                 0 disabled, 1 enabled.
                 This filter tries to reduce the pattern of horizontal
@@ -374,7 +374,7 @@ Default:        0 for every device.
 -------------------------------------------------------------------------------
 Name:           monochrome
 Type:           bool array (min = 0, max = 32)
-Syntax:         <0|1[,...]> 
+Syntax:         <0|1[,...]>
 Description:    The image sensor is monochrome:
                 0 = no, 1 = yes
 Default:        0 for every device.
@@ -400,19 +400,19 @@ Default:        32768 for every device.
 -------------------------------------------------------------------------------
 Name:           contrast
 Type:           long array (min = 0, max = 32)
-Syntax:         <n[,...]> 
+Syntax:         <n[,...]>
 Description:    Set picture contrast (0-65535).
 Default:        50000 for every device.
 -------------------------------------------------------------------------------
 Name:           whiteness
 Type:           long array (min = 0, max = 32)
-Syntax:         <n[,...]> 
+Syntax:         <n[,...]>
 Description:    Set picture whiteness (0-65535).
 Default:        32768 for every device.
 -------------------------------------------------------------------------------
 Name:           debug
 Type:           int
-Syntax:         <n> 
+Syntax:         <n>
 Description:    Debugging information level, from 0 to 6:
                 0 = none (use carefully)
                 1 = critical errors

+ 0 - 0
Documentation/usb/zc0301.txt → Documentation/video4linux/zc0301.txt


+ 10 - 10
Documentation/vm/hugetlbpage.txt

@@ -27,7 +27,7 @@ number of free hugetlb pages at any time.  It also displays information about
 the configured hugepage size - this is needed for generating the proper
 alignment and size of the arguments to the above system calls.
 
-The output of "cat /proc/meminfo" will have output like:
+The output of "cat /proc/meminfo" will have lines like:
 
 .....
 HugePages_Total: xxx
@@ -42,11 +42,11 @@ pages in the kernel.  Super user can dynamically request more (or free some
 pre-configured) hugepages.
 The allocation (or deallocation) of hugetlb pages is possible only if there are
 enough physically contiguous free pages in system (freeing of hugepages is
-possible only if there are enough hugetlb pages free that can be transfered
+possible only if there are enough hugetlb pages free that can be transferred
 back to regular memory pool).
 
-Pages that are used as hugetlb pages are reserved inside the kernel and can
-not be used for other purposes.
+Pages that are used as hugetlb pages are reserved inside the kernel and cannot
+be used for other purposes.
 
 Once the kernel with Hugetlb page support is built and running, a user can
 use either the mmap system call or shared memory system calls to start using
@@ -60,7 +60,7 @@ Use the following command to dynamically allocate/deallocate hugepages:
 This command will try to configure 20 hugepages in the system.  The success
 or failure of allocation depends on the amount of physically contiguous
 memory that is preset in system at this time.  System administrators may want
-to put this command in one of the local rc init file.  This will enable the
+to put this command in one of the local rc init files.  This will enable the
 kernel to request huge pages early in the boot process (when the possibility
 of getting physical contiguous pages is still very high).
 
@@ -78,8 +78,8 @@ the uid and gid of the current process are taken.  The mode option sets the
 mode of root of file system to value & 0777.  This value is given in octal.
 By default the value 0755 is picked. The size option sets the maximum value of
 memory (huge pages) allowed for that filesystem (/mnt/huge). The size is
-rounded down to HPAGE_SIZE.  The option nr_inode sets the maximum number of
-inodes that /mnt/huge can use.  If the size or nr_inode options are not
+rounded down to HPAGE_SIZE.  The option nr_inodes sets the maximum number of
+inodes that /mnt/huge can use.  If the size or nr_inodes options are not
 provided on command line then no limits are set.  For size and nr_inodes
 options, you can use [G|g]/[M|m]/[K|k] to represent giga/mega/kilo. For
 example, size=2K has the same meaning as size=2048. An example is given at
@@ -88,7 +88,7 @@ the end of this document.
 read and write system calls are not supported on files that reside on hugetlb
 file systems.
 
-A regular chown, chgrp and chmod commands (with right permissions) could be
+Regular chown, chgrp, and chmod commands (with right permissions) could be
 used to change the file attributes on hugetlbfs.
 
 Also, it is important to note that no such mount command is required if the
@@ -96,8 +96,8 @@ applications are going to use only shmat/shmget system calls.  Users who
 wish to use hugetlb page via shared memory segment should be a member of
 a supplementary group and system admin needs to configure that gid into
 /proc/sys/vm/hugetlb_shm_group.  It is possible for same or different
-applications to use any combination of mmaps and shm* calls.  Though the
-mount of filesystem will be required for using mmaps.
+applications to use any combination of mmaps and shm* calls, though the
+mount of filesystem will be required for using mmap calls.
 
 *******************************************************************
 

+ 5 - 0
Documentation/x86_64/boot-options.txt

@@ -151,6 +151,11 @@ NUMA
 
   numa=fake=X   Fake X nodes and ignore NUMA setup of the actual machine.
 
+  numa=hotadd=percent
+		Only allow hotadd memory to preallocate page structures upto
+		percent of already available memory.
+		numa=hotadd=0 will disable hotadd memory.
+
 ACPI
 
   acpi=off	Don't enable ACPI

+ 1 - 1
Kbuild

@@ -18,7 +18,7 @@ define sed-y
 	"/^->/{s:^->\([^ ]*\) [\$$#]*\([^ ]*\) \(.*\):#define \1 \2 /* \3 */:; s:->::; p;}"
 endef
 # Override default regexp for specific architectures
-sed-$(CONFIG_MIPS) := "/^@@@/s///p"
+sed-$(CONFIG_MIPS) := "/^@@@/{s/^@@@//; s/ \#.*\$$//; p;}"
 
 quiet_cmd_offsets = GEN     $@
 define cmd_offsets

+ 6 - 2
MAINTAINERS

@@ -1451,6 +1451,12 @@ P:	Juanjo Ciarlante
 M:	jjciarla@raiz.uncu.edu.ar
 S:	Maintained
 
+IPATH DRIVER:
+P:	Bryan O'Sullivan
+M:	support@pathscale.com
+L:	openib-general@openib.org
+S:	Supported
+
 IPX NETWORK LAYER
 P:	Arnaldo Carvalho de Melo
 M:	acme@conectiva.com.br
@@ -1550,9 +1556,7 @@ S:	Maintained
 
 KEXEC
 P:	Eric Biederman
-P:	Randy Dunlap
 M:	ebiederm@xmission.com
-M:	rdunlap@xenotime.net
 W:	http://www.xmission.com/~ebiederm/files/kexec/
 L:	linux-kernel@vger.kernel.org
 L:	fastboot@osdl.org

+ 30 - 28
Makefile

@@ -1,7 +1,7 @@
 VERSION = 2
 PATCHLEVEL = 6
-SUBLEVEL = 16
-EXTRAVERSION =
+SUBLEVEL = 17
+EXTRAVERSION =-rc1
 NAME=Sliding Snow Leopard
 
 # *DOCUMENTATION*
@@ -1112,7 +1112,6 @@ modules_install: _emodinst_ _emodinst_post
 install-dir := $(if $(INSTALL_MOD_DIR),$(INSTALL_MOD_DIR),extra)
 PHONY += _emodinst_
 _emodinst_:
-	$(Q)rm -rf $(MODLIB)/$(install-dir)
 	$(Q)mkdir -p $(MODLIB)/$(install-dir)
 	$(Q)$(MAKE) -rR -f $(srctree)/scripts/Makefile.modinst
 
@@ -1275,40 +1274,43 @@ kernelversion:
 
 # Single targets
 # ---------------------------------------------------------------------------
-# The directory part is taken from first prerequisite, so this
-# works even with external modules
+# Single targets are compatible with:
+# - build whith mixed source and output
+# - build with separate output dir 'make O=...'
+# - external modules
+#
+#  target-dir => where to store outputfile
+#  build-dir  => directory in kernel source tree to use
+
+ifeq ($(KBUILD_EXTMOD),)
+        build-dir  = $(patsubst %/,%,$(dir $@))
+        target-dir = $(dir $@)
+else
+        zap-slash=$(filter-out .,$(patsubst %/,%,$(dir $@)))
+        build-dir  = $(KBUILD_EXTMOD)$(if $(zap-slash),/$(zap-slash))
+        target-dir = $(if $(KBUILD_EXTMOD),$(dir $<),$(dir $@))
+endif
+
 %.s: %.c prepare scripts FORCE
-	$(Q)$(MAKE) $(build)=$(dir $<) $(dir $<)$(notdir $@)
+	$(Q)$(MAKE) $(build)=$(build-dir) $(target-dir)$(notdir $@)
 %.i: %.c prepare scripts FORCE
-	$(Q)$(MAKE) $(build)=$(dir $<) $(dir $<)$(notdir $@)
+	$(Q)$(MAKE) $(build)=$(build-dir) $(target-dir)$(notdir $@)
 %.o: %.c prepare scripts FORCE
-	$(Q)$(MAKE) $(build)=$(dir $<) $(dir $<)$(notdir $@)
+	$(Q)$(MAKE) $(build)=$(build-dir) $(target-dir)$(notdir $@)
 %.lst: %.c prepare scripts FORCE
-	$(Q)$(MAKE) $(build)=$(dir $<) $(dir $<)$(notdir $@)
+	$(Q)$(MAKE) $(build)=$(build-dir) $(target-dir)$(notdir $@)
 %.s: %.S prepare scripts FORCE
-	$(Q)$(MAKE) $(build)=$(dir $<) $(dir $<)$(notdir $@)
+	$(Q)$(MAKE) $(build)=$(build-dir) $(target-dir)$(notdir $@)
 %.o: %.S prepare scripts FORCE
-	$(Q)$(MAKE) $(build)=$(dir $<) $(dir $<)$(notdir $@)
-
-# For external modules we shall include any directory of the target,
-# but usual case there is no directory part.
-# make M=`pwd` module.o     => $(dir $@)=./
-# make M=`pwd` foo/module.o => $(dir $@)=foo/
-# make M=`pwd` /            => $(dir $@)=/
- 
-ifeq ($(KBUILD_EXTMOD),)
-        target-dir = $(@D)
-else
-        zap-slash=$(filter-out .,$(patsubst %/,%,$(dir $@)))
-        target-dir = $(KBUILD_EXTMOD)$(if $(zap-slash),/$(zap-slash))
-endif
+	$(Q)$(MAKE) $(build)=$(build-dir) $(target-dir)$(notdir $@)
 
-/ %/:      scripts prepare FORCE
+# Modules
+/ %/: prepare scripts FORCE
 	$(Q)$(MAKE) KBUILD_MODULES=$(if $(CONFIG_MODULES),1) \
-	$(build)=$(target-dir)
-%.ko: scripts FORCE
+	$(build)=$(build-dir)
+%.ko: prepare scripts FORCE
 	$(Q)$(MAKE) KBUILD_MODULES=$(if $(CONFIG_MODULES),1)   \
-	$(build)=$(target-dir) $(@:.ko=.o)
+	$(build)=$(build-dir) $(@:.ko=.o)
 	$(Q)$(MAKE) -rR -f $(srctree)/scripts/Makefile.modpost
 
 # FIXME Should go into a make.lib or something 

+ 5 - 0
arch/alpha/Kconfig

@@ -549,6 +549,11 @@ config NUMA
 	  Access).  This option is for configuring high-end multiprocessor
 	  server machines.  If in doubt, say N.
 
+config NODES_SHIFT
+	int
+	default "7"
+	depends on NEED_MULTIPLE_NODES
+
 # LARGE_VMALLOC is racy, if you *really* need it then fix it first
 config ALPHA_LARGE_VMALLOC
 	bool

+ 0 - 3
arch/alpha/kernel/alpha_ksyms.c

@@ -76,7 +76,6 @@ EXPORT_SYMBOL(strncpy);
 EXPORT_SYMBOL(strnlen);
 EXPORT_SYMBOL(strncat);
 EXPORT_SYMBOL(strstr);
-EXPORT_SYMBOL(strpbrk);
 EXPORT_SYMBOL(strchr);
 EXPORT_SYMBOL(strrchr);
 EXPORT_SYMBOL(memcmp);
@@ -216,8 +215,6 @@ EXPORT_SYMBOL(memcpy);
 EXPORT_SYMBOL(memset);
 EXPORT_SYMBOL(memchr);
 
-EXPORT_SYMBOL(get_wchan);
-
 #ifdef CONFIG_ALPHA_IRONGATE
 EXPORT_SYMBOL(irongate_ioremap);
 EXPORT_SYMBOL(irongate_iounmap);

+ 1 - 1
arch/alpha/kernel/core_marvel.c

@@ -435,7 +435,7 @@ marvel_specify_io7(char *str)
 		str = pchar;
 	} while(*str);
 
-	return 0;
+	return 1;
 }
 __setup("io7=", marvel_specify_io7);
 

+ 35 - 0
arch/alpha/kernel/setup.c

@@ -24,10 +24,12 @@
 #include <linux/config.h>	/* CONFIG_ALPHA_LCA etc */
 #include <linux/mc146818rtc.h>
 #include <linux/console.h>
+#include <linux/cpu.h>
 #include <linux/errno.h>
 #include <linux/init.h>
 #include <linux/string.h>
 #include <linux/ioport.h>
+#include <linux/platform_device.h>
 #include <linux/bootmem.h>
 #include <linux/pci.h>
 #include <linux/seq_file.h>
@@ -470,6 +472,22 @@ page_is_ram(unsigned long pfn)
 	return 0;
 }
 
+static int __init
+register_cpus(void)
+{
+	int i;
+
+	for_each_possible_cpu(i) {
+		struct cpu *p = kzalloc(sizeof(*p), GFP_KERNEL);
+		if (!p)
+			return -ENOMEM;
+		register_cpu(p, i, NULL);
+	}
+	return 0;
+}
+
+arch_initcall(register_cpus);
+
 void __init
 setup_arch(char **cmdline_p)
 {
@@ -1478,3 +1496,20 @@ alpha_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
 #endif
         return NOTIFY_DONE;
 }
+
+static __init int add_pcspkr(void)
+{
+	struct platform_device *pd;
+	int ret;
+
+	pd = platform_device_alloc("pcspkr", -1);
+	if (!pd)
+		return -ENOMEM;
+
+	ret = platform_device_add(pd);
+	if (ret)
+		platform_device_put(pd);
+
+	return ret;
+}
+device_initcall(add_pcspkr);

+ 3 - 5
arch/alpha/kernel/smp.c

@@ -439,7 +439,7 @@ setup_smp(void)
 			if ((cpu->flags & 0x1cc) == 0x1cc) {
 				smp_num_probed++;
 				/* Assume here that "whami" == index */
-				cpu_set(i, cpu_possible_map);
+				cpu_set(i, cpu_present_mask);
 				cpu->pal_revision = boot_cpu_palrev;
 			}
 
@@ -450,9 +450,8 @@ setup_smp(void)
 		}
 	} else {
 		smp_num_probed = 1;
-		cpu_set(boot_cpuid, cpu_possible_map);
+		cpu_set(boot_cpuid, cpu_present_mask);
 	}
-	cpu_present_mask = cpumask_of_cpu(boot_cpuid);
 
 	printk(KERN_INFO "SMP: %d CPUs probed -- cpu_present_mask = %lx\n",
 	       smp_num_probed, cpu_possible_map.bits[0]);
@@ -488,9 +487,8 @@ void __devinit
 smp_prepare_boot_cpu(void)
 {
 	/*
-	 * Mark the boot cpu (current cpu) as both present and online
+	 * Mark the boot cpu (current cpu) as online
 	 */ 
-	cpu_set(smp_processor_id(), cpu_present_mask);
 	cpu_set(smp_processor_id(), cpu_online_map);
 }
 

+ 16 - 0
arch/arm/Kconfig

@@ -77,6 +77,14 @@ config FIQ
 config ARCH_MTD_XIP
 	bool
 
+config VECTORS_BASE
+	hex
+	default 0xffff0000 if MMU
+	default DRAM_BASE if REMAP_VECTORS_TO_RAM
+	default 0x00000000
+	help
+	  The base address of exception vectors.
+
 source "init/Kconfig"
 
 menu "System Type"
@@ -504,6 +512,12 @@ config ARCH_DISCONTIGMEM_ENABLE
 	  or have huge holes in the physical address space for other reasons.
 	  See <file:Documentation/vm/numa> for more.
 
+config NODES_SHIFT
+	int
+	default "4" if ARCH_LH7A40X
+	default "2"
+	depends on NEED_MULTIPLE_NODES
+
 source "mm/Kconfig"
 
 config LEDS
@@ -839,6 +853,8 @@ source "drivers/misc/Kconfig"
 
 source "drivers/mfd/Kconfig"
 
+source "drivers/leds/Kconfig"
+
 source "drivers/media/Kconfig"
 
 source "drivers/video/Kconfig"

+ 44 - 0
arch/arm/Kconfig-nommu

@@ -0,0 +1,44 @@
+#
+# Kconfig for uClinux(non-paged MM) depend configurations
+# Hyok S. Choi <hyok.choi@samsung.com>
+# 
+
+config SET_MEM_PARAM
+	bool "Set flash/sdram size and base addr"
+	help
+	 Say Y to manually set the base addresses and sizes.
+	 otherwise, the default values are assigned.
+
+config DRAM_BASE
+	hex '(S)DRAM Base Address' if SET_MEM_PARAM
+	default 0x00800000
+
+config DRAM_SIZE
+	hex '(S)DRAM SIZE' if SET_MEM_PARAM
+	default 0x00800000
+
+config FLASH_MEM_BASE
+	hex 'FLASH Base Address' if SET_MEM_PARAM
+	default 0x00400000
+
+config FLASH_SIZE
+	hex 'FLASH Size' if SET_MEM_PARAM
+	default 0x00400000
+
+config REMAP_VECTORS_TO_RAM
+	bool 'Install vectors to the begining of RAM' if DRAM_BASE
+	depends on DRAM_BASE
+	help
+	  The kernel needs to change the hardware exception vectors.
+	  In nommu mode, the hardware exception vectors are normally
+	  placed at address 0x00000000. However, this region may be
+	  occupied by read-only memory depending on H/W design.
+
+	  If the region contains read-write memory, say 'n' here.
+
+	  If your CPU provides a remap facility which allows the exception
+	  vectors to be mapped to writable memory, say 'n' here.
+
+	  Otherwise, say 'y' here.  In this case, the kernel will require
+	  external support to redirect the hardware exception vectors to
+	  the writable versions located at DRAM_BASE.

+ 7 - 2
arch/arm/Makefile

@@ -20,6 +20,11 @@ GZFLAGS		:=-9
 # Select a platform tht is kept up-to-date
 KBUILD_DEFCONFIG := versatile_defconfig
 
+# defines filename extension depending memory manement type.
+ifeq ($(CONFIG_MMU),)
+MMUEXT		:= -nommu
+endif
+
 ifeq ($(CONFIG_FRAME_POINTER),y)
 CFLAGS		+=-fno-omit-frame-pointer -mapcs -mno-sched-prolog
 endif
@@ -73,7 +78,7 @@ AFLAGS		+=$(CFLAGS_ABI) $(arch-y) $(tune-y) -msoft-float
 CHECKFLAGS	+= -D__arm__
 
 #Default value
-head-y		:= arch/arm/kernel/head.o arch/arm/kernel/init_task.o
+head-y		:= arch/arm/kernel/head$(MMUEXT).o arch/arm/kernel/init_task.o
 textofs-y	:= 0x00008000
 
  machine-$(CONFIG_ARCH_RPC)	   := rpc
@@ -133,7 +138,7 @@ else
 MACHINE  :=
 endif
   
-export	TEXT_OFFSET GZFLAGS
+export	TEXT_OFFSET GZFLAGS MMUEXT
 
 # Do we have FASTFPE?
 FASTFPE		:=arch/arm/fastfpe

+ 106 - 0
arch/arm/boot/compressed/head.S

@@ -2,6 +2,7 @@
  *  linux/arch/arm/boot/compressed/head.S
  *
  *  Copyright (C) 1996-2002 Russell King
+ *  Copyright (C) 2004 Hyok S. Choi (MPU support)
  *
  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License version 2 as
@@ -320,6 +321,62 @@ params:		ldr	r0, =params_phys
 cache_on:	mov	r3, #8			@ cache_on function
 		b	call_cache_fn
 
+/*
+ * Initialize the highest priority protection region, PR7
+ * to cover all 32bit address and cacheable and bufferable.
+ */
+__armv4_mpu_cache_on:
+		mov	r0, #0x3f		@ 4G, the whole
+		mcr	p15, 0, r0, c6, c7, 0	@ PR7 Area Setting
+		mcr 	p15, 0, r0, c6, c7, 1
+
+		mov	r0, #0x80		@ PR7
+		mcr	p15, 0, r0, c2, c0, 0	@ D-cache on
+		mcr	p15, 0, r0, c2, c0, 1	@ I-cache on
+		mcr	p15, 0, r0, c3, c0, 0	@ write-buffer on
+
+		mov	r0, #0xc000
+		mcr	p15, 0, r0, c5, c0, 1	@ I-access permission
+		mcr	p15, 0, r0, c5, c0, 0	@ D-access permission
+
+		mov	r0, #0
+		mcr	p15, 0, r0, c7, c10, 4	@ drain write buffer
+		mcr	p15, 0, r0, c7, c5, 0	@ flush(inval) I-Cache
+		mcr	p15, 0, r0, c7, c6, 0	@ flush(inval) D-Cache
+		mrc	p15, 0, r0, c1, c0, 0	@ read control reg
+						@ ...I .... ..D. WC.M
+		orr	r0, r0, #0x002d		@ .... .... ..1. 11.1
+		orr	r0, r0, #0x1000		@ ...1 .... .... ....
+
+		mcr	p15, 0, r0, c1, c0, 0	@ write control reg
+
+		mov	r0, #0
+		mcr	p15, 0, r0, c7, c5, 0	@ flush(inval) I-Cache
+		mcr	p15, 0, r0, c7, c6, 0	@ flush(inval) D-Cache
+		mov	pc, lr
+
+__armv3_mpu_cache_on:
+		mov	r0, #0x3f		@ 4G, the whole
+		mcr	p15, 0, r0, c6, c7, 0	@ PR7 Area Setting
+
+		mov	r0, #0x80		@ PR7
+		mcr	p15, 0, r0, c2, c0, 0	@ cache on
+		mcr	p15, 0, r0, c3, c0, 0	@ write-buffer on
+
+		mov	r0, #0xc000
+		mcr	p15, 0, r0, c5, c0, 0	@ access permission
+
+		mov	r0, #0
+		mcr	p15, 0, r0, c7, c0, 0	@ invalidate whole cache v3
+		mrc	p15, 0, r0, c1, c0, 0	@ read control reg
+						@ .... .... .... WC.M
+		orr	r0, r0, #0x000d		@ .... .... .... 11.1
+		mov	r0, #0
+		mcr	p15, 0, r0, c1, c0, 0	@ write control reg
+
+		mcr	p15, 0, r0, c7, c0, 0	@ invalidate whole cache v3
+		mov	pc, lr
+
 __setup_mmu:	sub	r3, r4, #16384		@ Page directory size
 		bic	r3, r3, #0xff		@ Align the pointer
 		bic	r3, r3, #0x3f00
@@ -496,6 +553,18 @@ proc_types:
 		b	__armv4_mmu_cache_off
 		mov	pc, lr
 
+		.word	0x41007400		@ ARM74x
+		.word	0xff00ff00
+		b	__armv3_mpu_cache_on
+		b	__armv3_mpu_cache_off
+		b	__armv3_mpu_cache_flush
+		
+		.word	0x41009400		@ ARM94x
+		.word	0xff00ff00
+		b	__armv4_mpu_cache_on
+		b	__armv4_mpu_cache_off
+		b	__armv4_mpu_cache_flush
+
 		.word	0x00007000		@ ARM7 IDs
 		.word	0x0000f000
 		mov	pc, lr
@@ -562,6 +631,24 @@ proc_types:
 cache_off:	mov	r3, #12			@ cache_off function
 		b	call_cache_fn
 
+__armv4_mpu_cache_off:
+		mrc	p15, 0, r0, c1, c0
+		bic	r0, r0, #0x000d
+		mcr	p15, 0, r0, c1, c0	@ turn MPU and cache off
+		mov	r0, #0
+		mcr	p15, 0, r0, c7, c10, 4	@ drain write buffer
+		mcr	p15, 0, r0, c7, c6, 0	@ flush D-Cache
+		mcr	p15, 0, r0, c7, c5, 0	@ flush I-Cache
+		mov	pc, lr
+
+__armv3_mpu_cache_off:
+		mrc	p15, 0, r0, c1, c0
+		bic	r0, r0, #0x000d
+		mcr	p15, 0, r0, c1, c0, 0	@ turn MPU and cache off
+		mov	r0, #0
+		mcr	p15, 0, r0, c7, c0, 0	@ invalidate whole cache v3
+		mov	pc, lr
+
 __armv4_mmu_cache_off:
 		mrc	p15, 0, r0, c1, c0
 		bic	r0, r0, #0x000d
@@ -601,6 +688,24 @@ cache_clean_flush:
 		mov	r3, #16
 		b	call_cache_fn
 
+__armv4_mpu_cache_flush:
+		mov	r2, #1
+		mov	r3, #0
+		mcr	p15, 0, ip, c7, c6, 0	@ invalidate D cache
+		mov	r1, #7 << 5		@ 8 segments
+1:		orr	r3, r1, #63 << 26	@ 64 entries
+2:		mcr	p15, 0, r3, c7, c14, 2	@ clean & invalidate D index
+		subs	r3, r3, #1 << 26
+		bcs	2b			@ entries 63 to 0
+		subs 	r1, r1, #1 << 5
+		bcs	1b			@ segments 7 to 0
+
+		teq	r2, #0
+		mcrne	p15, 0, ip, c7, c5, 0	@ invalidate I cache
+		mcr	p15, 0, ip, c7, c10, 4	@ drain WB
+		mov	pc, lr
+		
+
 __armv6_mmu_cache_flush:
 		mov	r1, #0
 		mcr	p15, 0, r1, c7, c14, 0	@ clean+invalidate D
@@ -638,6 +743,7 @@ no_cache_id:
 		mov	pc, lr
 
 __armv3_mmu_cache_flush:
+__armv3_mpu_cache_flush:
 		mov	r1, #0
 		mcr	p15, 0, r0, c7, c0, 0	@ invalidate whole cache v3
 		mov	pc, lr

+ 1 - 0
arch/arm/boot/compressed/vmlinux.lds.in

@@ -18,6 +18,7 @@ SECTIONS
     _start = .;
     *(.start)
     *(.text)
+    *(.text.*)
     *(.fixup)
     *(.gnu.warning)
     *(.rodata)

+ 8 - 2
arch/arm/common/sharpsl_pm.c

@@ -22,6 +22,7 @@
 #include <linux/delay.h>
 #include <linux/interrupt.h>
 #include <linux/platform_device.h>
+#include <linux/leds.h>
 
 #include <asm/hardware.h>
 #include <asm/mach-types.h>
@@ -75,6 +76,7 @@ static void sharpsl_battery_thread(void *private_);
 struct sharpsl_pm_status sharpsl_pm;
 DECLARE_WORK(toggle_charger, sharpsl_charge_toggle, NULL);
 DECLARE_WORK(sharpsl_bat, sharpsl_battery_thread, NULL);
+DEFINE_LED_TRIGGER(sharpsl_charge_led_trigger);
 
 
 static int get_percentage(int voltage)
@@ -190,10 +192,10 @@ void sharpsl_pm_led(int val)
 		dev_err(sharpsl_pm.dev, "Charging Error!\n");
 	} else if (val == SHARPSL_LED_ON) {
 		dev_dbg(sharpsl_pm.dev, "Charge LED On\n");
-
+		led_trigger_event(sharpsl_charge_led_trigger, LED_FULL);
 	} else {
 		dev_dbg(sharpsl_pm.dev, "Charge LED Off\n");
-
+		led_trigger_event(sharpsl_charge_led_trigger, LED_OFF);
 	}
 }
 
@@ -786,6 +788,8 @@ static int __init sharpsl_pm_probe(struct platform_device *pdev)
 	init_timer(&sharpsl_pm.chrg_full_timer);
 	sharpsl_pm.chrg_full_timer.function = sharpsl_chrg_full_timer;
 
+	led_trigger_register_simple("sharpsl-charge", &sharpsl_charge_led_trigger);
+
 	sharpsl_pm.machinfo->init();
 
 	device_create_file(&pdev->dev, &dev_attr_battery_percentage);
@@ -807,6 +811,8 @@ static int sharpsl_pm_remove(struct platform_device *pdev)
 	device_remove_file(&pdev->dev, &dev_attr_battery_percentage);
 	device_remove_file(&pdev->dev, &dev_attr_battery_voltage);
 
+	led_trigger_unregister_simple(sharpsl_charge_led_trigger);
+
 	sharpsl_pm.machinfo->exit();
 
 	del_timer_sync(&sharpsl_pm.chrg_full_timer);

+ 1 - 1
arch/arm/configs/at91rm9200dk_defconfig

@@ -379,7 +379,7 @@ CONFIG_MTD_PHYSMAP_BANKWIDTH=2
 # CONFIG_MTD_DOC2001 is not set
 # CONFIG_MTD_DOC2001PLUS is not set
 CONFIG_MTD_AT91_DATAFLASH=y
-CONFIG_MTD_AT91_DATAFLASH_CARD=y
+# CONFIG_MTD_AT91_DATAFLASH_CARD is not set
 
 #
 # NAND Flash Device Drivers

+ 1 - 1
arch/arm/configs/at91rm9200ek_defconfig

@@ -370,7 +370,7 @@ CONFIG_MTD_PHYSMAP_BANKWIDTH=2
 # CONFIG_MTD_DOC2001 is not set
 # CONFIG_MTD_DOC2001PLUS is not set
 CONFIG_MTD_AT91_DATAFLASH=y
-CONFIG_MTD_AT91_DATAFLASH_CARD=y
+# CONFIG_MTD_AT91_DATAFLASH_CARD is not set
 
 #
 # NAND Flash Device Drivers

+ 0 - 14
arch/arm/kernel/armksyms.c

@@ -100,23 +100,11 @@ EXPORT_SYMBOL(__raw_writesl);
 #endif
 
 	/* string / mem functions */
-EXPORT_SYMBOL(strcpy);
-EXPORT_SYMBOL(strncpy);
-EXPORT_SYMBOL(strcat);
-EXPORT_SYMBOL(strncat);
-EXPORT_SYMBOL(strcmp);
-EXPORT_SYMBOL(strncmp);
 EXPORT_SYMBOL(strchr);
-EXPORT_SYMBOL(strlen);
-EXPORT_SYMBOL(strnlen);
-EXPORT_SYMBOL(strpbrk);
 EXPORT_SYMBOL(strrchr);
-EXPORT_SYMBOL(strstr);
 EXPORT_SYMBOL(memset);
 EXPORT_SYMBOL(memcpy);
 EXPORT_SYMBOL(memmove);
-EXPORT_SYMBOL(memcmp);
-EXPORT_SYMBOL(memscan);
 EXPORT_SYMBOL(memchr);
 EXPORT_SYMBOL(__memzero);
 
@@ -190,8 +178,6 @@ EXPORT_SYMBOL(_find_next_bit_be);
 
 	/* syscalls */
 EXPORT_SYMBOL(sys_write);
-EXPORT_SYMBOL(sys_read);
 EXPORT_SYMBOL(sys_lseek);
-EXPORT_SYMBOL(sys_open);
 EXPORT_SYMBOL(sys_exit);
 EXPORT_SYMBOL(sys_wait4);

+ 1 - 1
arch/arm/kernel/entry-armv.S

@@ -666,7 +666,7 @@ __kuser_helper_start:
  *
  * #define __kernel_dmb() \
  *         asm volatile ( "mov r0, #0xffff0fff; mov lr, pc; sub pc, r0, #95" \
- *	        : : : "lr","cc" )
+ *	        : : : "r0", "lr","cc" )
  */
 
 __kuser_memory_barrier:				@ 0xffff0fa0

+ 217 - 0
arch/arm/kernel/head-common.S

@@ -0,0 +1,217 @@
+/*
+ *  linux/arch/arm/kernel/head-common.S
+ *
+ *  Copyright (C) 1994-2002 Russell King
+ *  Copyright (c) 2003 ARM Limited
+ *  All Rights Reserved
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+	.type	__switch_data, %object
+__switch_data:
+	.long	__mmap_switched
+	.long	__data_loc			@ r4
+	.long	__data_start			@ r5
+	.long	__bss_start			@ r6
+	.long	_end				@ r7
+	.long	processor_id			@ r4
+	.long	__machine_arch_type		@ r5
+	.long	cr_alignment			@ r6
+	.long	init_thread_union + THREAD_START_SP @ sp
+
+/*
+ * The following fragment of code is executed with the MMU on in MMU mode,
+ * and uses absolute addresses; this is not position independent.
+ *
+ *  r0  = cp#15 control register
+ *  r1  = machine ID
+ *  r9  = processor ID
+ */
+	.type	__mmap_switched, %function
+__mmap_switched:
+	adr	r3, __switch_data + 4
+
+	ldmia	r3!, {r4, r5, r6, r7}
+	cmp	r4, r5				@ Copy data segment if needed
+1:	cmpne	r5, r6
+	ldrne	fp, [r4], #4
+	strne	fp, [r5], #4
+	bne	1b
+
+	mov	fp, #0				@ Clear BSS (and zero fp)
+1:	cmp	r6, r7
+	strcc	fp, [r6],#4
+	bcc	1b
+
+	ldmia	r3, {r4, r5, r6, sp}
+	str	r9, [r4]			@ Save processor ID
+	str	r1, [r5]			@ Save machine type
+	bic	r4, r0, #CR_A			@ Clear 'A' bit
+	stmia	r6, {r0, r4}			@ Save control register values
+	b	start_kernel
+
+/*
+ * Exception handling.  Something went wrong and we can't proceed.  We
+ * ought to tell the user, but since we don't have any guarantee that
+ * we're even running on the right architecture, we do virtually nothing.
+ *
+ * If CONFIG_DEBUG_LL is set we try to print out something about the error
+ * and hope for the best (useful if bootloader fails to pass a proper
+ * machine ID for example).
+ */
+
+	.type	__error_p, %function
+__error_p:
+#ifdef CONFIG_DEBUG_LL
+	adr	r0, str_p1
+	bl	printascii
+	b	__error
+str_p1:	.asciz	"\nError: unrecognized/unsupported processor variant.\n"
+	.align
+#endif
+
+	.type	__error_a, %function
+__error_a:
+#ifdef CONFIG_DEBUG_LL
+	mov	r4, r1				@ preserve machine ID
+	adr	r0, str_a1
+	bl	printascii
+	mov	r0, r4
+	bl	printhex8
+	adr	r0, str_a2
+	bl	printascii
+	adr	r3, 3f
+	ldmia	r3, {r4, r5, r6}		@ get machine desc list
+	sub	r4, r3, r4			@ get offset between virt&phys
+	add	r5, r5, r4			@ convert virt addresses to
+	add	r6, r6, r4			@ physical address space
+1:	ldr	r0, [r5, #MACHINFO_TYPE]	@ get machine type
+	bl	printhex8
+	mov	r0, #'\t'
+	bl	printch
+	ldr     r0, [r5, #MACHINFO_NAME]	@ get machine name
+	add	r0, r0, r4
+	bl	printascii
+	mov	r0, #'\n'
+	bl	printch
+	add	r5, r5, #SIZEOF_MACHINE_DESC	@ next machine_desc
+	cmp	r5, r6
+	blo	1b
+	adr	r0, str_a3
+	bl	printascii
+	b	__error
+str_a1:	.asciz	"\nError: unrecognized/unsupported machine ID (r1 = 0x"
+str_a2:	.asciz	").\n\nAvailable machine support:\n\nID (hex)\tNAME\n"
+str_a3:	.asciz	"\nPlease check your kernel config and/or bootloader.\n"
+	.align
+#endif
+
+	.type	__error, %function
+__error:
+#ifdef CONFIG_ARCH_RPC
+/*
+ * Turn the screen red on a error - RiscPC only.
+ */
+	mov	r0, #0x02000000
+	mov	r3, #0x11
+	orr	r3, r3, r3, lsl #8
+	orr	r3, r3, r3, lsl #16
+	str	r3, [r0], #4
+	str	r3, [r0], #4
+	str	r3, [r0], #4
+	str	r3, [r0], #4
+#endif
+1:	mov	r0, r0
+	b	1b
+
+
+/*
+ * Read processor ID register (CP#15, CR0), and look up in the linker-built
+ * supported processor list.  Note that we can't use the absolute addresses
+ * for the __proc_info lists since we aren't running with the MMU on
+ * (and therefore, we are not in the correct address space).  We have to
+ * calculate the offset.
+ *
+ *	r9 = cpuid
+ * Returns:
+ *	r3, r4, r6 corrupted
+ *	r5 = proc_info pointer in physical address space
+ *	r9 = cpuid (preserved)
+ */
+	.type	__lookup_processor_type, %function
+__lookup_processor_type:
+	adr	r3, 3f
+	ldmda	r3, {r5 - r7}
+	sub	r3, r3, r7			@ get offset between virt&phys
+	add	r5, r5, r3			@ convert virt addresses to
+	add	r6, r6, r3			@ physical address space
+1:	ldmia	r5, {r3, r4}			@ value, mask
+	and	r4, r4, r9			@ mask wanted bits
+	teq	r3, r4
+	beq	2f
+	add	r5, r5, #PROC_INFO_SZ		@ sizeof(proc_info_list)
+	cmp	r5, r6
+	blo	1b
+	mov	r5, #0				@ unknown processor
+2:	mov	pc, lr
+
+/*
+ * This provides a C-API version of the above function.
+ */
+ENTRY(lookup_processor_type)
+	stmfd	sp!, {r4 - r7, r9, lr}
+	mov	r9, r0
+	bl	__lookup_processor_type
+	mov	r0, r5
+	ldmfd	sp!, {r4 - r7, r9, pc}
+
+/*
+ * Look in include/asm-arm/procinfo.h and arch/arm/kernel/arch.[ch] for
+ * more information about the __proc_info and __arch_info structures.
+ */
+	.long	__proc_info_begin
+	.long	__proc_info_end
+3:	.long	.
+	.long	__arch_info_begin
+	.long	__arch_info_end
+
+/*
+ * Lookup machine architecture in the linker-build list of architectures.
+ * Note that we can't use the absolute addresses for the __arch_info
+ * lists since we aren't running with the MMU on (and therefore, we are
+ * not in the correct address space).  We have to calculate the offset.
+ *
+ *  r1 = machine architecture number
+ * Returns:
+ *  r3, r4, r6 corrupted
+ *  r5 = mach_info pointer in physical address space
+ */
+	.type	__lookup_machine_type, %function
+__lookup_machine_type:
+	adr	r3, 3b
+	ldmia	r3, {r4, r5, r6}
+	sub	r3, r3, r4			@ get offset between virt&phys
+	add	r5, r5, r3			@ convert virt addresses to
+	add	r6, r6, r3			@ physical address space
+1:	ldr	r3, [r5, #MACHINFO_TYPE]	@ get machine type
+	teq	r3, r1				@ matches loader number?
+	beq	2f				@ found
+	add	r5, r5, #SIZEOF_MACHINE_DESC	@ next machine_desc
+	cmp	r5, r6
+	blo	1b
+	mov	r5, #0				@ unknown machine
+2:	mov	pc, lr
+
+/*
+ * This provides a C-API version of the above function.
+ */
+ENTRY(lookup_machine_type)
+	stmfd	sp!, {r4 - r6, lr}
+	mov	r1, r0
+	bl	__lookup_machine_type
+	mov	r0, r5
+	ldmfd	sp!, {r4 - r6, pc}

+ 83 - 0
arch/arm/kernel/head-nommu.S

@@ -0,0 +1,83 @@
+/*
+ *  linux/arch/arm/kernel/head-nommu.S
+ *
+ *  Copyright (C) 1994-2002 Russell King
+ *  Copyright (C) 2003-2006 Hyok S. Choi
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ *  Common kernel startup code (non-paged MM)
+ *    for 32-bit CPUs which has a process ID register(CP15).
+ *
+ */
+#include <linux/config.h>
+#include <linux/linkage.h>
+#include <linux/init.h>
+
+#include <asm/assembler.h>
+#include <asm/mach-types.h>
+#include <asm/procinfo.h>
+#include <asm/ptrace.h>
+#include <asm/constants.h>
+#include <asm/system.h>
+
+#define PROCINFO_INITFUNC       12
+
+/*
+ * Kernel startup entry point.
+ * ---------------------------
+ *
+ * This is normally called from the decompressor code.  The requirements
+ * are: MMU = off, D-cache = off, I-cache = dont care, r0 = 0,
+ * r1 = machine nr.
+ *
+ * See linux/arch/arm/tools/mach-types for the complete list of machine
+ * numbers for r1.
+ *
+ */
+	__INIT
+	.type	stext, %function
+ENTRY(stext)
+	msr	cpsr_c, #PSR_F_BIT | PSR_I_BIT | MODE_SVC @ ensure svc mode
+						@ and irqs disabled
+	mrc	p15, 0, r9, c0, c0		@ get processor id
+	bl	__lookup_processor_type		@ r5=procinfo r9=cpuid
+	movs	r10, r5				@ invalid processor (r5=0)?
+	beq	__error_p				@ yes, error 'p'
+	bl	__lookup_machine_type		@ r5=machinfo
+	movs	r8, r5				@ invalid machine (r5=0)?
+	beq	__error_a			@ yes, error 'a'
+
+	ldr	r13, __switch_data		@ address to jump to after
+						@ the initialization is done
+	adr	lr, __after_proc_init		@ return (PIC) address
+	add	pc, r10, #PROCINFO_INITFUNC
+
+/*
+ * Set the Control Register and Read the process ID.
+ */
+	.type	__after_proc_init, %function
+__after_proc_init:
+	mrc	p15, 0, r0, c1, c0, 0		@ read control reg
+#ifdef CONFIG_ALIGNMENT_TRAP
+	orr	r0, r0, #CR_A
+#else
+	bic	r0, r0, #CR_A
+#endif
+#ifdef CONFIG_CPU_DCACHE_DISABLE
+	bic	r0, r0, #CR_C
+#endif
+#ifdef CONFIG_CPU_BPREDICT_DISABLE
+	bic	r0, r0, #CR_Z
+#endif
+#ifdef CONFIG_CPU_ICACHE_DISABLE
+	bic	r0, r0, #CR_I
+#endif
+	mcr	p15, 0, r0, c1, c0, 0		@ write control reg
+
+	mov	pc, r13				@ clear the BSS and jump
+						@ to start_kernel
+
+#include "head-common.S"

+ 1 - 206
arch/arm/kernel/head.S

@@ -102,49 +102,6 @@ ENTRY(stext)
 	adr	lr, __enable_mmu		@ return (PIC) address
 	add	pc, r10, #PROCINFO_INITFUNC
 
-	.type	__switch_data, %object
-__switch_data:
-	.long	__mmap_switched
-	.long	__data_loc			@ r4
-	.long	__data_start			@ r5
-	.long	__bss_start			@ r6
-	.long	_end				@ r7
-	.long	processor_id			@ r4
-	.long	__machine_arch_type		@ r5
-	.long	cr_alignment			@ r6
-	.long	init_thread_union + THREAD_START_SP @ sp
-
-/*
- * The following fragment of code is executed with the MMU on, and uses
- * absolute addresses; this is not position independent.
- *
- *  r0  = cp#15 control register
- *  r1  = machine ID
- *  r9  = processor ID
- */
-	.type	__mmap_switched, %function
-__mmap_switched:
-	adr	r3, __switch_data + 4
-
-	ldmia	r3!, {r4, r5, r6, r7}
-	cmp	r4, r5				@ Copy data segment if needed
-1:	cmpne	r5, r6
-	ldrne	fp, [r4], #4
-	strne	fp, [r5], #4
-	bne	1b
-
-	mov	fp, #0				@ Clear BSS (and zero fp)
-1:	cmp	r6, r7
-	strcc	fp, [r6],#4
-	bcc	1b
-
-	ldmia	r3, {r4, r5, r6, sp}
-	str	r9, [r4]			@ Save processor ID
-	str	r1, [r5]			@ Save machine type
-	bic	r4, r0, #CR_A			@ Clear 'A' bit
-	stmia	r6, {r0, r4}			@ Save control register values
-	b	start_kernel
-
 #if defined(CONFIG_SMP)
 	.type   secondary_startup, #function
 ENTRY(secondary_startup)
@@ -367,166 +324,4 @@ __create_page_tables:
 	mov	pc, lr
 	.ltorg
 
-
-
-/*
- * Exception handling.  Something went wrong and we can't proceed.  We
- * ought to tell the user, but since we don't have any guarantee that
- * we're even running on the right architecture, we do virtually nothing.
- *
- * If CONFIG_DEBUG_LL is set we try to print out something about the error
- * and hope for the best (useful if bootloader fails to pass a proper
- * machine ID for example).
- */
-
-	.type	__error_p, %function
-__error_p:
-#ifdef CONFIG_DEBUG_LL
-	adr	r0, str_p1
-	bl	printascii
-	b	__error
-str_p1:	.asciz	"\nError: unrecognized/unsupported processor variant.\n"
-	.align
-#endif
-
-	.type	__error_a, %function
-__error_a:
-#ifdef CONFIG_DEBUG_LL
-	mov	r4, r1				@ preserve machine ID
-	adr	r0, str_a1
-	bl	printascii
-	mov	r0, r4
-	bl	printhex8
-	adr	r0, str_a2
-	bl	printascii
-	adr	r3, 3f
-	ldmia	r3, {r4, r5, r6}		@ get machine desc list
-	sub	r4, r3, r4			@ get offset between virt&phys
-	add	r5, r5, r4			@ convert virt addresses to
-	add	r6, r6, r4			@ physical address space
-1:	ldr	r0, [r5, #MACHINFO_TYPE]	@ get machine type
-	bl	printhex8
-	mov	r0, #'\t'
-	bl	printch
-	ldr     r0, [r5, #MACHINFO_NAME]	@ get machine name
-	add	r0, r0, r4
-	bl	printascii
-	mov	r0, #'\n'
-	bl	printch
-	add	r5, r5, #SIZEOF_MACHINE_DESC	@ next machine_desc
-	cmp	r5, r6
-	blo	1b
-	adr	r0, str_a3
-	bl	printascii
-	b	__error
-str_a1:	.asciz	"\nError: unrecognized/unsupported machine ID (r1 = 0x"
-str_a2:	.asciz	").\n\nAvailable machine support:\n\nID (hex)\tNAME\n"
-str_a3:	.asciz	"\nPlease check your kernel config and/or bootloader.\n"
-	.align
-#endif
-
-	.type	__error, %function
-__error:
-#ifdef CONFIG_ARCH_RPC
-/*
- * Turn the screen red on a error - RiscPC only.
- */
-	mov	r0, #0x02000000
-	mov	r3, #0x11
-	orr	r3, r3, r3, lsl #8
-	orr	r3, r3, r3, lsl #16
-	str	r3, [r0], #4
-	str	r3, [r0], #4
-	str	r3, [r0], #4
-	str	r3, [r0], #4
-#endif
-1:	mov	r0, r0
-	b	1b
-
-
-/*
- * Read processor ID register (CP#15, CR0), and look up in the linker-built
- * supported processor list.  Note that we can't use the absolute addresses
- * for the __proc_info lists since we aren't running with the MMU on
- * (and therefore, we are not in the correct address space).  We have to
- * calculate the offset.
- *
- *	r9 = cpuid
- * Returns:
- *	r3, r4, r6 corrupted
- *	r5 = proc_info pointer in physical address space
- *	r9 = cpuid (preserved)
- */
-	.type	__lookup_processor_type, %function
-__lookup_processor_type:
-	adr	r3, 3f
-	ldmda	r3, {r5 - r7}
-	sub	r3, r3, r7			@ get offset between virt&phys
-	add	r5, r5, r3			@ convert virt addresses to
-	add	r6, r6, r3			@ physical address space
-1:	ldmia	r5, {r3, r4}			@ value, mask
-	and	r4, r4, r9			@ mask wanted bits
-	teq	r3, r4
-	beq	2f
-	add	r5, r5, #PROC_INFO_SZ		@ sizeof(proc_info_list)
-	cmp	r5, r6
-	blo	1b
-	mov	r5, #0				@ unknown processor
-2:	mov	pc, lr
-
-/*
- * This provides a C-API version of the above function.
- */
-ENTRY(lookup_processor_type)
-	stmfd	sp!, {r4 - r7, r9, lr}
-	mov	r9, r0
-	bl	__lookup_processor_type
-	mov	r0, r5
-	ldmfd	sp!, {r4 - r7, r9, pc}
-
-/*
- * Look in include/asm-arm/procinfo.h and arch/arm/kernel/arch.[ch] for
- * more information about the __proc_info and __arch_info structures.
- */
-	.long	__proc_info_begin
-	.long	__proc_info_end
-3:	.long	.
-	.long	__arch_info_begin
-	.long	__arch_info_end
-
-/*
- * Lookup machine architecture in the linker-build list of architectures.
- * Note that we can't use the absolute addresses for the __arch_info
- * lists since we aren't running with the MMU on (and therefore, we are
- * not in the correct address space).  We have to calculate the offset.
- *
- *  r1 = machine architecture number
- * Returns:
- *  r3, r4, r6 corrupted
- *  r5 = mach_info pointer in physical address space
- */
-	.type	__lookup_machine_type, %function
-__lookup_machine_type:
-	adr	r3, 3b
-	ldmia	r3, {r4, r5, r6}
-	sub	r3, r3, r4			@ get offset between virt&phys
-	add	r5, r5, r3			@ convert virt addresses to
-	add	r6, r6, r3			@ physical address space
-1:	ldr	r3, [r5, #MACHINFO_TYPE]	@ get machine type
-	teq	r3, r1				@ matches loader number?
-	beq	2f				@ found
-	add	r5, r5, #SIZEOF_MACHINE_DESC	@ next machine_desc
-	cmp	r5, r6
-	blo	1b
-	mov	r5, #0				@ unknown machine
-2:	mov	pc, lr
-
-/*
- * This provides a C-API version of the above function.
- */
-ENTRY(lookup_machine_type)
-	stmfd	sp!, {r4 - r6, lr}
-	mov	r1, r0
-	bl	__lookup_machine_type
-	mov	r0, r5
-	ldmfd	sp!, {r4 - r6, pc}
+#include "head-common.S"

+ 0 - 1
arch/arm/kernel/process.c

@@ -474,4 +474,3 @@ unsigned long get_wchan(struct task_struct *p)
 	} while (count ++ < 16);
 	return 0;
 }
-EXPORT_SYMBOL(get_wchan);

+ 9 - 0
arch/arm/kernel/setup.c

@@ -252,6 +252,9 @@ static void __init dump_cpu_info(int cpu)
 			dump_cache("cache", cpu, CACHE_ISIZE(info));
 		}
 	}
+
+	if (arch_is_coherent())
+		printk("Cache coherency enabled\n");
 }
 
 int cpu_architecture(void)
@@ -319,6 +322,12 @@ static void __init setup_processor(void)
 	sprintf(system_utsname.machine, "%s%c", list->arch_name, ENDIANNESS);
 	sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
 	elf_hwcap = list->elf_hwcap;
+#ifndef CONFIG_ARM_THUMB
+	elf_hwcap &= ~HWCAP_THUMB;
+#endif
+#ifndef CONFIG_VFP
+	elf_hwcap &= ~HWCAP_VFP;
+#endif
 
 	cpu_proc_init();
 }

+ 1 - 1
arch/arm/kernel/signal.h

@@ -7,6 +7,6 @@
  * it under the terms of the GNU General Public License version 2 as
  * published by the Free Software Foundation.
  */
-#define KERN_SIGRETURN_CODE	0xffff0500
+#define KERN_SIGRETURN_CODE	(CONFIG_VECTORS_BASE + 0x00000500)
 
 extern const unsigned long sigreturn_codes[7];

+ 5 - 4
arch/arm/kernel/traps.c

@@ -688,6 +688,7 @@ EXPORT_SYMBOL(abort);
 
 void __init trap_init(void)
 {
+	unsigned long vectors = CONFIG_VECTORS_BASE;
 	extern char __stubs_start[], __stubs_end[];
 	extern char __vectors_start[], __vectors_end[];
 	extern char __kuser_helper_start[], __kuser_helper_end[];
@@ -698,9 +699,9 @@ void __init trap_init(void)
 	 * into the vector page, mapped at 0xffff0000, and ensure these
 	 * are visible to the instruction stream.
 	 */
-	memcpy((void *)0xffff0000, __vectors_start, __vectors_end - __vectors_start);
-	memcpy((void *)0xffff0200, __stubs_start, __stubs_end - __stubs_start);
-	memcpy((void *)0xffff1000 - kuser_sz, __kuser_helper_start, kuser_sz);
+	memcpy((void *)vectors, __vectors_start, __vectors_end - __vectors_start);
+	memcpy((void *)vectors + 0x200, __stubs_start, __stubs_end - __stubs_start);
+	memcpy((void *)vectors + 0x1000 - kuser_sz, __kuser_helper_start, kuser_sz);
 
 	/*
 	 * Copy signal return handlers into the vector page, and
@@ -709,6 +710,6 @@ void __init trap_init(void)
 	memcpy((void *)KERN_SIGRETURN_CODE, sigreturn_codes,
 	       sizeof(sigreturn_codes));
 
-	flush_icache_range(0xffff0000, 0xffff0000 + PAGE_SIZE);
+	flush_icache_range(vectors, vectors + PAGE_SIZE);
 	modify_domain(DOMAIN_USER, DOMAIN_CLIENT);
 }

+ 5 - 4
arch/arm/mach-at91rm9200/Makefile

@@ -16,11 +16,12 @@ obj-$(CONFIG_MACH_CSB637)	+= board-csb637.o
 #obj-$(CONFIG_MACH_KB9200)	+= board-kb9202.o
 
 # LEDs support
-#led-$(CONFIG_ARCH_AT91RM9200DK)	+= leds.o
-#led-$(CONFIG_MACH_AT91RM9200EK)	+= leds.o
-#led-$(CONFIG_MACH_CSB337)	+= leds.o
-#led-$(CONFIG_MACH_CSB637)	+= leds.o
+led-$(CONFIG_ARCH_AT91RM9200DK)	+= leds.o
+led-$(CONFIG_MACH_AT91RM9200EK)	+= leds.o
+led-$(CONFIG_MACH_CSB337)	+= leds.o
+led-$(CONFIG_MACH_CSB637)	+= leds.o
 #led-$(CONFIG_MACH_KB9200)	+= leds.o
+#led-$(CONFIG_MACH_KAFA)	+= leds.o
 obj-$(CONFIG_LEDS) += $(led-y)
 
 # VGA support

+ 3 - 0
arch/arm/mach-at91rm9200/board-csb337.c

@@ -67,6 +67,9 @@ static void __init csb337_map_io(void)
 	/* Initialize clocks: 3.6864 MHz crystal */
 	at91_clock_init(3686400);
 
+	/* Setup the LEDs */
+	at91_init_leds(AT91_PIN_PB2, AT91_PIN_PB2);
+
 #ifdef CONFIG_SERIAL_AT91
 	at91_console_port = CSB337_SERIAL_CONSOLE;
 	memcpy(at91_serial_map, serial, sizeof(serial));

+ 3 - 0
arch/arm/mach-at91rm9200/board-csb637.c

@@ -67,6 +67,9 @@ static void __init csb637_map_io(void)
 	/* Initialize clocks: 3.6864 MHz crystal */
 	at91_clock_init(3686400);
 
+	/* Setup the LEDs */
+	at91_init_leds(AT91_PIN_PB2, AT91_PIN_PB2);
+
 #ifdef CONFIG_SERIAL_AT91
 	at91_console_port = CSB637_SERIAL_CONSOLE;
 	memcpy(at91_serial_map, serial, sizeof(serial));

+ 9 - 1
arch/arm/mach-at91rm9200/board-dk.c

@@ -70,6 +70,9 @@ static void __init dk_map_io(void)
 	/* Initialize clocks: 18.432 MHz crystal */
 	at91_clock_init(18432000);
 
+	/* Setup the LEDs */
+	at91_init_leds(AT91_PIN_PB2, AT91_PIN_PB2);
+
 #ifdef CONFIG_SERIAL_AT91
 	at91_console_port = DK_SERIAL_CONSOLE;
 	memcpy(at91_serial_map, serial, sizeof(serial));
@@ -118,9 +121,14 @@ static void __init dk_board_init(void)
 	at91_add_device_udc(&dk_udc_data);
 	/* Compact Flash */
 	at91_add_device_cf(&dk_cf_data);
+#ifdef CONFIG_MTD_AT91_DATAFLASH_CARD
+	/* DataFlash card */
+	at91_set_gpio_output(AT91_PIN_PB7, 0);
+#else
 	/* MMC */
-	at91_set_gpio_output(AT91_PIN_PB7, 1);	/* this MMC card slot can optionally use SPI signaling (CS3). default: MMC */
+	at91_set_gpio_output(AT91_PIN_PB7, 1);	/* this MMC card slot can optionally use SPI signaling (CS3). */
 	at91_add_device_mmc(&dk_mmc_data);
+#endif
 	/* VGA */
 //	dk_add_device_video();
 }

+ 9 - 1
arch/arm/mach-at91rm9200/board-ek.c

@@ -70,6 +70,9 @@ static void __init ek_map_io(void)
 	/* Initialize clocks: 18.432 MHz crystal */
 	at91_clock_init(18432000);
 
+	/* Setup the LEDs */
+	at91_init_leds(AT91_PIN_PB1, AT91_PIN_PB2);
+
 #ifdef CONFIG_SERIAL_AT91
 	at91_console_port = EK_SERIAL_CONSOLE;
 	memcpy(at91_serial_map, serial, sizeof(serial));
@@ -111,9 +114,14 @@ static void __init ek_board_init(void)
 	at91_add_device_usbh(&ek_usbh_data);
 	/* USB Device */
 	at91_add_device_udc(&ek_udc_data);
+#ifdef CONFIG_MTD_AT91_DATAFLASH_CARD
+	/* DataFlash card */
+	at91_set_gpio_output(AT91_PIN_PB22, 0);
+#else
 	/* MMC */
-	at91_set_gpio_output(AT91_PIN_PB22, 1);	/* this MMC card slot can optionally use SPI signaling (CS3). default: MMC */
+	at91_set_gpio_output(AT91_PIN_PB22, 1);	/* this MMC card slot can optionally use SPI signaling (CS3). */
 	at91_add_device_mmc(&ek_mmc_data);
+#endif
 	/* VGA */
 //	ek_add_device_video();
 }

+ 146 - 8
arch/arm/mach-at91rm9200/devices.c

@@ -28,10 +28,10 @@
 static u64 ohci_dmamask = 0xffffffffUL;
 static struct at91_usbh_data usbh_data;
 
-static struct resource at91rm9200_usbh_resource[] = {
+static struct resource at91_usbh_resource[] = {
 	[0] = {
 		.start	= AT91_UHP_BASE,
-		.end	= AT91_UHP_BASE + SZ_1M -1,
+		.end	= AT91_UHP_BASE + SZ_1M - 1,
 		.flags	= IORESOURCE_MEM,
 	},
 	[1] = {
@@ -49,8 +49,8 @@ static struct platform_device at91rm9200_usbh_device = {
 				.coherent_dma_mask	= 0xffffffff,
 				.platform_data		= &usbh_data,
 	},
-	.resource	= at91rm9200_usbh_resource,
-	.num_resources	= ARRAY_SIZE(at91rm9200_usbh_resource),
+	.resource	= at91_usbh_resource,
+	.num_resources	= ARRAY_SIZE(at91_usbh_resource),
 };
 
 void __init at91_add_device_usbh(struct at91_usbh_data *data)
@@ -121,6 +121,19 @@ void __init at91_add_device_udc(struct at91_udc_data *data) {}
 static u64 eth_dmamask = 0xffffffffUL;
 static struct at91_eth_data eth_data;
 
+static struct resource at91_eth_resources[] = {
+	[0] = {
+		.start	= AT91_BASE_EMAC,
+		.end	= AT91_BASE_EMAC + SZ_16K - 1,
+		.flags	= IORESOURCE_MEM,
+	},
+	[1] = {
+		.start	= AT91_ID_EMAC,
+		.end	= AT91_ID_EMAC,
+		.flags	= IORESOURCE_IRQ,
+	},
+};
+
 static struct platform_device at91rm9200_eth_device = {
 	.name		= "at91_ether",
 	.id		= -1,
@@ -129,7 +142,8 @@ static struct platform_device at91rm9200_eth_device = {
 				.coherent_dma_mask	= 0xffffffff,
 				.platform_data		= &eth_data,
 	},
-	.num_resources	= 0,
+	.resource	= at91_eth_resources,
+	.num_resources	= ARRAY_SIZE(at91_eth_resources),
 };
 
 void __init at91_add_device_eth(struct at91_eth_data *data)
@@ -224,15 +238,20 @@ static u64 mmc_dmamask = 0xffffffffUL;
 static struct at91_mmc_data mmc_data;
 
 static struct resource at91_mmc_resources[] = {
-	{
+	[0] = {
 		.start	= AT91_BASE_MCI,
 		.end	= AT91_BASE_MCI + SZ_16K - 1,
 		.flags	= IORESOURCE_MEM,
-	}
+	},
+	[1] = {
+		.start	= AT91_ID_MCI,
+		.end	= AT91_ID_MCI,
+		.flags	= IORESOURCE_IRQ,
+	},
 };
 
 static struct platform_device at91rm9200_mmc_device = {
-	.name		= "at91rm9200_mci",
+	.name		= "at91_mci",
 	.id		= -1,
 	.dev		= {
 				.dma_mask		= &mmc_dmamask,
@@ -290,4 +309,123 @@ void __init at91_add_device_mmc(struct at91_mmc_data *data)
 void __init at91_add_device_mmc(struct at91_mmc_data *data) {}
 #endif
 
+/* --------------------------------------------------------------------
+ *  NAND / SmartMedia
+ * -------------------------------------------------------------------- */
+
+#if defined(CONFIG_MTD_NAND_AT91) || defined(CONFIG_MTD_NAND_AT91_MODULE)
+static struct at91_nand_data nand_data;
+
+static struct resource at91_nand_resources[] = {
+	{
+		.start	= AT91_SMARTMEDIA_BASE,
+		.end	= AT91_SMARTMEDIA_BASE + SZ_8M - 1,
+		.flags	= IORESOURCE_MEM,
+	}
+};
+
+static struct platform_device at91_nand_device = {
+	.name		= "at91_nand",
+	.id		= -1,
+	.dev		= {
+				.platform_data	= &nand_data,
+	},
+	.resource	= at91_nand_resources,
+	.num_resources	= ARRAY_SIZE(at91_nand_resources),
+};
+
+void __init at91_add_device_nand(struct at91_nand_data *data)
+{
+	if (!data)
+		return;
+
+	/* enable pin */
+	if (data->enable_pin)
+		at91_set_gpio_output(data->enable_pin, 1);
+
+	/* ready/busy pin */
+	if (data->rdy_pin)
+		at91_set_gpio_input(data->rdy_pin, 1);
+
+	/* card detect pin */
+	if (data->det_pin)
+		at91_set_gpio_input(data->det_pin, 1);
+
+	at91_set_A_periph(AT91_PIN_PC1, 0);		/* SMOE */
+	at91_set_A_periph(AT91_PIN_PC3, 0);		/* SMWE */
+
+	nand_data = *data;
+	platform_device_register(&at91_nand_device);
+}
+#else
+void __init at91_add_device_nand(struct at91_nand_data *data) {}
+#endif
+
+
+/* --------------------------------------------------------------------
+ *  TWI (i2c)
+ * -------------------------------------------------------------------- */
+
+#if defined(CONFIG_I2C_AT91) || defined(CONFIG_I2C_AT91_MODULE)
+static struct platform_device at91rm9200_twi_device = {
+	.name		= "at91_i2c",
+	.id		= -1,
+	.num_resources	= 0,
+};
+
+void __init at91_add_device_i2c(void)
+{
+	/* pins used for TWI interface */
+	at91_set_A_periph(AT91_PIN_PA25, 0);		/* TWD */
+	at91_set_multi_drive(AT91_PIN_PA25, 1);
+
+	at91_set_A_periph(AT91_PIN_PA26, 0);		/* TWCK */
+	at91_set_multi_drive(AT91_PIN_PA26, 1);
+
+	platform_device_register(&at91rm9200_twi_device);
+}
+#else
+void __init at91_add_device_i2c(void) {}
+#endif
+
+
+/* --------------------------------------------------------------------
+ *  RTC
+ * -------------------------------------------------------------------- */
+
+#if defined(CONFIG_AT91_RTC) || defined(CONFIG_AT91_RTC_MODULE)
+static struct platform_device at91rm9200_rtc_device = {
+	.name		= "at91_rtc",
+	.id		= -1,
+	.num_resources	= 0,
+};
+
+void __init at91_add_device_rtc(void)
+{
+	platform_device_register(&at91rm9200_rtc_device);
+}
+#else
+void __init at91_add_device_rtc(void) {}
+#endif
+
+
+/* --------------------------------------------------------------------
+ *  LEDs
+ * -------------------------------------------------------------------- */
+
+#if defined(CONFIG_LEDS)
+u8 at91_leds_cpu;
+u8 at91_leds_timer;
+
+void __init at91_init_leds(u8 cpu_led, u8 timer_led)
+{
+	at91_leds_cpu   = cpu_led;
+	at91_leds_timer = timer_led;
+}
+
+#else
+void __init at91_init_leds(u8 cpu_led, u8 timer_led) {}
+#endif
+
+
 /* -------------------------------------------------------------------- */

+ 100 - 0
arch/arm/mach-at91rm9200/leds.c

@@ -0,0 +1,100 @@
+/*
+ * LED driver for Atmel AT91-based boards.
+ *
+ *  Copyright (C) SAN People (Pty) Ltd
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+*/
+
+#include <linux/config.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/init.h>
+
+#include <asm/mach-types.h>
+#include <asm/leds.h>
+#include <asm/arch/board.h>
+#include <asm/arch/gpio.h>
+
+
+static inline void at91_led_on(unsigned int led)
+{
+	at91_set_gpio_value(led, 0);
+}
+
+static inline void at91_led_off(unsigned int led)
+{
+	at91_set_gpio_value(led, 1);
+}
+
+static inline void at91_led_toggle(unsigned int led)
+{
+	unsigned long is_off = at91_get_gpio_value(led);
+	if (is_off)
+		at91_led_on(led);
+	else
+		at91_led_off(led);
+}
+
+
+/*
+ * Handle LED events.
+ */
+static void at91_leds_event(led_event_t evt)
+{
+	unsigned long flags;
+
+	local_irq_save(flags);
+
+	switch(evt) {
+	case led_start:		/* System startup */
+		at91_led_on(at91_leds_cpu);
+		break;
+
+	case led_stop:		/* System stop / suspend */
+		at91_led_off(at91_leds_cpu);
+		break;
+
+#ifdef CONFIG_LEDS_TIMER
+	case led_timer:		/* Every 50 timer ticks */
+		at91_led_toggle(at91_leds_timer);
+		break;
+#endif
+
+#ifdef CONFIG_LEDS_CPU
+	case led_idle_start:	/* Entering idle state */
+		at91_led_off(at91_leds_cpu);
+		break;
+
+	case led_idle_end:	/* Exit idle state */
+		at91_led_on(at91_leds_cpu);
+		break;
+#endif
+
+	default:
+		break;
+	}
+
+	local_irq_restore(flags);
+}
+
+
+static int __init leds_init(void)
+{
+	if (!at91_leds_timer || !at91_leds_cpu)
+		return -ENODEV;
+
+	/* Enable PIO to access the LEDs */
+	at91_set_gpio_output(at91_leds_timer, 1);
+	at91_set_gpio_output(at91_leds_cpu, 1);
+
+	leds_event = at91_leds_event;
+
+	leds_event(led_start);
+	return 0;
+}
+
+__initcall(leds_init);

+ 10 - 0
arch/arm/mach-ep93xx/core.c

@@ -424,6 +424,14 @@ static struct amba_device uart3_device = {
 	.periphid	= 0x00041010,
 };
 
+
+static struct platform_device ep93xx_rtc_device = {
+       .name           = "ep93xx-rtc",
+       .id             = -1,
+       .num_resources  = 0,
+};
+
+
 void __init ep93xx_init_devices(void)
 {
 	unsigned int v;
@@ -439,4 +447,6 @@ void __init ep93xx_init_devices(void)
 	amba_device_register(&uart1_device, &iomem_resource);
 	amba_device_register(&uart2_device, &iomem_resource);
 	amba_device_register(&uart3_device, &iomem_resource);
+
+	platform_device_register(&ep93xx_rtc_device);
 }

+ 39 - 0
arch/arm/mach-ep93xx/ts72xx.c

@@ -17,6 +17,8 @@
 #include <linux/sched.h>
 #include <linux/interrupt.h>
 #include <linux/mtd/physmap.h>
+#include <linux/platform_device.h>
+#include <linux/m48t86.h>
 #include <asm/io.h>
 #include <asm/hardware.h>
 #include <asm/mach-types.h>
@@ -39,6 +41,16 @@ static struct map_desc ts72xx_io_desc[] __initdata = {
 		.pfn		= __phys_to_pfn(TS72XX_OPTIONS2_PHYS_BASE),
 		.length		= TS72XX_OPTIONS2_SIZE,
 		.type		= MT_DEVICE,
+	}, {
+		.virtual	= TS72XX_RTC_INDEX_VIRT_BASE,
+		.pfn		= __phys_to_pfn(TS72XX_RTC_INDEX_PHYS_BASE),
+		.length		= TS72XX_RTC_INDEX_SIZE,
+		.type		= MT_DEVICE,
+	}, {
+		.virtual	= TS72XX_RTC_DATA_VIRT_BASE,
+		.pfn		= __phys_to_pfn(TS72XX_RTC_DATA_PHYS_BASE),
+		.length		= TS72XX_RTC_DATA_SIZE,
+		.type		= MT_DEVICE,
 	}
 };
 
@@ -99,11 +111,38 @@ static void __init ts72xx_map_io(void)
 	}
 }
 
+static unsigned char ts72xx_rtc_readb(unsigned long addr)
+{
+	__raw_writeb(addr, TS72XX_RTC_INDEX_VIRT_BASE);
+	return __raw_readb(TS72XX_RTC_DATA_VIRT_BASE);
+}
+
+static void ts72xx_rtc_writeb(unsigned char value, unsigned long addr)
+{
+	__raw_writeb(addr, TS72XX_RTC_INDEX_VIRT_BASE);
+	__raw_writeb(value, TS72XX_RTC_DATA_VIRT_BASE);
+}
+
+static struct m48t86_ops ts72xx_rtc_ops = {
+	.readb			= ts72xx_rtc_readb,
+	.writeb			= ts72xx_rtc_writeb,
+};
+
+static struct platform_device ts72xx_rtc_device = {
+	.name			= "rtc-m48t86",
+	.id			= -1,
+	.dev			= {
+		.platform_data		= &ts72xx_rtc_ops,
+	},
+	.num_resources		= 0,
+};
+
 static void __init ts72xx_init_machine(void)
 {
 	ep93xx_init_devices();
 	if (board_is_ts7200())
 		physmap_configure(TS72XX_NOR_PHYS_BASE, 0x01000000, 1, NULL);
+	platform_device_register(&ts72xx_rtc_device);
 }
 
 MACHINE_START(TS72XX, "Technologic Systems TS-72xx SBC")

+ 448 - 63
arch/arm/mach-imx/dma.c

@@ -7,11 +7,18 @@
  *  it under the terms of the GNU General Public License version 2 as
  *  published by the Free Software Foundation.
  *
- *  03/03/2004 Sascha Hauer <sascha@saschahauer.de>
+ *  2004-03-03 Sascha Hauer <sascha@saschahauer.de>
  *             initial version heavily inspired by
  *             linux/arch/arm/mach-pxa/dma.c
+ *
+ *  2005-04-17 Pavel Pisa <pisa@cmp.felk.cvut.cz>
+ *             Changed to support scatter gather DMA
+ *             by taking Russell's code from RiscPC
+ *
  */
 
+#undef DEBUG
+
 #include <linux/module.h>
 #include <linux/init.h>
 #include <linux/kernel.h>
@@ -22,69 +29,368 @@
 #include <asm/irq.h>
 #include <asm/hardware.h>
 #include <asm/dma.h>
+#include <asm/arch/imx-dma.h>
+
+struct imx_dma_channel imx_dma_channels[IMX_DMA_CHANNELS];
+
+/*
+ * imx_dma_sg_next - prepare next chunk for scatter-gather DMA emulation
+ * @dma_ch: i.MX DMA channel number
+ * @lastcount: number of bytes transferred during last transfer
+ *
+ * Functions prepares DMA controller for next sg data chunk transfer.
+ * The @lastcount argument informs function about number of bytes transferred
+ * during last block. Zero value can be used for @lastcount to setup DMA
+ * for the first chunk.
+ */
+static inline int imx_dma_sg_next(imx_dmach_t dma_ch, unsigned int lastcount)
+{
+	struct imx_dma_channel *imxdma = &imx_dma_channels[dma_ch];
+	unsigned int nextcount;
+	unsigned int nextaddr;
+
+	if (!imxdma->name) {
+		printk(KERN_CRIT "%s: called for  not allocated channel %d\n",
+		       __FUNCTION__, dma_ch);
+		return 0;
+	}
+
+	imxdma->resbytes -= lastcount;
+
+	if (!imxdma->sg) {
+		pr_debug("imxdma%d: no sg data\n", dma_ch);
+		return 0;
+	}
+
+	imxdma->sgbc += lastcount;
+	if ((imxdma->sgbc >= imxdma->sg->length) || !imxdma->resbytes) {
+		if ((imxdma->sgcount <= 1) || !imxdma->resbytes) {
+			pr_debug("imxdma%d: sg transfer limit reached\n",
+				 dma_ch);
+			imxdma->sgcount=0;
+			imxdma->sg = NULL;
+			return 0;
+		} else {
+			imxdma->sgcount--;
+			imxdma->sg++;
+			imxdma->sgbc = 0;
+		}
+	}
+	nextcount = imxdma->sg->length - imxdma->sgbc;
+	nextaddr = imxdma->sg->dma_address + imxdma->sgbc;
 
-static struct dma_channel {
-	char *name;
-	void (*irq_handler) (int, void *, struct pt_regs *);
-	void (*err_handler) (int, void *, struct pt_regs *);
-	void *data;
-} dma_channels[11];
+	if(imxdma->resbytes < nextcount)
+		nextcount = imxdma->resbytes;
 
-/* set err_handler to NULL to have the standard info-only error handler */
+	if ((imxdma->dma_mode & DMA_MODE_MASK) == DMA_MODE_READ)
+		DAR(dma_ch) = nextaddr;
+	else
+		SAR(dma_ch) = nextaddr;
+
+	CNTR(dma_ch) = nextcount;
+	pr_debug("imxdma%d: next sg chunk dst 0x%08x, src 0x%08x, size 0x%08x\n",
+		 dma_ch, DAR(dma_ch), SAR(dma_ch), CNTR(dma_ch));
+
+	return nextcount;
+}
+
+/*
+ * imx_dma_setup_sg_base - scatter-gather DMA emulation
+ * @dma_ch: i.MX DMA channel number
+ * @sg: pointer to the scatter-gather list/vector
+ * @sgcount: scatter-gather list hungs count
+ *
+ * Functions sets up i.MX DMA state for emulated scatter-gather transfer
+ * and sets up channel registers to be ready for the first chunk
+ */
+static int
+imx_dma_setup_sg_base(imx_dmach_t dma_ch,
+		      struct scatterlist *sg, unsigned int sgcount)
+{
+	struct imx_dma_channel *imxdma = &imx_dma_channels[dma_ch];
+
+	imxdma->sg = sg;
+	imxdma->sgcount = sgcount;
+	imxdma->sgbc = 0;
+	return imx_dma_sg_next(dma_ch, 0);
+}
+
+/**
+ * imx_dma_setup_single - setup i.MX DMA channel for linear memory to/from device transfer
+ * @dma_ch: i.MX DMA channel number
+ * @dma_address: the DMA/physical memory address of the linear data block
+ *		to transfer
+ * @dma_length: length of the data block in bytes
+ * @dev_addr: physical device port address
+ * @dmamode: DMA transfer mode, %DMA_MODE_READ from the device to the memory
+ *           or %DMA_MODE_WRITE from memory to the device
+ *
+ * The function setups DMA channel source and destination addresses for transfer
+ * specified by provided parameters. The scatter-gather emulation is disabled,
+ * because linear data block
+ * form the physical address range is transfered.
+ * Return value: if incorrect parameters are provided -%EINVAL.
+ *		Zero indicates success.
+ */
 int
-imx_request_dma(char *name, imx_dma_prio prio,
-		void (*irq_handler) (int, void *, struct pt_regs *),
-		void (*err_handler) (int, void *, struct pt_regs *), void *data)
+imx_dma_setup_single(imx_dmach_t dma_ch, dma_addr_t dma_address,
+		     unsigned int dma_length, unsigned int dev_addr,
+		     dmamode_t dmamode)
 {
-	unsigned long flags;
-	int i, found = 0;
+	struct imx_dma_channel *imxdma = &imx_dma_channels[dma_ch];
 
-	/* basic sanity checks */
-	if (!name || !irq_handler)
+	imxdma->sg = NULL;
+	imxdma->sgcount = 0;
+	imxdma->dma_mode = dmamode;
+	imxdma->resbytes = dma_length;
+
+	if (!dma_address) {
+		printk(KERN_ERR "imxdma%d: imx_dma_setup_single null address\n",
+		       dma_ch);
 		return -EINVAL;
+	}
 
-	local_irq_save(flags);
+	if (!dma_length) {
+		printk(KERN_ERR "imxdma%d: imx_dma_setup_single zero length\n",
+		       dma_ch);
+		return -EINVAL;
+	}
 
-	/* try grabbing a DMA channel with the requested priority */
-	for (i = prio; i < prio + (prio == DMA_PRIO_LOW) ? 8 : 4; i++) {
-		if (!dma_channels[i].name) {
-			found = 1;
-			break;
-		}
+	if ((dmamode & DMA_MODE_MASK) == DMA_MODE_READ) {
+		pr_debug("imxdma%d: mx_dma_setup_single2dev dma_addressg=0x%08x dma_length=%d dev_addr=0x%08x for read\n",
+			dma_ch, (unsigned int)dma_address, dma_length,
+			dev_addr);
+		SAR(dma_ch) = dev_addr;
+		DAR(dma_ch) = (unsigned int)dma_address;
+	} else if ((dmamode & DMA_MODE_MASK) == DMA_MODE_WRITE) {
+		pr_debug("imxdma%d: mx_dma_setup_single2dev dma_addressg=0x%08x dma_length=%d dev_addr=0x%08x for write\n",
+			dma_ch, (unsigned int)dma_address, dma_length,
+			dev_addr);
+		SAR(dma_ch) = (unsigned int)dma_address;
+		DAR(dma_ch) = dev_addr;
+	} else {
+		printk(KERN_ERR "imxdma%d: imx_dma_setup_single bad dmamode\n",
+		       dma_ch);
+		return -EINVAL;
 	}
 
-	if (!found) {
-		/* requested prio group is full, try hier priorities */
-		for (i = prio - 1; i >= 0; i--) {
-			if (!dma_channels[i].name) {
-				found = 1;
-				break;
-			}
-		}
+	CNTR(dma_ch) = dma_length;
+
+	return 0;
+}
+
+/**
+ * imx_dma_setup_sg - setup i.MX DMA channel SG list to/from device transfer
+ * @dma_ch: i.MX DMA channel number
+ * @sg: pointer to the scatter-gather list/vector
+ * @sgcount: scatter-gather list hungs count
+ * @dma_length: total length of the transfer request in bytes
+ * @dev_addr: physical device port address
+ * @dmamode: DMA transfer mode, %DMA_MODE_READ from the device to the memory
+ *           or %DMA_MODE_WRITE from memory to the device
+ *
+ * The function setups DMA channel state and registers to be ready for transfer
+ * specified by provided parameters. The scatter-gather emulation is set up
+ * according to the parameters.
+ *
+ * The full preparation of the transfer requires setup of more register
+ * by the caller before imx_dma_enable() can be called.
+ *
+ * %BLR(dma_ch) holds transfer burst length in bytes, 0 means 64 bytes
+ *
+ * %RSSR(dma_ch) has to be set to the DMA request line source %DMA_REQ_xxx
+ *
+ * %CCR(dma_ch) has to specify transfer parameters, the next settings is typical
+ * for linear or simple scatter-gather transfers if %DMA_MODE_READ is specified
+ *
+ * %CCR_DMOD_LINEAR | %CCR_DSIZ_32 | %CCR_SMOD_FIFO | %CCR_SSIZ_x
+ *
+ * The typical setup for %DMA_MODE_WRITE is specified by next options combination
+ *
+ * %CCR_SMOD_LINEAR | %CCR_SSIZ_32 | %CCR_DMOD_FIFO | %CCR_DSIZ_x
+ *
+ * Be carefull there and do not mistakenly mix source and target device
+ * port sizes constants, they are really different:
+ * %CCR_SSIZ_8, %CCR_SSIZ_16, %CCR_SSIZ_32,
+ * %CCR_DSIZ_8, %CCR_DSIZ_16, %CCR_DSIZ_32
+ *
+ * Return value: if incorrect parameters are provided -%EINVAL.
+ * Zero indicates success.
+ */
+int
+imx_dma_setup_sg(imx_dmach_t dma_ch,
+		 struct scatterlist *sg, unsigned int sgcount, unsigned int dma_length,
+		 unsigned int dev_addr, dmamode_t dmamode)
+{
+	int res;
+	struct imx_dma_channel *imxdma = &imx_dma_channels[dma_ch];
+
+	imxdma->sg = NULL;
+	imxdma->sgcount = 0;
+	imxdma->dma_mode = dmamode;
+	imxdma->resbytes = dma_length;
+
+	if (!sg || !sgcount) {
+		printk(KERN_ERR "imxdma%d: imx_dma_setup_sg epty sg list\n",
+		       dma_ch);
+		return -EINVAL;
+	}
+
+	if (!sg->length) {
+		printk(KERN_ERR "imxdma%d: imx_dma_setup_sg zero length\n",
+		       dma_ch);
+		return -EINVAL;
 	}
 
-	if (found) {
-		DIMR &= ~(1 << i);
-		dma_channels[i].name = name;
-		dma_channels[i].irq_handler = irq_handler;
-		dma_channels[i].err_handler = err_handler;
-		dma_channels[i].data = data;
+	if ((dmamode & DMA_MODE_MASK) == DMA_MODE_READ) {
+		pr_debug("imxdma%d: mx_dma_setup_sg2dev sg=%p sgcount=%d total length=%d dev_addr=0x%08x for read\n",
+			dma_ch, sg, sgcount, dma_length, dev_addr);
+		SAR(dma_ch) = dev_addr;
+	} else if ((dmamode & DMA_MODE_MASK) == DMA_MODE_WRITE) {
+		pr_debug("imxdma%d: mx_dma_setup_sg2dev sg=%p sgcount=%d total length=%d dev_addr=0x%08x for write\n",
+			dma_ch, sg, sgcount, dma_length, dev_addr);
+		DAR(dma_ch) = dev_addr;
 	} else {
-		printk(KERN_WARNING "No more available DMA channels for %s\n",
-		       name);
-		i = -ENODEV;
+		printk(KERN_ERR "imxdma%d: imx_dma_setup_sg bad dmamode\n",
+		       dma_ch);
+		return -EINVAL;
+	}
+
+	res = imx_dma_setup_sg_base(dma_ch, sg, sgcount);
+	if (res <= 0) {
+		printk(KERN_ERR "imxdma%d: no sg chunk ready\n", dma_ch);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+/**
+ * imx_dma_setup_handlers - setup i.MX DMA channel end and error notification handlers
+ * @dma_ch: i.MX DMA channel number
+ * @irq_handler: the pointer to the function called if the transfer
+ *		ends successfully
+ * @err_handler: the pointer to the function called if the premature
+ *		end caused by error occurs
+ * @data: user specified value to be passed to the handlers
+ */
+int
+imx_dma_setup_handlers(imx_dmach_t dma_ch,
+		       void (*irq_handler) (int, void *, struct pt_regs *),
+		       void (*err_handler) (int, void *, struct pt_regs *),
+		       void *data)
+{
+	struct imx_dma_channel *imxdma = &imx_dma_channels[dma_ch];
+	unsigned long flags;
+
+	if (!imxdma->name) {
+		printk(KERN_CRIT "%s: called for  not allocated channel %d\n",
+		       __FUNCTION__, dma_ch);
+		return -ENODEV;
+	}
+
+	local_irq_save(flags);
+	DISR = (1 << dma_ch);
+	imxdma->irq_handler = irq_handler;
+	imxdma->err_handler = err_handler;
+	imxdma->data = data;
+	local_irq_restore(flags);
+	return 0;
+}
+
+/**
+ * imx_dma_enable - function to start i.MX DMA channel operation
+ * @dma_ch: i.MX DMA channel number
+ *
+ * The channel has to be allocated by driver through imx_dma_request()
+ * or imx_dma_request_by_prio() function.
+ * The transfer parameters has to be set to the channel registers through
+ * call of the imx_dma_setup_single() or imx_dma_setup_sg() function
+ * and registers %BLR(dma_ch), %RSSR(dma_ch) and %CCR(dma_ch) has to
+ * be set prior this function call by the channel user.
+ */
+void imx_dma_enable(imx_dmach_t dma_ch)
+{
+	struct imx_dma_channel *imxdma = &imx_dma_channels[dma_ch];
+	unsigned long flags;
+
+	pr_debug("imxdma%d: imx_dma_enable\n", dma_ch);
+
+	if (!imxdma->name) {
+		printk(KERN_CRIT "%s: called for  not allocated channel %d\n",
+		       __FUNCTION__, dma_ch);
+		return;
+	}
+
+	local_irq_save(flags);
+	DISR = (1 << dma_ch);
+	DIMR &= ~(1 << dma_ch);
+	CCR(dma_ch) |= CCR_CEN;
+	local_irq_restore(flags);
+}
+
+/**
+ * imx_dma_disable - stop, finish i.MX DMA channel operatin
+ * @dma_ch: i.MX DMA channel number
+ */
+void imx_dma_disable(imx_dmach_t dma_ch)
+{
+	unsigned long flags;
+
+	pr_debug("imxdma%d: imx_dma_disable\n", dma_ch);
+
+	local_irq_save(flags);
+	DIMR |= (1 << dma_ch);
+	CCR(dma_ch) &= ~CCR_CEN;
+	DISR = (1 << dma_ch);
+	local_irq_restore(flags);
+}
+
+/**
+ * imx_dma_request - request/allocate specified channel number
+ * @dma_ch: i.MX DMA channel number
+ * @name: the driver/caller own non-%NULL identification
+ */
+int imx_dma_request(imx_dmach_t dma_ch, const char *name)
+{
+	struct imx_dma_channel *imxdma = &imx_dma_channels[dma_ch];
+	unsigned long flags;
+
+	/* basic sanity checks */
+	if (!name)
+		return -EINVAL;
+
+	if (dma_ch >= IMX_DMA_CHANNELS) {
+		printk(KERN_CRIT "%s: called for  non-existed channel %d\n",
+		       __FUNCTION__, dma_ch);
+		return -EINVAL;
 	}
 
+	local_irq_save(flags);
+	if (imxdma->name) {
+		local_irq_restore(flags);
+		return -ENODEV;
+	}
+
+	imxdma->name = name;
+	imxdma->irq_handler = NULL;
+	imxdma->err_handler = NULL;
+	imxdma->data = NULL;
+	imxdma->sg = NULL;
 	local_irq_restore(flags);
-	return i;
+	return 0;
 }
 
-void
-imx_free_dma(int dma_ch)
+/**
+ * imx_dma_free - release previously acquired channel
+ * @dma_ch: i.MX DMA channel number
+ */
+void imx_dma_free(imx_dmach_t dma_ch)
 {
 	unsigned long flags;
+	struct imx_dma_channel *imxdma = &imx_dma_channels[dma_ch];
 
-	if (!dma_channels[dma_ch].name) {
+	if (!imxdma->name) {
 		printk(KERN_CRIT
 		       "%s: trying to free channel %d which is already freed\n",
 		       __FUNCTION__, dma_ch);
@@ -92,27 +398,84 @@ imx_free_dma(int dma_ch)
 	}
 
 	local_irq_save(flags);
-	DIMR &= ~(1 << dma_ch);
-	dma_channels[dma_ch].name = NULL;
+	/* Disable interrupts */
+	DIMR |= (1 << dma_ch);
+	CCR(dma_ch) &= ~CCR_CEN;
+	imxdma->name = NULL;
 	local_irq_restore(flags);
 }
 
-static irqreturn_t
-dma_err_handler(int irq, void *dev_id, struct pt_regs *regs)
+/**
+ * imx_dma_request_by_prio - find and request some of free channels best suiting requested priority
+ * @dma_ch: i.MX DMA channel number
+ * @name: the driver/caller own non-%NULL identification
+ * @prio: one of the hardware distinguished priority level:
+ *        %DMA_PRIO_HIGH, %DMA_PRIO_MEDIUM, %DMA_PRIO_LOW
+ *
+ * This function tries to find free channel in the specified priority group
+ * if the priority cannot be achieved it tries to look for free channel
+ * in the higher and then even lower priority groups.
+ *
+ * Return value: If there is no free channel to allocate, -%ENODEV is returned.
+ *               Zero value indicates successful channel allocation.
+ */
+int
+imx_dma_request_by_prio(imx_dmach_t * pdma_ch, const char *name,
+			imx_dma_prio prio)
+{
+	int i;
+	int best;
+
+	switch (prio) {
+	case (DMA_PRIO_HIGH):
+		best = 8;
+		break;
+	case (DMA_PRIO_MEDIUM):
+		best = 4;
+		break;
+	case (DMA_PRIO_LOW):
+	default:
+		best = 0;
+		break;
+	}
+
+	for (i = best; i < IMX_DMA_CHANNELS; i++) {
+		if (!imx_dma_request(i, name)) {
+			*pdma_ch = i;
+			return 0;
+		}
+	}
+
+	for (i = best - 1; i >= 0; i--) {
+		if (!imx_dma_request(i, name)) {
+			*pdma_ch = i;
+			return 0;
+		}
+	}
+
+	printk(KERN_ERR "%s: no free DMA channel found\n", __FUNCTION__);
+
+	return -ENODEV;
+}
+
+static irqreturn_t dma_err_handler(int irq, void *dev_id, struct pt_regs *regs)
 {
 	int i, disr = DISR;
-	struct dma_channel *channel;
+	struct imx_dma_channel *channel;
 	unsigned int err_mask = DBTOSR | DRTOSR | DSESR | DBOSR;
 
 	DISR = disr;
-	for (i = 0; i < 11; i++) {
-		channel = &dma_channels[i];
+	for (i = 0; i < IMX_DMA_CHANNELS; i++) {
+		channel = &imx_dma_channels[i];
 
-		if ( (err_mask & 1<<i) && channel->name && channel->err_handler) {
+		if ((err_mask & 1 << i) && channel->name
+		    && channel->err_handler) {
 			channel->err_handler(i, channel->data, regs);
 			continue;
 		}
 
+		imx_dma_channels[i].sg = NULL;
+
 		if (DBTOSR & (1 << i)) {
 			printk(KERN_WARNING
 			       "Burst timeout on channel %d (%s)\n",
@@ -141,17 +504,27 @@ dma_err_handler(int irq, void *dev_id, struct pt_regs *regs)
 	return IRQ_HANDLED;
 }
 
-static irqreturn_t
-dma_irq_handler(int irq, void *dev_id, struct pt_regs *regs)
+static irqreturn_t dma_irq_handler(int irq, void *dev_id, struct pt_regs *regs)
 {
 	int i, disr = DISR;
 
+	pr_debug("imxdma: dma_irq_handler called, disr=0x%08x\n",
+		     disr);
+
 	DISR = disr;
-	for (i = 0; i < 11; i++) {
+	for (i = 0; i < IMX_DMA_CHANNELS; i++) {
 		if (disr & (1 << i)) {
-			struct dma_channel *channel = &dma_channels[i];
-			if (channel->name && channel->irq_handler) {
-				channel->irq_handler(i, channel->data, regs);
+			struct imx_dma_channel *channel = &imx_dma_channels[i];
+			if (channel->name) {
+				if (imx_dma_sg_next(i, CNTR(i))) {
+					CCR(i) &= ~CCR_CEN;
+					mb();
+					CCR(i) |= CCR_CEN;
+				} else {
+					if (channel->irq_handler)
+						channel->irq_handler(i,
+							channel->data, regs);
+				}
 			} else {
 				/*
 				 * IRQ for an unregistered DMA channel:
@@ -165,10 +538,10 @@ dma_irq_handler(int irq, void *dev_id, struct pt_regs *regs)
 	return IRQ_HANDLED;
 }
 
-static int __init
-imx_dma_init(void)
+static int __init imx_dma_init(void)
 {
 	int ret;
+	int i;
 
 	/* reset DMA module */
 	DCR = DCR_DRST;
@@ -189,15 +562,27 @@ imx_dma_init(void)
 	DCR = DCR_DEN;
 
 	/* clear all interrupts */
-	DISR = 0x3ff;
+	DISR = (1 << IMX_DMA_CHANNELS) - 1;
 
 	/* enable interrupts */
-	DIMR = 0;
+	DIMR = (1 << IMX_DMA_CHANNELS) - 1;
+
+	for (i = 0; i < IMX_DMA_CHANNELS; i++) {
+		imx_dma_channels[i].sg = NULL;
+		imx_dma_channels[i].dma_num = i;
+	}
 
 	return ret;
 }
 
 arch_initcall(imx_dma_init);
 
-EXPORT_SYMBOL(imx_request_dma);
-EXPORT_SYMBOL(imx_free_dma);
+EXPORT_SYMBOL(imx_dma_setup_single);
+EXPORT_SYMBOL(imx_dma_setup_sg);
+EXPORT_SYMBOL(imx_dma_setup_handlers);
+EXPORT_SYMBOL(imx_dma_enable);
+EXPORT_SYMBOL(imx_dma_disable);
+EXPORT_SYMBOL(imx_dma_request);
+EXPORT_SYMBOL(imx_dma_free);
+EXPORT_SYMBOL(imx_dma_request_by_prio);
+EXPORT_SYMBOL(imx_dma_channels);

+ 13 - 0
arch/arm/mach-imx/generic.c

@@ -33,6 +33,7 @@
 #include <asm/arch/imx-regs.h>
 
 #include <asm/mach/map.h>
+#include <asm/arch/mmc.h>
 
 void imx_gpio_mode(int gpio_mode)
 {
@@ -175,13 +176,25 @@ static struct resource imx_mmc_resources[] = {
 	},
 };
 
+static u64 imxmmmc_dmamask = 0xffffffffUL;
+
 static struct platform_device imx_mmc_device = {
 	.name		= "imx-mmc",
 	.id		= 0,
+	.dev		= {
+		.dma_mask = &imxmmmc_dmamask,
+		.coherent_dma_mask = 0xffffffff,
+	},
 	.num_resources	= ARRAY_SIZE(imx_mmc_resources),
 	.resource	= imx_mmc_resources,
 };
 
+void __init imx_set_mmc_info(struct imxmmc_platform_data *info)
+{
+	imx_mmc_device.dev.platform_data = info;
+}
+EXPORT_SYMBOL(imx_set_mmc_info);
+
 static struct resource imx_uart1_resources[] = {
 	[0] = {
 		.start	= 0x00206000,

+ 18 - 0
arch/arm/mach-imx/mx1ads.c

@@ -25,6 +25,7 @@
 #include <asm/mach-types.h>
 
 #include <asm/mach/arch.h>
+#include <asm/arch/mmc.h>
 #include <linux/interrupt.h>
 #include "generic.h"
 
@@ -51,11 +52,28 @@ static struct platform_device *devices[] __initdata = {
 	&cs89x0_device,
 };
 
+#ifdef CONFIG_MMC_IMX
+static int mx1ads_mmc_card_present(void)
+{
+	/* MMC/SD Card Detect is PB 20 on MX1ADS V1.0.7 */
+	return (SSR(1) & (1 << 20) ? 0 : 1);
+}
+
+static struct imxmmc_platform_data mx1ads_mmc_info = {
+       .card_present = mx1ads_mmc_card_present,
+};
+#endif
+
 static void __init
 mx1ads_init(void)
 {
 #ifdef CONFIG_LEDS
 	imx_gpio_mode(GPIO_PORTA | GPIO_OUT | 2);
+#endif
+#ifdef CONFIG_MMC_IMX
+	/* SD/MMC card detect */
+	imx_gpio_mode(GPIO_PORTB | GPIO_GIUS | GPIO_IN | 20);
+	imx_set_mmc_info(&mx1ads_mmc_info);
 #endif
 	platform_add_devices(devices, ARRAY_SIZE(devices));
 }

+ 9 - 0
arch/arm/mach-ixp23xx/espresso.c

@@ -44,6 +44,15 @@
 #include <asm/mach/irq.h>
 #include <asm/mach/pci.h>
 
+static int __init espresso_pci_init(void)
+{
+	if (machine_is_espresso())
+		ixp23xx_pci_slave_init();
+
+	return 0;
+};
+subsys_initcall(espresso_pci_init);
+
 static void __init espresso_init(void)
 {
 	physmap_configure(0x90000000, 0x02000000, 2, NULL);

+ 17 - 1
arch/arm/mach-ixp23xx/pci.c

@@ -201,7 +201,7 @@ int clear_master_aborts(void)
 	return 0;
 }
 
-void __init ixp23xx_pci_preinit(void)
+static void __init ixp23xx_pci_common_init(void)
 {
 #ifdef __ARMEB__
 	*IXP23XX_PCI_CONTROL |= 0x20000;	/* set I/O swapping */
@@ -219,7 +219,18 @@ void __init ixp23xx_pci_preinit(void)
 		*IXP23XX_PCI_CPP_ADDR_BITS &= ~(1 << 1);
 	} else {
 		*IXP23XX_PCI_CPP_ADDR_BITS |= (1 << 1);
+
+		/*
+		 * Enable coherency on A2 silicon.
+		 */
+		if (arch_is_coherent())
+			*IXP23XX_CPP2XSI_CURR_XFER_REG3 &= ~IXP23XX_CPP2XSI_COH_OFF;
 	}
+}
+
+void __init ixp23xx_pci_preinit(void)
+{
+	ixp23xx_pci_common_init();
 
 	hook_fault_code(16+6, ixp23xx_pci_abort_handler, SIGBUS,
 			"PCI config cycle to non-existent device");
@@ -273,3 +284,8 @@ int ixp23xx_pci_setup(int nr, struct pci_sys_data *sys)
 
 	return 1;
 }
+
+void ixp23xx_pci_slave_init(void)
+{
+	ixp23xx_pci_common_init();
+}

+ 14 - 6
arch/arm/mach-omap1/Kconfig

@@ -69,12 +69,6 @@ config MACH_VOICEBLUE
 	  Support for Voiceblue GSM/VoIP gateway. Say Y here if you have
 	  such a board.
 
-config MACH_NETSTAR
-	bool "NetStar"
-	depends on ARCH_OMAP1 && ARCH_OMAP15XX
-	help
-	  Support for NetStar PBX. Say Y here if you have such a board.
-
 config MACH_OMAP_PALMTE
 	bool "Palm Tungsten E"
 	depends on ARCH_OMAP1 && ARCH_OMAP15XX
@@ -85,6 +79,20 @@ config MACH_OMAP_PALMTE
           informations.
           Say Y here if you have such a PDA, say NO otherwise.
 
+config MACH_NOKIA770
+	bool "Nokia 770"
+	depends on ARCH_OMAP1 && ARCH_OMAP16XX
+	help
+	  Support for the Nokia 770 Internet Tablet. Say Y here if you
+	  have such a device.
+
+config MACH_AMS_DELTA
+	bool "Amstrad E3 (Delta)"
+	depends on ARCH_OMAP1 && ARCH_OMAP15XX
+	help
+	  Support for the Amstrad E3 (codename Delta) videophone. Say Y here
+	  if you have such a device.
+
 config MACH_OMAP_GENERIC
 	bool "Generic OMAP board"
 	depends on ARCH_OMAP1 && (ARCH_OMAP15XX || ARCH_OMAP16XX)

+ 9 - 2
arch/arm/mach-omap1/Makefile

@@ -3,7 +3,13 @@
 #
 
 # Common support
-obj-y := io.o id.o clock.o irq.o time.o mux.o serial.o devices.o
+obj-y := io.o id.o clock.o irq.o mux.o serial.o devices.o
+
+obj-$(CONFIG_OMAP_MPU_TIMER)		+= time.o
+
+# Power Management
+obj-$(CONFIG_PM) += pm.o sleep.o
+
 led-y := leds.o
 
 # Specific board support
@@ -14,8 +20,9 @@ obj-$(CONFIG_MACH_OMAP_PERSEUS2)	+= board-perseus2.o
 obj-$(CONFIG_MACH_OMAP_OSK)		+= board-osk.o
 obj-$(CONFIG_MACH_OMAP_H3)		+= board-h3.o
 obj-$(CONFIG_MACH_VOICEBLUE)		+= board-voiceblue.o
-obj-$(CONFIG_MACH_NETSTAR)		+= board-netstar.o
 obj-$(CONFIG_MACH_OMAP_PALMTE)		+= board-palmte.o
+obj-$(CONFIG_MACH_NOKIA770)		+= board-nokia770.o
+obj-$(CONFIG_MACH_AMS_DELTA)		+= board-ams-delta.o
 
 ifeq ($(CONFIG_ARCH_OMAP15XX),y)
 # Innovator-1510 FPGA

+ 116 - 0
arch/arm/mach-omap1/board-ams-delta.c

@@ -0,0 +1,116 @@
+/*
+ * linux/arch/arm/mach-omap1/board-ams-delta.c
+ *
+ * Modified from board-generic.c
+ *
+ * Board specific inits for the Amstrad E3 (codename Delta) videophone
+ *
+ * Copyright (C) 2006 Jonathan McDowell <noodles@earth.li>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/platform_device.h>
+
+#include <asm/hardware.h>
+#include <asm/mach-types.h>
+#include <asm/mach/arch.h>
+#include <asm/mach/map.h>
+
+#include <asm/arch/board-ams-delta.h>
+#include <asm/arch/gpio.h>
+#include <asm/arch/mux.h>
+#include <asm/arch/usb.h>
+#include <asm/arch/board.h>
+#include <asm/arch/common.h>
+
+static u8 ams_delta_latch1_reg;
+static u16 ams_delta_latch2_reg;
+
+void ams_delta_latch1_write(u8 mask, u8 value)
+{
+	ams_delta_latch1_reg &= ~mask;
+	ams_delta_latch1_reg |= value;
+	*(volatile __u8 *) AMS_DELTA_LATCH1_VIRT = ams_delta_latch1_reg;
+}
+
+void ams_delta_latch2_write(u16 mask, u16 value)
+{
+	ams_delta_latch2_reg &= ~mask;
+	ams_delta_latch2_reg |= value;
+	*(volatile __u16 *) AMS_DELTA_LATCH2_VIRT = ams_delta_latch2_reg;
+}
+
+static void __init ams_delta_init_irq(void)
+{
+	omap1_init_common_hw();
+	omap_init_irq();
+	omap_gpio_init();
+}
+
+static struct map_desc ams_delta_io_desc[] __initdata = {
+	// AMS_DELTA_LATCH1
+	{
+		.virtual	= AMS_DELTA_LATCH1_VIRT,
+		.pfn		= __phys_to_pfn(AMS_DELTA_LATCH1_PHYS),
+		.length		= 0x01000000,
+		.type		= MT_DEVICE
+	},
+	// AMS_DELTA_LATCH2
+	{
+		.virtual	= AMS_DELTA_LATCH2_VIRT,
+		.pfn		= __phys_to_pfn(AMS_DELTA_LATCH2_PHYS),
+		.length		= 0x01000000,
+		.type		= MT_DEVICE
+	},
+	// AMS_DELTA_MODEM
+	{
+		.virtual	= AMS_DELTA_MODEM_VIRT,
+		.pfn		= __phys_to_pfn(AMS_DELTA_MODEM_PHYS),
+		.length		= 0x01000000,
+		.type		= MT_DEVICE
+	}
+};
+
+static struct omap_uart_config ams_delta_uart_config __initdata = {
+	.enabled_uarts = 1,
+};
+
+static struct omap_board_config_kernel ams_delta_config[] = {
+	{ OMAP_TAG_UART,	&ams_delta_uart_config },
+};
+
+static void __init ams_delta_init(void)
+{
+	iotable_init(ams_delta_io_desc, ARRAY_SIZE(ams_delta_io_desc));
+
+	omap_board_config = ams_delta_config;
+	omap_board_config_size = ARRAY_SIZE(ams_delta_config);
+	omap_serial_init();
+
+	/* Clear latch2 (NAND, LCD, modem enable) */
+	ams_delta_latch2_write(~0, 0);
+}
+
+static void __init ams_delta_map_io(void)
+{
+	omap1_map_common_io();
+}
+
+MACHINE_START(AMS_DELTA, "Amstrad E3 (Delta)")
+	/* Maintainer: Jonathan McDowell <noodles@earth.li> */
+	.phys_io	= 0xfff00000,
+	.io_pg_offst	= ((0xfef00000) >> 18) & 0xfffc,
+	.boot_params	= 0x10000100,
+	.map_io		= ams_delta_map_io,
+	.init_irq	= ams_delta_init_irq,
+	.init_machine	= ams_delta_init,
+	.timer		= &omap_timer,
+MACHINE_END
+
+EXPORT_SYMBOL(ams_delta_latch1_write);
+EXPORT_SYMBOL(ams_delta_latch2_write);

+ 1 - 1
arch/arm/mach-omap1/board-generic.c

@@ -88,7 +88,7 @@ static struct omap_board_config_kernel generic_config[] = {
 static void __init omap_generic_init(void)
 {
 #ifdef CONFIG_ARCH_OMAP15XX
-	if (cpu_is_omap1510()) {
+	if (cpu_is_omap15xx()) {
 		generic_config[0].data = &generic1510_usb_config;
 	}
 #endif

+ 186 - 14
arch/arm/mach-omap1/board-h2.c

@@ -24,7 +24,9 @@
 #include <linux/platform_device.h>
 #include <linux/delay.h>
 #include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
 #include <linux/mtd/partitions.h>
+#include <linux/input.h>
 
 #include <asm/hardware.h>
 #include <asm/mach-types.h>
@@ -35,12 +37,55 @@
 #include <asm/arch/gpio.h>
 #include <asm/arch/mux.h>
 #include <asm/arch/tc.h>
+#include <asm/arch/irda.h>
 #include <asm/arch/usb.h>
+#include <asm/arch/keypad.h>
 #include <asm/arch/common.h>
+#include <asm/arch/mcbsp.h>
+#include <asm/arch/omap-alsa.h>
 
 extern int omap_gpio_init(void);
 
-static struct mtd_partition h2_partitions[] = {
+static int h2_keymap[] = {
+	KEY(0, 0, KEY_LEFT),
+	KEY(0, 1, KEY_RIGHT),
+	KEY(0, 2, KEY_3),
+	KEY(0, 3, KEY_F10),
+	KEY(0, 4, KEY_F5),
+	KEY(0, 5, KEY_9),
+	KEY(1, 0, KEY_DOWN),
+	KEY(1, 1, KEY_UP),
+	KEY(1, 2, KEY_2),
+	KEY(1, 3, KEY_F9),
+	KEY(1, 4, KEY_F7),
+	KEY(1, 5, KEY_0),
+	KEY(2, 0, KEY_ENTER),
+	KEY(2, 1, KEY_6),
+	KEY(2, 2, KEY_1),
+	KEY(2, 3, KEY_F2),
+	KEY(2, 4, KEY_F6),
+	KEY(2, 5, KEY_HOME),
+	KEY(3, 0, KEY_8),
+	KEY(3, 1, KEY_5),
+	KEY(3, 2, KEY_F12),
+	KEY(3, 3, KEY_F3),
+	KEY(3, 4, KEY_F8),
+	KEY(3, 5, KEY_END),
+	KEY(4, 0, KEY_7),
+	KEY(4, 1, KEY_4),
+	KEY(4, 2, KEY_F11),
+	KEY(4, 3, KEY_F1),
+	KEY(4, 4, KEY_F4),
+	KEY(4, 5, KEY_ESC),
+	KEY(5, 0, KEY_F13),
+	KEY(5, 1, KEY_F14),
+	KEY(5, 2, KEY_F15),
+	KEY(5, 3, KEY_F16),
+	KEY(5, 4, KEY_SLEEP),
+	0
+};
+
+static struct mtd_partition h2_nor_partitions[] = {
 	/* bootloader (U-Boot, etc) in first sector */
 	{
 	      .name		= "bootloader",
@@ -71,26 +116,26 @@ static struct mtd_partition h2_partitions[] = {
 	}
 };
 
-static struct flash_platform_data h2_flash_data = {
+static struct flash_platform_data h2_nor_data = {
 	.map_name	= "cfi_probe",
 	.width		= 2,
-	.parts		= h2_partitions,
-	.nr_parts	= ARRAY_SIZE(h2_partitions),
+	.parts		= h2_nor_partitions,
+	.nr_parts	= ARRAY_SIZE(h2_nor_partitions),
 };
 
-static struct resource h2_flash_resource = {
+static struct resource h2_nor_resource = {
 	/* This is on CS3, wherever it's mapped */
 	.flags		= IORESOURCE_MEM,
 };
 
-static struct platform_device h2_flash_device = {
+static struct platform_device h2_nor_device = {
 	.name		= "omapflash",
 	.id		= 0,
 	.dev		= {
-		.platform_data	= &h2_flash_data,
+		.platform_data	= &h2_nor_data,
 	},
 	.num_resources	= 1,
-	.resource	= &h2_flash_resource,
+	.resource	= &h2_nor_resource,
 };
 
 static struct resource h2_smc91x_resources[] = {
@@ -113,9 +158,119 @@ static struct platform_device h2_smc91x_device = {
 	.resource	= h2_smc91x_resources,
 };
 
+static struct resource h2_kp_resources[] = {
+	[0] = {
+		.start	= INT_KEYBOARD,
+		.end	= INT_KEYBOARD,
+		.flags	= IORESOURCE_IRQ,
+	},
+};
+
+static struct omap_kp_platform_data h2_kp_data = {
+	.rows	= 8,
+	.cols	= 8,
+	.keymap = h2_keymap,
+	.rep	= 1,
+};
+
+static struct platform_device h2_kp_device = {
+	.name		= "omap-keypad",
+	.id		= -1,
+	.dev		= {
+		.platform_data = &h2_kp_data,
+	},
+	.num_resources	= ARRAY_SIZE(h2_kp_resources),
+	.resource	= h2_kp_resources,
+};
+
+#define H2_IRDA_FIRSEL_GPIO_PIN	17
+
+#if defined(CONFIG_OMAP_IR) || defined(CONFIG_OMAP_IR_MODULE)
+static int h2_transceiver_mode(struct device *dev, int state)
+{
+	if (state & IR_SIRMODE)
+		omap_set_gpio_dataout(H2_IRDA_FIRSEL_GPIO_PIN, 0);
+	else    /* MIR/FIR */
+		omap_set_gpio_dataout(H2_IRDA_FIRSEL_GPIO_PIN, 1);
+
+	return 0;
+}
+#endif
+
+static struct omap_irda_config h2_irda_data = {
+	.transceiver_cap	= IR_SIRMODE | IR_MIRMODE | IR_FIRMODE,
+	.rx_channel		= OMAP_DMA_UART3_RX,
+	.tx_channel		= OMAP_DMA_UART3_TX,
+	.dest_start		= UART3_THR,
+	.src_start		= UART3_RHR,
+	.tx_trigger		= 0,
+	.rx_trigger		= 0,
+};
+
+static struct resource h2_irda_resources[] = {
+	[0] = {
+		.start	= INT_UART3,
+		.end	= INT_UART3,
+		.flags	= IORESOURCE_IRQ,
+	},
+};
+static struct platform_device h2_irda_device = {
+	.name		= "omapirda",
+	.id		= 0,
+	.dev		= {
+		.platform_data	= &h2_irda_data,
+	},
+	.num_resources	= ARRAY_SIZE(h2_irda_resources),
+	.resource	= h2_irda_resources,
+};
+
+static struct platform_device h2_lcd_device = {
+	.name		= "lcd_h2",
+	.id		= -1,
+};
+
+static struct omap_mcbsp_reg_cfg mcbsp_regs = {
+	.spcr2 = FREE | FRST | GRST | XRST | XINTM(3),
+	.spcr1 = RINTM(3) | RRST,
+	.rcr2  = RPHASE | RFRLEN2(OMAP_MCBSP_WORD_8) |
+                RWDLEN2(OMAP_MCBSP_WORD_16) | RDATDLY(1),
+	.rcr1  = RFRLEN1(OMAP_MCBSP_WORD_8) | RWDLEN1(OMAP_MCBSP_WORD_16),
+	.xcr2  = XPHASE | XFRLEN2(OMAP_MCBSP_WORD_8) |
+                XWDLEN2(OMAP_MCBSP_WORD_16) | XDATDLY(1) | XFIG,
+	.xcr1  = XFRLEN1(OMAP_MCBSP_WORD_8) | XWDLEN1(OMAP_MCBSP_WORD_16),
+	.srgr1 = FWID(15),
+	.srgr2 = GSYNC | CLKSP | FSGM | FPER(31),
+
+	.pcr0  = CLKXM | CLKRM | FSXP | FSRP | CLKXP | CLKRP,
+	//.pcr0 = CLKXP | CLKRP,        /* mcbsp: slave */
+};
+
+static struct omap_alsa_codec_config alsa_config = {
+	.name                   = "H2 TSC2101",
+	.mcbsp_regs_alsa        = &mcbsp_regs,
+	.codec_configure_dev    = NULL, // tsc2101_configure,
+	.codec_set_samplerate   = NULL, // tsc2101_set_samplerate,
+	.codec_clock_setup      = NULL, // tsc2101_clock_setup,
+	.codec_clock_on         = NULL, // tsc2101_clock_on,
+	.codec_clock_off        = NULL, // tsc2101_clock_off,
+	.get_default_samplerate = NULL, // tsc2101_get_default_samplerate,
+};
+
+static struct platform_device h2_mcbsp1_device = {
+	.name	= "omap_alsa_mcbsp",
+	.id	= 1,
+	.dev = {
+		.platform_data	= &alsa_config,
+	},
+};
+
 static struct platform_device *h2_devices[] __initdata = {
-	&h2_flash_device,
+	&h2_nor_device,
 	&h2_smc91x_device,
+	&h2_irda_device,
+	&h2_kp_device,
+	&h2_lcd_device,
+	&h2_mcbsp1_device,
 };
 
 static void __init h2_init_smc91x(void)
@@ -164,7 +319,6 @@ static struct omap_uart_config h2_uart_config __initdata = {
 };
 
 static struct omap_lcd_config h2_lcd_config __initdata = {
-	.panel_name	= "h2",
 	.ctrl_name	= "internal",
 };
 
@@ -177,16 +331,34 @@ static struct omap_board_config_kernel h2_config[] = {
 
 static void __init h2_init(void)
 {
-	/* NOTE: revC boards support NAND-boot, which can put NOR on CS2B
-	 * and NAND (either 16bit or 8bit) on CS3.
+	/* Here we assume the NOR boot config:  NOR on CS3 (possibly swapped
+	 * to address 0 by a dip switch), NAND on CS2B.  The NAND driver will
+	 * notice whether a NAND chip is enabled at probe time.
+	 *
+	 * FIXME revC boards (and H3) support NAND-boot, with a dip switch to
+	 * put NOR on CS2B and NAND (which on H2 may be 16bit) on CS3.  Try
+	 * detecting that in code here, to avoid probing every possible flash
+	 * configuration...
 	 */
-	h2_flash_resource.end = h2_flash_resource.start = omap_cs3_phys();
-	h2_flash_resource.end += SZ_32M - 1;
+	h2_nor_resource.end = h2_nor_resource.start = omap_cs3_phys();
+	h2_nor_resource.end += SZ_32M - 1;
+
+	omap_cfg_reg(L3_1610_FLASH_CS2B_OE);
+	omap_cfg_reg(M8_1610_FLASH_CS2B_WE);
 
 	/* MMC:  card detect and WP */
 	// omap_cfg_reg(U19_ARMIO1);		/* CD */
 	omap_cfg_reg(BALLOUT_V8_ARMIO3);	/* WP */
 
+	/* Irda */
+#if defined(CONFIG_OMAP_IR) || defined(CONFIG_OMAP_IR_MODULE)
+	omap_writel(omap_readl(FUNC_MUX_CTRL_A) | 7, FUNC_MUX_CTRL_A);
+	if (!(omap_request_gpio(H2_IRDA_FIRSEL_GPIO_PIN))) {
+		omap_set_gpio_direction(H2_IRDA_FIRSEL_GPIO_PIN, 0);
+		h2_irda_data.transceiver_mode = h2_transceiver_mode;
+	}
+#endif
+
 	platform_add_devices(h2_devices, ARRAY_SIZE(h2_devices));
 	omap_board_config = h2_config;
 	omap_board_config_size = ARRAY_SIZE(h2_config);

+ 264 - 13
arch/arm/mach-omap1/board-h3.c

@@ -21,8 +21,11 @@
 #include <linux/kernel.h>
 #include <linux/platform_device.h>
 #include <linux/errno.h>
+#include <linux/workqueue.h>
 #include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
 #include <linux/mtd/partitions.h>
+#include <linux/input.h>
 
 #include <asm/setup.h>
 #include <asm/page.h>
@@ -33,15 +36,59 @@
 #include <asm/mach/map.h>
 
 #include <asm/arch/gpio.h>
+#include <asm/arch/gpioexpander.h>
 #include <asm/arch/irqs.h>
 #include <asm/arch/mux.h>
 #include <asm/arch/tc.h>
+#include <asm/arch/irda.h>
 #include <asm/arch/usb.h>
+#include <asm/arch/keypad.h>
+#include <asm/arch/dma.h>
 #include <asm/arch/common.h>
 
 extern int omap_gpio_init(void);
 
-static struct mtd_partition h3_partitions[] = {
+static int h3_keymap[] = {
+	KEY(0, 0, KEY_LEFT),
+	KEY(0, 1, KEY_RIGHT),
+	KEY(0, 2, KEY_3),
+	KEY(0, 3, KEY_F10),
+	KEY(0, 4, KEY_F5),
+	KEY(0, 5, KEY_9),
+	KEY(1, 0, KEY_DOWN),
+	KEY(1, 1, KEY_UP),
+	KEY(1, 2, KEY_2),
+	KEY(1, 3, KEY_F9),
+	KEY(1, 4, KEY_F7),
+	KEY(1, 5, KEY_0),
+	KEY(2, 0, KEY_ENTER),
+	KEY(2, 1, KEY_6),
+	KEY(2, 2, KEY_1),
+	KEY(2, 3, KEY_F2),
+	KEY(2, 4, KEY_F6),
+	KEY(2, 5, KEY_HOME),
+	KEY(3, 0, KEY_8),
+	KEY(3, 1, KEY_5),
+	KEY(3, 2, KEY_F12),
+	KEY(3, 3, KEY_F3),
+	KEY(3, 4, KEY_F8),
+	KEY(3, 5, KEY_END),
+	KEY(4, 0, KEY_7),
+	KEY(4, 1, KEY_4),
+	KEY(4, 2, KEY_F11),
+	KEY(4, 3, KEY_F1),
+	KEY(4, 4, KEY_F4),
+	KEY(4, 5, KEY_ESC),
+	KEY(5, 0, KEY_F13),
+	KEY(5, 1, KEY_F14),
+	KEY(5, 2, KEY_F15),
+	KEY(5, 3, KEY_F16),
+	KEY(5, 4, KEY_SLEEP),
+	0
+};
+
+
+static struct mtd_partition nor_partitions[] = {
 	/* bootloader (U-Boot, etc) in first sector */
 	{
 	      .name		= "bootloader",
@@ -72,26 +119,80 @@ static struct mtd_partition h3_partitions[] = {
 	}
 };
 
-static struct flash_platform_data h3_flash_data = {
+static struct flash_platform_data nor_data = {
 	.map_name	= "cfi_probe",
 	.width		= 2,
-	.parts		= h3_partitions,
-	.nr_parts	= ARRAY_SIZE(h3_partitions),
+	.parts		= nor_partitions,
+	.nr_parts	= ARRAY_SIZE(nor_partitions),
 };
 
-static struct resource h3_flash_resource = {
+static struct resource nor_resource = {
 	/* This is on CS3, wherever it's mapped */
 	.flags		= IORESOURCE_MEM,
 };
 
-static struct platform_device flash_device = {
+static struct platform_device nor_device = {
 	.name		= "omapflash",
 	.id		= 0,
 	.dev		= {
-		.platform_data	= &h3_flash_data,
+		.platform_data	= &nor_data,
+	},
+	.num_resources	= 1,
+	.resource	= &nor_resource,
+};
+
+static struct mtd_partition nand_partitions[] = {
+#if 0
+	/* REVISIT: enable these partitions if you make NAND BOOT work */
+	{
+		.name		= "xloader",
+		.offset		= 0,
+		.size		= 64 * 1024,
+		.mask_flags	= MTD_WRITEABLE,	/* force read-only */
+	},
+	{
+		.name		= "bootloader",
+		.offset		= MTDPART_OFS_APPEND,
+		.size		= 256 * 1024,
+		.mask_flags	= MTD_WRITEABLE,	/* force read-only */
+	},
+	{
+		.name		= "params",
+		.offset		= MTDPART_OFS_APPEND,
+		.size		= 192 * 1024,
+	},
+	{
+		.name		= "kernel",
+		.offset		= MTDPART_OFS_APPEND,
+		.size		= 2 * SZ_1M,
+	},
+#endif
+	{
+		.name		= "filesystem",
+		.size		= MTDPART_SIZ_FULL,
+		.offset		= MTDPART_OFS_APPEND,
+	},
+};
+
+/* dip switches control NAND chip access:  8 bit, 16 bit, or neither */
+static struct nand_platform_data nand_data = {
+	.options	= NAND_SAMSUNG_LP_OPTIONS,
+	.parts		= nand_partitions,
+	.nr_parts	= ARRAY_SIZE(nand_partitions),
+};
+
+static struct resource nand_resource = {
+	.flags		= IORESOURCE_MEM,
+};
+
+static struct platform_device nand_device = {
+	.name		= "omapnand",
+	.id		= 0,
+	.dev		= {
+		.platform_data	= &nand_data,
 	},
 	.num_resources	= 1,
-	.resource	= &h3_flash_resource,
+	.resource	= &nand_resource,
 };
 
 static struct resource smc91x_resources[] = {
@@ -138,10 +239,136 @@ static struct platform_device intlat_device = {
 	.resource       = intlat_resources,
 };
 
+static struct resource h3_kp_resources[] = {
+	[0] = {
+		.start	= INT_KEYBOARD,
+		.end	= INT_KEYBOARD,
+		.flags	= IORESOURCE_IRQ,
+	},
+};
+
+static struct omap_kp_platform_data h3_kp_data = {
+	.rows	= 8,
+	.cols	= 8,
+	.keymap = h3_keymap,
+	.rep	= 1,
+};
+
+static struct platform_device h3_kp_device = {
+	.name		= "omap-keypad",
+	.id		= -1,
+	.dev		= {
+		.platform_data = &h3_kp_data,
+	},
+	.num_resources	= ARRAY_SIZE(h3_kp_resources),
+	.resource	= h3_kp_resources,
+};
+
+
+/* Select between the IrDA and aGPS module
+ */
+static int h3_select_irda(struct device *dev, int state)
+{
+	unsigned char expa;
+	int err = 0;
+
+	if ((err = read_gpio_expa(&expa, 0x26))) {
+		printk(KERN_ERR "Error reading from I/O EXPANDER \n");
+		return err;
+	}
+
+	/* 'P6' enable/disable IRDA_TX and IRDA_RX */
+	if (state & IR_SEL) { /* IrDA */
+		if ((err = write_gpio_expa(expa | 0x40, 0x26))) {
+			printk(KERN_ERR "Error writing to I/O EXPANDER \n");
+			return err;
+		}
+	} else {
+		if ((err = write_gpio_expa(expa & ~0x40, 0x26))) {
+			printk(KERN_ERR "Error writing to I/O EXPANDER \n");
+			return err;
+		}
+	}
+	return err;
+}
+
+static void set_trans_mode(void *data)
+{
+	int *mode = data;
+	unsigned char expa;
+	int err = 0;
+
+	if ((err = read_gpio_expa(&expa, 0x27)) != 0) {
+		printk(KERN_ERR "Error reading from I/O expander\n");
+	}
+
+	expa &= ~0x03;
+
+	if (*mode & IR_SIRMODE) {
+		expa |= 0x01;
+	} else { /* MIR/FIR */
+		expa |= 0x03;
+	}
+
+	if ((err = write_gpio_expa(expa, 0x27)) != 0) {
+		printk(KERN_ERR "Error writing to I/O expander\n");
+	}
+}
+
+static int h3_transceiver_mode(struct device *dev, int mode)
+{
+	struct omap_irda_config *irda_config = dev->platform_data;
+
+	cancel_delayed_work(&irda_config->gpio_expa);
+	PREPARE_WORK(&irda_config->gpio_expa, set_trans_mode, &mode);
+	schedule_work(&irda_config->gpio_expa);
+
+	return 0;
+}
+
+static struct omap_irda_config h3_irda_data = {
+	.transceiver_cap	= IR_SIRMODE | IR_MIRMODE | IR_FIRMODE,
+	.transceiver_mode	= h3_transceiver_mode,
+	.select_irda	 	= h3_select_irda,
+	.rx_channel		= OMAP_DMA_UART3_RX,
+	.tx_channel		= OMAP_DMA_UART3_TX,
+	.dest_start		= UART3_THR,
+	.src_start		= UART3_RHR,
+	.tx_trigger		= 0,
+	.rx_trigger		= 0,
+};
+
+static struct resource h3_irda_resources[] = {
+	[0] = {
+		.start	= INT_UART3,
+		.end	= INT_UART3,
+		.flags	= IORESOURCE_IRQ,
+	},
+};
+
+static struct platform_device h3_irda_device = {
+	.name		= "omapirda",
+	.id		= 0,
+	.dev		= {
+		.platform_data	= &h3_irda_data,
+	},
+	.num_resources	= ARRAY_SIZE(h3_irda_resources),
+	.resource	= h3_irda_resources,
+};
+
+static struct platform_device h3_lcd_device = {
+	.name		= "lcd_h3",
+	.id		= -1,
+};
+
 static struct platform_device *devices[] __initdata = {
-	&flash_device,
+	&nor_device,
+	&nand_device,
         &smc91x_device,
 	&intlat_device,
+	&h3_irda_device,
+	&h3_kp_device,
+	&h3_lcd_device,
 };
 
 static struct omap_usb_config h3_usb_config __initdata = {
@@ -171,7 +398,6 @@ static struct omap_uart_config h3_uart_config __initdata = {
 };
 
 static struct omap_lcd_config h3_lcd_config __initdata = {
-	.panel_name	= "h3",
 	.ctrl_name	= "internal",
 };
 
@@ -182,11 +408,36 @@ static struct omap_board_config_kernel h3_config[] = {
 	{ OMAP_TAG_LCD,		&h3_lcd_config },
 };
 
+#define H3_NAND_RB_GPIO_PIN	10
+
+static int nand_dev_ready(struct nand_platform_data *data)
+{
+	return omap_get_gpio_datain(H3_NAND_RB_GPIO_PIN);
+}
+
 static void __init h3_init(void)
 {
-	h3_flash_resource.end = h3_flash_resource.start = omap_cs3_phys();
-	h3_flash_resource.end += OMAP_CS3_SIZE - 1;
-	(void) platform_add_devices(devices, ARRAY_SIZE(devices));
+	/* Here we assume the NOR boot config:  NOR on CS3 (possibly swapped
+	 * to address 0 by a dip switch), NAND on CS2B.  The NAND driver will
+	 * notice whether a NAND chip is enabled at probe time.
+	 *
+	 * H3 support NAND-boot, with a dip switch to put NOR on CS2B and NAND
+	 * (which on H2 may be 16bit) on CS3.  Try detecting that in code here,
+	 * to avoid probing every possible flash configuration...
+	 */
+	nor_resource.end = nor_resource.start = omap_cs3_phys();
+	nor_resource.end += SZ_32M - 1;
+
+	nand_resource.end = nand_resource.start = OMAP_CS2B_PHYS;
+	nand_resource.end += SZ_4K - 1;
+	if (!(omap_request_gpio(H3_NAND_RB_GPIO_PIN)))
+		nand_data.dev_ready = nand_dev_ready;
+
+	/* GPIO10 Func_MUX_CTRL reg bit 29:27, Configure V2 to mode1 as GPIO */
+	/* GPIO10 pullup/down register, Enable pullup on GPIO10 */
+	omap_cfg_reg(V2_1710_GPIO10);
+
+	platform_add_devices(devices, ARRAY_SIZE(devices));
 	omap_board_config = h3_config;
 	omap_board_config_size = ARRAY_SIZE(h3_config);
 	omap_serial_init();

+ 54 - 2
arch/arm/mach-omap1/board-innovator.c

@@ -22,6 +22,7 @@
 #include <linux/delay.h>
 #include <linux/mtd/mtd.h>
 #include <linux/mtd/partitions.h>
+#include <linux/input.h>
 
 #include <asm/hardware.h>
 #include <asm/mach-types.h>
@@ -34,8 +35,22 @@
 #include <asm/arch/gpio.h>
 #include <asm/arch/tc.h>
 #include <asm/arch/usb.h>
+#include <asm/arch/keypad.h>
 #include <asm/arch/common.h>
 
+static int innovator_keymap[] = {
+	KEY(0, 0, KEY_F1),
+	KEY(0, 3, KEY_DOWN),
+	KEY(1, 1, KEY_F2),
+	KEY(1, 2, KEY_RIGHT),
+	KEY(2, 0, KEY_F3),
+	KEY(2, 1, KEY_F4),
+	KEY(2, 2, KEY_UP),
+	KEY(3, 2, KEY_ENTER),
+	KEY(3, 3, KEY_LEFT),
+	0
+};
+
 static struct mtd_partition innovator_partitions[] = {
 	/* bootloader (U-Boot, etc) in first sector */
 	{
@@ -97,6 +112,31 @@ static struct platform_device innovator_flash_device = {
 	.resource	= &innovator_flash_resource,
 };
 
+static struct resource innovator_kp_resources[] = {
+	[0] = {
+		.start	= INT_KEYBOARD,
+		.end	= INT_KEYBOARD,
+		.flags	= IORESOURCE_IRQ,
+	},
+};
+
+static struct omap_kp_platform_data innovator_kp_data = {
+	.rows	= 8,
+	.cols	= 8,
+	.keymap = innovator_keymap,
+};
+
+static struct platform_device innovator_kp_device = {
+	.name		= "omap-keypad",
+	.id		= -1,
+	.dev		= {
+		.platform_data = &innovator_kp_data,
+	},
+	.num_resources	= ARRAY_SIZE(innovator_kp_resources),
+	.resource	= innovator_kp_resources,
+};
+
+
 #ifdef CONFIG_ARCH_OMAP15XX
 
 /* Only FPGA needs to be mapped here. All others are done with ioremap */
@@ -129,9 +169,16 @@ static struct platform_device innovator1510_smc91x_device = {
 	.resource	= innovator1510_smc91x_resources,
 };
 
+static struct platform_device innovator1510_lcd_device = {
+	.name		= "lcd_inn1510",
+	.id		= -1,
+};
+
 static struct platform_device *innovator1510_devices[] __initdata = {
 	&innovator_flash_device,
 	&innovator1510_smc91x_device,
+	&innovator_kp_device,
+	&innovator1510_lcd_device,
 };
 
 #endif /* CONFIG_ARCH_OMAP15XX */
@@ -158,9 +205,16 @@ static struct platform_device innovator1610_smc91x_device = {
 	.resource	= innovator1610_smc91x_resources,
 };
 
+static struct platform_device innovator1610_lcd_device = {
+	.name		= "inn1610_lcd",
+	.id		= -1,
+};
+
 static struct platform_device *innovator1610_devices[] __initdata = {
 	&innovator_flash_device,
 	&innovator1610_smc91x_device,
+	&innovator_kp_device,
+	&innovator1610_lcd_device,
 };
 
 #endif /* CONFIG_ARCH_OMAP16XX */
@@ -206,7 +260,6 @@ static struct omap_usb_config innovator1510_usb_config __initdata = {
 };
 
 static struct omap_lcd_config innovator1510_lcd_config __initdata = {
-	.panel_name	= "inn1510",
 	.ctrl_name	= "internal",
 };
 #endif
@@ -228,7 +281,6 @@ static struct omap_usb_config h2_usb_config __initdata = {
 };
 
 static struct omap_lcd_config innovator1610_lcd_config __initdata = {
-	.panel_name	= "inn1610",
 	.ctrl_name	= "internal",
 };
 #endif

+ 0 - 160
arch/arm/mach-omap1/board-netstar.c

@@ -1,160 +0,0 @@
-/*
- * Modified from board-generic.c
- *
- * Copyright (C) 2004 2N Telekomunikace, Ladislav Michl <michl@2n.cz>
- *
- * Code for Netstar OMAP board.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
-
-#include <linux/delay.h>
-#include <linux/platform_device.h>
-#include <linux/interrupt.h>
-#include <linux/init.h>
-#include <linux/kernel.h>
-#include <linux/notifier.h>
-#include <linux/reboot.h>
-
-#include <asm/hardware.h>
-#include <asm/mach-types.h>
-#include <asm/mach/arch.h>
-#include <asm/mach/map.h>
-
-#include <asm/arch/gpio.h>
-#include <asm/arch/mux.h>
-#include <asm/arch/usb.h>
-#include <asm/arch/common.h>
-
-extern void __init omap_init_time(void);
-extern int omap_gpio_init(void);
-
-static struct resource netstar_smc91x_resources[] = {
-	[0] = {
-		.start	= OMAP_CS1_PHYS + 0x300,
-		.end	= OMAP_CS1_PHYS + 0x300 + 16,
-		.flags	= IORESOURCE_MEM,
-	},
-	[1] = {
-		.start	= OMAP_GPIO_IRQ(8),
-		.end	= OMAP_GPIO_IRQ(8),
-		.flags	= IORESOURCE_IRQ,
-	},
-};
-
-static struct platform_device netstar_smc91x_device = {
-	.name		= "smc91x",
-	.id		= 0,
-	.num_resources	= ARRAY_SIZE(netstar_smc91x_resources),
-	.resource	= netstar_smc91x_resources,
-};
-
-static struct platform_device *netstar_devices[] __initdata = {
-	&netstar_smc91x_device,
-};
-
-static struct omap_uart_config netstar_uart_config __initdata = {
-	.enabled_uarts = ((1 << 0) | (1 << 1) | (1 << 2)),
-};
-
-static struct omap_board_config_kernel netstar_config[] = {
-	{ OMAP_TAG_UART,	&netstar_uart_config },
-};
-
-static void __init netstar_init_irq(void)
-{
-	omap1_init_common_hw();
-	omap_init_irq();
-	omap_gpio_init();
-}
-
-static void __init netstar_init(void)
-{
-	/* green LED */
-	omap_request_gpio(4);
-	omap_set_gpio_direction(4, 0);
-	/* smc91x reset */
-	omap_request_gpio(7);
-	omap_set_gpio_direction(7, 0);
-	omap_set_gpio_dataout(7, 1);
-	udelay(2);	/* wait at least 100ns */
-	omap_set_gpio_dataout(7, 0);
-	mdelay(50);	/* 50ms until PHY ready */
-	/* smc91x interrupt pin */
-	omap_request_gpio(8);
-
-	omap_request_gpio(12);
-	omap_request_gpio(13);
-	omap_request_gpio(14);
-	omap_request_gpio(15);
-	set_irq_type(OMAP_GPIO_IRQ(12), IRQT_FALLING);
-	set_irq_type(OMAP_GPIO_IRQ(13), IRQT_FALLING);
-	set_irq_type(OMAP_GPIO_IRQ(14), IRQT_FALLING);
-	set_irq_type(OMAP_GPIO_IRQ(15), IRQT_FALLING);
-
-	platform_add_devices(netstar_devices, ARRAY_SIZE(netstar_devices));
-
-	/* Switch on green LED */
-	omap_set_gpio_dataout(4, 0);
-	/* Switch off red LED */
-	omap_writeb(0x00, OMAP_LPG1_PMR);	/* Disable clock */
-	omap_writeb(0x80, OMAP_LPG1_LCR);
-
-	omap_board_config = netstar_config;
-	omap_board_config_size = ARRAY_SIZE(netstar_config);
-	omap_serial_init();
-}
-
-static void __init netstar_map_io(void)
-{
-	omap1_map_common_io();
-}
-
-#define MACHINE_PANICED		1
-#define MACHINE_REBOOTING	2
-#define MACHINE_REBOOT		4
-static unsigned long machine_state;
-
-static int panic_event(struct notifier_block *this, unsigned long event,
-	 void *ptr)
-{
-	if (test_and_set_bit(MACHINE_PANICED, &machine_state))
-		return NOTIFY_DONE;
-
-	/* Switch off green LED */
-	omap_set_gpio_dataout(4, 1);
-	/* Flash red LED */
-	omap_writeb(0x78, OMAP_LPG1_LCR);
-	omap_writeb(0x01, OMAP_LPG1_PMR);	/* Enable clock */
-
-	return NOTIFY_DONE;
-}
-
-static struct notifier_block panic_block = {
-	.notifier_call	= panic_event,
-};
-
-static int __init netstar_late_init(void)
-{
-	/* TODO: Setup front panel switch here */
-
-	/* Setup panic notifier */
-	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
-
-	return 0;
-}
-
-postcore_initcall(netstar_late_init);
-
-MACHINE_START(NETSTAR, "NetStar OMAP5910")
-	/* Maintainer: Ladislav Michl <michl@2n.cz> */
-	.phys_io	= 0xfff00000,
-	.io_pg_offst	= ((0xfef00000) >> 18) & 0xfffc,
-	.boot_params	= 0x10000100,
-	.map_io		= netstar_map_io,
-	.init_irq	= netstar_init_irq,
-	.init_machine	= netstar_init,
-	.timer		= &omap_timer,
-MACHINE_END

+ 268 - 0
arch/arm/mach-omap1/board-nokia770.c

@@ -0,0 +1,268 @@
+/*
+ * linux/arch/arm/mach-omap1/board-nokia770.c
+ *
+ * Modified from board-generic.c
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/platform_device.h>
+#include <linux/input.h>
+#include <linux/clk.h>
+
+#include <linux/spi/spi.h>
+#include <linux/spi/ads7846.h>
+
+#include <asm/hardware.h>
+#include <asm/mach-types.h>
+#include <asm/mach/arch.h>
+#include <asm/mach/map.h>
+
+#include <asm/arch/gpio.h>
+#include <asm/arch/mux.h>
+#include <asm/arch/usb.h>
+#include <asm/arch/board.h>
+#include <asm/arch/keypad.h>
+#include <asm/arch/common.h>
+#include <asm/arch/dsp_common.h>
+#include <asm/arch/aic23.h>
+#include <asm/arch/gpio.h>
+
+static void __init omap_nokia770_init_irq(void)
+{
+	/* On Nokia 770, the SleepX signal is masked with an
+	 * MPUIO line by default.  It has to be unmasked for it
+	 * to become functional */
+
+	/* SleepX mask direction */
+	omap_writew((omap_readw(0xfffb5008) & ~2), 0xfffb5008);
+	/* Unmask SleepX signal */
+	omap_writew((omap_readw(0xfffb5004) & ~2), 0xfffb5004);
+
+	omap1_init_common_hw();
+	omap_init_irq();
+}
+
+static int nokia770_keymap[] = {
+	KEY(0, 1, GROUP_0 | KEY_UP),
+	KEY(0, 2, GROUP_1 | KEY_F5),
+	KEY(1, 0, GROUP_0 | KEY_LEFT),
+	KEY(1, 1, GROUP_0 | KEY_ENTER),
+	KEY(1, 2, GROUP_0 | KEY_RIGHT),
+	KEY(2, 0, GROUP_1 | KEY_ESC),
+	KEY(2, 1, GROUP_0 | KEY_DOWN),
+	KEY(2, 2, GROUP_1 | KEY_F4),
+	KEY(3, 0, GROUP_2 | KEY_F7),
+	KEY(3, 1, GROUP_2 | KEY_F8),
+	KEY(3, 2, GROUP_2 | KEY_F6),
+	0
+};
+
+static struct resource nokia770_kp_resources[] = {
+	[0] = {
+		.start	= INT_KEYBOARD,
+		.end	= INT_KEYBOARD,
+		.flags	= IORESOURCE_IRQ,
+	},
+};
+
+static struct omap_kp_platform_data nokia770_kp_data = {
+	.rows   = 8,
+	.cols   = 8,
+	.keymap = nokia770_keymap
+};
+
+static struct platform_device nokia770_kp_device = {
+	.name		= "omap-keypad",
+	.id		= -1,
+	.dev		= {
+		.platform_data = &nokia770_kp_data,
+	},
+	.num_resources	= ARRAY_SIZE(nokia770_kp_resources),
+	.resource	= nokia770_kp_resources,
+};
+
+static struct platform_device *nokia770_devices[] __initdata = {
+        &nokia770_kp_device,
+};
+
+static struct ads7846_platform_data nokia770_ads7846_platform_data __initdata = {
+	.x_max		= 0x0fff,
+	.y_max		= 0x0fff,
+	.x_plate_ohms	= 180,
+	.pressure_max	= 255,
+	.debounce_max	= 10,
+	.debounce_tol	= 3,
+};
+
+static struct spi_board_info nokia770_spi_board_info[] __initdata = {
+	[0] = {
+		.modalias       = "lcd_lph8923",
+		.bus_num        = 2,
+		.chip_select    = 3,
+		.max_speed_hz   = 12000000,
+	},
+	[1] = {
+		.modalias       = "ads7846",
+		.bus_num        = 2,
+		.chip_select    = 0,
+		.max_speed_hz   = 2500000,
+		.irq		= OMAP_GPIO_IRQ(15),
+		.platform_data	= &nokia770_ads7846_platform_data,
+	},
+};
+
+
+/* assume no Mini-AB port */
+
+static struct omap_usb_config nokia770_usb_config __initdata = {
+	.otg		= 1,
+	.register_host	= 1,
+	.register_dev	= 1,
+	.hmc_mode	= 16,
+	.pins[0]	= 6,
+};
+
+static struct omap_mmc_config nokia770_mmc_config __initdata = {
+	.mmc[0] = {
+		.enabled	= 0,
+		.wire4		= 0,
+		.wp_pin		= -1,
+		.power_pin	= -1,
+		.switch_pin	= -1,
+	},
+	.mmc[1] = {
+		.enabled	= 0,
+		.wire4		= 0,
+		.wp_pin		= -1,
+		.power_pin	= -1,
+		.switch_pin	= -1,
+	},
+};
+
+static struct omap_board_config_kernel nokia770_config[] = {
+	{ OMAP_TAG_USB,		NULL },
+	{ OMAP_TAG_MMC,		&nokia770_mmc_config },
+};
+
+/*
+ * audio power control
+ */
+#define	HEADPHONE_GPIO		14
+#define	AMPLIFIER_CTRL_GPIO	58
+
+static struct clk *dspxor_ck;
+static DECLARE_MUTEX(audio_pwr_sem);
+/*
+ * audio_pwr_state
+ * +--+-------------------------+---------------------------------------+
+ * |-1|down			|power-up request -> 0			|
+ * +--+-------------------------+---------------------------------------+
+ * | 0|up			|power-down(1) request -> 1		|
+ * |  |				|power-down(2) request -> (ignore)	|
+ * +--+-------------------------+---------------------------------------+
+ * | 1|up,			|power-up request -> 0			|
+ * |  |received down(1) request	|power-down(2) request -> -1		|
+ * +--+-------------------------+---------------------------------------+
+ */
+static int audio_pwr_state = -1;
+
+/*
+ * audio_pwr_up / down should be called under audio_pwr_sem
+ */
+static void nokia770_audio_pwr_up(void)
+{
+	clk_enable(dspxor_ck);
+
+	/* Turn on codec */
+	tlv320aic23_power_up();
+
+	if (omap_get_gpio_datain(HEADPHONE_GPIO))
+		/* HP not connected, turn on amplifier */
+		omap_set_gpio_dataout(AMPLIFIER_CTRL_GPIO, 1);
+	else
+		/* HP connected, do not turn on amplifier */
+		printk("HP connected\n");
+}
+
+static void codec_delayed_power_down(void *arg)
+{
+	down(&audio_pwr_sem);
+	if (audio_pwr_state == -1)
+		tlv320aic23_power_down();
+	clk_disable(dspxor_ck);
+	up(&audio_pwr_sem);
+}
+
+static DECLARE_WORK(codec_power_down_work, codec_delayed_power_down, NULL);
+
+static void nokia770_audio_pwr_down(void)
+{
+	/* Turn off amplifier */
+	omap_set_gpio_dataout(AMPLIFIER_CTRL_GPIO, 0);
+
+	/* Turn off codec: schedule delayed work */
+	schedule_delayed_work(&codec_power_down_work, HZ / 20);	/* 50ms */
+}
+
+void nokia770_audio_pwr_up_request(int stage)
+{
+	down(&audio_pwr_sem);
+	if (audio_pwr_state == -1)
+		nokia770_audio_pwr_up();
+	/* force audio_pwr_state = 0, even if it was 1. */
+	audio_pwr_state = 0;
+	up(&audio_pwr_sem);
+}
+
+void nokia770_audio_pwr_down_request(int stage)
+{
+	down(&audio_pwr_sem);
+	switch (stage) {
+	case 1:
+		if (audio_pwr_state == 0)
+			audio_pwr_state = 1;
+		break;
+	case 2:
+		if (audio_pwr_state == 1) {
+			nokia770_audio_pwr_down();
+			audio_pwr_state = -1;
+		}
+		break;
+	}
+	up(&audio_pwr_sem);
+}
+
+static void __init omap_nokia770_init(void)
+{
+	nokia770_config[0].data = &nokia770_usb_config;
+
+	platform_add_devices(nokia770_devices, ARRAY_SIZE(nokia770_devices));
+	spi_register_board_info(nokia770_spi_board_info,
+				ARRAY_SIZE(nokia770_spi_board_info));
+	omap_board_config = nokia770_config;
+	omap_board_config_size = ARRAY_SIZE(nokia770_config);
+	omap_serial_init();
+	omap_dsp_audio_pwr_up_request = nokia770_audio_pwr_up_request;
+	omap_dsp_audio_pwr_down_request = nokia770_audio_pwr_down_request;
+	dspxor_ck = clk_get(0, "dspxor_ck");
+}
+
+static void __init omap_nokia770_map_io(void)
+{
+	omap1_map_common_io();
+}
+
+MACHINE_START(NOKIA770, "Nokia 770")
+	.phys_io	= 0xfff00000,
+	.io_pg_offst	= ((0xfef00000) >> 18) & 0xfffc,
+	.boot_params	= 0x10000100,
+	.map_io		= omap_nokia770_map_io,
+	.init_irq	= omap_nokia770_init_irq,
+	.init_machine	= omap_nokia770_init,
+	.timer		= &omap_timer,
+MACHINE_END

+ 92 - 3
arch/arm/mach-omap1/board-osk.c

@@ -33,6 +33,7 @@
 
 #include <linux/mtd/mtd.h>
 #include <linux/mtd/partitions.h>
+#include <linux/input.h>
 
 #include <asm/hardware.h>
 #include <asm/mach-types.h>
@@ -44,7 +45,24 @@
 #include <asm/arch/usb.h>
 #include <asm/arch/mux.h>
 #include <asm/arch/tc.h>
+#include <asm/arch/keypad.h>
 #include <asm/arch/common.h>
+#include <asm/arch/mcbsp.h>
+#include <asm/arch/omap-alsa.h>
+
+static int osk_keymap[] = {
+	KEY(0, 0, KEY_F1),
+	KEY(0, 3, KEY_UP),
+	KEY(1, 1, KEY_LEFTCTRL),
+	KEY(1, 2, KEY_LEFT),
+	KEY(2, 0, KEY_SPACE),
+	KEY(2, 1, KEY_ESC),
+	KEY(2, 2, KEY_DOWN),
+	KEY(3, 2, KEY_ENTER),
+	KEY(3, 3, KEY_RIGHT),
+	0
+};
+
 
 static struct mtd_partition osk_partitions[] = {
 	/* bootloader (U-Boot, etc) in first sector */
@@ -133,9 +151,69 @@ static struct platform_device osk5912_cf_device = {
 	.resource	= osk5912_cf_resources,
 };
 
+#define DEFAULT_BITPERSAMPLE 16
+
+static struct omap_mcbsp_reg_cfg mcbsp_regs = {
+	.spcr2 = FREE | FRST | GRST | XRST | XINTM(3),
+	.spcr1 = RINTM(3) | RRST,
+	.rcr2 = RPHASE | RFRLEN2(OMAP_MCBSP_WORD_8) |
+	    RWDLEN2(OMAP_MCBSP_WORD_16) | RDATDLY(0),
+	.rcr1 = RFRLEN1(OMAP_MCBSP_WORD_8) | RWDLEN1(OMAP_MCBSP_WORD_16),
+	.xcr2 = XPHASE | XFRLEN2(OMAP_MCBSP_WORD_8) |
+	    XWDLEN2(OMAP_MCBSP_WORD_16) | XDATDLY(0) | XFIG,
+	.xcr1 = XFRLEN1(OMAP_MCBSP_WORD_8) | XWDLEN1(OMAP_MCBSP_WORD_16),
+	.srgr1 = FWID(DEFAULT_BITPERSAMPLE - 1),
+	.srgr2 = GSYNC | CLKSP | FSGM | FPER(DEFAULT_BITPERSAMPLE * 2 - 1),
+	/*.pcr0 = FSXM | FSRM | CLKXM | CLKRM | CLKXP | CLKRP,*/ /* mcbsp: master */
+	.pcr0 = CLKXP | CLKRP,  /* mcbsp: slave */
+};
+
+static struct omap_alsa_codec_config alsa_config = {
+	.name			= "OSK AIC23",
+	.mcbsp_regs_alsa	= &mcbsp_regs,
+	.codec_configure_dev	= NULL, // aic23_configure,
+	.codec_set_samplerate	= NULL, // aic23_set_samplerate,
+	.codec_clock_setup	= NULL, // aic23_clock_setup,
+	.codec_clock_on		= NULL, // aic23_clock_on,
+	.codec_clock_off	= NULL, // aic23_clock_off,
+	.get_default_samplerate	= NULL, // aic23_get_default_samplerate,
+};
+
 static struct platform_device osk5912_mcbsp1_device = {
-	.name		= "omap_mcbsp",
-	.id		= 1,
+	.name	= "omap_alsa_mcbsp",
+ 	.id	= 1,
+	.dev = {
+		.platform_data	= &alsa_config,
+	},
+};
+
+static struct resource osk5912_kp_resources[] = {
+	[0] = {
+		.start	= INT_KEYBOARD,
+		.end	= INT_KEYBOARD,
+		.flags	= IORESOURCE_IRQ,
+	},
+};
+
+static struct omap_kp_platform_data osk_kp_data = {
+	.rows	= 8,
+	.cols	= 8,
+	.keymap = osk_keymap,
+};
+
+static struct platform_device osk5912_kp_device = {
+	.name		= "omap-keypad",
+	.id		= -1,
+	.dev		= {
+		.platform_data = &osk_kp_data,
+	},
+	.num_resources	= ARRAY_SIZE(osk5912_kp_resources),
+	.resource	= osk5912_kp_resources,
+};
+
+static struct platform_device osk5912_lcd_device = {
+	.name		= "lcd_osk",
+	.id		= -1,
 };
 
 static struct platform_device *osk5912_devices[] __initdata = {
@@ -143,6 +221,8 @@ static struct platform_device *osk5912_devices[] __initdata = {
 	&osk5912_smc91x_device,
 	&osk5912_cf_device,
 	&osk5912_mcbsp1_device,
+	&osk5912_kp_device,
+	&osk5912_lcd_device,
 };
 
 static void __init osk_init_smc91x(void)
@@ -197,7 +277,6 @@ static struct omap_uart_config osk_uart_config __initdata = {
 };
 
 static struct omap_lcd_config osk_lcd_config __initdata = {
-	.panel_name	= "osk",
 	.ctrl_name	= "internal",
 };
 
@@ -255,8 +334,18 @@ static void __init osk_mistral_init(void)
 static void __init osk_mistral_init(void) { }
 #endif
 
+#define EMIFS_CS3_VAL	(0x88013141)
+
 static void __init osk_init(void)
 {
+	/* Workaround for wrong CS3 (NOR flash) timing
+	 * There are some U-Boot versions out there which configure
+	 * wrong CS3 memory timings. This mainly leads to CRC
+	 * or similiar errors if you use NOR flash (e.g. with JFFS2)
+	 */
+	if (EMIFS_CCS(3) != EMIFS_CS3_VAL)
+		EMIFS_CCS(3) = EMIFS_CS3_VAL;
+
 	osk_flash_resource.end = osk_flash_resource.start = omap_cs3_phys();
 	osk_flash_resource.end += SZ_32M - 1;
 	platform_add_devices(osk5912_devices, ARRAY_SIZE(osk5912_devices));

+ 11 - 1
arch/arm/mach-omap1/board-palmte.c

@@ -38,6 +38,15 @@ static void __init omap_generic_init_irq(void)
 	omap_init_irq();
 }
 
+static struct platform_device palmte_lcd_device = {
+	.name		= "lcd_palmte",
+	.id		= -1,
+};
+
+static struct platform_device *devices[] __initdata = {
+	&palmte_lcd_device,
+};
+
 static struct omap_usb_config palmte_usb_config __initdata = {
 	.register_dev	= 1,
 	.hmc_mode	= 0,
@@ -55,7 +64,6 @@ static struct omap_mmc_config palmte_mmc_config __initdata = {
 };
 
 static struct omap_lcd_config palmte_lcd_config __initdata = {
-	.panel_name	= "palmte",
 	.ctrl_name	= "internal",
 };
 
@@ -69,6 +77,8 @@ static void __init omap_generic_init(void)
 {
 	omap_board_config = palmte_config;
 	omap_board_config_size = ARRAY_SIZE(palmte_config);
+
+	platform_add_devices(devices, ARRAY_SIZE(devices));
 }
 
 static void __init omap_generic_map_io(void)

+ 112 - 11
arch/arm/mach-omap1/board-perseus2.c

@@ -16,7 +16,9 @@
 #include <linux/platform_device.h>
 #include <linux/delay.h>
 #include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
 #include <linux/mtd/partitions.h>
+#include <linux/input.h>
 
 #include <asm/hardware.h>
 #include <asm/mach-types.h>
@@ -28,9 +30,44 @@
 #include <asm/arch/gpio.h>
 #include <asm/arch/mux.h>
 #include <asm/arch/fpga.h>
+#include <asm/arch/keypad.h>
 #include <asm/arch/common.h>
 #include <asm/arch/board.h>
 
+static int p2_keymap[] = {
+	KEY(0,0,KEY_UP),
+	KEY(0,1,KEY_RIGHT),
+	KEY(0,2,KEY_LEFT),
+	KEY(0,3,KEY_DOWN),
+	KEY(0,4,KEY_CENTER),
+	KEY(0,5,KEY_0_5),
+	KEY(1,0,KEY_SOFT2),
+	KEY(1,1,KEY_SEND),
+	KEY(1,2,KEY_END),
+	KEY(1,3,KEY_VOLUMEDOWN),
+	KEY(1,4,KEY_VOLUMEUP),
+	KEY(1,5,KEY_RECORD),
+	KEY(2,0,KEY_SOFT1),
+	KEY(2,1,KEY_3),
+	KEY(2,2,KEY_6),
+	KEY(2,3,KEY_9),
+	KEY(2,4,KEY_SHARP),
+	KEY(2,5,KEY_2_5),
+	KEY(3,0,KEY_BACK),
+	KEY(3,1,KEY_2),
+	KEY(3,2,KEY_5),
+	KEY(3,3,KEY_8),
+	KEY(3,4,KEY_0),
+	KEY(3,5,KEY_HEADSETHOOK),
+	KEY(4,0,KEY_HOME),
+	KEY(4,1,KEY_1),
+	KEY(4,2,KEY_4),
+	KEY(4,3,KEY_7),
+	KEY(4,4,KEY_STAR),
+	KEY(4,5,KEY_POWER),
+	0
+};
+
 static struct resource smc91x_resources[] = {
 	[0] = {
 		.start	= H2P2_DBG_FPGA_ETHR_START,	/* Physical */
@@ -44,7 +81,7 @@ static struct resource smc91x_resources[] = {
 	},
 };
 
-static struct mtd_partition p2_partitions[] = {
+static struct mtd_partition nor_partitions[] = {
 	/* bootloader (U-Boot, etc) in first sector */
 	{
 	      .name		= "bootloader",
@@ -75,27 +112,47 @@ static struct mtd_partition p2_partitions[] = {
 	},
 };
 
-static struct flash_platform_data p2_flash_data = {
+static struct flash_platform_data nor_data = {
 	.map_name	= "cfi_probe",
 	.width		= 2,
-	.parts		= p2_partitions,
-	.nr_parts	= ARRAY_SIZE(p2_partitions),
+	.parts		= nor_partitions,
+	.nr_parts	= ARRAY_SIZE(nor_partitions),
 };
 
-static struct resource p2_flash_resource = {
+static struct resource nor_resource = {
 	.start		= OMAP_CS0_PHYS,
 	.end		= OMAP_CS0_PHYS + SZ_32M - 1,
 	.flags		= IORESOURCE_MEM,
 };
 
-static struct platform_device p2_flash_device = {
+static struct platform_device nor_device = {
 	.name		= "omapflash",
 	.id		= 0,
 	.dev		= {
-		.platform_data	= &p2_flash_data,
+		.platform_data	= &nor_data,
+	},
+	.num_resources	= 1,
+	.resource	= &nor_resource,
+};
+
+static struct nand_platform_data nand_data = {
+	.options	= NAND_SAMSUNG_LP_OPTIONS,
+};
+
+static struct resource nand_resource = {
+	.start		= OMAP_CS3_PHYS,
+	.end		= OMAP_CS3_PHYS + SZ_4K - 1,
+	.flags		= IORESOURCE_MEM,
+};
+
+static struct platform_device nand_device = {
+	.name		= "omapnand",
+	.id		= 0,
+	.dev		= {
+		.platform_data	= &nand_data,
 	},
 	.num_resources	= 1,
-	.resource	= &p2_flash_resource,
+	.resource	= &nand_resource,
 };
 
 static struct platform_device smc91x_device = {
@@ -105,17 +162,55 @@ static struct platform_device smc91x_device = {
 	.resource	= smc91x_resources,
 };
 
+static struct resource kp_resources[] = {
+	[0] = {
+		.start	= INT_730_MPUIO_KEYPAD,
+		.end	= INT_730_MPUIO_KEYPAD,
+		.flags	= IORESOURCE_IRQ,
+	},
+};
+
+static struct omap_kp_platform_data kp_data = {
+	.rows	= 8,
+	.cols	= 8,
+	.keymap = p2_keymap,
+};
+
+static struct platform_device kp_device = {
+	.name		= "omap-keypad",
+	.id		= -1,
+	.dev		= {
+		.platform_data = &kp_data,
+	},
+	.num_resources	= ARRAY_SIZE(kp_resources),
+	.resource	= kp_resources,
+};
+
+static struct platform_device lcd_device = {
+	.name		= "lcd_p2",
+	.id		= -1,
+};
+
 static struct platform_device *devices[] __initdata = {
-	&p2_flash_device,
+	&nor_device,
+	&nand_device,
 	&smc91x_device,
+	&kp_device,
+	&lcd_device,
 };
 
+#define P2_NAND_RB_GPIO_PIN	62
+
+static int nand_dev_ready(struct nand_platform_data *data)
+{
+	return omap_get_gpio_datain(P2_NAND_RB_GPIO_PIN);
+}
+
 static struct omap_uart_config perseus2_uart_config __initdata = {
 	.enabled_uarts = ((1 << 0) | (1 << 1)),
 };
 
 static struct omap_lcd_config perseus2_lcd_config __initdata = {
-	.panel_name	= "p2",
 	.ctrl_name	= "internal",
 };
 
@@ -126,7 +221,13 @@ static struct omap_board_config_kernel perseus2_config[] = {
 
 static void __init omap_perseus2_init(void)
 {
-	(void) platform_add_devices(devices, ARRAY_SIZE(devices));
+	if (!(omap_request_gpio(P2_NAND_RB_GPIO_PIN)))
+		nand_data.dev_ready = nand_dev_ready;
+
+	omap_cfg_reg(L3_1610_FLASH_CS2B_OE);
+	omap_cfg_reg(M8_1610_FLASH_CS2B_WE);
+
+	platform_add_devices(devices, ARRAY_SIZE(devices));
 
 	omap_board_config = perseus2_config;
 	omap_board_config_size = ARRAY_SIZE(perseus2_config);

+ 4 - 4
arch/arm/mach-omap1/board-voiceblue.c

@@ -155,9 +155,9 @@ static struct omap_uart_config voiceblue_uart_config __initdata = {
 };
 
 static struct omap_board_config_kernel voiceblue_config[] = {
-	{ OMAP_TAG_USB, &voiceblue_usb_config },
-	{ OMAP_TAG_MMC, &voiceblue_mmc_config },
-	{ OMAP_TAG_UART,	&voiceblue_uart_config },
+	{ OMAP_TAG_USB,  &voiceblue_usb_config },
+	{ OMAP_TAG_MMC,  &voiceblue_mmc_config },
+	{ OMAP_TAG_UART, &voiceblue_uart_config },
 };
 
 static void __init voiceblue_init_irq(void)
@@ -235,7 +235,7 @@ static struct notifier_block panic_block = {
 static int __init voiceblue_setup(void)
 {
 	/* Setup panic notifier */
-	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
+	notifier_chain_register(&panic_notifier_list, &panic_block);
 
 	return 0;
 }

+ 7 - 2
arch/arm/mach-omap1/clock.c

@@ -345,7 +345,7 @@ static unsigned calc_ext_dsor(unsigned long rate)
 	 */
 	for (dsor = 2; dsor < 96; ++dsor) {
 		if ((dsor & 1) && dsor > 8)
-		  	continue;
+			continue;
 		if (rate >= 96000000 / dsor)
 			break;
 	}
@@ -687,6 +687,11 @@ int __init omap1_clk_init(void)
 			clk_register(*clkp);
 			continue;
 		}
+
+		if (((*clkp)->flags &CLOCK_IN_OMAP310) && cpu_is_omap310()) {
+			clk_register(*clkp);
+			continue;
+		}
 	}
 
 	info = omap_get_config(OMAP_TAG_CLOCK, struct omap_clock_config);
@@ -784,7 +789,7 @@ int __init omap1_clk_init(void)
 	clk_enable(&armxor_ck.clk);
 	clk_enable(&armtim_ck.clk); /* This should be done by timer code */
 
-	if (cpu_is_omap1510())
+	if (cpu_is_omap15xx())
 		clk_enable(&arm_gpio_ck);
 
 	return 0;

+ 59 - 32
arch/arm/mach-omap1/clock.h

@@ -151,7 +151,7 @@ static struct clk ck_ref = {
 	.name		= "ck_ref",
 	.rate		= 12000000,
 	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
-			  ALWAYS_ENABLED,
+			  CLOCK_IN_OMAP310 | ALWAYS_ENABLED,
 	.enable		= &omap1_clk_enable_generic,
 	.disable	= &omap1_clk_disable_generic,
 };
@@ -160,7 +160,7 @@ static struct clk ck_dpll1 = {
 	.name		= "ck_dpll1",
 	.parent		= &ck_ref,
 	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
-			  RATE_PROPAGATES | ALWAYS_ENABLED,
+			  CLOCK_IN_OMAP310 | RATE_PROPAGATES | ALWAYS_ENABLED,
 	.enable		= &omap1_clk_enable_generic,
 	.disable	= &omap1_clk_disable_generic,
 };
@@ -183,7 +183,8 @@ static struct clk arm_ck = {
 	.name		= "arm_ck",
 	.parent		= &ck_dpll1,
 	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
-			  RATE_CKCTL | RATE_PROPAGATES | ALWAYS_ENABLED,
+			  CLOCK_IN_OMAP310 | RATE_CKCTL | RATE_PROPAGATES |
+			  ALWAYS_ENABLED,
 	.rate_offset	= CKCTL_ARMDIV_OFFSET,
 	.recalc		= &omap1_ckctl_recalc,
 	.enable		= &omap1_clk_enable_generic,
@@ -195,7 +196,8 @@ static struct arm_idlect1_clk armper_ck = {
 		.name		= "armper_ck",
 		.parent		= &ck_dpll1,
 		.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
-				  RATE_CKCTL | CLOCK_IDLE_CONTROL,
+				  CLOCK_IN_OMAP310 | RATE_CKCTL |
+				  CLOCK_IDLE_CONTROL,
 		.enable_reg	= (void __iomem *)ARM_IDLECT2,
 		.enable_bit	= EN_PERCK,
 		.rate_offset	= CKCTL_PERDIV_OFFSET,
@@ -209,7 +211,7 @@ static struct arm_idlect1_clk armper_ck = {
 static struct clk arm_gpio_ck = {
 	.name		= "arm_gpio_ck",
 	.parent		= &ck_dpll1,
-	.flags		= CLOCK_IN_OMAP1510,
+	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP310,
 	.enable_reg	= (void __iomem *)ARM_IDLECT2,
 	.enable_bit	= EN_GPIOCK,
 	.recalc		= &followparent_recalc,
@@ -222,7 +224,7 @@ static struct arm_idlect1_clk armxor_ck = {
 		.name		= "armxor_ck",
 		.parent		= &ck_ref,
 		.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
-				  CLOCK_IDLE_CONTROL,
+				  CLOCK_IN_OMAP310 | CLOCK_IDLE_CONTROL,
 		.enable_reg	= (void __iomem *)ARM_IDLECT2,
 		.enable_bit	= EN_XORPCK,
 		.recalc		= &followparent_recalc,
@@ -237,7 +239,7 @@ static struct arm_idlect1_clk armtim_ck = {
 		.name		= "armtim_ck",
 		.parent		= &ck_ref,
 		.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
-				  CLOCK_IDLE_CONTROL,
+				  CLOCK_IN_OMAP310 | CLOCK_IDLE_CONTROL,
 		.enable_reg	= (void __iomem *)ARM_IDLECT2,
 		.enable_bit	= EN_TIMCK,
 		.recalc		= &followparent_recalc,
@@ -252,7 +254,7 @@ static struct arm_idlect1_clk armwdt_ck = {
 		.name		= "armwdt_ck",
 		.parent		= &ck_ref,
 		.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
-				  CLOCK_IDLE_CONTROL,
+				  CLOCK_IN_OMAP310 | CLOCK_IDLE_CONTROL,
 		.enable_reg	= (void __iomem *)ARM_IDLECT2,
 		.enable_bit	= EN_WDTCK,
 		.recalc		= &omap1_watchdog_recalc,
@@ -344,9 +346,9 @@ static struct arm_idlect1_clk tc_ck = {
 		.name		= "tc_ck",
 		.parent		= &ck_dpll1,
 		.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
-				  CLOCK_IN_OMAP730 | RATE_CKCTL |
-				  RATE_PROPAGATES | ALWAYS_ENABLED |
-				  CLOCK_IDLE_CONTROL,
+				  CLOCK_IN_OMAP730 | CLOCK_IN_OMAP310 |
+				  RATE_CKCTL | RATE_PROPAGATES |
+				  ALWAYS_ENABLED | CLOCK_IDLE_CONTROL,
 		.rate_offset	= CKCTL_TCDIV_OFFSET,
 		.recalc		= &omap1_ckctl_recalc,
 		.enable		= &omap1_clk_enable_generic,
@@ -358,7 +360,8 @@ static struct arm_idlect1_clk tc_ck = {
 static struct clk arminth_ck1510 = {
 	.name		= "arminth_ck",
 	.parent		= &tc_ck.clk,
-	.flags		= CLOCK_IN_OMAP1510 | ALWAYS_ENABLED,
+	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP310 |
+			  ALWAYS_ENABLED,
 	.recalc		= &followparent_recalc,
 	/* Note: On 1510 the frequency follows TC_CK
 	 *
@@ -372,7 +375,8 @@ static struct clk tipb_ck = {
 	/* No-idle controlled by "tc_ck" */
 	.name		= "tibp_ck",
 	.parent		= &tc_ck.clk,
-	.flags		= CLOCK_IN_OMAP1510 | ALWAYS_ENABLED,
+	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP310 |
+			  ALWAYS_ENABLED,
 	.recalc		= &followparent_recalc,
 	.enable		= &omap1_clk_enable_generic,
 	.disable	= &omap1_clk_disable_generic,
@@ -417,7 +421,7 @@ static struct clk dma_ck = {
 	.name		= "dma_ck",
 	.parent		= &tc_ck.clk,
 	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
-			  ALWAYS_ENABLED,
+			  CLOCK_IN_OMAP310 | ALWAYS_ENABLED,
 	.recalc		= &followparent_recalc,
 	.enable		= &omap1_clk_enable_generic,
 	.disable	= &omap1_clk_disable_generic,
@@ -437,7 +441,7 @@ static struct arm_idlect1_clk api_ck = {
 		.name		= "api_ck",
 		.parent		= &tc_ck.clk,
 		.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
-				  CLOCK_IDLE_CONTROL,
+				  CLOCK_IN_OMAP310 | CLOCK_IDLE_CONTROL,
 		.enable_reg	= (void __iomem *)ARM_IDLECT2,
 		.enable_bit	= EN_APICK,
 		.recalc		= &followparent_recalc,
@@ -451,7 +455,8 @@ static struct arm_idlect1_clk lb_ck = {
 	.clk = {
 		.name		= "lb_ck",
 		.parent		= &tc_ck.clk,
-		.flags		= CLOCK_IN_OMAP1510 | CLOCK_IDLE_CONTROL,
+		.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP310 |
+				  CLOCK_IDLE_CONTROL,
 		.enable_reg	= (void __iomem *)ARM_IDLECT2,
 		.enable_bit	= EN_LBCK,
 		.recalc		= &followparent_recalc,
@@ -495,8 +500,8 @@ static struct arm_idlect1_clk lcd_ck_1510 = {
 	.clk = {
 		.name		= "lcd_ck",
 		.parent		= &ck_dpll1,
-		.flags		= CLOCK_IN_OMAP1510 | RATE_CKCTL |
-				  CLOCK_IDLE_CONTROL,
+		.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP310 |
+				  RATE_CKCTL | CLOCK_IDLE_CONTROL,
 		.enable_reg	= (void __iomem *)ARM_IDLECT2,
 		.enable_bit	= EN_LCDCK,
 		.rate_offset	= CKCTL_LCDDIV_OFFSET,
@@ -512,8 +517,9 @@ static struct clk uart1_1510 = {
 	/* Direct from ULPD, no real parent */
 	.parent		= &armper_ck.clk,
 	.rate		= 12000000,
-	.flags		= CLOCK_IN_OMAP1510 | ENABLE_REG_32BIT |
-			  ALWAYS_ENABLED | CLOCK_NO_IDLE_PARENT,
+	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP310 |
+			  ENABLE_REG_32BIT | ALWAYS_ENABLED |
+			  CLOCK_NO_IDLE_PARENT,
 	.enable_reg	= (void __iomem *)MOD_CONF_CTRL_0,
 	.enable_bit	= 29,	/* Chooses between 12MHz and 48MHz */
 	.set_rate	= &omap1_set_uart_rate,
@@ -544,8 +550,8 @@ static struct clk uart2_ck = {
 	.parent		= &armper_ck.clk,
 	.rate		= 12000000,
 	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
-			  ENABLE_REG_32BIT | ALWAYS_ENABLED |
-			  CLOCK_NO_IDLE_PARENT,
+			  CLOCK_IN_OMAP310 | ENABLE_REG_32BIT |
+			  ALWAYS_ENABLED | CLOCK_NO_IDLE_PARENT,
 	.enable_reg	= (void __iomem *)MOD_CONF_CTRL_0,
 	.enable_bit	= 30,	/* Chooses between 12MHz and 48MHz */
 	.set_rate	= &omap1_set_uart_rate,
@@ -559,8 +565,9 @@ static struct clk uart3_1510 = {
 	/* Direct from ULPD, no real parent */
 	.parent		= &armper_ck.clk,
 	.rate		= 12000000,
-	.flags		= CLOCK_IN_OMAP1510 | ENABLE_REG_32BIT |
-			  ALWAYS_ENABLED | CLOCK_NO_IDLE_PARENT,
+	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP310 |
+			  ENABLE_REG_32BIT | ALWAYS_ENABLED |
+			  CLOCK_NO_IDLE_PARENT,
 	.enable_reg	= (void __iomem *)MOD_CONF_CTRL_0,
 	.enable_bit	= 31,	/* Chooses between 12MHz and 48MHz */
 	.set_rate	= &omap1_set_uart_rate,
@@ -590,7 +597,7 @@ static struct clk usb_clko = {	/* 6 MHz output on W4_USB_CLKO */
 	/* Direct from ULPD, no parent */
 	.rate		= 6000000,
 	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
-			  RATE_FIXED | ENABLE_REG_32BIT,
+			  CLOCK_IN_OMAP310 | RATE_FIXED | ENABLE_REG_32BIT,
 	.enable_reg	= (void __iomem *)ULPD_CLOCK_CTRL,
 	.enable_bit	= USB_MCLK_EN_BIT,
 	.enable		= &omap1_clk_enable_generic,
@@ -601,7 +608,7 @@ static struct clk usb_hhc_ck1510 = {
 	.name		= "usb_hhc_ck",
 	/* Direct from ULPD, no parent */
 	.rate		= 48000000, /* Actually 2 clocks, 12MHz and 48MHz */
-	.flags		= CLOCK_IN_OMAP1510 |
+	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP310 |
 			  RATE_FIXED | ENABLE_REG_32BIT,
 	.enable_reg	= (void __iomem *)MOD_CONF_CTRL_0,
 	.enable_bit	= USB_HOST_HHC_UHOST_EN,
@@ -637,7 +644,9 @@ static struct clk mclk_1510 = {
 	.name		= "mclk",
 	/* Direct from ULPD, no parent. May be enabled by ext hardware. */
 	.rate		= 12000000,
-	.flags		= CLOCK_IN_OMAP1510 | RATE_FIXED,
+ 	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP310 | RATE_FIXED,
+ 	.enable_reg	= (void __iomem *)SOFT_REQ_REG,
+ 	.enable_bit	= 6,
 	.enable		= &omap1_clk_enable_generic,
 	.disable	= &omap1_clk_disable_generic,
 };
@@ -659,7 +668,7 @@ static struct clk bclk_1510 = {
 	.name		= "bclk",
 	/* Direct from ULPD, no parent. May be enabled by ext hardware. */
 	.rate		= 12000000,
-	.flags		= CLOCK_IN_OMAP1510 | RATE_FIXED,
+	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP310 | RATE_FIXED,
 	.enable		= &omap1_clk_enable_generic,
 	.disable	= &omap1_clk_disable_generic,
 };
@@ -678,12 +687,14 @@ static struct clk bclk_16xx = {
 };
 
 static struct clk mmc1_ck = {
-	.name		= "mmc1_ck",
+	.name		= "mmc_ck",
+	.id		= 1,
 	/* Functional clock is direct from ULPD, interface clock is ARMPER */
 	.parent		= &armper_ck.clk,
 	.rate		= 48000000,
 	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
-			  RATE_FIXED | ENABLE_REG_32BIT | CLOCK_NO_IDLE_PARENT,
+			  CLOCK_IN_OMAP310 | RATE_FIXED | ENABLE_REG_32BIT |
+			  CLOCK_NO_IDLE_PARENT,
 	.enable_reg	= (void __iomem *)MOD_CONF_CTRL_0,
 	.enable_bit	= 23,
 	.enable		= &omap1_clk_enable_generic,
@@ -691,7 +702,8 @@ static struct clk mmc1_ck = {
 };
 
 static struct clk mmc2_ck = {
-	.name		= "mmc2_ck",
+	.name		= "mmc_ck",
+	.id		= 2,
 	/* Functional clock is direct from ULPD, interface clock is ARMPER */
 	.parent		= &armper_ck.clk,
 	.rate		= 48000000,
@@ -706,7 +718,7 @@ static struct clk mmc2_ck = {
 static struct clk virtual_ck_mpu = {
 	.name		= "mpu",
 	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
-			  VIRTUAL_CLOCK | ALWAYS_ENABLED,
+			  CLOCK_IN_OMAP310 | VIRTUAL_CLOCK | ALWAYS_ENABLED,
 	.parent		= &arm_ck, /* Is smarter alias for */
 	.recalc		= &followparent_recalc,
 	.set_rate	= &omap1_select_table_rate,
@@ -715,6 +727,20 @@ static struct clk virtual_ck_mpu = {
 	.disable	= &omap1_clk_disable_generic,
 };
 
+/* virtual functional clock domain for I2C. Just for making sure that ARMXOR_CK
+remains active during MPU idle whenever this is enabled */
+static struct clk i2c_fck = {
+	.name		= "i2c_fck",
+	.id		= 1,
+	.flags		= CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
+			  VIRTUAL_CLOCK | CLOCK_NO_IDLE_PARENT |
+			  ALWAYS_ENABLED,
+	.parent		= &armxor_ck.clk,
+	.recalc		= &followparent_recalc,
+	.enable		= &omap1_clk_enable_generic,
+	.disable	= &omap1_clk_disable_generic,
+};
+
 static struct clk * onchip_clks[] = {
 	/* non-ULPD clocks */
 	&ck_ref,
@@ -763,6 +789,7 @@ static struct clk * onchip_clks[] = {
 	&mmc2_ck,
 	/* Virtual clocks */
 	&virtual_ck_mpu,
+	&i2c_fck,
 };
 
 #endif

+ 37 - 8
arch/arm/mach-omap1/devices.c

@@ -25,10 +25,6 @@
 #include <asm/arch/mux.h>
 #include <asm/arch/gpio.h>
 
-extern void omap_nop_release(struct device *dev);
-
-/*-------------------------------------------------------------------------*/
-
 #if	defined(CONFIG_OMAP1610_IR) || defined(CONFIG_OMAP161O_IR_MODULE)
 
 static u64 irda_dmamask = 0xffffffff;
@@ -37,7 +33,6 @@ static struct platform_device omap1610ir_device = {
 	.name = "omap1610-ir",
 	.id = -1,
 	.dev = {
-		.release	= omap_nop_release,
 		.dma_mask	= &irda_dmamask,
 	},
 };
@@ -84,9 +79,6 @@ static struct resource rtc_resources[] = {
 static struct platform_device omap_rtc_device = {
 	.name           = "omap_rtc",
 	.id             = -1,
-	.dev = {
-		.release        = omap_nop_release,
-	},
 	.num_resources	= ARRAY_SIZE(rtc_resources),
 	.resource	= rtc_resources,
 };
@@ -99,6 +91,42 @@ static void omap_init_rtc(void)
 static inline void omap_init_rtc(void) {}
 #endif
 
+#if defined(CONFIG_OMAP_STI)
+
+#define OMAP1_STI_BASE		IO_ADDRESS(0xfffea000)
+#define OMAP1_STI_CHANNEL_BASE	(OMAP1_STI_BASE + 0x400)
+
+static struct resource sti_resources[] = {
+	{
+		.start		= OMAP1_STI_BASE,
+		.end		= OMAP1_STI_BASE + SZ_1K - 1,
+		.flags		= IORESOURCE_MEM,
+	},
+	{
+		.start		= OMAP1_STI_CHANNEL_BASE,
+		.end		= OMAP1_STI_CHANNEL_BASE + SZ_1K - 1,
+		.flags		= IORESOURCE_MEM,
+	},
+	{
+		.start		= INT_1610_STI,
+		.flags		= IORESOURCE_IRQ,
+	}
+};
+
+static struct platform_device sti_device = {
+	.name		= "sti",
+	.id		= -1,
+	.num_resources	= ARRAY_SIZE(sti_resources),
+	.resource	= sti_resources,
+};
+
+static inline void omap_init_sti(void)
+{
+	platform_device_register(&sti_device);
+}
+#else
+static inline void omap_init_sti(void) {}
+#endif
 
 /*-------------------------------------------------------------------------*/
 
@@ -129,6 +157,7 @@ static int __init omap1_init_devices(void)
 	 */
 	omap_init_irda();
 	omap_init_rtc();
+	omap_init_sti();
 
 	return 0;
 }

+ 3 - 1
arch/arm/mach-omap1/io.c

@@ -18,6 +18,7 @@
 #include <asm/io.h>
 #include <asm/arch/mux.h>
 #include <asm/arch/tc.h>
+#include <asm/arch/omapfb.h>
 
 extern int omap1_clk_init(void);
 extern void omap_check_revision(void);
@@ -110,7 +111,7 @@ void __init omap1_map_common_io(void)
 	}
 #endif
 #ifdef CONFIG_ARCH_OMAP15XX
-	if (cpu_is_omap1510()) {
+	if (cpu_is_omap15xx()) {
 		iotable_init(omap1510_io_desc, ARRAY_SIZE(omap1510_io_desc));
 	}
 #endif
@@ -121,6 +122,7 @@ void __init omap1_map_common_io(void)
 #endif
 
 	omap_sram_init();
+	omapfb_reserve_mem();
 }
 
 /*

+ 9 - 9
arch/arm/mach-omap1/irq.c

@@ -60,7 +60,7 @@ struct omap_irq_bank {
 	unsigned long wake_enable;
 };
 
-static unsigned int irq_bank_count = 0;
+static unsigned int irq_bank_count;
 static struct omap_irq_bank *irq_banks;
 
 static inline unsigned int irq_bank_readl(int bank, int offset)
@@ -142,28 +142,28 @@ static void omap_irq_set_cfg(int irq, int fiq, int priority, int trigger)
 
 #ifdef CONFIG_ARCH_OMAP730
 static struct omap_irq_bank omap730_irq_banks[] = {
-	{ .base_reg = OMAP_IH1_BASE, 		.trigger_map = 0xb3f8e22f },
-	{ .base_reg = OMAP_IH2_BASE, 		.trigger_map = 0xfdb9c1f2 },
+	{ .base_reg = OMAP_IH1_BASE,		.trigger_map = 0xb3f8e22f },
+	{ .base_reg = OMAP_IH2_BASE,		.trigger_map = 0xfdb9c1f2 },
 	{ .base_reg = OMAP_IH2_BASE + 0x100,	.trigger_map = 0x800040f3 },
 };
 #endif
 
 #ifdef CONFIG_ARCH_OMAP15XX
 static struct omap_irq_bank omap1510_irq_banks[] = {
-	{ .base_reg = OMAP_IH1_BASE, 		.trigger_map = 0xb3febfff },
-	{ .base_reg = OMAP_IH2_BASE, 		.trigger_map = 0xffbfffed },
+	{ .base_reg = OMAP_IH1_BASE,		.trigger_map = 0xb3febfff },
+	{ .base_reg = OMAP_IH2_BASE,		.trigger_map = 0xffbfffed },
 };
 static struct omap_irq_bank omap310_irq_banks[] = {
-	{ .base_reg = OMAP_IH1_BASE, 		.trigger_map = 0xb3faefc3 },
-	{ .base_reg = OMAP_IH2_BASE, 		.trigger_map = 0x65b3c061 },
+	{ .base_reg = OMAP_IH1_BASE,		.trigger_map = 0xb3faefc3 },
+	{ .base_reg = OMAP_IH2_BASE,		.trigger_map = 0x65b3c061 },
 };
 #endif
 
 #if defined(CONFIG_ARCH_OMAP16XX)
 
 static struct omap_irq_bank omap1610_irq_banks[] = {
-	{ .base_reg = OMAP_IH1_BASE, 		.trigger_map = 0xb3fefe8f },
-	{ .base_reg = OMAP_IH2_BASE, 		.trigger_map = 0xfdb7c1fd },
+	{ .base_reg = OMAP_IH1_BASE,		.trigger_map = 0xb3fefe8f },
+	{ .base_reg = OMAP_IH2_BASE,		.trigger_map = 0xfdb7c1fd },
 	{ .base_reg = OMAP_IH2_BASE + 0x100,	.trigger_map = 0xffffb7ff },
 	{ .base_reg = OMAP_IH2_BASE + 0x200,	.trigger_map = 0xffffffff },
 };

+ 17 - 13
arch/arm/mach-omap1/mux.c

@@ -35,16 +35,20 @@
 
 #ifdef CONFIG_ARCH_OMAP730
 struct pin_config __initdata_or_module omap730_pins[] = {
-MUX_CFG_730("E2_730_KBR0",	12,   21,    0,	  0,   20,   1,	  NA,	 0,  0)
-MUX_CFG_730("J7_730_KBR1",	12,   25,    0,	  0,   24,   1,	  NA,	 0,  0)
-MUX_CFG_730("E1_730_KBR2",	12,   29,    0,	  0,   28,   1,	  NA,	 0,  0)
-MUX_CFG_730("F3_730_KBR3",	13,    1,    0,	  0,   0,    1,	  NA,	 0,  0)
-MUX_CFG_730("D2_730_KBR4",	13,    5,    0,	  0,   4,    1,	  NA,	 0,  0)
-MUX_CFG_730("C2_730_KBC0",	13,    9,    0,	  0,	8,   1,	  NA,	 0,  0)
-MUX_CFG_730("D3_730_KBC1",	13,   13,    0,	  0,   12,   1,	  NA,	 0,  0)
-MUX_CFG_730("E4_730_KBC2",	13,   17,    0,	  0,   16,   1,	  NA,	 0,  0)
-MUX_CFG_730("F4_730_KBC3",	13,   21,    0,	  0,   20,   1,	  NA,	 0,  0)
-MUX_CFG_730("E3_730_KBC4",	13,   25,    0,	  0,   24,   1,	  NA,	 0,  0)
+MUX_CFG_730("E2_730_KBR0",        12,   21,    0,   20,   1, 0)
+MUX_CFG_730("J7_730_KBR1",        12,   25,    0,   24,   1, 0)
+MUX_CFG_730("E1_730_KBR2",        12,   29,    0,   28,   1, 0)
+MUX_CFG_730("F3_730_KBR3",        13,    1,    0,    0,   1, 0)
+MUX_CFG_730("D2_730_KBR4",        13,    5,    0,    4,   1, 0)
+MUX_CFG_730("C2_730_KBC0",        13,    9,    0,    8,   1, 0)
+MUX_CFG_730("D3_730_KBC1",        13,   13,    0,   12,   1, 0)
+MUX_CFG_730("E4_730_KBC2",        13,   17,    0,   16,   1, 0)
+MUX_CFG_730("F4_730_KBC3",        13,   21,    0,   20,   1, 0)
+MUX_CFG_730("E3_730_KBC4",        13,   25,    0,   24,   1, 0)
+
+MUX_CFG_730("AA17_730_USB_DM",     2,   21,    0,   20,   0, 0)
+MUX_CFG_730("W16_730_USB_PU_EN",   2,   25,    0,   24,   0, 0)
+MUX_CFG_730("W17_730_USB_VBUSI",   2,   29,    0,   28,   0, 0)
 };
 #endif
 
@@ -73,8 +77,8 @@ MUX_CFG("UART3_BCLK",		 A,    0,    0,	  2,   6,   0,	 NA,	 0,  0)
 MUX_CFG("Y15_1610_UART3_RTS",	 A,    0,    1,	  2,   6,   0,	 NA,	 0,  0)
 
 /* PWT & PWL, conflicts with UART3 */
-MUX_CFG("PWT",		 	 6,    0,    2,	  0,  30,   0,	 NA,	 0,  0)
-MUX_CFG("PWL",		 	 6,    3,    1,	  0,  31,   1,	 NA,	 0,  0)
+MUX_CFG("PWT",			 6,    0,    2,	  0,  30,   0,	 NA,	 0,  0)
+MUX_CFG("PWL",			 6,    3,    1,	  0,  31,   1,	 NA,	 0,  0)
 
 /* USB internal master generic */
 MUX_CFG("R18_USB_VBUS",		 7,    9,    2,	  1,  11,   0,	 NA,	 0,  1)
@@ -151,7 +155,7 @@ MUX_CFG("MCBSP3_CLKX",		 9,    3,    1,	  1,  29,   0,	 NA,	 0,  1)
 
 /* Misc ballouts */
 MUX_CFG("BALLOUT_V8_ARMIO3",	 B,   18,    0,	  2,  25,   1,	 NA,	 0,  1)
-MUX_CFG("N20_HDQ",	       6,   18,    1,   1,   4,   0,    1,     4,  0)
+MUX_CFG("N20_HDQ",		 6,   18,    1,   1,   4,   0,    1,     4,  0)
 
 /* OMAP-1610 MMC2 */
 MUX_CFG("W8_1610_MMC2_DAT0",	 B,   21,    6,	  2,  23,   1,	  2,	 1,  1)

+ 770 - 0
arch/arm/mach-omap1/pm.c

@@ -0,0 +1,770 @@
+/*
+ * linux/arch/arm/mach-omap1/pm.c
+ *
+ * OMAP Power Management Routines
+ *
+ * Original code for the SA11x0:
+ * Copyright (c) 2001 Cliff Brake <cbrake@accelent.com>
+ *
+ * Modified for the PXA250 by Nicolas Pitre:
+ * Copyright (c) 2002 Monta Vista Software, Inc.
+ *
+ * Modified for the OMAP1510 by David Singleton:
+ * Copyright (c) 2002 Monta Vista Software, Inc.
+ *
+ * Cleanup 2004 for OMAP1510/1610 by Dirk Behme <dirk.behme@de.bosch.com>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version.
+ *
+ * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
+ * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
+ * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#include <linux/pm.h>
+#include <linux/sched.h>
+#include <linux/proc_fs.h>
+#include <linux/pm.h>
+#include <linux/interrupt.h>
+#include <linux/sysfs.h>
+#include <linux/module.h>
+
+#include <asm/io.h>
+#include <asm/irq.h>
+#include <asm/atomic.h>
+#include <asm/mach/time.h>
+#include <asm/mach/irq.h>
+#include <asm/mach-types.h>
+
+#include <asm/arch/irqs.h>
+#include <asm/arch/clock.h>
+#include <asm/arch/sram.h>
+#include <asm/arch/tc.h>
+#include <asm/arch/pm.h>
+#include <asm/arch/mux.h>
+#include <asm/arch/tps65010.h>
+#include <asm/arch/dma.h>
+#include <asm/arch/dsp_common.h>
+#include <asm/arch/dmtimer.h>
+
+static unsigned int arm_sleep_save[ARM_SLEEP_SAVE_SIZE];
+static unsigned short dsp_sleep_save[DSP_SLEEP_SAVE_SIZE];
+static unsigned short ulpd_sleep_save[ULPD_SLEEP_SAVE_SIZE];
+static unsigned int mpui730_sleep_save[MPUI730_SLEEP_SAVE_SIZE];
+static unsigned int mpui1510_sleep_save[MPUI1510_SLEEP_SAVE_SIZE];
+static unsigned int mpui1610_sleep_save[MPUI1610_SLEEP_SAVE_SIZE];
+
+static unsigned short enable_dyn_sleep = 1;
+
+static ssize_t omap_pm_sleep_while_idle_show(struct subsystem * subsys, char *buf)
+{
+	return sprintf(buf, "%hu\n", enable_dyn_sleep);
+}
+
+static ssize_t omap_pm_sleep_while_idle_store(struct subsystem * subsys,
+					      const char * buf,
+					      size_t n)
+{
+	unsigned short value;
+	if (sscanf(buf, "%hu", &value) != 1 ||
+	    (value != 0 && value != 1)) {
+		printk(KERN_ERR "idle_sleep_store: Invalid value\n");
+		return -EINVAL;
+	}
+	enable_dyn_sleep = value;
+	return n;
+}
+
+static struct subsys_attribute sleep_while_idle_attr = {
+	.attr   = {
+		.name = __stringify(sleep_while_idle),
+		.mode = 0644,
+	},
+	.show   = omap_pm_sleep_while_idle_show,
+	.store  = omap_pm_sleep_while_idle_store,
+};
+
+extern struct subsystem power_subsys;
+static void (*omap_sram_idle)(void) = NULL;
+static void (*omap_sram_suspend)(unsigned long r0, unsigned long r1) = NULL;
+
+/*
+ * Let's power down on idle, but only if we are really
+ * idle, because once we start down the path of
+ * going idle we continue to do idle even if we get
+ * a clock tick interrupt . .
+ */
+void omap_pm_idle(void)
+{
+	extern __u32 arm_idlect1_mask;
+	__u32 use_idlect1 = arm_idlect1_mask;
+#ifndef CONFIG_OMAP_MPU_TIMER
+	int do_sleep;
+#endif
+
+	local_irq_disable();
+	local_fiq_disable();
+	if (need_resched()) {
+		local_fiq_enable();
+		local_irq_enable();
+		return;
+	}
+
+	/*
+	 * Since an interrupt may set up a timer, we don't want to
+	 * reprogram the hardware timer with interrupts enabled.
+	 * Re-enable interrupts only after returning from idle.
+	 */
+	timer_dyn_reprogram();
+
+#ifdef CONFIG_OMAP_MPU_TIMER
+#warning Enable 32kHz OS timer in order to allow sleep states in idle
+	use_idlect1 = use_idlect1 & ~(1 << 9);
+#else
+
+	do_sleep = 0;
+	while (enable_dyn_sleep) {
+
+#ifdef CONFIG_CBUS_TAHVO_USB
+		extern int vbus_active;
+		/* Clock requirements? */
+		if (vbus_active)
+			break;
+#endif
+		do_sleep = 1;
+		break;
+	}
+
+#ifdef CONFIG_OMAP_DM_TIMER
+	use_idlect1 = omap_dm_timer_modify_idlect_mask(use_idlect1);
+#endif
+
+	if (omap_dma_running()) {
+		use_idlect1 &= ~(1 << 6);
+		if (omap_lcd_dma_ext_running())
+			use_idlect1 &= ~(1 << 12);
+	}
+
+	/* We should be able to remove the do_sleep variable and multiple
+	 * tests above as soon as drivers, timer and DMA code have been fixed.
+	 * Even the sleep block count should become obsolete. */
+	if ((use_idlect1 != ~0) || !do_sleep) {
+
+		__u32 saved_idlect1 = omap_readl(ARM_IDLECT1);
+		if (cpu_is_omap15xx())
+			use_idlect1 &= OMAP1510_BIG_SLEEP_REQUEST;
+		else
+			use_idlect1 &= OMAP1610_IDLECT1_SLEEP_VAL;
+		omap_writel(use_idlect1, ARM_IDLECT1);
+		__asm__ volatile ("mcr	p15, 0, r0, c7, c0, 4");
+		omap_writel(saved_idlect1, ARM_IDLECT1);
+
+		local_fiq_enable();
+		local_irq_enable();
+		return;
+	}
+	omap_sram_suspend(omap_readl(ARM_IDLECT1),
+			  omap_readl(ARM_IDLECT2));
+#endif
+
+	local_fiq_enable();
+	local_irq_enable();
+}
+
+/*
+ * Configuration of the wakeup event is board specific. For the
+ * moment we put it into this helper function. Later it may move
+ * to board specific files.
+ */
+static void omap_pm_wakeup_setup(void)
+{
+	u32 level1_wake = 0;
+	u32 level2_wake = OMAP_IRQ_BIT(INT_UART2);
+
+	/*
+	 * Turn off all interrupts except GPIO bank 1, L1-2nd level cascade,
+	 * and the L2 wakeup interrupts: keypad and UART2. Note that the
+	 * drivers must still separately call omap_set_gpio_wakeup() to
+	 * wake up to a GPIO interrupt.
+	 */
+	if (cpu_is_omap730())
+		level1_wake = OMAP_IRQ_BIT(INT_730_GPIO_BANK1) |
+			OMAP_IRQ_BIT(INT_730_IH2_IRQ);
+	else if (cpu_is_omap15xx())
+		level1_wake = OMAP_IRQ_BIT(INT_GPIO_BANK1) |
+			OMAP_IRQ_BIT(INT_1510_IH2_IRQ);
+	else if (cpu_is_omap16xx())
+		level1_wake = OMAP_IRQ_BIT(INT_GPIO_BANK1) |
+			OMAP_IRQ_BIT(INT_1610_IH2_IRQ);
+
+	omap_writel(~level1_wake, OMAP_IH1_MIR);
+
+	if (cpu_is_omap730()) {
+		omap_writel(~level2_wake, OMAP_IH2_0_MIR);
+		omap_writel(~(OMAP_IRQ_BIT(INT_730_WAKE_UP_REQ) |
+				OMAP_IRQ_BIT(INT_730_MPUIO_KEYPAD)),
+				OMAP_IH2_1_MIR);
+	} else if (cpu_is_omap15xx()) {
+		level2_wake |= OMAP_IRQ_BIT(INT_KEYBOARD);
+		omap_writel(~level2_wake,  OMAP_IH2_MIR);
+	} else if (cpu_is_omap16xx()) {
+		level2_wake |= OMAP_IRQ_BIT(INT_KEYBOARD);
+		omap_writel(~level2_wake, OMAP_IH2_0_MIR);
+
+		/* INT_1610_WAKE_UP_REQ is needed for GPIO wakeup... */
+		omap_writel(~OMAP_IRQ_BIT(INT_1610_WAKE_UP_REQ),
+			    OMAP_IH2_1_MIR);
+		omap_writel(~0x0, OMAP_IH2_2_MIR);
+		omap_writel(~0x0, OMAP_IH2_3_MIR);
+	}
+
+	/*  New IRQ agreement, recalculate in cascade order */
+	omap_writel(1, OMAP_IH2_CONTROL);
+	omap_writel(1, OMAP_IH1_CONTROL);
+}
+
+#define EN_DSPCK	13	/* ARM_CKCTL */
+#define EN_APICK	6	/* ARM_IDLECT2 */
+#define DSP_EN		1	/* ARM_RSTCT1 */
+
+void omap_pm_suspend(void)
+{
+	unsigned long arg0 = 0, arg1 = 0;
+
+	printk("PM: OMAP%x is trying to enter deep sleep...\n", system_rev);
+
+	omap_serial_wake_trigger(1);
+
+	if (machine_is_omap_osk()) {
+		/* Stop LED1 (D9) blink */
+		tps65010_set_led(LED1, OFF);
+	}
+
+	omap_writew(0xffff, ULPD_SOFT_DISABLE_REQ_REG);
+
+	/*
+	 * Step 1: turn off interrupts (FIXME: NOTE: already disabled)
+	 */
+
+	local_irq_disable();
+	local_fiq_disable();
+
+	/*
+	 * Step 2: save registers
+	 *
+	 * The omap is a strange/beautiful device. The caches, memory
+	 * and register state are preserved across power saves.
+	 * We have to save and restore very little register state to
+	 * idle the omap.
+         *
+	 * Save interrupt, MPUI, ARM and UPLD control registers.
+	 */
+
+	if (cpu_is_omap730()) {
+		MPUI730_SAVE(OMAP_IH1_MIR);
+		MPUI730_SAVE(OMAP_IH2_0_MIR);
+		MPUI730_SAVE(OMAP_IH2_1_MIR);
+		MPUI730_SAVE(MPUI_CTRL);
+		MPUI730_SAVE(MPUI_DSP_BOOT_CONFIG);
+		MPUI730_SAVE(MPUI_DSP_API_CONFIG);
+		MPUI730_SAVE(EMIFS_CONFIG);
+		MPUI730_SAVE(EMIFF_SDRAM_CONFIG);
+
+	} else if (cpu_is_omap15xx()) {
+		MPUI1510_SAVE(OMAP_IH1_MIR);
+		MPUI1510_SAVE(OMAP_IH2_MIR);
+		MPUI1510_SAVE(MPUI_CTRL);
+		MPUI1510_SAVE(MPUI_DSP_BOOT_CONFIG);
+		MPUI1510_SAVE(MPUI_DSP_API_CONFIG);
+		MPUI1510_SAVE(EMIFS_CONFIG);
+		MPUI1510_SAVE(EMIFF_SDRAM_CONFIG);
+	} else if (cpu_is_omap16xx()) {
+		MPUI1610_SAVE(OMAP_IH1_MIR);
+		MPUI1610_SAVE(OMAP_IH2_0_MIR);
+		MPUI1610_SAVE(OMAP_IH2_1_MIR);
+		MPUI1610_SAVE(OMAP_IH2_2_MIR);
+		MPUI1610_SAVE(OMAP_IH2_3_MIR);
+		MPUI1610_SAVE(MPUI_CTRL);
+		MPUI1610_SAVE(MPUI_DSP_BOOT_CONFIG);
+		MPUI1610_SAVE(MPUI_DSP_API_CONFIG);
+		MPUI1610_SAVE(EMIFS_CONFIG);
+		MPUI1610_SAVE(EMIFF_SDRAM_CONFIG);
+	}
+
+	ARM_SAVE(ARM_CKCTL);
+	ARM_SAVE(ARM_IDLECT1);
+	ARM_SAVE(ARM_IDLECT2);
+	if (!(cpu_is_omap15xx()))
+		ARM_SAVE(ARM_IDLECT3);
+	ARM_SAVE(ARM_EWUPCT);
+	ARM_SAVE(ARM_RSTCT1);
+	ARM_SAVE(ARM_RSTCT2);
+	ARM_SAVE(ARM_SYSST);
+	ULPD_SAVE(ULPD_CLOCK_CTRL);
+	ULPD_SAVE(ULPD_STATUS_REQ);
+
+	/* (Step 3 removed - we now allow deep sleep by default) */
+
+	/*
+	 * Step 4: OMAP DSP Shutdown
+	 */
+
+	/* stop DSP */
+	omap_writew(omap_readw(ARM_RSTCT1) & ~(1 << DSP_EN), ARM_RSTCT1);
+
+	/* shut down dsp_ck */
+	omap_writew(omap_readw(ARM_CKCTL) & ~(1 << EN_DSPCK), ARM_CKCTL);
+
+	/* temporarily enabling api_ck to access DSP registers */
+	omap_writew(omap_readw(ARM_IDLECT2) | 1 << EN_APICK, ARM_IDLECT2);
+
+	/* save DSP registers */
+	DSP_SAVE(DSP_IDLECT2);
+
+	/* Stop all DSP domain clocks */
+	__raw_writew(0, DSP_IDLECT2);
+
+	/*
+	 * Step 5: Wakeup Event Setup
+	 */
+
+	omap_pm_wakeup_setup();
+
+	/*
+	 * Step 6: ARM and Traffic controller shutdown
+	 */
+
+	/* disable ARM watchdog */
+	omap_writel(0x00F5, OMAP_WDT_TIMER_MODE);
+	omap_writel(0x00A0, OMAP_WDT_TIMER_MODE);
+
+	/*
+	 * Step 6b: ARM and Traffic controller shutdown
+	 *
+	 * Step 6 continues here. Prepare jump to power management
+	 * assembly code in internal SRAM.
+	 *
+	 * Since the omap_cpu_suspend routine has been copied to
+	 * SRAM, we'll do an indirect procedure call to it and pass the
+	 * contents of arm_idlect1 and arm_idlect2 so it can restore
+	 * them when it wakes up and it will return.
+	 */
+
+	arg0 = arm_sleep_save[ARM_SLEEP_SAVE_ARM_IDLECT1];
+	arg1 = arm_sleep_save[ARM_SLEEP_SAVE_ARM_IDLECT2];
+
+	/*
+	 * Step 6c: ARM and Traffic controller shutdown
+	 *
+	 * Jump to assembly code. The processor will stay there
+	 * until wake up.
+	 */
+        omap_sram_suspend(arg0, arg1);
+
+	/*
+	 * If we are here, processor is woken up!
+	 */
+
+	/*
+	 * Restore DSP clocks
+	 */
+
+	/* again temporarily enabling api_ck to access DSP registers */
+	omap_writew(omap_readw(ARM_IDLECT2) | 1 << EN_APICK, ARM_IDLECT2);
+
+	/* Restore DSP domain clocks */
+	DSP_RESTORE(DSP_IDLECT2);
+
+	/*
+	 * Restore ARM state, except ARM_IDLECT1/2 which omap_cpu_suspend did
+	 */
+
+	if (!(cpu_is_omap15xx()))
+		ARM_RESTORE(ARM_IDLECT3);
+	ARM_RESTORE(ARM_CKCTL);
+	ARM_RESTORE(ARM_EWUPCT);
+	ARM_RESTORE(ARM_RSTCT1);
+	ARM_RESTORE(ARM_RSTCT2);
+	ARM_RESTORE(ARM_SYSST);
+	ULPD_RESTORE(ULPD_CLOCK_CTRL);
+	ULPD_RESTORE(ULPD_STATUS_REQ);
+
+	if (cpu_is_omap730()) {
+		MPUI730_RESTORE(EMIFS_CONFIG);
+		MPUI730_RESTORE(EMIFF_SDRAM_CONFIG);
+		MPUI730_RESTORE(OMAP_IH1_MIR);
+		MPUI730_RESTORE(OMAP_IH2_0_MIR);
+		MPUI730_RESTORE(OMAP_IH2_1_MIR);
+	} else if (cpu_is_omap15xx()) {
+		MPUI1510_RESTORE(MPUI_CTRL);
+		MPUI1510_RESTORE(MPUI_DSP_BOOT_CONFIG);
+		MPUI1510_RESTORE(MPUI_DSP_API_CONFIG);
+		MPUI1510_RESTORE(EMIFS_CONFIG);
+		MPUI1510_RESTORE(EMIFF_SDRAM_CONFIG);
+		MPUI1510_RESTORE(OMAP_IH1_MIR);
+		MPUI1510_RESTORE(OMAP_IH2_MIR);
+	} else if (cpu_is_omap16xx()) {
+		MPUI1610_RESTORE(MPUI_CTRL);
+		MPUI1610_RESTORE(MPUI_DSP_BOOT_CONFIG);
+		MPUI1610_RESTORE(MPUI_DSP_API_CONFIG);
+		MPUI1610_RESTORE(EMIFS_CONFIG);
+		MPUI1610_RESTORE(EMIFF_SDRAM_CONFIG);
+
+		MPUI1610_RESTORE(OMAP_IH1_MIR);
+		MPUI1610_RESTORE(OMAP_IH2_0_MIR);
+		MPUI1610_RESTORE(OMAP_IH2_1_MIR);
+		MPUI1610_RESTORE(OMAP_IH2_2_MIR);
+		MPUI1610_RESTORE(OMAP_IH2_3_MIR);
+	}
+
+	omap_writew(0, ULPD_SOFT_DISABLE_REQ_REG);
+
+	/*
+	 * Reenable interrupts
+	 */
+
+	local_irq_enable();
+	local_fiq_enable();
+
+	omap_serial_wake_trigger(0);
+
+	printk("PM: OMAP%x is re-starting from deep sleep...\n", system_rev);
+
+	if (machine_is_omap_osk()) {
+		/* Let LED1 (D9) blink again */
+		tps65010_set_led(LED1, BLINK);
+	}
+}
+
+#if defined(DEBUG) && defined(CONFIG_PROC_FS)
+static int g_read_completed;
+
+/*
+ * Read system PM registers for debugging
+ */
+static int omap_pm_read_proc(
+	char *page_buffer,
+	char **my_first_byte,
+	off_t virtual_start,
+	int length,
+	int *eof,
+	void *data)
+{
+	int my_buffer_offset = 0;
+	char * const my_base = page_buffer;
+
+	ARM_SAVE(ARM_CKCTL);
+	ARM_SAVE(ARM_IDLECT1);
+	ARM_SAVE(ARM_IDLECT2);
+	if (!(cpu_is_omap15xx()))
+		ARM_SAVE(ARM_IDLECT3);
+	ARM_SAVE(ARM_EWUPCT);
+	ARM_SAVE(ARM_RSTCT1);
+	ARM_SAVE(ARM_RSTCT2);
+	ARM_SAVE(ARM_SYSST);
+
+	ULPD_SAVE(ULPD_IT_STATUS);
+	ULPD_SAVE(ULPD_CLOCK_CTRL);
+	ULPD_SAVE(ULPD_SOFT_REQ);
+	ULPD_SAVE(ULPD_STATUS_REQ);
+	ULPD_SAVE(ULPD_DPLL_CTRL);
+	ULPD_SAVE(ULPD_POWER_CTRL);
+
+	if (cpu_is_omap730()) {
+		MPUI730_SAVE(MPUI_CTRL);
+		MPUI730_SAVE(MPUI_DSP_STATUS);
+		MPUI730_SAVE(MPUI_DSP_BOOT_CONFIG);
+		MPUI730_SAVE(MPUI_DSP_API_CONFIG);
+		MPUI730_SAVE(EMIFF_SDRAM_CONFIG);
+		MPUI730_SAVE(EMIFS_CONFIG);
+	} else if (cpu_is_omap15xx()) {
+		MPUI1510_SAVE(MPUI_CTRL);
+		MPUI1510_SAVE(MPUI_DSP_STATUS);
+		MPUI1510_SAVE(MPUI_DSP_BOOT_CONFIG);
+		MPUI1510_SAVE(MPUI_DSP_API_CONFIG);
+		MPUI1510_SAVE(EMIFF_SDRAM_CONFIG);
+		MPUI1510_SAVE(EMIFS_CONFIG);
+	} else if (cpu_is_omap16xx()) {
+		MPUI1610_SAVE(MPUI_CTRL);
+		MPUI1610_SAVE(MPUI_DSP_STATUS);
+		MPUI1610_SAVE(MPUI_DSP_BOOT_CONFIG);
+		MPUI1610_SAVE(MPUI_DSP_API_CONFIG);
+		MPUI1610_SAVE(EMIFF_SDRAM_CONFIG);
+		MPUI1610_SAVE(EMIFS_CONFIG);
+	}
+
+	if (virtual_start == 0) {
+		g_read_completed = 0;
+
+		my_buffer_offset += sprintf(my_base + my_buffer_offset,
+		   "ARM_CKCTL_REG:            0x%-8x     \n"
+		   "ARM_IDLECT1_REG:          0x%-8x     \n"
+		   "ARM_IDLECT2_REG:          0x%-8x     \n"
+		   "ARM_IDLECT3_REG:	      0x%-8x     \n"
+		   "ARM_EWUPCT_REG:           0x%-8x     \n"
+		   "ARM_RSTCT1_REG:           0x%-8x     \n"
+		   "ARM_RSTCT2_REG:           0x%-8x     \n"
+		   "ARM_SYSST_REG:            0x%-8x     \n"
+		   "ULPD_IT_STATUS_REG:       0x%-4x     \n"
+		   "ULPD_CLOCK_CTRL_REG:      0x%-4x     \n"
+		   "ULPD_SOFT_REQ_REG:        0x%-4x     \n"
+		   "ULPD_DPLL_CTRL_REG:       0x%-4x     \n"
+		   "ULPD_STATUS_REQ_REG:      0x%-4x     \n"
+		   "ULPD_POWER_CTRL_REG:      0x%-4x     \n",
+		   ARM_SHOW(ARM_CKCTL),
+		   ARM_SHOW(ARM_IDLECT1),
+		   ARM_SHOW(ARM_IDLECT2),
+		   ARM_SHOW(ARM_IDLECT3),
+		   ARM_SHOW(ARM_EWUPCT),
+		   ARM_SHOW(ARM_RSTCT1),
+		   ARM_SHOW(ARM_RSTCT2),
+		   ARM_SHOW(ARM_SYSST),
+		   ULPD_SHOW(ULPD_IT_STATUS),
+		   ULPD_SHOW(ULPD_CLOCK_CTRL),
+		   ULPD_SHOW(ULPD_SOFT_REQ),
+		   ULPD_SHOW(ULPD_DPLL_CTRL),
+		   ULPD_SHOW(ULPD_STATUS_REQ),
+		   ULPD_SHOW(ULPD_POWER_CTRL));
+
+		if (cpu_is_omap730()) {
+			my_buffer_offset += sprintf(my_base + my_buffer_offset,
+			   "MPUI730_CTRL_REG	     0x%-8x \n"
+			   "MPUI730_DSP_STATUS_REG:      0x%-8x \n"
+			   "MPUI730_DSP_BOOT_CONFIG_REG: 0x%-8x \n"
+			   "MPUI730_DSP_API_CONFIG_REG:  0x%-8x \n"
+			   "MPUI730_SDRAM_CONFIG_REG:    0x%-8x \n"
+			   "MPUI730_EMIFS_CONFIG_REG:    0x%-8x \n",
+			   MPUI730_SHOW(MPUI_CTRL),
+			   MPUI730_SHOW(MPUI_DSP_STATUS),
+			   MPUI730_SHOW(MPUI_DSP_BOOT_CONFIG),
+			   MPUI730_SHOW(MPUI_DSP_API_CONFIG),
+			   MPUI730_SHOW(EMIFF_SDRAM_CONFIG),
+			   MPUI730_SHOW(EMIFS_CONFIG));
+		} else if (cpu_is_omap15xx()) {
+			my_buffer_offset += sprintf(my_base + my_buffer_offset,
+			   "MPUI1510_CTRL_REG             0x%-8x \n"
+			   "MPUI1510_DSP_STATUS_REG:      0x%-8x \n"
+			   "MPUI1510_DSP_BOOT_CONFIG_REG: 0x%-8x \n"
+			   "MPUI1510_DSP_API_CONFIG_REG:  0x%-8x \n"
+			   "MPUI1510_SDRAM_CONFIG_REG:    0x%-8x \n"
+			   "MPUI1510_EMIFS_CONFIG_REG:    0x%-8x \n",
+			   MPUI1510_SHOW(MPUI_CTRL),
+			   MPUI1510_SHOW(MPUI_DSP_STATUS),
+			   MPUI1510_SHOW(MPUI_DSP_BOOT_CONFIG),
+			   MPUI1510_SHOW(MPUI_DSP_API_CONFIG),
+			   MPUI1510_SHOW(EMIFF_SDRAM_CONFIG),
+			   MPUI1510_SHOW(EMIFS_CONFIG));
+		} else if (cpu_is_omap16xx()) {
+			my_buffer_offset += sprintf(my_base + my_buffer_offset,
+			   "MPUI1610_CTRL_REG             0x%-8x \n"
+			   "MPUI1610_DSP_STATUS_REG:      0x%-8x \n"
+			   "MPUI1610_DSP_BOOT_CONFIG_REG: 0x%-8x \n"
+			   "MPUI1610_DSP_API_CONFIG_REG:  0x%-8x \n"
+			   "MPUI1610_SDRAM_CONFIG_REG:    0x%-8x \n"
+			   "MPUI1610_EMIFS_CONFIG_REG:    0x%-8x \n",
+			   MPUI1610_SHOW(MPUI_CTRL),
+			   MPUI1610_SHOW(MPUI_DSP_STATUS),
+			   MPUI1610_SHOW(MPUI_DSP_BOOT_CONFIG),
+			   MPUI1610_SHOW(MPUI_DSP_API_CONFIG),
+			   MPUI1610_SHOW(EMIFF_SDRAM_CONFIG),
+			   MPUI1610_SHOW(EMIFS_CONFIG));
+		}
+
+		g_read_completed++;
+	} else if (g_read_completed >= 1) {
+		 *eof = 1;
+		 return 0;
+	}
+	g_read_completed++;
+
+	*my_first_byte = page_buffer;
+	return  my_buffer_offset;
+}
+
+static void omap_pm_init_proc(void)
+{
+	struct proc_dir_entry *entry;
+
+	entry = create_proc_read_entry("driver/omap_pm",
+				       S_IWUSR | S_IRUGO, NULL,
+				       omap_pm_read_proc, NULL);
+}
+
+#endif /* DEBUG && CONFIG_PROC_FS */
+
+static void (*saved_idle)(void) = NULL;
+
+/*
+ *	omap_pm_prepare - Do preliminary suspend work.
+ *	@state:		suspend state we're entering.
+ *
+ */
+static int omap_pm_prepare(suspend_state_t state)
+{
+	int error = 0;
+
+	/* We cannot sleep in idle until we have resumed */
+	saved_idle = pm_idle;
+	pm_idle = NULL;
+
+	switch (state)
+	{
+	case PM_SUSPEND_STANDBY:
+	case PM_SUSPEND_MEM:
+		break;
+
+	case PM_SUSPEND_DISK:
+		return -ENOTSUPP;
+
+	default:
+		return -EINVAL;
+	}
+
+	return error;
+}
+
+
+/*
+ *	omap_pm_enter - Actually enter a sleep state.
+ *	@state:		State we're entering.
+ *
+ */
+
+static int omap_pm_enter(suspend_state_t state)
+{
+	switch (state)
+	{
+	case PM_SUSPEND_STANDBY:
+	case PM_SUSPEND_MEM:
+		omap_pm_suspend();
+		break;
+
+	case PM_SUSPEND_DISK:
+		return -ENOTSUPP;
+
+	default:
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+
+/**
+ *	omap_pm_finish - Finish up suspend sequence.
+ *	@state:		State we're coming out of.
+ *
+ *	This is called after we wake back up (or if entering the sleep state
+ *	failed).
+ */
+
+static int omap_pm_finish(suspend_state_t state)
+{
+	pm_idle = saved_idle;
+	return 0;
+}
+
+
+static irqreturn_t  omap_wakeup_interrupt(int  irq, void *  dev,
+				     struct pt_regs *  regs)
+{
+	return IRQ_HANDLED;
+}
+
+static struct irqaction omap_wakeup_irq = {
+	.name		= "peripheral wakeup",
+	.flags		= SA_INTERRUPT,
+	.handler	= omap_wakeup_interrupt
+};
+
+
+
+static struct pm_ops omap_pm_ops ={
+	.pm_disk_mode	= 0,
+	.prepare	= omap_pm_prepare,
+	.enter		= omap_pm_enter,
+	.finish		= omap_pm_finish,
+};
+
+static int __init omap_pm_init(void)
+{
+	printk("Power Management for TI OMAP.\n");
+
+	/*
+	 * We copy the assembler sleep/wakeup routines to SRAM.
+	 * These routines need to be in SRAM as that's the only
+	 * memory the MPU can see when it wakes up.
+	 */
+	if (cpu_is_omap730()) {
+		omap_sram_idle = omap_sram_push(omap730_idle_loop_suspend,
+						omap730_idle_loop_suspend_sz);
+		omap_sram_suspend = omap_sram_push(omap730_cpu_suspend,
+						   omap730_cpu_suspend_sz);
+	} else if (cpu_is_omap15xx()) {
+		omap_sram_idle = omap_sram_push(omap1510_idle_loop_suspend,
+						omap1510_idle_loop_suspend_sz);
+		omap_sram_suspend = omap_sram_push(omap1510_cpu_suspend,
+						   omap1510_cpu_suspend_sz);
+	} else if (cpu_is_omap16xx()) {
+		omap_sram_idle = omap_sram_push(omap1610_idle_loop_suspend,
+						omap1610_idle_loop_suspend_sz);
+		omap_sram_suspend = omap_sram_push(omap1610_cpu_suspend,
+						   omap1610_cpu_suspend_sz);
+	}
+
+	if (omap_sram_idle == NULL || omap_sram_suspend == NULL) {
+		printk(KERN_ERR "PM not initialized: Missing SRAM support\n");
+		return -ENODEV;
+	}
+
+	pm_idle = omap_pm_idle;
+
+	if (cpu_is_omap730())
+		setup_irq(INT_730_WAKE_UP_REQ, &omap_wakeup_irq);
+	else if (cpu_is_omap16xx())
+		setup_irq(INT_1610_WAKE_UP_REQ, &omap_wakeup_irq);
+
+	/* Program new power ramp-up time
+	 * (0 for most boards since we don't lower voltage when in deep sleep)
+	 */
+	omap_writew(ULPD_SETUP_ANALOG_CELL_3_VAL, ULPD_SETUP_ANALOG_CELL_3);
+
+	/* Setup ULPD POWER_CTRL_REG - enter deep sleep whenever possible */
+	omap_writew(ULPD_POWER_CTRL_REG_VAL, ULPD_POWER_CTRL);
+
+	/* Configure IDLECT3 */
+	if (cpu_is_omap730())
+		omap_writel(OMAP730_IDLECT3_VAL, OMAP730_IDLECT3);
+	else if (cpu_is_omap16xx())
+		omap_writel(OMAP1610_IDLECT3_VAL, OMAP1610_IDLECT3);
+
+	pm_set_ops(&omap_pm_ops);
+
+#if defined(DEBUG) && defined(CONFIG_PROC_FS)
+	omap_pm_init_proc();
+#endif
+
+	subsys_create_file(&power_subsys, &sleep_while_idle_attr);
+
+	if (cpu_is_omap16xx()) {
+		/* configure LOW_PWR pin */
+		omap_cfg_reg(T20_1610_LOW_PWR);
+	}
+
+	return 0;
+}
+__initcall(omap_pm_init);

+ 3 - 3
arch/arm/mach-omap1/serial.c

@@ -30,9 +30,9 @@
 #include <asm/arch/pm.h>
 #endif
 
-static struct clk * uart1_ck = NULL;
-static struct clk * uart2_ck = NULL;
-static struct clk * uart3_ck = NULL;
+static struct clk * uart1_ck;
+static struct clk * uart2_ck;
+static struct clk * uart3_ck;
 
 static inline unsigned int omap_serial_in(struct plat_serial8250_port *up,
 					  int offset)

+ 92 - 19
arch/arm/plat-omap/sleep.S → arch/arm/mach-omap1/sleep.S

@@ -1,5 +1,5 @@
 /*
- * linux/arch/arm/plat-omap/sleep.S
+ * linux/arch/arm/mach-omap1/sleep.S
  *
  * Low-level OMAP730/1510/1610 sleep/wakeUp support
  *
@@ -383,60 +383,133 @@ ENTRY(omap1610_cpu_suspend)
 	mcr	p15, 0, r0, c7, c10, 4
 	nop
 
-	@ load base address of Traffic Controller
+	@ Load base address of Traffic Controller
 	mov	r6, #TCMIF_ASM_BASE & 0xff000000
 	orr	r6, r6, #TCMIF_ASM_BASE & 0x00ff0000
 	orr	r6, r6, #TCMIF_ASM_BASE & 0x0000ff00
 
-	@ prepare to put SDRAM into self-refresh manually
+	@ Prepare to put SDRAM into self-refresh manually
 	ldr	r7, [r6, #EMIFF_SDRAM_CONFIG_ASM_OFFSET & 0xff]
 	orr	r9, r7, #SELF_REFRESH_MODE & 0xff000000
 	orr	r9, r9, #SELF_REFRESH_MODE & 0x000000ff
 	str	r9, [r6, #EMIFF_SDRAM_CONFIG_ASM_OFFSET & 0xff]
 
-	@ prepare to put EMIFS to Sleep
+	@ Prepare to put EMIFS to Sleep
 	ldr	r8, [r6, #EMIFS_CONFIG_ASM_OFFSET & 0xff]
 	orr	r9, r8, #IDLE_EMIFS_REQUEST & 0xff
 	str	r9, [r6, #EMIFS_CONFIG_ASM_OFFSET & 0xff]
 
-	@ load base address of ARM_IDLECT1 and ARM_IDLECT2
+	@ Load base address of ARM_IDLECT1 and ARM_IDLECT2
 	mov	r4, #CLKGEN_REG_ASM_BASE & 0xff000000
 	orr	r4, r4, #CLKGEN_REG_ASM_BASE & 0x00ff0000
 	orr	r4, r4, #CLKGEN_REG_ASM_BASE & 0x0000ff00
 
-	@ turn off clock domains
-	@ do not disable PERCK (0x04)
+	@ Turn off clock domains
+	@ Do not disable PERCK (0x04)
 	mov	r5, #OMAP1610_IDLECT2_SLEEP_VAL & 0xff
 	orr	r5, r5, #OMAP1610_IDLECT2_SLEEP_VAL & 0xff00
 	strh	r5, [r4, #ARM_IDLECT2_ASM_OFFSET & 0xff]
 
-	@ request ARM idle
+	@ Request ARM idle
 	mov	r3, #OMAP1610_IDLECT1_SLEEP_VAL & 0xff
 	orr	r3, r3, #OMAP1610_IDLECT1_SLEEP_VAL & 0xff00
 	strh	r3, [r4, #ARM_IDLECT1_ASM_OFFSET & 0xff]
 
-	@ disable instruction cache
-	mrc	p15, 0, r9, c1, c0, 0
-	bic	r2, r9, #0x1000
-	mcr	p15, 0, r2, c1, c0, 0
-	nop
-
 /*
  * Let's wait for the next wake up event to wake us up. r0 can't be
  * used here because r0 holds ARM_IDLECT1
  */
 	mov	r2, #0
 	mcr	p15, 0, r2, c7, c0, 4		@ wait for interrupt
+
+	@ Errata (HEL3SU467, section 1.4.4) specifies nop-instructions
+	@ according to this formula:
+	@ 2 + (4*DPLL_MULT)/DPLL_DIV/ARMDIV
+	@ Max DPLL_MULT = 18
+	@ DPLL_DIV = 1
+	@ ARMDIV = 1
+	@ => 74 nop-instructions
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop	@10
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop	@20
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop	@30
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop	@40
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop	@50
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop	@60
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop
+	nop	@70
+	nop
+	nop
+	nop
+	nop	@74
 /*
  * omap1610_cpu_suspend()'s resume point.
  *
  * It will just start executing here, so we'll restore stuff from the
  * stack.
  */
-	@ re-enable Icache
-	mcr	p15, 0, r9, c1, c0, 0
-
-	@ reset the ARM_IDLECT1 and ARM_IDLECT2.
+	@ Restore the ARM_IDLECT1 and ARM_IDLECT2.
 	strh	r1, [r4, #ARM_IDLECT2_ASM_OFFSET & 0xff]
 	strh	r0, [r4, #ARM_IDLECT1_ASM_OFFSET & 0xff]
 
@@ -444,7 +517,7 @@ ENTRY(omap1610_cpu_suspend)
 	str	r7, [r6, #EMIFF_SDRAM_CONFIG_ASM_OFFSET & 0xff]
 	str	r8, [r6, #EMIFS_CONFIG_ASM_OFFSET & 0xff]
 
-	@ restore regs and return
+	@ Restore regs and return
 	ldmfd	sp!, {r0 - r12, pc}
 
 ENTRY(omap1610_cpu_suspend_sz)

+ 0 - 197
arch/arm/mach-omap1/time.c

@@ -51,8 +51,6 @@
 
 struct sys_timer omap_timer;
 
-#ifdef CONFIG_OMAP_MPU_TIMER
-
 /*
  * ---------------------------------------------------------------------------
  * MPU timer
@@ -222,195 +220,6 @@ unsigned long long sched_clock(void)
 
 	return cycles_2_ns(ticks64);
 }
-#endif	/* CONFIG_OMAP_MPU_TIMER */
-
-#ifdef CONFIG_OMAP_32K_TIMER
-
-#ifdef CONFIG_ARCH_OMAP15XX
-#error OMAP 32KHz timer does not currently work on 15XX!
-#endif
-
-/*
- * ---------------------------------------------------------------------------
- * 32KHz OS timer
- *
- * This currently works only on 16xx, as 1510 does not have the continuous
- * 32KHz synchronous timer. The 32KHz synchronous timer is used to keep track
- * of time in addition to the 32KHz OS timer. Using only the 32KHz OS timer
- * on 1510 would be possible, but the timer would not be as accurate as
- * with the 32KHz synchronized timer.
- * ---------------------------------------------------------------------------
- */
-#define OMAP_32K_TIMER_BASE		0xfffb9000
-#define OMAP_32K_TIMER_CR		0x08
-#define OMAP_32K_TIMER_TVR		0x00
-#define OMAP_32K_TIMER_TCR		0x04
-
-#define OMAP_32K_TICKS_PER_HZ		(32768 / HZ)
-
-/*
- * TRM says 1 / HZ = ( TVR + 1) / 32768, so TRV = (32768 / HZ) - 1
- * so with HZ = 100, TVR = 327.68.
- */
-#define OMAP_32K_TIMER_TICK_PERIOD	((32768 / HZ) - 1)
-#define TIMER_32K_SYNCHRONIZED		0xfffbc410
-
-#define JIFFIES_TO_HW_TICKS(nr_jiffies, clock_rate)			\
-				(((nr_jiffies) * (clock_rate)) / HZ)
-
-static inline void omap_32k_timer_write(int val, int reg)
-{
-	omap_writew(val, reg + OMAP_32K_TIMER_BASE);
-}
-
-static inline unsigned long omap_32k_timer_read(int reg)
-{
-	return omap_readl(reg + OMAP_32K_TIMER_BASE) & 0xffffff;
-}
-
-/*
- * The 32KHz synchronized timer is an additional timer on 16xx.
- * It is always running.
- */
-static inline unsigned long omap_32k_sync_timer_read(void)
-{
-	return omap_readl(TIMER_32K_SYNCHRONIZED);
-}
-
-static inline void omap_32k_timer_start(unsigned long load_val)
-{
-	omap_32k_timer_write(load_val, OMAP_32K_TIMER_TVR);
-	omap_32k_timer_write(0x0f, OMAP_32K_TIMER_CR);
-}
-
-static inline void omap_32k_timer_stop(void)
-{
-	omap_32k_timer_write(0x0, OMAP_32K_TIMER_CR);
-}
-
-/*
- * Rounds down to nearest usec. Note that this will overflow for larger values.
- */
-static inline unsigned long omap_32k_ticks_to_usecs(unsigned long ticks_32k)
-{
-	return (ticks_32k * 5*5*5*5*5*5) >> 9;
-}
-
-/*
- * Rounds down to nearest nsec.
- */
-static inline unsigned long long
-omap_32k_ticks_to_nsecs(unsigned long ticks_32k)
-{
-	return (unsigned long long) ticks_32k * 1000 * 5*5*5*5*5*5 >> 9;
-}
-
-static unsigned long omap_32k_last_tick = 0;
-
-/*
- * Returns elapsed usecs since last 32k timer interrupt
- */
-static unsigned long omap_32k_timer_gettimeoffset(void)
-{
-	unsigned long now = omap_32k_sync_timer_read();
-	return omap_32k_ticks_to_usecs(now - omap_32k_last_tick);
-}
-
-/*
- * Returns current time from boot in nsecs. It's OK for this to wrap
- * around for now, as it's just a relative time stamp.
- */
-unsigned long long sched_clock(void)
-{
-	return omap_32k_ticks_to_nsecs(omap_32k_sync_timer_read());
-}
-
-/*
- * Timer interrupt for 32KHz timer. When dynamic tick is enabled, this
- * function is also called from other interrupts to remove latency
- * issues with dynamic tick. In the dynamic tick case, we need to lock
- * with irqsave.
- */
-static irqreturn_t omap_32k_timer_interrupt(int irq, void *dev_id,
-					    struct pt_regs *regs)
-{
-	unsigned long flags;
-	unsigned long now;
-
-	write_seqlock_irqsave(&xtime_lock, flags);
-	now = omap_32k_sync_timer_read();
-
-	while (now - omap_32k_last_tick >= OMAP_32K_TICKS_PER_HZ) {
-		omap_32k_last_tick += OMAP_32K_TICKS_PER_HZ;
-		timer_tick(regs);
-	}
-
-	/* Restart timer so we don't drift off due to modulo or dynamic tick.
-	 * By default we program the next timer to be continuous to avoid
-	 * latencies during high system load. During dynamic tick operation the
-	 * continuous timer can be overridden from pm_idle to be longer.
-	 */
-	omap_32k_timer_start(omap_32k_last_tick + OMAP_32K_TICKS_PER_HZ - now);
-	write_sequnlock_irqrestore(&xtime_lock, flags);
-
-	return IRQ_HANDLED;
-}
-
-#ifdef CONFIG_NO_IDLE_HZ
-/*
- * Programs the next timer interrupt needed. Called when dynamic tick is
- * enabled, and to reprogram the ticks to skip from pm_idle. Note that
- * we can keep the timer continuous, and don't need to set it to run in
- * one-shot mode. This is because the timer will get reprogrammed again
- * after next interrupt.
- */
-void omap_32k_timer_reprogram(unsigned long next_tick)
-{
-	omap_32k_timer_start(JIFFIES_TO_HW_TICKS(next_tick, 32768) + 1);
-}
-
-static struct irqaction omap_32k_timer_irq;
-extern struct timer_update_handler timer_update;
-
-static int omap_32k_timer_enable_dyn_tick(void)
-{
-	/* No need to reprogram timer, just use the next interrupt */
-	return 0;
-}
-
-static int omap_32k_timer_disable_dyn_tick(void)
-{
-	omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD);
-	return 0;
-}
-
-static struct dyn_tick_timer omap_dyn_tick_timer = {
-	.enable		= omap_32k_timer_enable_dyn_tick,
-	.disable	= omap_32k_timer_disable_dyn_tick,
-	.reprogram	= omap_32k_timer_reprogram,
-	.handler	= omap_32k_timer_interrupt,
-};
-#endif	/* CONFIG_NO_IDLE_HZ */
-
-static struct irqaction omap_32k_timer_irq = {
-	.name		= "32KHz timer",
-	.flags		= SA_INTERRUPT | SA_TIMER,
-	.handler	= omap_32k_timer_interrupt,
-};
-
-static __init void omap_init_32k_timer(void)
-{
-
-#ifdef CONFIG_NO_IDLE_HZ
-	omap_timer.dyn_tick = &omap_dyn_tick_timer;
-#endif
-
-	setup_irq(INT_OS_TIMER, &omap_32k_timer_irq);
-	omap_timer.offset  = omap_32k_timer_gettimeoffset;
-	omap_32k_last_tick = omap_32k_sync_timer_read();
-	omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD);
-}
-#endif	/* CONFIG_OMAP_32K_TIMER */
 
 /*
  * ---------------------------------------------------------------------------
@@ -419,13 +228,7 @@ static __init void omap_init_32k_timer(void)
  */
 static void __init omap_timer_init(void)
 {
-#if defined(CONFIG_OMAP_MPU_TIMER)
 	omap_init_mpu_timer();
-#elif defined(CONFIG_OMAP_32K_TIMER)
-	omap_init_32k_timer();
-#else
-#error No system timer selected in Kconfig!
-#endif
 }
 
 struct sys_timer omap_timer = {

+ 3 - 0
arch/arm/mach-omap2/Kconfig

@@ -20,3 +20,6 @@ config MACH_OMAP_H4
 	bool "OMAP 2420 H4 board"
 	depends on ARCH_OMAP2 && ARCH_OMAP24XX
 
+config MACH_OMAP_APOLLON
+	bool "OMAP 2420 Apollon board"
+	depends on ARCH_OMAP2 && ARCH_OMAP24XX

+ 5 - 1
arch/arm/mach-omap2/Makefile

@@ -3,11 +3,15 @@
 #
 
 # Common support
-obj-y := irq.o id.o io.o sram-fn.o clock.o mux.o devices.o serial.o
+obj-y := irq.o id.o io.o sram-fn.o memory.o prcm.o clock.o mux.o devices.o serial.o
 
 obj-$(CONFIG_OMAP_MPU_TIMER)		+= timer-gp.o
 
+# Power Management
+obj-$(CONFIG_PM) += pm.o sleep.o
+
 # Specific board support
 obj-$(CONFIG_MACH_OMAP_GENERIC)		+= board-generic.o
 obj-$(CONFIG_MACH_OMAP_H4)		+= board-h4.o
+obj-$(CONFIG_MACH_OMAP_APOLLON)		+= board-apollon.o
 

이 변경점에서 너무 많은 파일들이 변경되어 몇몇 파일들은 표시되지 않았습니다.