|
@@ -467,24 +467,41 @@ static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
|
|
|
expires - jiffies, jiffies);
|
|
|
}
|
|
|
|
|
|
-static void throtl_schedule_next_dispatch(struct throtl_service_queue *sq)
|
|
|
+/**
|
|
|
+ * throtl_schedule_next_dispatch - schedule the next dispatch cycle
|
|
|
+ * @sq: the service_queue to schedule dispatch for
|
|
|
+ * @force: force scheduling
|
|
|
+ *
|
|
|
+ * Arm @sq->pending_timer so that the next dispatch cycle starts on the
|
|
|
+ * dispatch time of the first pending child. Returns %true if either timer
|
|
|
+ * is armed or there's no pending child left. %false if the current
|
|
|
+ * dispatch window is still open and the caller should continue
|
|
|
+ * dispatching.
|
|
|
+ *
|
|
|
+ * If @force is %true, the dispatch timer is always scheduled and this
|
|
|
+ * function is guaranteed to return %true. This is to be used when the
|
|
|
+ * caller can't dispatch itself and needs to invoke pending_timer
|
|
|
+ * unconditionally. Note that forced scheduling is likely to induce short
|
|
|
+ * delay before dispatch starts even if @sq->first_pending_disptime is not
|
|
|
+ * in the future and thus shouldn't be used in hot paths.
|
|
|
+ */
|
|
|
+static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
|
|
|
+ bool force)
|
|
|
{
|
|
|
- struct throtl_data *td = sq_to_td(sq);
|
|
|
-
|
|
|
/* any pending children left? */
|
|
|
if (!sq->nr_pending)
|
|
|
- return;
|
|
|
+ return true;
|
|
|
|
|
|
update_min_dispatch_time(sq);
|
|
|
|
|
|
/* is the next dispatch time in the future? */
|
|
|
- if (time_after(sq->first_pending_disptime, jiffies)) {
|
|
|
+ if (force || time_after(sq->first_pending_disptime, jiffies)) {
|
|
|
throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
|
|
|
- return;
|
|
|
+ return true;
|
|
|
}
|
|
|
|
|
|
- /* kick immediate execution */
|
|
|
- queue_work(kthrotld_workqueue, &td->dispatch_work);
|
|
|
+ /* tell the caller to continue dispatching */
|
|
|
+ return false;
|
|
|
}
|
|
|
|
|
|
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
|
|
@@ -930,39 +947,47 @@ void blk_throtl_dispatch_work_fn(struct work_struct *work)
|
|
|
dispatch_work);
|
|
|
struct throtl_service_queue *sq = &td->service_queue;
|
|
|
struct request_queue *q = td->queue;
|
|
|
- unsigned int nr_disp = 0;
|
|
|
struct bio_list bio_list_on_stack;
|
|
|
struct bio *bio;
|
|
|
struct blk_plug plug;
|
|
|
- int rw;
|
|
|
+ bool dispatched = false;
|
|
|
+ int rw, ret;
|
|
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
|
|
|
|
bio_list_init(&bio_list_on_stack);
|
|
|
|
|
|
- throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
|
|
|
- td->nr_queued[READ] + td->nr_queued[WRITE],
|
|
|
- td->nr_queued[READ], td->nr_queued[WRITE]);
|
|
|
+ while (true) {
|
|
|
+ throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
|
|
|
+ td->nr_queued[READ] + td->nr_queued[WRITE],
|
|
|
+ td->nr_queued[READ], td->nr_queued[WRITE]);
|
|
|
+
|
|
|
+ ret = throtl_select_dispatch(sq);
|
|
|
+ if (ret) {
|
|
|
+ for (rw = READ; rw <= WRITE; rw++) {
|
|
|
+ bio_list_merge(&bio_list_on_stack, &sq->bio_lists[rw]);
|
|
|
+ bio_list_init(&sq->bio_lists[rw]);
|
|
|
+ }
|
|
|
+ throtl_log(sq, "bios disp=%u", ret);
|
|
|
+ dispatched = true;
|
|
|
+ }
|
|
|
|
|
|
- nr_disp = throtl_select_dispatch(sq);
|
|
|
+ if (throtl_schedule_next_dispatch(sq, false))
|
|
|
+ break;
|
|
|
|
|
|
- if (nr_disp) {
|
|
|
- for (rw = READ; rw <= WRITE; rw++) {
|
|
|
- bio_list_merge(&bio_list_on_stack, &sq->bio_lists[rw]);
|
|
|
- bio_list_init(&sq->bio_lists[rw]);
|
|
|
- }
|
|
|
- throtl_log(sq, "bios disp=%u", nr_disp);
|
|
|
+ /* this dispatch windows is still open, relax and repeat */
|
|
|
+ spin_unlock_irq(q->queue_lock);
|
|
|
+ cpu_relax();
|
|
|
+ spin_lock_irq(q->queue_lock);
|
|
|
}
|
|
|
|
|
|
- throtl_schedule_next_dispatch(sq);
|
|
|
-
|
|
|
spin_unlock_irq(q->queue_lock);
|
|
|
|
|
|
/*
|
|
|
* If we dispatched some requests, unplug the queue to make sure
|
|
|
* immediate dispatch
|
|
|
*/
|
|
|
- if (nr_disp) {
|
|
|
+ if (dispatched) {
|
|
|
blk_start_plug(&plug);
|
|
|
while((bio = bio_list_pop(&bio_list_on_stack)))
|
|
|
generic_make_request(bio);
|
|
@@ -1078,7 +1103,7 @@ static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
|
|
|
|
|
|
if (tg->flags & THROTL_TG_PENDING) {
|
|
|
tg_update_disptime(tg);
|
|
|
- throtl_schedule_next_dispatch(sq->parent_sq);
|
|
|
+ throtl_schedule_next_dispatch(sq->parent_sq, true);
|
|
|
}
|
|
|
|
|
|
blkg_conf_finish(&ctx);
|
|
@@ -1229,10 +1254,15 @@ queue_bio:
|
|
|
throtl_add_bio_tg(bio, tg);
|
|
|
throttled = true;
|
|
|
|
|
|
- /* update @tg's dispatch time if @tg was empty before @bio */
|
|
|
+ /*
|
|
|
+ * Update @tg's dispatch time and force schedule dispatch if @tg
|
|
|
+ * was empty before @bio. The forced scheduling isn't likely to
|
|
|
+ * cause undue delay as @bio is likely to be dispatched directly if
|
|
|
+ * its @tg's disptime is not in the future.
|
|
|
+ */
|
|
|
if (tg->flags & THROTL_TG_WAS_EMPTY) {
|
|
|
tg_update_disptime(tg);
|
|
|
- throtl_schedule_next_dispatch(tg->service_queue.parent_sq);
|
|
|
+ throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
|
|
|
}
|
|
|
|
|
|
out_unlock:
|