|
@@ -44,7 +44,7 @@
|
|
|
* and some flavors of secondary chipselect (e.g. based on A12) as used
|
|
|
* with multichip packages.
|
|
|
*
|
|
|
- * The 1-bit ECC hardware is supported, but not yet the newer 4-bit ECC
|
|
|
+ * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
|
|
|
* available on chips like the DM355 and OMAP-L137 and needed with the
|
|
|
* more error-prone MLC NAND chips.
|
|
|
*
|
|
@@ -54,11 +54,14 @@
|
|
|
struct davinci_nand_info {
|
|
|
struct mtd_info mtd;
|
|
|
struct nand_chip chip;
|
|
|
+ struct nand_ecclayout ecclayout;
|
|
|
|
|
|
struct device *dev;
|
|
|
struct clk *clk;
|
|
|
bool partitioned;
|
|
|
|
|
|
+ bool is_readmode;
|
|
|
+
|
|
|
void __iomem *base;
|
|
|
void __iomem *vaddr;
|
|
|
|
|
@@ -73,6 +76,7 @@ struct davinci_nand_info {
|
|
|
};
|
|
|
|
|
|
static DEFINE_SPINLOCK(davinci_nand_lock);
|
|
|
+static bool ecc4_busy;
|
|
|
|
|
|
#define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
|
|
|
|
|
@@ -217,6 +221,192 @@ static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
|
|
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
|
|
+/*
|
|
|
+ * 4-bit hardware ECC ... context maintained over entire AEMIF
|
|
|
+ *
|
|
|
+ * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
|
|
|
+ * since that forces use of a problematic "infix OOB" layout.
|
|
|
+ * Among other things, it trashes manufacturer bad block markers.
|
|
|
+ * Also, and specific to this hardware, it ECC-protects the "prepad"
|
|
|
+ * in the OOB ... while having ECC protection for parts of OOB would
|
|
|
+ * seem useful, the current MTD stack sometimes wants to update the
|
|
|
+ * OOB without recomputing ECC.
|
|
|
+ */
|
|
|
+
|
|
|
+static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
|
|
|
+{
|
|
|
+ struct davinci_nand_info *info = to_davinci_nand(mtd);
|
|
|
+ unsigned long flags;
|
|
|
+ u32 val;
|
|
|
+
|
|
|
+ spin_lock_irqsave(&davinci_nand_lock, flags);
|
|
|
+
|
|
|
+ /* Start 4-bit ECC calculation for read/write */
|
|
|
+ val = davinci_nand_readl(info, NANDFCR_OFFSET);
|
|
|
+ val &= ~(0x03 << 4);
|
|
|
+ val |= (info->core_chipsel << 4) | BIT(12);
|
|
|
+ davinci_nand_writel(info, NANDFCR_OFFSET, val);
|
|
|
+
|
|
|
+ info->is_readmode = (mode == NAND_ECC_READ);
|
|
|
+
|
|
|
+ spin_unlock_irqrestore(&davinci_nand_lock, flags);
|
|
|
+}
|
|
|
+
|
|
|
+/* Read raw ECC code after writing to NAND. */
|
|
|
+static void
|
|
|
+nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
|
|
|
+{
|
|
|
+ const u32 mask = 0x03ff03ff;
|
|
|
+
|
|
|
+ code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
|
|
|
+ code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
|
|
|
+ code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
|
|
|
+ code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
|
|
|
+}
|
|
|
+
|
|
|
+/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
|
|
|
+static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
|
|
|
+ const u_char *dat, u_char *ecc_code)
|
|
|
+{
|
|
|
+ struct davinci_nand_info *info = to_davinci_nand(mtd);
|
|
|
+ u32 raw_ecc[4], *p;
|
|
|
+ unsigned i;
|
|
|
+
|
|
|
+ /* After a read, terminate ECC calculation by a dummy read
|
|
|
+ * of some 4-bit ECC register. ECC covers everything that
|
|
|
+ * was read; correct() just uses the hardware state, so
|
|
|
+ * ecc_code is not needed.
|
|
|
+ */
|
|
|
+ if (info->is_readmode) {
|
|
|
+ davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Pack eight raw 10-bit ecc values into ten bytes, making
|
|
|
+ * two passes which each convert four values (in upper and
|
|
|
+ * lower halves of two 32-bit words) into five bytes. The
|
|
|
+ * ROM boot loader uses this same packing scheme.
|
|
|
+ */
|
|
|
+ nand_davinci_readecc_4bit(info, raw_ecc);
|
|
|
+ for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
|
|
|
+ *ecc_code++ = p[0] & 0xff;
|
|
|
+ *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
|
|
|
+ *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
|
|
|
+ *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
|
|
|
+ *ecc_code++ = (p[1] >> 18) & 0xff;
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/* Correct up to 4 bits in data we just read, using state left in the
|
|
|
+ * hardware plus the ecc_code computed when it was first written.
|
|
|
+ */
|
|
|
+static int nand_davinci_correct_4bit(struct mtd_info *mtd,
|
|
|
+ u_char *data, u_char *ecc_code, u_char *null)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+ struct davinci_nand_info *info = to_davinci_nand(mtd);
|
|
|
+ unsigned short ecc10[8];
|
|
|
+ unsigned short *ecc16;
|
|
|
+ u32 syndrome[4];
|
|
|
+ unsigned num_errors, corrected;
|
|
|
+
|
|
|
+ /* All bytes 0xff? It's an erased page; ignore its ECC. */
|
|
|
+ for (i = 0; i < 10; i++) {
|
|
|
+ if (ecc_code[i] != 0xff)
|
|
|
+ goto compare;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+
|
|
|
+compare:
|
|
|
+ /* Unpack ten bytes into eight 10 bit values. We know we're
|
|
|
+ * little-endian, and use type punning for less shifting/masking.
|
|
|
+ */
|
|
|
+ if (WARN_ON(0x01 & (unsigned) ecc_code))
|
|
|
+ return -EINVAL;
|
|
|
+ ecc16 = (unsigned short *)ecc_code;
|
|
|
+
|
|
|
+ ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
|
|
|
+ ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
|
|
|
+ ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
|
|
|
+ ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
|
|
|
+ ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
|
|
|
+ ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
|
|
|
+ ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
|
|
|
+ ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
|
|
|
+
|
|
|
+ /* Tell ECC controller about the expected ECC codes. */
|
|
|
+ for (i = 7; i >= 0; i--)
|
|
|
+ davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
|
|
|
+
|
|
|
+ /* Allow time for syndrome calculation ... then read it.
|
|
|
+ * A syndrome of all zeroes 0 means no detected errors.
|
|
|
+ */
|
|
|
+ davinci_nand_readl(info, NANDFSR_OFFSET);
|
|
|
+ nand_davinci_readecc_4bit(info, syndrome);
|
|
|
+ if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ /* Start address calculation, and wait for it to complete.
|
|
|
+ * We _could_ start reading more data while this is working,
|
|
|
+ * to speed up the overall page read.
|
|
|
+ */
|
|
|
+ davinci_nand_writel(info, NANDFCR_OFFSET,
|
|
|
+ davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
|
|
|
+ for (;;) {
|
|
|
+ u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
|
|
|
+
|
|
|
+ switch ((fsr >> 8) & 0x0f) {
|
|
|
+ case 0: /* no error, should not happen */
|
|
|
+ return 0;
|
|
|
+ case 1: /* five or more errors detected */
|
|
|
+ return -EIO;
|
|
|
+ case 2: /* error addresses computed */
|
|
|
+ case 3:
|
|
|
+ num_errors = 1 + ((fsr >> 16) & 0x03);
|
|
|
+ goto correct;
|
|
|
+ default: /* still working on it */
|
|
|
+ cpu_relax();
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+correct:
|
|
|
+ /* correct each error */
|
|
|
+ for (i = 0, corrected = 0; i < num_errors; i++) {
|
|
|
+ int error_address, error_value;
|
|
|
+
|
|
|
+ if (i > 1) {
|
|
|
+ error_address = davinci_nand_readl(info,
|
|
|
+ NAND_ERR_ADD2_OFFSET);
|
|
|
+ error_value = davinci_nand_readl(info,
|
|
|
+ NAND_ERR_ERRVAL2_OFFSET);
|
|
|
+ } else {
|
|
|
+ error_address = davinci_nand_readl(info,
|
|
|
+ NAND_ERR_ADD1_OFFSET);
|
|
|
+ error_value = davinci_nand_readl(info,
|
|
|
+ NAND_ERR_ERRVAL1_OFFSET);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (i & 1) {
|
|
|
+ error_address >>= 16;
|
|
|
+ error_value >>= 16;
|
|
|
+ }
|
|
|
+ error_address &= 0x3ff;
|
|
|
+ error_address = (512 + 7) - error_address;
|
|
|
+
|
|
|
+ if (error_address < 512) {
|
|
|
+ data[error_address] ^= error_value;
|
|
|
+ corrected++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return corrected;
|
|
|
+}
|
|
|
+
|
|
|
+/*----------------------------------------------------------------------*/
|
|
|
+
|
|
|
/*
|
|
|
* NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
|
|
|
* how these chips are normally wired. This translates to both 8 and 16
|
|
@@ -294,6 +484,23 @@ static void __init nand_dm6446evm_flash_init(struct davinci_nand_info *info)
|
|
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
|
|
+/* An ECC layout for using 4-bit ECC with small-page flash, storing
|
|
|
+ * ten ECC bytes plus the manufacturer's bad block marker byte, and
|
|
|
+ * and not overlapping the default BBT markers.
|
|
|
+ */
|
|
|
+static struct nand_ecclayout hwecc4_small __initconst = {
|
|
|
+ .eccbytes = 10,
|
|
|
+ .eccpos = { 0, 1, 2, 3, 4,
|
|
|
+ /* offset 5 holds the badblock marker */
|
|
|
+ 6, 7,
|
|
|
+ 13, 14, 15, },
|
|
|
+ .oobfree = {
|
|
|
+ {.offset = 8, .length = 5, },
|
|
|
+ {.offset = 16, },
|
|
|
+ },
|
|
|
+};
|
|
|
+
|
|
|
+
|
|
|
static int __init nand_davinci_probe(struct platform_device *pdev)
|
|
|
{
|
|
|
struct davinci_nand_pdata *pdata = pdev->dev.platform_data;
|
|
@@ -378,24 +585,41 @@ static int __init nand_davinci_probe(struct platform_device *pdev)
|
|
|
/* Use board-specific ECC config */
|
|
|
ecc_mode = pdata->ecc_mode;
|
|
|
|
|
|
+ ret = -EINVAL;
|
|
|
switch (ecc_mode) {
|
|
|
case NAND_ECC_NONE:
|
|
|
case NAND_ECC_SOFT:
|
|
|
+ pdata->ecc_bits = 0;
|
|
|
break;
|
|
|
case NAND_ECC_HW:
|
|
|
- info->chip.ecc.calculate = nand_davinci_calculate_1bit;
|
|
|
- info->chip.ecc.correct = nand_davinci_correct_1bit;
|
|
|
- info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
|
|
|
+ if (pdata->ecc_bits == 4) {
|
|
|
+ /* No sanity checks: CPUs must support this,
|
|
|
+ * and the chips may not use NAND_BUSWIDTH_16.
|
|
|
+ */
|
|
|
+
|
|
|
+ /* No sharing 4-bit hardware between chipselects yet */
|
|
|
+ spin_lock_irq(&davinci_nand_lock);
|
|
|
+ if (ecc4_busy)
|
|
|
+ ret = -EBUSY;
|
|
|
+ else
|
|
|
+ ecc4_busy = true;
|
|
|
+ spin_unlock_irq(&davinci_nand_lock);
|
|
|
+
|
|
|
+ if (ret == -EBUSY)
|
|
|
+ goto err_ecc;
|
|
|
+
|
|
|
+ info->chip.ecc.calculate = nand_davinci_calculate_4bit;
|
|
|
+ info->chip.ecc.correct = nand_davinci_correct_4bit;
|
|
|
+ info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
|
|
|
+ info->chip.ecc.bytes = 10;
|
|
|
+ } else {
|
|
|
+ info->chip.ecc.calculate = nand_davinci_calculate_1bit;
|
|
|
+ info->chip.ecc.correct = nand_davinci_correct_1bit;
|
|
|
+ info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
|
|
|
+ info->chip.ecc.bytes = 3;
|
|
|
+ }
|
|
|
info->chip.ecc.size = 512;
|
|
|
- info->chip.ecc.bytes = 3;
|
|
|
break;
|
|
|
- case NAND_ECC_HW_SYNDROME:
|
|
|
- /* FIXME implement */
|
|
|
- info->chip.ecc.size = 512;
|
|
|
- info->chip.ecc.bytes = 10;
|
|
|
-
|
|
|
- dev_warn(&pdev->dev, "4-bit ECC nyet supported\n");
|
|
|
- /* FALL THROUGH */
|
|
|
default:
|
|
|
ret = -EINVAL;
|
|
|
goto err_ecc;
|
|
@@ -435,12 +659,56 @@ static int __init nand_davinci_probe(struct platform_device *pdev)
|
|
|
spin_unlock_irq(&davinci_nand_lock);
|
|
|
|
|
|
/* Scan to find existence of the device(s) */
|
|
|
- ret = nand_scan(&info->mtd, pdata->mask_chipsel ? 2 : 1);
|
|
|
+ ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1);
|
|
|
if (ret < 0) {
|
|
|
dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
|
|
|
goto err_scan;
|
|
|
}
|
|
|
|
|
|
+ /* Update ECC layout if needed ... for 1-bit HW ECC, the default
|
|
|
+ * is OK, but it allocates 6 bytes when only 3 are needed (for
|
|
|
+ * each 512 bytes). For the 4-bit HW ECC, that default is not
|
|
|
+ * usable: 10 bytes are needed, not 6.
|
|
|
+ */
|
|
|
+ if (pdata->ecc_bits == 4) {
|
|
|
+ int chunks = info->mtd.writesize / 512;
|
|
|
+
|
|
|
+ if (!chunks || info->mtd.oobsize < 16) {
|
|
|
+ dev_dbg(&pdev->dev, "too small\n");
|
|
|
+ ret = -EINVAL;
|
|
|
+ goto err_scan;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* For small page chips, preserve the manufacturer's
|
|
|
+ * badblock marking data ... and make sure a flash BBT
|
|
|
+ * table marker fits in the free bytes.
|
|
|
+ */
|
|
|
+ if (chunks == 1) {
|
|
|
+ info->ecclayout = hwecc4_small;
|
|
|
+ info->ecclayout.oobfree[1].length =
|
|
|
+ info->mtd.oobsize - 16;
|
|
|
+ goto syndrome_done;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* For large page chips we'll be wanting to use a
|
|
|
+ * not-yet-implemented mode that reads OOB data
|
|
|
+ * before reading the body of the page, to avoid
|
|
|
+ * the "infix OOB" model of NAND_ECC_HW_SYNDROME
|
|
|
+ * (and preserve manufacturer badblock markings).
|
|
|
+ */
|
|
|
+ dev_warn(&pdev->dev, "no 4-bit ECC support yet "
|
|
|
+ "for large page NAND\n");
|
|
|
+ ret = -EIO;
|
|
|
+ goto err_scan;
|
|
|
+
|
|
|
+syndrome_done:
|
|
|
+ info->chip.ecc.layout = &info->ecclayout;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret = nand_scan_tail(&info->mtd);
|
|
|
+ if (ret < 0)
|
|
|
+ goto err_scan;
|
|
|
+
|
|
|
if (mtd_has_partitions()) {
|
|
|
struct mtd_partition *mtd_parts = NULL;
|
|
|
int mtd_parts_nb = 0;
|
|
@@ -503,6 +771,11 @@ err_scan:
|
|
|
err_clk_enable:
|
|
|
clk_put(info->clk);
|
|
|
|
|
|
+ spin_lock_irq(&davinci_nand_lock);
|
|
|
+ if (ecc_mode == NAND_ECC_HW_SYNDROME)
|
|
|
+ ecc4_busy = false;
|
|
|
+ spin_unlock_irq(&davinci_nand_lock);
|
|
|
+
|
|
|
err_ecc:
|
|
|
err_clk:
|
|
|
err_ioremap:
|
|
@@ -526,6 +799,11 @@ static int __exit nand_davinci_remove(struct platform_device *pdev)
|
|
|
else
|
|
|
status = del_mtd_device(&info->mtd);
|
|
|
|
|
|
+ spin_lock_irq(&davinci_nand_lock);
|
|
|
+ if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
|
|
|
+ ecc4_busy = false;
|
|
|
+ spin_unlock_irq(&davinci_nand_lock);
|
|
|
+
|
|
|
iounmap(info->base);
|
|
|
iounmap(info->vaddr);
|
|
|
|