|
@@ -128,3 +128,144 @@ static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
|
|
|
return status;
|
|
|
}
|
|
|
|
|
|
+/* Map from a CSROW entry to the mask entry that operates on it */
|
|
|
+static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
|
|
|
+{
|
|
|
+ return csrow >> (pvt->num_dcsm >> 3);
|
|
|
+}
|
|
|
+
|
|
|
+/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
|
|
|
+static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
|
|
|
+{
|
|
|
+ if (dct == 0)
|
|
|
+ return pvt->dcsb0[csrow];
|
|
|
+ else
|
|
|
+ return pvt->dcsb1[csrow];
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Return the 'mask' address the i'th CS entry. This function is needed because
|
|
|
+ * there number of DCSM registers on Rev E and prior vs Rev F and later is
|
|
|
+ * different.
|
|
|
+ */
|
|
|
+static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
|
|
|
+{
|
|
|
+ if (dct == 0)
|
|
|
+ return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
|
|
|
+ else
|
|
|
+ return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ * In *base and *limit, pass back the full 40-bit base and limit physical
|
|
|
+ * addresses for the node given by node_id. This information is obtained from
|
|
|
+ * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
|
|
|
+ * base and limit addresses are of type SysAddr, as defined at the start of
|
|
|
+ * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
|
|
|
+ * in the address range they represent.
|
|
|
+ */
|
|
|
+static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
|
|
|
+ u64 *base, u64 *limit)
|
|
|
+{
|
|
|
+ *base = pvt->dram_base[node_id];
|
|
|
+ *limit = pvt->dram_limit[node_id];
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
|
|
|
+ * with node_id
|
|
|
+ */
|
|
|
+static int amd64_base_limit_match(struct amd64_pvt *pvt,
|
|
|
+ u64 sys_addr, int node_id)
|
|
|
+{
|
|
|
+ u64 base, limit, addr;
|
|
|
+
|
|
|
+ amd64_get_base_and_limit(pvt, node_id, &base, &limit);
|
|
|
+
|
|
|
+ /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
|
|
|
+ * all ones if the most significant implemented address bit is 1.
|
|
|
+ * Here we discard bits 63-40. See section 3.4.2 of AMD publication
|
|
|
+ * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
|
|
|
+ * Application Programming.
|
|
|
+ */
|
|
|
+ addr = sys_addr & 0x000000ffffffffffull;
|
|
|
+
|
|
|
+ return (addr >= base) && (addr <= limit);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Attempt to map a SysAddr to a node. On success, return a pointer to the
|
|
|
+ * mem_ctl_info structure for the node that the SysAddr maps to.
|
|
|
+ *
|
|
|
+ * On failure, return NULL.
|
|
|
+ */
|
|
|
+static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
|
|
|
+ u64 sys_addr)
|
|
|
+{
|
|
|
+ struct amd64_pvt *pvt;
|
|
|
+ int node_id;
|
|
|
+ u32 intlv_en, bits;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
|
|
|
+ * 3.4.4.2) registers to map the SysAddr to a node ID.
|
|
|
+ */
|
|
|
+ pvt = mci->pvt_info;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The value of this field should be the same for all DRAM Base
|
|
|
+ * registers. Therefore we arbitrarily choose to read it from the
|
|
|
+ * register for node 0.
|
|
|
+ */
|
|
|
+ intlv_en = pvt->dram_IntlvEn[0];
|
|
|
+
|
|
|
+ if (intlv_en == 0) {
|
|
|
+ for (node_id = 0; ; ) {
|
|
|
+ if (amd64_base_limit_match(pvt, sys_addr, node_id))
|
|
|
+ break;
|
|
|
+
|
|
|
+ if (++node_id >= DRAM_REG_COUNT)
|
|
|
+ goto err_no_match;
|
|
|
+ }
|
|
|
+ goto found;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (unlikely((intlv_en != (0x01 << 8)) &&
|
|
|
+ (intlv_en != (0x03 << 8)) &&
|
|
|
+ (intlv_en != (0x07 << 8)))) {
|
|
|
+ amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
|
|
|
+ "IntlvEn field of DRAM Base Register for node 0: "
|
|
|
+ "This probably indicates a BIOS bug.\n", intlv_en);
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ bits = (((u32) sys_addr) >> 12) & intlv_en;
|
|
|
+
|
|
|
+ for (node_id = 0; ; ) {
|
|
|
+ if ((pvt->dram_limit[node_id] & intlv_en) == bits)
|
|
|
+ break; /* intlv_sel field matches */
|
|
|
+
|
|
|
+ if (++node_id >= DRAM_REG_COUNT)
|
|
|
+ goto err_no_match;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* sanity test for sys_addr */
|
|
|
+ if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
|
|
|
+ amd64_printk(KERN_WARNING,
|
|
|
+ "%s(): sys_addr 0x%lx falls outside base/limit "
|
|
|
+ "address range for node %d with node interleaving "
|
|
|
+ "enabled.\n", __func__, (unsigned long)sys_addr,
|
|
|
+ node_id);
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+found:
|
|
|
+ return edac_mc_find(node_id);
|
|
|
+
|
|
|
+err_no_match:
|
|
|
+ debugf2("sys_addr 0x%lx doesn't match any node\n",
|
|
|
+ (unsigned long)sys_addr);
|
|
|
+
|
|
|
+ return NULL;
|
|
|
+}
|