|
@@ -1,193 +0,0 @@
|
|
|
-/*
|
|
|
- * Copyright (C) 2009 Intel Corporation.
|
|
|
- * Author: Patrick Ohly <patrick.ohly@intel.com>
|
|
|
- *
|
|
|
- * This program is free software; you can redistribute it and/or modify
|
|
|
- * it under the terms of the GNU General Public License as published by
|
|
|
- * the Free Software Foundation; either version 2 of the License, or
|
|
|
- * (at your option) any later version.
|
|
|
- *
|
|
|
- * This program is distributed in the hope that it will be useful,
|
|
|
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
- * GNU General Public License for more details.
|
|
|
- *
|
|
|
- * You should have received a copy of the GNU General Public License
|
|
|
- * along with this program; if not, write to the Free Software
|
|
|
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
- */
|
|
|
-
|
|
|
-#include <linux/timecompare.h>
|
|
|
-#include <linux/module.h>
|
|
|
-#include <linux/slab.h>
|
|
|
-#include <linux/math64.h>
|
|
|
-#include <linux/kernel.h>
|
|
|
-
|
|
|
-/*
|
|
|
- * fixed point arithmetic scale factor for skew
|
|
|
- *
|
|
|
- * Usually one would measure skew in ppb (parts per billion, 1e9), but
|
|
|
- * using a factor of 2 simplifies the math.
|
|
|
- */
|
|
|
-#define TIMECOMPARE_SKEW_RESOLUTION (((s64)1)<<30)
|
|
|
-
|
|
|
-ktime_t timecompare_transform(struct timecompare *sync,
|
|
|
- u64 source_tstamp)
|
|
|
-{
|
|
|
- u64 nsec;
|
|
|
-
|
|
|
- nsec = source_tstamp + sync->offset;
|
|
|
- nsec += (s64)(source_tstamp - sync->last_update) * sync->skew /
|
|
|
- TIMECOMPARE_SKEW_RESOLUTION;
|
|
|
-
|
|
|
- return ns_to_ktime(nsec);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL_GPL(timecompare_transform);
|
|
|
-
|
|
|
-int timecompare_offset(struct timecompare *sync,
|
|
|
- s64 *offset,
|
|
|
- u64 *source_tstamp)
|
|
|
-{
|
|
|
- u64 start_source = 0, end_source = 0;
|
|
|
- struct {
|
|
|
- s64 offset;
|
|
|
- s64 duration_target;
|
|
|
- } buffer[10], sample, *samples;
|
|
|
- int counter = 0, i;
|
|
|
- int used;
|
|
|
- int index;
|
|
|
- int num_samples = sync->num_samples;
|
|
|
-
|
|
|
- if (num_samples > ARRAY_SIZE(buffer)) {
|
|
|
- samples = kmalloc(sizeof(*samples) * num_samples, GFP_ATOMIC);
|
|
|
- if (!samples) {
|
|
|
- samples = buffer;
|
|
|
- num_samples = ARRAY_SIZE(buffer);
|
|
|
- }
|
|
|
- } else {
|
|
|
- samples = buffer;
|
|
|
- }
|
|
|
-
|
|
|
- /* run until we have enough valid samples, but do not try forever */
|
|
|
- i = 0;
|
|
|
- counter = 0;
|
|
|
- while (1) {
|
|
|
- u64 ts;
|
|
|
- ktime_t start, end;
|
|
|
-
|
|
|
- start = sync->target();
|
|
|
- ts = timecounter_read(sync->source);
|
|
|
- end = sync->target();
|
|
|
-
|
|
|
- if (!i)
|
|
|
- start_source = ts;
|
|
|
-
|
|
|
- /* ignore negative durations */
|
|
|
- sample.duration_target = ktime_to_ns(ktime_sub(end, start));
|
|
|
- if (sample.duration_target >= 0) {
|
|
|
- /*
|
|
|
- * assume symetric delay to and from source:
|
|
|
- * average target time corresponds to measured
|
|
|
- * source time
|
|
|
- */
|
|
|
- sample.offset =
|
|
|
- (ktime_to_ns(end) + ktime_to_ns(start)) / 2 -
|
|
|
- ts;
|
|
|
-
|
|
|
- /* simple insertion sort based on duration */
|
|
|
- index = counter - 1;
|
|
|
- while (index >= 0) {
|
|
|
- if (samples[index].duration_target <
|
|
|
- sample.duration_target)
|
|
|
- break;
|
|
|
- samples[index + 1] = samples[index];
|
|
|
- index--;
|
|
|
- }
|
|
|
- samples[index + 1] = sample;
|
|
|
- counter++;
|
|
|
- }
|
|
|
-
|
|
|
- i++;
|
|
|
- if (counter >= num_samples || i >= 100000) {
|
|
|
- end_source = ts;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- *source_tstamp = (end_source + start_source) / 2;
|
|
|
-
|
|
|
- /* remove outliers by only using 75% of the samples */
|
|
|
- used = counter * 3 / 4;
|
|
|
- if (!used)
|
|
|
- used = counter;
|
|
|
- if (used) {
|
|
|
- /* calculate average */
|
|
|
- s64 off = 0;
|
|
|
- for (index = 0; index < used; index++)
|
|
|
- off += samples[index].offset;
|
|
|
- *offset = div_s64(off, used);
|
|
|
- }
|
|
|
-
|
|
|
- if (samples && samples != buffer)
|
|
|
- kfree(samples);
|
|
|
-
|
|
|
- return used;
|
|
|
-}
|
|
|
-EXPORT_SYMBOL_GPL(timecompare_offset);
|
|
|
-
|
|
|
-void __timecompare_update(struct timecompare *sync,
|
|
|
- u64 source_tstamp)
|
|
|
-{
|
|
|
- s64 offset;
|
|
|
- u64 average_time;
|
|
|
-
|
|
|
- if (!timecompare_offset(sync, &offset, &average_time))
|
|
|
- return;
|
|
|
-
|
|
|
- if (!sync->last_update) {
|
|
|
- sync->last_update = average_time;
|
|
|
- sync->offset = offset;
|
|
|
- sync->skew = 0;
|
|
|
- } else {
|
|
|
- s64 delta_nsec = average_time - sync->last_update;
|
|
|
-
|
|
|
- /* avoid division by negative or small deltas */
|
|
|
- if (delta_nsec >= 10000) {
|
|
|
- s64 delta_offset_nsec = offset - sync->offset;
|
|
|
- s64 skew; /* delta_offset_nsec *
|
|
|
- TIMECOMPARE_SKEW_RESOLUTION /
|
|
|
- delta_nsec */
|
|
|
- u64 divisor;
|
|
|
-
|
|
|
- /* div_s64() is limited to 32 bit divisor */
|
|
|
- skew = delta_offset_nsec * TIMECOMPARE_SKEW_RESOLUTION;
|
|
|
- divisor = delta_nsec;
|
|
|
- while (unlikely(divisor >= ((s64)1) << 32)) {
|
|
|
- /* divide both by 2; beware, right shift
|
|
|
- of negative value has undefined
|
|
|
- behavior and can only be used for
|
|
|
- the positive divisor */
|
|
|
- skew = div_s64(skew, 2);
|
|
|
- divisor >>= 1;
|
|
|
- }
|
|
|
- skew = div_s64(skew, divisor);
|
|
|
-
|
|
|
- /*
|
|
|
- * Calculate new overall skew as 4/16 the
|
|
|
- * old value and 12/16 the new one. This is
|
|
|
- * a rather arbitrary tradeoff between
|
|
|
- * only using the latest measurement (0/16 and
|
|
|
- * 16/16) and even more weight on past measurements.
|
|
|
- */
|
|
|
-#define TIMECOMPARE_NEW_SKEW_PER_16 12
|
|
|
- sync->skew =
|
|
|
- div_s64((16 - TIMECOMPARE_NEW_SKEW_PER_16) *
|
|
|
- sync->skew +
|
|
|
- TIMECOMPARE_NEW_SKEW_PER_16 * skew,
|
|
|
- 16);
|
|
|
- sync->last_update = average_time;
|
|
|
- sync->offset = offset;
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-EXPORT_SYMBOL_GPL(__timecompare_update);
|