Sfoglia il codice sorgente

mempolicy: update NUMA memory policy documentation

Updates Documentation/vm/numa_memory_policy.txt and
Documentation/filesystems/tmpfs.txt to describe optional mempolicy mode flags.

Cc: Christoph Lameter <clameter@sgi.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David Rientjes 17 anni fa
parent
commit
65d66fc02e
2 ha cambiato i file con 112 aggiunte e 31 eliminazioni
  1. 12 0
      Documentation/filesystems/tmpfs.txt
  2. 100 31
      Documentation/vm/numa_memory_policy.txt

+ 12 - 0
Documentation/filesystems/tmpfs.txt

@@ -92,6 +92,18 @@ NodeList format is a comma-separated list of decimal numbers and ranges,
 a range being two hyphen-separated decimal numbers, the smallest and
 a range being two hyphen-separated decimal numbers, the smallest and
 largest node numbers in the range.  For example, mpol=bind:0-3,5,7,9-15
 largest node numbers in the range.  For example, mpol=bind:0-3,5,7,9-15
 
 
+NUMA memory allocation policies have optional flags that can be used in
+conjunction with their modes.  These optional flags can be specified
+when tmpfs is mounted by appending them to the mode before the NodeList.
+See Documentation/vm/numa_memory_policy.txt for a list of all available
+memory allocation policy mode flags.
+
+	=static		is equivalent to	MPOL_F_STATIC_NODES
+	=relative	is equivalent to	MPOL_F_RELATIVE_NODES
+
+For example, mpol=bind=static:NodeList, is the equivalent of an
+allocation policy of MPOL_BIND | MPOL_F_STATIC_NODES.
+
 Note that trying to mount a tmpfs with an mpol option will fail if the
 Note that trying to mount a tmpfs with an mpol option will fail if the
 running kernel does not support NUMA; and will fail if its nodelist
 running kernel does not support NUMA; and will fail if its nodelist
 specifies a node which is not online.  If your system relies on that
 specifies a node which is not online.  If your system relies on that

+ 100 - 31
Documentation/vm/numa_memory_policy.txt

@@ -135,9 +135,11 @@ most general to most specific:
 
 
 Components of Memory Policies
 Components of Memory Policies
 
 
-    A Linux memory policy is a tuple consisting of a "mode" and an optional set
-    of nodes.  The mode determine the behavior of the policy, while the
-    optional set of nodes can be viewed as the arguments to the behavior.
+    A Linux memory policy consists of a "mode", optional mode flags, and an
+    optional set of nodes.  The mode determines the behavior of the policy,
+    the optional mode flags determine the behavior of the mode, and the
+    optional set of nodes can be viewed as the arguments to the policy
+    behavior.
 
 
    Internally, memory policies are implemented by a reference counted
    Internally, memory policies are implemented by a reference counted
    structure, struct mempolicy.  Details of this structure will be discussed
    structure, struct mempolicy.  Details of this structure will be discussed
@@ -179,7 +181,8 @@ Components of Memory Policies
 	    on a non-shared region of the address space.  However, see
 	    on a non-shared region of the address space.  However, see
 	    MPOL_PREFERRED below.
 	    MPOL_PREFERRED below.
 
 
-	    The Default mode does not use the optional set of nodes.
+	    It is an error for the set of nodes specified for this policy to
+	    be non-empty.
 
 
 	MPOL_BIND:  This mode specifies that memory must come from the
 	MPOL_BIND:  This mode specifies that memory must come from the
 	set of nodes specified by the policy.  Memory will be allocated from
 	set of nodes specified by the policy.  Memory will be allocated from
@@ -226,6 +229,80 @@ Components of Memory Policies
 	    the temporary interleaved system default policy works in this
 	    the temporary interleaved system default policy works in this
 	    mode.
 	    mode.
 
 
+   Linux memory policy supports the following optional mode flags:
+
+	MPOL_F_STATIC_NODES:  This flag specifies that the nodemask passed by
+	the user should not be remapped if the task or VMA's set of allowed
+	nodes changes after the memory policy has been defined.
+
+	    Without this flag, anytime a mempolicy is rebound because of a
+	    change in the set of allowed nodes, the node (Preferred) or
+	    nodemask (Bind, Interleave) is remapped to the new set of
+	    allowed nodes.  This may result in nodes being used that were
+	    previously undesired.
+
+	    With this flag, if the user-specified nodes overlap with the
+	    nodes allowed by the task's cpuset, then the memory policy is
+	    applied to their intersection.  If the two sets of nodes do not
+	    overlap, the Default policy is used.
+
+	    For example, consider a task that is attached to a cpuset with
+	    mems 1-3 that sets an Interleave policy over the same set.  If
+	    the cpuset's mems change to 3-5, the Interleave will now occur
+	    over nodes 3, 4, and 5.  With this flag, however, since only node
+	    3 is allowed from the user's nodemask, the "interleave" only
+	    occurs over that node.  If no nodes from the user's nodemask are
+	    now allowed, the Default behavior is used.
+
+	    MPOL_F_STATIC_NODES cannot be used with MPOL_F_RELATIVE_NODES.
+
+	MPOL_F_RELATIVE_NODES:  This flag specifies that the nodemask passed
+	by the user will be mapped relative to the set of the task or VMA's
+	set of allowed nodes.  The kernel stores the user-passed nodemask,
+	and if the allowed nodes changes, then that original nodemask will
+	be remapped relative to the new set of allowed nodes.
+
+	    Without this flag (and without MPOL_F_STATIC_NODES), anytime a
+	    mempolicy is rebound because of a change in the set of allowed
+	    nodes, the node (Preferred) or nodemask (Bind, Interleave) is
+	    remapped to the new set of allowed nodes.  That remap may not
+	    preserve the relative nature of the user's passed nodemask to its
+	    set of allowed nodes upon successive rebinds: a nodemask of
+	    1,3,5 may be remapped to 7-9 and then to 1-3 if the set of
+	    allowed nodes is restored to its original state.
+
+	    With this flag, the remap is done so that the node numbers from
+	    the user's passed nodemask are relative to the set of allowed
+	    nodes.  In other words, if nodes 0, 2, and 4 are set in the user's
+	    nodemask, the policy will be effected over the first (and in the
+	    Bind or Interleave case, the third and fifth) nodes in the set of
+	    allowed nodes.  The nodemask passed by the user represents nodes
+	    relative to task or VMA's set of allowed nodes.
+
+	    If the user's nodemask includes nodes that are outside the range
+	    of the new set of allowed nodes (for example, node 5 is set in
+	    the user's nodemask when the set of allowed nodes is only 0-3),
+	    then the remap wraps around to the beginning of the nodemask and,
+	    if not already set, sets the node in the mempolicy nodemask.
+
+	    For example, consider a task that is attached to a cpuset with
+	    mems 2-5 that sets an Interleave policy over the same set with
+	    MPOL_F_RELATIVE_NODES.  If the cpuset's mems change to 3-7, the
+	    interleave now occurs over nodes 3,5-6.  If the cpuset's mems
+	    then change to 0,2-3,5, then the interleave occurs over nodes
+	    0,3,5.
+
+	    Thanks to the consistent remapping, applications preparing
+	    nodemasks to specify memory policies using this flag should
+	    disregard their current, actual cpuset imposed memory placement
+	    and prepare the nodemask as if they were always located on
+	    memory nodes 0 to N-1, where N is the number of memory nodes the
+	    policy is intended to manage.  Let the kernel then remap to the
+	    set of memory nodes allowed by the task's cpuset, as that may
+	    change over time.
+
+	    MPOL_F_RELATIVE_NODES cannot be used with MPOL_F_STATIC_NODES.
+
 MEMORY POLICY APIs
 MEMORY POLICY APIs
 
 
 Linux supports 3 system calls for controlling memory policy.  These APIS
 Linux supports 3 system calls for controlling memory policy.  These APIS
@@ -246,7 +323,9 @@ Set [Task] Memory Policy:
 	Set's the calling task's "task/process memory policy" to mode
 	Set's the calling task's "task/process memory policy" to mode
 	specified by the 'mode' argument and the set of nodes defined
 	specified by the 'mode' argument and the set of nodes defined
 	by 'nmask'.  'nmask' points to a bit mask of node ids containing
 	by 'nmask'.  'nmask' points to a bit mask of node ids containing
-	at least 'maxnode' ids.
+	at least 'maxnode' ids.  Optional mode flags may be passed by
+	combining the 'mode' argument with the flag (for example:
+	MPOL_INTERLEAVE | MPOL_F_STATIC_NODES).
 
 
 	See the set_mempolicy(2) man page for more details
 	See the set_mempolicy(2) man page for more details
 
 
@@ -298,29 +377,19 @@ MEMORY POLICIES AND CPUSETS
 Memory policies work within cpusets as described above.  For memory policies
 Memory policies work within cpusets as described above.  For memory policies
 that require a node or set of nodes, the nodes are restricted to the set of
 that require a node or set of nodes, the nodes are restricted to the set of
 nodes whose memories are allowed by the cpuset constraints.  If the nodemask
 nodes whose memories are allowed by the cpuset constraints.  If the nodemask
-specified for the policy contains nodes that are not allowed by the cpuset, or
-the intersection of the set of nodes specified for the policy and the set of
-nodes with memory is the empty set, the policy is considered invalid
-and cannot be installed.
-
-The interaction of memory policies and cpusets can be problematic for a
-couple of reasons:
-
-1) the memory policy APIs take physical node id's as arguments.  As mentioned
-   above, it is illegal to specify nodes that are not allowed in the cpuset.
-   The application must query the allowed nodes using the get_mempolicy()
-   API with the MPOL_F_MEMS_ALLOWED flag to determine the allowed nodes and
-   restrict itself to those nodes.  However, the resources available to a
-   cpuset can be changed by the system administrator, or a workload manager
-   application, at any time.  So, a task may still get errors attempting to
-   specify policy nodes, and must query the allowed memories again.
-
-2) when tasks in two cpusets share access to a memory region, such as shared
-   memory segments created by shmget() of mmap() with the MAP_ANONYMOUS and
-   MAP_SHARED flags, and any of the tasks install shared policy on the region,
-   only nodes whose memories are allowed in both cpusets may be used in the
-   policies.  Obtaining this information requires "stepping outside" the
-   memory policy APIs to use the cpuset information and requires that one
-   know in what cpusets other task might be attaching to the shared region.
-   Furthermore, if the cpusets' allowed memory sets are disjoint, "local"
-   allocation is the only valid policy.
+specified for the policy contains nodes that are not allowed by the cpuset and
+MPOL_F_RELATIVE_NODES is not used, the intersection of the set of nodes
+specified for the policy and the set of nodes with memory is used.  If the
+result is the empty set, the policy is considered invalid and cannot be
+installed.  If MPOL_F_RELATIVE_NODES is used, the policy's nodes are mapped
+onto and folded into the task's set of allowed nodes as previously described.
+
+The interaction of memory policies and cpusets can be problematic when tasks
+in two cpusets share access to a memory region, such as shared memory segments
+created by shmget() of mmap() with the MAP_ANONYMOUS and MAP_SHARED flags, and
+any of the tasks install shared policy on the region, only nodes whose
+memories are allowed in both cpusets may be used in the policies.  Obtaining
+this information requires "stepping outside" the memory policy APIs to use the
+cpuset information and requires that one know in what cpusets other task might
+be attaching to the shared region.  Furthermore, if the cpusets' allowed
+memory sets are disjoint, "local" allocation is the only valid policy.