|
@@ -30,6 +30,7 @@
|
|
|
#include <linux/slab.h>
|
|
|
|
|
|
#include <asm/ptrace.h>
|
|
|
+#include <asm/branch.h>
|
|
|
#include <asm/break.h>
|
|
|
#include <asm/inst.h>
|
|
|
|
|
@@ -152,13 +153,6 @@ int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
|
goto out;
|
|
|
}
|
|
|
|
|
|
- if (insn_has_delayslot(insn)) {
|
|
|
- pr_notice("Kprobes for branch and jump instructions are not"
|
|
|
- "supported\n");
|
|
|
- ret = -EINVAL;
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
if ((probe_kernel_read(&prev_insn, p->addr - 1,
|
|
|
sizeof(mips_instruction)) == 0) &&
|
|
|
insn_has_delayslot(prev_insn)) {
|
|
@@ -178,9 +172,20 @@ int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
|
* In the kprobe->ainsn.insn[] array we store the original
|
|
|
* instruction at index zero and a break trap instruction at
|
|
|
* index one.
|
|
|
+ *
|
|
|
+ * On MIPS arch if the instruction at probed address is a
|
|
|
+ * branch instruction, we need to execute the instruction at
|
|
|
+ * Branch Delayslot (BD) at the time of probe hit. As MIPS also
|
|
|
+ * doesn't have single stepping support, the BD instruction can
|
|
|
+ * not be executed in-line and it would be executed on SSOL slot
|
|
|
+ * using a normal breakpoint instruction in the next slot.
|
|
|
+ * So, read the instruction and save it for later execution.
|
|
|
*/
|
|
|
+ if (insn_has_delayslot(insn))
|
|
|
+ memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
|
|
|
+ else
|
|
|
+ memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
|
|
|
|
|
|
- memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
|
|
|
p->ainsn.insn[1] = breakpoint2_insn;
|
|
|
p->opcode = *p->addr;
|
|
|
|
|
@@ -231,16 +236,96 @@ static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
|
|
|
kcb->kprobe_saved_epc = regs->cp0_epc;
|
|
|
}
|
|
|
|
|
|
-static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
|
|
|
+/**
|
|
|
+ * evaluate_branch_instrucion -
|
|
|
+ *
|
|
|
+ * Evaluate the branch instruction at probed address during probe hit. The
|
|
|
+ * result of evaluation would be the updated epc. The insturction in delayslot
|
|
|
+ * would actually be single stepped using a normal breakpoint) on SSOL slot.
|
|
|
+ *
|
|
|
+ * The result is also saved in the kprobe control block for later use,
|
|
|
+ * in case we need to execute the delayslot instruction. The latter will be
|
|
|
+ * false for NOP instruction in dealyslot and the branch-likely instructions
|
|
|
+ * when the branch is taken. And for those cases we set a flag as
|
|
|
+ * SKIP_DELAYSLOT in the kprobe control block
|
|
|
+ */
|
|
|
+static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
|
|
|
+ struct kprobe_ctlblk *kcb)
|
|
|
{
|
|
|
+ union mips_instruction insn = p->opcode;
|
|
|
+ long epc;
|
|
|
+ int ret = 0;
|
|
|
+
|
|
|
+ epc = regs->cp0_epc;
|
|
|
+ if (epc & 3)
|
|
|
+ goto unaligned;
|
|
|
+
|
|
|
+ if (p->ainsn.insn->word == 0)
|
|
|
+ kcb->flags |= SKIP_DELAYSLOT;
|
|
|
+ else
|
|
|
+ kcb->flags &= ~SKIP_DELAYSLOT;
|
|
|
+
|
|
|
+ ret = __compute_return_epc_for_insn(regs, insn);
|
|
|
+ if (ret < 0)
|
|
|
+ return ret;
|
|
|
+
|
|
|
+ if (ret == BRANCH_LIKELY_TAKEN)
|
|
|
+ kcb->flags |= SKIP_DELAYSLOT;
|
|
|
+
|
|
|
+ kcb->target_epc = regs->cp0_epc;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+
|
|
|
+unaligned:
|
|
|
+ pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
|
|
|
+ force_sig(SIGBUS, current);
|
|
|
+ return -EFAULT;
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
|
|
|
+ struct kprobe_ctlblk *kcb)
|
|
|
+{
|
|
|
+ int ret = 0;
|
|
|
+
|
|
|
regs->cp0_status &= ~ST0_IE;
|
|
|
|
|
|
/* single step inline if the instruction is a break */
|
|
|
if (p->opcode.word == breakpoint_insn.word ||
|
|
|
p->opcode.word == breakpoint2_insn.word)
|
|
|
regs->cp0_epc = (unsigned long)p->addr;
|
|
|
- else
|
|
|
- regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
|
|
|
+ else if (insn_has_delayslot(p->opcode)) {
|
|
|
+ ret = evaluate_branch_instruction(p, regs, kcb);
|
|
|
+ if (ret < 0) {
|
|
|
+ pr_notice("Kprobes: Error in evaluating branch\n");
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Called after single-stepping. p->addr is the address of the
|
|
|
+ * instruction whose first byte has been replaced by the "break 0"
|
|
|
+ * instruction. To avoid the SMP problems that can occur when we
|
|
|
+ * temporarily put back the original opcode to single-step, we
|
|
|
+ * single-stepped a copy of the instruction. The address of this
|
|
|
+ * copy is p->ainsn.insn.
|
|
|
+ *
|
|
|
+ * This function prepares to return from the post-single-step
|
|
|
+ * breakpoint trap. In case of branch instructions, the target
|
|
|
+ * epc to be restored.
|
|
|
+ */
|
|
|
+static void __kprobes resume_execution(struct kprobe *p,
|
|
|
+ struct pt_regs *regs,
|
|
|
+ struct kprobe_ctlblk *kcb)
|
|
|
+{
|
|
|
+ if (insn_has_delayslot(p->opcode))
|
|
|
+ regs->cp0_epc = kcb->target_epc;
|
|
|
+ else {
|
|
|
+ unsigned long orig_epc = kcb->kprobe_saved_epc;
|
|
|
+ regs->cp0_epc = orig_epc + 4;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
static int __kprobes kprobe_handler(struct pt_regs *regs)
|
|
@@ -279,8 +364,13 @@ static int __kprobes kprobe_handler(struct pt_regs *regs)
|
|
|
save_previous_kprobe(kcb);
|
|
|
set_current_kprobe(p, regs, kcb);
|
|
|
kprobes_inc_nmissed_count(p);
|
|
|
- prepare_singlestep(p, regs);
|
|
|
+ prepare_singlestep(p, regs, kcb);
|
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
|
+ if (kcb->flags & SKIP_DELAYSLOT) {
|
|
|
+ resume_execution(p, regs, kcb);
|
|
|
+ restore_previous_kprobe(kcb);
|
|
|
+ preempt_enable_no_resched();
|
|
|
+ }
|
|
|
return 1;
|
|
|
} else {
|
|
|
if (addr->word != breakpoint_insn.word) {
|
|
@@ -324,8 +414,16 @@ static int __kprobes kprobe_handler(struct pt_regs *regs)
|
|
|
}
|
|
|
|
|
|
ss_probe:
|
|
|
- prepare_singlestep(p, regs);
|
|
|
- kcb->kprobe_status = KPROBE_HIT_SS;
|
|
|
+ prepare_singlestep(p, regs, kcb);
|
|
|
+ if (kcb->flags & SKIP_DELAYSLOT) {
|
|
|
+ kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
|
+ if (p->post_handler)
|
|
|
+ p->post_handler(p, regs, 0);
|
|
|
+ resume_execution(p, regs, kcb);
|
|
|
+ preempt_enable_no_resched();
|
|
|
+ } else
|
|
|
+ kcb->kprobe_status = KPROBE_HIT_SS;
|
|
|
+
|
|
|
return 1;
|
|
|
|
|
|
no_kprobe:
|
|
@@ -334,25 +432,6 @@ no_kprobe:
|
|
|
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * Called after single-stepping. p->addr is the address of the
|
|
|
- * instruction whose first byte has been replaced by the "break 0"
|
|
|
- * instruction. To avoid the SMP problems that can occur when we
|
|
|
- * temporarily put back the original opcode to single-step, we
|
|
|
- * single-stepped a copy of the instruction. The address of this
|
|
|
- * copy is p->ainsn.insn.
|
|
|
- *
|
|
|
- * This function prepares to return from the post-single-step
|
|
|
- * breakpoint trap.
|
|
|
- */
|
|
|
-static void __kprobes resume_execution(struct kprobe *p,
|
|
|
- struct pt_regs *regs,
|
|
|
- struct kprobe_ctlblk *kcb)
|
|
|
-{
|
|
|
- unsigned long orig_epc = kcb->kprobe_saved_epc;
|
|
|
- regs->cp0_epc = orig_epc + 4;
|
|
|
-}
|
|
|
-
|
|
|
static inline int post_kprobe_handler(struct pt_regs *regs)
|
|
|
{
|
|
|
struct kprobe *cur = kprobe_running();
|